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APPROXIMATION OF THE TWO-DIMENSIONAL DIRICHLET
PROBLEM BY CONTINUOUS AND DISCRETE PROBLEMS ON

ONE-DIMENSIONAL NETWORKS

MARYSE BOURLARD-JOSPIN, SERGE NICAISE, AND JULIETTE VENEL

Abstract. We show that the solution of the two-dimensional Dirichlet problem set
in a plane domain is the limit of the solutions of similar problems set on a sequence of
one-dimensional networks as their size goes to zero. Roughly speaking this means that a
membrane can be seen as the limit of rackets made of strings. For practical applications,
we also show that the solutions of the discrete approximated problems (again on the one-
dimensional networks) also converge to the solution of the two-dimensional Dirichlet problem.

1. Introduction

Approximation of multidimensional boundary value problems by discrete prob-
lems or by boundary value problems set on less dimensional ones is very important
in practice. For discrete approximations, the most popular methods are the finite
difference method or the finite element method, for which a lot of convergence
results are proved [6, 23]. By the less dimensional approximation, we mean that
a n-dimensional problem is approximated by a family of k-dimensional ones with
k < n. For instance the approximation of boundary value problems set on objects
of R3 with a small thickness ε by boundary value problems set on objects of di-
mension 1 or 2 was largely considered in the literature, see for instance [9, 7, 20].
In the same spirit, let us also mention homogenization techniques that analyze the
limit process of problems set on n-dimensional domains of thickness ε to problems
still set on domains of dimension n [8].

The problems studied in this paper have some common properties with the above
approaches since we will approach a two-dimensional problem by a family of con-
tinuous 1-dimensional problems but as each continuous 1-dimensional problem can
be approximated by a discrete one, we also examine the limit of these discrete
problems. The approximation of the low frequency spectrum of such problems
was performed in [13, 12] (see also [19] for the plate problem), but to our best
knowledge the approximation of the boundary value problem itself was not yet per-
formed. Hence our goal is to fill this gap and to show that indeed the solutions
of the continuous and discrete one-dimensional problems converge to the solution
of the two-dimensional problem. More precisely, we first prove some error esti-
mates between the solution of the two-dimensional problem in an arbitrary domain
and the solutions of the continuous one-dimensional problems. Further we propose
a numerical scheme based on the resolution of discrete one-dimensional problems
and obtain error estimates similar to the standard two-dimensional finite element
method. Our approach can be considered as an attractive alternative to the stan-
dard ones since its associated stiffness matrix is easier to compute and keeps the
same properties (symmetry, positive definiteness and sparsity). Finally it can be
used for domains with curved boundaries since no triangulation is needed.

The schedule of the paper is as follows: We recall in Section 2 the Dirichlet
problem in the unit square as well as its continuous counterparts on networks
that approach the square as the size goes to zero. An error estimate between the
solutions of these continuous problems is proved in section 3 by using the second
Strang lemma. Similarly section 4 is devoted to the error analysis between the exact
solution in the unit square with the finite element approximations on the networks.

Math. classification: 35R02, 35B40, 65N30.
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14 M. Bourlard-Jospin, S. Nicaise & J. Venel

In section 5 we extend some of our previous results to the Dirichlet problem set
on an arbitrary domain of the plane. Finally in section 6 some numerical tests are
presented that confirm our theoretical results.

Let us finish this introduction with some notation used in the remainder of
the paper: On D, the L2(D)-norm will be denoted by ‖ · ‖D. The usual norm
and seminorm of Hs(D) (s > 0) are denoted by ‖ · ‖s,D and | · |s,D, respectively.
Finally, the notation a . b means the existence of a positive constants C, which
is independent of the size h of the edges of the network (see below) and of the
considered quantities a and b such that a 6 Cb.

2. The continuous problems

2.1. The continuous two-dimensional problem. Let S denote the unit square
]0; 1[×]0; 1[ and ∂S its boundary. On this domain, we consider the Dirichlet problem{

−∆u = f in S
u = 0 on ∂S (2.1)

with f ∈ C(S).
According to Lax-Milgram lemma, there exists a unique weak solution u ∈ H1

0 (S)
of this problem, namely u ∈ H1

0 (S) is the unique solution of∫
S
∇u · ∇v dx =

∫
S
f v dx, ∀v ∈ H1

0 (S).

According to Theorem 5.1.3.5 of [11], this solution belongs to W 2,p(S), for all
p > 2, and if f belongs to W 1,p(S), with p > 2, is such that f is zero at each corner
of S, then this solution belongs to W 3,p(S), hence in particular to H3(S).

2.2. The associated problem on networks. Now we intend to consider a similar
problem set on a family of networks included in S. First we need to introduce some
notation: For any n ∈ N, n > 2, let h = 1/n and introduce the network Rh defined
by

Rh = {]kh; (k + 1)h[×{`h};∀k ∈ {0, . . . , n− 1},∀` ∈ {1, . . . , n− 1}}
∪ {{kh}×]`h; (`+ 1)h[;∀k ∈ {1, . . . , n− 1},∀` ∈ {0, . . . , n− 1}}.

The edges of Rh are the intervals ]kh; (k + 1)h[×{`h} or {kh}×]`h; (` + 1)h[ but
will be quite simply denoted by ei, in other words,

Rh = {ei; i = 1, . . . , Nh}, with Nh = 2n(n− 1).

We directly check that the size (or length) of each edge of the network Rh is h.
We further write Nh for the set of nodes of Rh. Moreover we need to distinguish
between nodes included into S or into ∂S, so we set

N int
h = {(kh; `h);∀k, ` ∈ {1, . . . , n− 1}},
N ext
h = {(0; `h); (1; `h); (`h; 0); (`h; 1);∀` ∈ {0, . . . , n}},
Nh = N int

h ∪N ext
h .

It remains a last notation to indicate the set of edges adjacent to a given node:

∀v ∈ Nh, Iv = {i ∈ {1, . . . , Nh} such that v ∈ ei}.
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Our aim is to approximate the solution u of the continuous problem (2.1) by the

solution uh = (ui)i=1,...,Nh
∈
Nh∏
i=1

H2(ei) of the following problem:



−u′′i = f̃i on ei ∀i = 1 · · ·Nh,

ui(v) = 0 ∀v ∈ N ext
h ,∀i ∈ Iv,

ui(v) = uj(v) ∀v ∈ N int
h ,∀i, j ∈ Iv,∑

i∈Iv

∂ui
∂νi

(v) = 0 ∀v ∈ N int
h ,

(2.2)

where
f̃i = 1

2γif. (2.3)

In the whole paper we use the abuse of notation u′′ for ∂
2u

∂x2 or ∂
2u

∂y2 according to

the kind of the edge (horizontal or vertical). A similar abuse of notation will be
used for the first order derivatives. Furthermore, ∂

∂νi
and γi represent respectively

the outer normal derivative operator and the trace operator on the edge ei. The
last equation of problem (2.2) is nothing else but Kirchoff’s law. System (2.2) is a
Dirichlet problem on the network Rh that was largely studied in the literature, see
[1, 2, 4, 5, 16, 15, 17, 18, 21] and the references there.

2.3. Variational formulation on the networks. The variational space associ-
ated with problem (2.2) is

Vh = {uh = (ui)i=1,...,Nh
∈
Nh∏
i=1

H1(ei) s.t.

ui(v) = uj(v) ∀v ∈ N int
h ,∀i, j ∈ Iv,

ui(v) = 0 ∀v ∈ N ext
h ,∀i ∈ Iv},

(2.4)

equipped with the norm:

||u||h = |u|1,Rh
=
[
Nh∑
i=1

∫
ei

(u′i(x))2dx

]1/2

. (2.5)

Due to the Dirichlet boundary conditions, the H1-norm and its semi-norm are
equivalent on Vh.

Lemma 2.1. — For every w ∈ Vh, we have

||w||Rh
6 |w|1,Rh

, (2.6)

as well as
‖w‖∞,Rh

:= sup
(x,y)∈Rh

|w(x, y)| 6 |w|1,Rh
. (2.7)

Proof. — Let us denote L` = {(x, `h), 0 < x < 1} and Ck = {(kh, y), 0 < y < 1}.
Then

Rh =
(
n−1⋃
`=1

L`

)
∪

(
n−1⋃
k=1

Ck

)
. (2.8)

As w(0, `h) = 0, we have for all x ∈]0; 1[

|w(x, `h)| =
∣∣∣∣∫ x

0

∂w

∂x
(t, `h)dt

∣∣∣∣ 6 ∥∥∥∥∂w∂x
∥∥∥∥
L`

, (2.9)



16 M. Bourlard-Jospin, S. Nicaise & J. Venel

according to the Cauchy-Schwarz inequality. Then

||w||2L`
=
∫ 1

0
|w(x, `h)|2dx 6

∥∥∥∥∂w∂x
∥∥∥∥2

L`

6 |w|21,L`
. (2.10)

In the same way, we can check that ‖w‖2Ck
6 |w|21,Ck

and by summing up these two
inequalities we obtain the expected estimate (2.6).
The estimate (2.7) is a direct consequence of (2.9) and its counterpart in Ck. �

Now we define a bilinear form ah on Vh by

ah : Vh × Vh → R : (uh, wh)→ ah(uh, wh) =
Nh∑
i=1

∫
ei

u′i(x)w′i(x)dx, (2.11)

that is clearly continuous and coercive on Vh according to Lemma 2.1.

Proposition 2.2. — The variational formulation of problem (2.2) is to find
uh ∈ Vh solution of

∀wh ∈ Vh, ah(uh, wh) = F (wh), (2.12)
with

F (wh) =
Nh∑
i=1

∫
ei

f̃i(x)wi(x)dx. (2.13)

Proof. — The proof is quite standard (cf. Lemma 2.2.12 in [2] for instance), we
give it for the sake of completeness. Let us assume that there exists a solution

uh = (ui)i=1,...,Nh
∈

Nh∏
i=1

H2(ei) of problem (2.2). Obviously uh belongs to Vh.

Moreover uh is solution of (2.12). Indeed, let wh = (wi)i=1,...,Nh
∈ Vh, then we

have for all i ∈ {1, ..., Nh},

−
∫
ei

u′′i (x)wi(x)dx =
∫
ei

f̃i(x)wi(x)dx.

Integrating by parts, we obtain∫
ei

u′i(x)w′i(x)dx− [u′i(v)wi(v)]v=vi2
v=vi1

=
∫
ei

f̃i(x)wi(x)dx, (2.14)

where vi1 and vi2 ∈ Nh are such that i ∈ Ivi1 ∩ Ivi2 .
We claim that

Nh∑
i=1

[u′i(v)wi(v)]v=vi2
v=vi1

= 0. (2.15)

In fact, we have

[u′i(v)wi(v)]v=vi2
v=vi1

= ∂ui
∂νi

(vi1)wi(vi1) + ∂ui
∂νi

(vi2)wi(vi2), (2.16)

and consequently,
Nh∑
i=1

[u′i(v)wi(v)]v=vi2
v=vi1

=
∑

v∈N ext
h

∑
i∈Iv

∂ui
∂νi

(v)wi(v) +
∑

v∈N int
h

∑
i∈Iv

∂ui
∂νi

(v)wi(v). (2.17)

If v ∈ N ext
h , then wi(v) = 0, for all i ∈ Iv and therefore the second term of (2.17)

is zero. If v ∈ N int
h , then∑

i∈Iv

∂ui
∂νi

(v)wi(v) = wj(v)
∑
i∈Iv

∂ui
∂νi

(v) (2.18)

for any j ∈ Iv, since wh is continuous at the nodes. Then, using Kirchoff’s law, the
right-hand side of the identity (2.18) is equal to zero and the first term of (2.17) is
zero. Hence (2.15) is established and we conclude with (2.14) and (2.15). �
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3. An approximation result between the continuous problems

In this section, we analyze the error between the solution u of problem (2.1) and
the solutions uh of (2.12). For that purpose, we make use of the second Strang
lemma (see below). Hence we first estimate the consistency error:

Theorem 3.1. — Let u denote the solution of (2.1), and uh the solution of
(2.12). If u ∈ H3(S), then

sup
w∈Vh

|ah(u,w)− F (w)|
||w||h

.
√
h||u||3,S . (3.1)

Proof. — Since u ∈ H3(S), for all i = 1, ..., Nh, ui = γiu has a meaning and
since u is also continuous, its restriction to Rh, still denoted by u, belongs to Vh.
Fix w = (wi)i=1,...,Nh

∈ Vh. It can be shown, as in the proof of Proposition 2.2,
that

ah(u,w) = −
Nh∑
i=1

∫
ei

u′′i (x)wi(x)dx.

Then, thanks to (2.13),

ah(u,w)− F (w) = −
Nh∑
i=1

∫
ei

(u′′i (x) + f̃i(x))wi(x)dx. (3.2)

For every v ∈ Nh, if (ξ, ϕ) are the coordinates of v, we define the rectangle

Chv =
(

]ξ − h

2 , ξ + h

2 [×]ϕ− h

2 , ϕ+ h

2 [
)
∩ S

and its intersection with Rh
Rhv = Chv ∩Rh. (3.3)

If v ∈ N int
h , Rhv is a cross, while if v ∈ N ext

h , Rhv is a half edge. The identity (3.2)
can be rewritten as

ah(u,w)−F (w) = −
∑

v∈N int
h

∫
Rh

v

(u′′+ f̃)(x)w(x)dx−
∑

v∈N ext
h

∫
Rh

v

(u′′+ f̃)(x)w(x)dx.

(3.4)
Step 1 : Case of the interior nodes
Fix v ∈ N int

h . We define the reference square Ĉ =]− 1
2 ; 1

2 [×]− 1
2 ; 1

2 [ and the reference
cross R̂ = ({0}×]− 1

2 ; 1
2 [) ∪ (]− 1

2 ; 1
2 [×{0}). We consider the change of variables

φ : Ĉ → Chv : x̂→ x = φ(x̂) = v + hx̂.

Note that φ(R̂) = Rhv and∫
Rh

v

(u′′ + f̃)(x)w(x)dx = h

∫
R̂

(u′′(φ(x̂)) + f̃(φ(x̂)))w(φ(x̂)) dx̂.

Let us set û = u ◦ φ, ŵ = w ◦ φ, then û′ = h(u′ ◦ φ). In the same way,

u′′ ◦ φ = 1
h2 û

′′ and (∆u) ◦ φ = 1
h2 ∆û. (3.5)

Owing to the definition (2.3) of f̃ , f̃ ◦ φ = − 1
2

1
h2 ∆û and finally∫

Rh
v

(u′′ + f̃)(x)w(x)dx = 1
h

∫
R̂

(û′′ − 1
2∆û)(x̂)ŵ(x̂)dx̂ = h−1(I1 + I2), (3.6)

where
I1 =

∫
R̂

(û′′ − 1
2∆û)(x̂)(ŵ(x̂)−Mŵ)dx̂ (3.7)

and
I2 =

∫
R̂

(û′′ − 1
2∆û)(x̂)(Mŵ)dx̂, (3.8)
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with the constant
Mŵ =

∫
R̂

ŵ(x̂)dx̂. (3.9)

Let us begin with the estimate of I1. With (3.7) and the Cauchy-Schwarz inequality,

|I1| 6 ||û′′ −
1
2∆û||

R̂
||ŵ −Mŵ||

R̂
. (3.10)

Moreover we have

||û′′ − 1
2∆û||

R̂
.
∑
|α|=2

||Dαû||
R̂
.
∑
|α|=2

||Dαû||1,Ĉ . (3.11)

by using a trace theorem [11, Thm 1.5.1.2]. We recall that due to the Poincaré-
Friedrichs inequality,

||ŵ −Mŵ||
R̂
. |ŵ|1,R̂. (3.12)

Thanks to (3.10), (3.11) and (3.12), we have shown

|I1| . |ŵ|1,R̂
∑
|α|=2

||Dαû||1,Ĉ . (3.13)

Now in order to estimate I2, we need the following lemma that can be proved by
easy computations.

Lemma 3.2. —

∀p̂ ∈ P2(R̂),
∫
R̂

(p̂′′ − 1
2∆p̂)(x̂)dx̂ = 0, (3.14)

where P2(R̂) represents the set of polynomials of degree at most 2 on R̂.

Owing to (3.8) and (3.14), for all p̂ ∈ P2(R̂),

I2 =
∫
R̂

[(û− p̂)′′ − 1
2∆(û− p̂)](x̂)(Mŵ)dx̂.

According to the Cauchy-Schwarz inequality, and sinceMŵ is a constant,

|I2| . |Mŵ|‖(û− p̂)′′ − 1
2∆(û− p̂)‖

R̂
. |Mŵ|

∑
|α|=2

||Dα(û− p̂)||
R̂

. |Mŵ|
∑
|α|=2

||Dα(û− p̂)||1,Ĉ . |Mŵ| ||û− p̂||3,Ĉ

by using the same trace theorem as previously. Let p̂ be the orthogonal projection
of û on P2(R̂) for the H3(Ĉ)-norm, then

||û− p̂||3,Ĉ . |û|3,Ĉ . (3.15)

Moreover, due to (3.9), |Mŵ| . ||ŵ||
R̂
, so the three last inequalities imply that

|I2| . ||ŵ||R̂|û|3,Ĉ . (3.16)

Now we recall the next lemma that specifies the change of Hm-semi-norms from a
domain to a reference domain [6].

Lemma 3.3. — Consider m ∈ N and let us denote f̂ = f ◦ φ. Then

∀f ∈ Hm(Rhv ), |f |m,Rh
v

= 1
hm−1/2 |f̂ |m,R̂

and
∀f ∈ Hm(Chv ), |f |m,Ch

v
= 1
hm−1 |f̂ |m,Ĉ .
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By (3.13),

|I1| . |ŵ|1,R̂

∑
|α|=2

||Dαû||
Ĉ

+
∑
|α|=2

|Dαû|1,Ĉ

 . (3.17)

It follows from Lemma 3.3 and (3.5) that

|I1| . h2
√
h|w|1,Rh

v

∑
|α|=2

h−1||Dαu||Ch
v

+
∑
|α|=2

|Dαu|1,Ch
v

 ,
and finally,

|I1| . h3/2|w|1,Rh
v
||u||3,Ch

v
. (3.18)

According to Lemma 3.3, (3.16) leads to

|I2| . h3/2||w||Rh
v
|u|3,Ch

v
. (3.19)

Gathering the results (3.6), (3.18) and (3.19), we have proved that∣∣∣∣∣
∫
Rh

v

(u′′ + f̃)(x)w(x)dx

∣∣∣∣∣ . √h (|w|1,Rh
v
||u||3,Ch

v
+ ||w||Rh

v
|u|3,Ch

v

)
. (3.20)

Step 2 : Case of the exterior nodes
Fix v ∈ N ext

h and let us denote R̂1/2 = φ−1(Rhv ) and Ĉ1/2 = φ−1(Chv ).
We show as (3.6) that∫

Rh
v

(u′′ + f̃)(x)w(x)dx = 1
h

∫
R̂1/2

(û′′ − 1
2∆û)(x̂)ŵ(x̂)dx̂. (3.21)

Using the Cauchy-Schwarz inequality, this implies∣∣∣∣∣
∫
Rh

v

(u′′ + f̃)(x)w(x)dx

∣∣∣∣∣ 6 1
h
||û′′ − 1

2∆û||
R̂1/2
||ŵ||

R̂1/2
. (3.22)

Arguing as for (3.11), since u ∈ H3(S), we get

||û′′ − 1
2∆û||

R̂1/2
.
∑
|α|=2

||Dαû||1,Ĉ1/2
. (3.23)

On the other hand, w ∈ Vh implies that ŵ(0) = 0, so it can be proved as in Lemma
2.1 that

||ŵ||
R̂1/2

. |ŵ|1,R̂1/2
. (3.24)

Thanks to (3.22), (3.23) and (3.24), we have∣∣∣∣∣
∫
Rh

v

(u′′ + f̃)(x)w(x)dx

∣∣∣∣∣ . 1
h
|ŵ|1,R̂1/2

∑
|α|=2

||Dαû||
Ĉ1/2

+
∑
|α|=2

|Dαû|1,Ĉ1/2

 .
(3.25)

Using Lemma 3.3 and the identity (3.5), it comes∣∣∣∣∣
∫
Rh

v

(u′′ + f̃)(x)w(x)dx

∣∣∣∣∣ . 1
h

√
h|w|1,Rh

v
h2

∑
|α|=2

h−1||Dαu||Ch
v

+
∑
|α|=2

|Dαu|1,Ch
v


.
√
h|w|1,Rh

v
||u||3,Ch

v
. (3.26)

Step 3 : Conclusion
The identity (3.4) leads to

|ah(u,w)− F (w)| 6
∑

v∈N int
h

∣∣∣∣∣
∫
Rh

v

(u′′ + f̃)(x)w(x)dx

∣∣∣∣∣+ ∑
v∈N ext

h

∣∣∣∣∣
∫
Rh

v

(u′′ + f̃)(x)w(x)dx

∣∣∣∣∣ .
(3.27)
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Summing (3.20) for all v ∈ N int
h and (3.26) for all v ∈ N ext

h , we deduce from the
previous inequality

|ah(u,w)− F (w)| .
√
h
∑

v∈N int
h

(
|w|1,Rh

v
||u||3,Ch

v
+ ||w||Rh

v
|u|3,Ch

v

)
+
√
h
∑

v∈N ext
h

|w|1,Rh
v
||u||3,Ch

v

.
√
h
∑

v∈N int
h

||w||Rh
v
|u|3,Ch

v
+
√
h
∑
v∈Nh

|w|1,Rh
v
||u||3,Ch

v
.

By the discrete Cauchy-Schwarz inequality, we obtain

|ah(u,w)− F (w)| .
√
h (|w|1,Rh

||u||3,S + ||w||Rh
|u|3,S) . (3.28)

We conclude the proof thanks to Lemma 2.1 and inequality (3.28). �

Now we recall the following result which is a consequence of the second Strang
Lemma and can be found for example in [6, Thm 4.2.2].

Lemma 3.4. — Let u denote the solution of (2.1) supposed to belong to Vh, and
let uh be the solution of (2.12). Then

||u− uh||h . sup
wh∈Vh

|ah(u,wh)− F (wh)|
||wh||h

. (3.29)

Remark 3.5. — Note that the upper bound in the second Strang Lemma con-
tains another term, namely infvh∈Vh

||u − vh||h, called the “interpolation error".
Here only the "consistency error" term appears as we have assumed that u ∈ Vh,
the interpolation error being obviously equal to zero.

Corollary 3.6. — Let u denote the solution of (2.1), and let uh be the solution
of (2.12). If u ∈ H3(S), then

||u− uh||1,Rh
.
√
h||u||3,S , (3.30)

and
||u− uh||∞,Rh

.
√
h||u||3,S . (3.31)

Proof. — We deduce from Theorem 3.1 and Lemma 3.4 that
|u− uh|1,Rh

.
√
h||u||3,S . (3.32)

Now the estimates (3.30) and (3.31) are a direct consequence of Lemma 2.1 since
u− uh ∈ Vh. �

4. The finite element method on the networks

In the previous section, we have checked that uh is a good approximation of u.
However, problem (2.2) is still set in an infinite dimensional space and except for
some specific right-hand sides f̃ , its solution uh cannot be computed analytically.
Hence in practice problem (2.2) has to be discretized. Here we choose the finite
element method and propose to deal with two different cases according to the
regularity H3(S) or C3(S̄) of the solution u.

4.1. A less regular solution. Here we assume that the solution of the continuous
problem (2.1) u belongs to H3(S) and f is a continuous function in S. Let P1(ei)
denote the set of polynomials of degree at most 1 on ei, for all i ∈ {1, . . . , Nh}. We
define the discrete variational space

Wh = {wh = (wi)i=1,...,Nh
∈ Vh s.t. wi ∈ P1(ei),∀i = 1, . . . , Nh}. (4.1)

Let Uh ∈Wh be the solution of the finite element problem
ah(Uh, wh) = F (wh),∀wh ∈Wh. (4.2)
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In order to compare u and Uh in S, we will use an interpolant Ihu of u and a lifting
RhUh of Uh defined as follows: Let us denote Kh

k,` =]kh, (k + 1)h[×]`h, (` + 1)h[,
for each k, ` ∈ {0, . . . , n− 1}. Observe that

S =
(
n−1⋃
k=0

n−1⋃
`=0

Kh
k,`

)
∪Rh, (4.3)

and therefore the set of K̄h
k,` is a triangulation of S. Hence let Ihu denote the

Lagrange interpolation of u related to this triangulation, namely Ihu is the function
such that its restriction to Kh

k,` belongs to Q1(Kh
k,`) (where Q1 is the space of

polynomials in (x, y) of degree at most 1 in each variable x and y) and that coincides
with u at each node v ∈ Nh. As a consequence Ihu is continuous on S. Finally we
define RhUh = IhUh in the sense that its restriction to Kh

k,` fulfils RhUh ∈ Q1(Kh
k,`)

and
RhUh(v) = Uh(v),∀v ∈ Kh

k,` ∩Nh. (4.4)
Thus RhUh coincides with Uh on Rh and is continuous on S.
Now we aim at approximating u by Uh. The estimate of the error is made with the
help of the following three lemmas.

Lemma 4.1. —
|Ihu−RhUh|1,S .

√
h|Ihu− Uh|1,Rh

. (4.5)

Proof. — According to Lemma 3.3, with Φ̃ : Ĉ → Kh
k,` : x̂ 7→ (kh, `h)+h(x̂+ 1

2 ),
we have

|Ihu−RhUh|1,Kh
k,`
. |Îhu− R̂hUh|1,Ĉ . (4.6)

Let us denote Q0
1(Ĉ) = {q ∈ Q1(Ĉ),

∫
∂Ĉ

q = 0}.
Take q ∈ Q1(Ĉ), then

|q|1,Ĉ = |πq|1,Ĉ 6 ‖πq‖1,Ĉ ,

where πq = q − 1
4
∫
∂Ĉ

q ∈ Q0
1(Ĉ). Note that Q0

1(Ĉ) is a finite dimensional space
and | · |1,∂Ĉ is a norm on this space. So

‖πq‖1,Ĉ . |πq|1,∂Ĉ = |q|1,∂Ĉ .

We have thus proved that
∀q ∈ Q1(Ĉ), |q|1,Ĉ . |q|1,∂Ĉ . (4.7)

As Îhu− R̂hUh ∈ Q1(Ĉ), thanks to (4.6) and (4.7), we have

|Ihu−RhUh|1,Kh
k,`
. |Îhu− R̂hUh|1,∂Ĉ ,

and owing to Lemma 3.3 again,
|Ihu−RhUh|1,Kh

k,`
.
√
h|Ihu− Uh|1,∂Kh

k,`
. (4.8)

Collecting the pieces, we obtain

|Ihu−RhUh|21,S =
∑
k,`

|Ihu−RhUh|21,Kh
k,`

. h
∑
k,`

|Ihu− Uh|21,∂Kh
k,`

. h|Ihu− Uh|21,Rh
,

the last inequality following from the fact that each edge of Rh is in the boundary
of two domains Kh

k,`. �

Lemma 4.2. — If u ∈ H2(S), then

|Ihu− u|1,Rh
.
√
h|u|2,S . (4.9)
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Proof. — Using Lemma 3.3,

|Ihu− u|1,∂Kh
k,`

= h−1/2|Îhu− û|1,∂Ĉ 6 h
−1/2||Îhu− û||1,∂Ĉ .

Thanks to a trace theorem (see Theorem 1.5.2.1 in [11] for instance), this leads to

|Ihu− u|1,∂Kh
k,`
. h−1/2||Îhu− û||2,Ĉ . (4.10)

By the classical interpolation error estimate (see for instance Theorem 3.1.6 in [6]),
we have

||Îhu− û||2,Ĉ . |û|2,Ĉ .

Owing to Lemma 3.3 again,

||Îhu− û||2,Ĉ . h|u|2,Kh
k,`
. (4.11)

Then (4.10) and (4.11) imply

|Ihu− u|1,∂Kh
k,`
.
√
h|u|2,Kh

k,`
.

We conclude the proof by squaring this inequality and summing up for k, ` ∈
{0, . . . , n− 1}. �

Lemma 4.3. — Let us assume that f ∈ C(S). Then

||f ||Rh
6
√

2h−1/2||f ||∞,S . (4.12)

Proof. — Let us use the notation of the proof of Lemma 2.1. Then

||f ||2L`
=
∫ 1

0
|f(x, `h)|2dx 6 ||f ||2∞,S . (4.13)

Obviously we have the same estimate for ||f ||2Ck
. This leads to

||f ||2Rh
=
n−1∑
`=1
||f ||2L`

+
n−1∑
k=1
||f ||2Ck

6 2n||f ||2∞,S .

Since h = 1/n, we obtain the expected result. �

Proposition 4.4. — Let uh ∈ Vh denote the solution of (2.12) and Uh ∈ Wh

the solution of (4.2). Let us assume that the datum f belongs to C(S). Then

||uh − Uh||1,Rh
.
√
h||f ||∞,S . (4.14)

Proof. — It can be proven (see for example Theorem 3.1.6 in [6]) that

||uh − Uh||1,Rh
. h|uh|2,Rh

. (4.15)

But uh is a solution of (2.2), so

|uh|2,Rh
= |f̃ |Rh

= 1
2 ||f ||Rh

. (4.16)

Due to Lemma 4.3,
|uh|2,Rh

. h−1/2||f ||∞,S . (4.17)
The aim then follows from (4.15) and (4.17). �

Theorem 4.5. — Let Uh ∈ Wh denote the solution of (4.2), and RhUh be
defined by (4.4). Let us assume that the solution u of the continuous problem (2.1)
belongs to H3(S), and the datum f belongs to C(S). Then

||u−RhUh||1,S . h (||u||3,S + ||f ||∞,S) . (4.18)
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Proof. — As the trace of Ihu−RhUh is equal to 0 on ∂S, we have
||Ihu−RhUh||1,S . |Ihu−RhUh|1,S . (4.19)

Lemma 4.1 leads to
||Ihu−RhUh||1,S .

√
h|Ihu− Uh|1,Rh

.
√
h (|Ihu− u|1,Rh

+ |u− uh|1,Rh
+ |uh − Uh|1,Rh

) .(4.20)
We deduce from Lemma 4.2, Corollary 3.6 and Proposition 4.4 that

||Ihu−RhUh||1,S . h (||u||3,S + ||f ||∞,S) . (4.21)
On the other hand, thanks to Theorem 3.1.6 of [6],

||u− Ihu||1,S . h|u|2,S . (4.22)
We conclude with (4.21) and (4.22). �

4.2. A more regular solution. For more regular solutions, we will exploit the
analogy with a finite difference scheme to get a pointwise convergence result.
For every v ∈ N int

h , we define λv ∈ Wh such that λv(v) = 1 and λv(v′) = 0, for all
v′ ∈ Nh such that v′ 6= v. Remark that the support of λv is included in {ēi; i ∈ Iv}
and that the set {λv, v ∈ N int

h } forms a basis of the space Wh. The stiffness matrix
Mh of problem (4.2) is easily computed. More precisely, we enumerate the interior
nodes v ∈ N int

h line by line, namely let us denote v1 = (h, h), v2 = (2h, h), . . . ,
vn−1 = ((n − 1)h, h), vn = (h, 2h), vn+1 = (2h, 2h), . . . , v2n−2 = ((n − 1)h, 2h),
. . . v(n−1)2 = ((n− 1)h, (n− 1)h). Let Mh denote the stiffness matrix such that

(Mh)i,j = ah(λvi
, λvj

),∀i, j ∈ {1, . . . , (n− 1)2}.
Then Mh is a symmetric matrix that can be written

Mh = 1
h
Ãh (4.23)

where

Ãh =



A1,1 A1,2 0 ... 0

A2,1 A2,2 A2,3
. . . 0

0 A3,2 A3,3
. . . 0

...
. . . . . . . . .

...
0 . . . 0 An−1,n−2 An−1,n−1


. (4.24)

The blocks Ak,l are symmetric matrices of dimension (n − 1) and satisfy for all
k ∈ {1, . . . , n − 1}, Ak,k−1 = Ak−1,k = −In−1 (In−1 is the identity matrix of
dimension (n− 1)), and

Ak,k =


4 −1 ... 0

−1 4
. . .

...
...

. . . . . . −1
0 . . . −1 4

 . (4.25)

Set m = (n− 1)2 (for shortness we skip the dependence of m on h), as Uh belongs
to Wh, it can be expressed in the basis (λvk

)k=1,...,m as follows:

Uh =
m∑
k=1

Uh(vk)λvk
.

As usual, Uh is the solution of problem (4.2) if and only if

MhŨh = F̃h (4.26)

where Ũh = (Uh(v1), ..., Uh(vm))> and F̃h = (F (λv1), ..., F (λvm))>.
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Now we want to check that the values of Uh at the nodes are a good approxima-
tion of the values of u. To this end, we observe that Mh is closely related to the
matrix obtained by using the finite difference method to approximate the continu-
ous problem (2.1). Indeed if Dh denote the approximation of the solution u of (2.1)
with the finite difference method, then Dh is solution of the linear system [14]

AhDh = Fh, (4.27)
where

Ah = 1
h
Mh = 1

h2 Ãh (4.28)

with Ãh defined by (4.24) and Fh = (f(v1), ..., f(vm))>.
For further purposes, we state the following two results (see Lemma 6.2 of [3]

for the proof of the first result, the second one being proved in a fully similar way,
see also Property 1.20 of [22]).

Proposition 4.6. — Let A ∈ Rm×m satisfying the following conditions
(1) ∀i 6= j, aij 6 0, and
(2) ∀i = 1, . . . ,m,

∑m
j=1 aij > 0,

then A is a monotone matrix, i. e., if X = (xi)i=1,...,m ∈ Rm is such that AX > 0
(in the sense that (Ax)i > 0, for all i = 1, . . . ,m), then X > 0.

Remark 4.7. — The result of Proposition 4.6 still holds if the assumption (2)
is replaced by
(2’) A is a regular matrix and for all i = 1, . . . ,m,

∑m
j=1 aij > 0.

Corollary 4.8. — Ãh and Ah given by (4.28) are monotone matrices.

Proof. — Since Ãh is symmetric and positive definite, Ãh is a regular matrix.
Moreover, Ãh fulfils condition (1) of Proposition 4.6 and condition (2’) of Remark
4.7. �

Proposition 4.9. — Consider u the solution of Problem (2.1) and suppose
that u ∈ C3(S). Set U = (u(v1), ..., u(vm))> and let Dh be the solution of equation
(4.27). Then

Ah(U −Dh) = η(u),
with η(u) = (η(u)(v1), ..., η(u)(vm))>, where

η(u)(xi, yi) = −h6

[
∂3u

∂x3 (xi + θi,1h, yi)−
∂3u

∂x3 (xi − θi,2h, yi)

+∂3u

∂y3 (xi, yi + θi,3h)− ∂3u

∂y3 (xi, yi − θi,4h)
]

with some θi,j ∈]0; 1[ and (xi, yi) being the coordinates of vi. Moreover, one has
||η(u)||∞ = max

i=1,...,m
|η(u)(xi, yi)| . hM3,

where M3 = ||D3u||∞ = max
(x, y) ∈ S
|α| = 3

|Dαu(x, y)|.

Proof. — This result is just a consequence of Taylor’s formula. We refer the
reader to [14] for the details. �

Lemma 4.10. — Let W = (w1, . . . , wm)>, G = (g1, . . . , gm)> ∈ Rm be such
that AhW = G. Then, for all i = 1, . . . ,m,

|wi| 6
1
4 [xi(1− xi) + yi(1− yi)] ||G||∞ (4.29)

where (xi, yi) are the coordinates of vi and ||G||∞ = max
i=1,...,m

|gi|.
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Proof. — Let us consider w̃ defined by w̃(x, y) = 1
4 (x(1− x) + y(1− y))h̃, with

h̃ = ||G||∞. We notice that ∂2w̃
∂x2 = ∂2w̃

∂y2 = − 1
2 h̃, and thus w̃ ∈ C4(S) is solution of{

−∆w̃ = h̃ in S
w̃ = 0 on ∂S.

We write Dw
h for the solution of the following finite difference problem:

AhD
w
h = H̃

where H̃ = h̃(1, · · · , 1)>. Owing to Proposition 4.9 and noticing that η(w̃) = 0, we
get

Ah(W̃ −Dw
h ) = 0

where W̃ = (w̃1, ..., w̃m)> with w̃i = w̃(vi), for every i ∈ {1, . . . ,m}. Comparing
the two last identities, we obtain

AhW̃ = H̃. (4.30)

Since for all i ∈ {1, . . . ,m}, h̃ = ||G||∞ > |gi|, we deduce from (4.30) that (AhW̃ )i >
|(AhW )i|. This implies that Ah(W̃ −W ) > 0 and Ah(W̃ + W ) > 0. As Ah is a
monotone matrix, this leads to W̃ − W > 0 and W̃ + W > 0. In other words,
for every i = 1, ...,m, w̃i > |wi| and thanks to the definition of w̃, we finally get
(4.29). �

Proposition 4.11. — The finite difference problem (4.27) admits a unique
solution Dh.
Assume that u ∈ C3(S) and set Dh = (Dh(v1), ..., Dh(vm))>, then for every i =
1, . . . ,m, we have

|u(vi)−Dh(vi)| .M3h[xi(1− xi) + yi(1− yi)], (4.31)

with M3 = ||D3u||∞, (xi, yi) denotes the coordinates of vi, and the numerical
constant appearing here (and below) is independent of u, h and i.

Proof. — Due to Corollary 4.8, Ah is a monotone matrix and consequently Ah
is regular. This implies that there exists a unique solution Dh of (4.27).
Owing to Proposition 4.9,

Ah(U −Dh) = η(u).

Let us apply Lemma 4.10 with W = U −Dh and G = η(u). Then

|(U −Dh)(vi)| 6
1
4 [xi(1− xi) + yi(1− yi)]||η(u)||∞.

The conclusion follows directly from the estimates of ||η(u)||∞ given in Proposition
4.9. �

Proposition 4.12. — If f ∈ C1(S), then∣∣∣∣F (λv)
h
− f(v)

∣∣∣∣ . h‖∇f‖∞,S ,∀v ∈ N int
h .

Proof. — Let v ∈ N int
h , it is easy to prove that for all i ∈ Iv,∫

ei

λv(x)dx = h

2 . (4.32)
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Thus we get successively∣∣∣∣F (λv)
h
− f(v)

∣∣∣∣ = 1
h

∣∣∣∣∣
(∑
i∈Iv

∫
ei

f̃i(x)λv(x)dx
)
− hf(v)

∣∣∣∣∣
6

1
h

∑
i∈Iv

∣∣∣∣∫
ei

f̃i(x)λv(x)dx− h

4 f(v)
∣∣∣∣

6
1
h

∑
i∈Iv

∣∣∣∣∫
ei

f̃i(x)λv(x)dx− f(v)
2

∫
ei

λv(x)dx
∣∣∣∣

6
1
h

∑
i∈Iv

max
x∈ei

∣∣∣∣f̃i(x)− f(v)
2

∣∣∣∣ ∫
ei

λv(x)dx

6
1
h

∑
i∈Iv

max
x∈ei

∣∣∣∣f̃i(x)− f(v)
2

∣∣∣∣ h2 . (4.33)

Since f̃i = 1
2γif ,we have

max
x∈ei

∣∣∣∣f̃i(x)− f(v)
2

∣∣∣∣ 6 sup
z∈B(v,h)

∣∣∣∣f(z)
2 − f(v)

2

∣∣∣∣ (4.34)

where B(v, h) = {z ∈ S s.t. ||z − v||2 < h}. And since card(Iv) = 4, (4.33) and
(4.34) imply ∣∣∣∣F (λv)

h
− f(v)

∣∣∣∣ 6 2 sup
z∈B(v,h)

∣∣∣∣f(z)
2 − f(v)

2

∣∣∣∣ . (4.35)

As f ∈ C1(S), we have

∀z ∈ B(v, h), |f(z)− f(v)| 6 hmax
ξ∈S
|∇f(ξ)|. (4.36)

The aim follows from (4.35) and (4.36). �

Theorem 4.13. — If u ∈ C3(S), then

|(u− Ũh)(vi)| . h‖u‖C3(S),∀i = 1, · · · ,m.

Proof. — Equalities (4.26) and (4.28) imply

AhŨh = F̃h
h
.

Owing to (4.27), this leads to

Ah(Dh − Ũh) = Fh −
F̃h
h
.

Thanks to Lemma 4.10, this implies

|(Dh − Ũh)(vi)| 6
1
4 [xi(1− xi) + yi(1− yi)] max

i

∣∣∣∣∣
(
Fh −

F̃h
h

)
i

∣∣∣∣∣
6

1
4 [xi(1− xi) + yi(1− yi)] max

v∈N int
h

∣∣∣∣f(v)− 1
h
F (λv)

∣∣∣∣ .
Owing to Proposition 4.12 (since f ∈ C1(S)), we get

|(Dh − Ũh)(vi)| . h[xi(1− xi) + yi(1− yi)]‖u‖C3(S).

Combining this estimate with (4.31) we obtain the expected estimate. �
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5. Some results for an arbitrary domain

Our goal is to extend some of the previous results to an arbitrary domain of the
plane. Let us start with some notation. Let Ω ⊂ R2 denote a bounded open domain
with a smooth boundary. Without loss of generality we can assume that Ω ⊂ S,
where S denotes the square ]0; 1[×]0; 1[. We here consider the Dirichlet problem in
Ω: {

−∆u = f in Ω
u = 0 on ∂Ω (5.1)

with f ∈ C(Ω).
To approximate this problem by similar ones on a family of networks, we cut the
square S as previously and use the same notation as before. Let us further denote

N int
h,Ω = N int

h ∩ Ω, N ext
h,Ω = ∂Ω ∩Rh, Nh,Ω = N int

h,Ω ∪N ext
h,Ω, Rh,Ω = Rh ∩ Ω

and
Rh,Ω = {eΩ

i ; i = 1, . . . , Nh,Ω}, where eΩ
i = Ω ∩ ei,∀i = 1, ..., Nh,Ω.

We define the variational space

V Ω
h = {uh = (ui)i=1,...,Nh,Ω ∈

Nh,Ω∏
i=1

H1(eΩ
i ) s.t.

ui(v) = uj(v) ∀v ∈ N int
h,Ω,∀i, j ∈ Iv,

ui(v) = 0 ∀v ∈ N ext
h,Ω,∀i ∈ Iv},

(5.2)

equipped with the norm

||u||h,Ω = |u|1,Rh,Ω =

Nh,Ω∑
i=1

∫
eΩ

i

(u′i(x))2dx

1/2

. (5.3)

Introducing the bilinear and linear forms on V Ω
h

aΩ
h : V Ω

h × V Ω
h → R : (uh, wh)→ aΩ

h (uh, wh) =
Nh,Ω∑
i=1

∫
eΩ

i

u′i(x)w′i(x)dx, (5.4)

FΩ(wh) =
Nh,Ω∑
i=1

∫
eΩ

i

f̃i(x)wi(x)dx,∀wh ∈ V Ω
h , (5.5)

we can consider the solution uΩ
h ∈ V Ω

h of (compare with (2.12))

∀wh ∈ V Ω
h , a

Ω
h (uΩ

h , wh) = FΩ(wh). (5.6)

5.1. An approximation result between the continuous problems. Lemma
3.4 still holds : for all u ∈ V Ω

h , one has

||u− uΩ
h ||h,Ω . sup

wh∈V Ω
h

|aΩ
h (u,wh)− FΩ(wh)|

||wh||h,Ω
. (5.7)

Therefore we only need to estimate the consistency error.

Theorem 5.1. — Let u denote the solution of (5.1) supposed to belong to
H3(Ω), then

sup
wh∈V Ω

h

|aΩ
h (u,wh)− FΩ(wh)|

||wh||h,Ω
.
√
h||u||3,Ω. (5.8)
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Proof. — As we have assumed Ω ⊂ S, there exists h0 > 0 small enough such
that Ω ⊂]h0

2 , 1−
h0
2 [×]h0

2 , 1−
h0
2 [. From now on, we suppose that h ∈]0, h0[.

For w ∈ V Ω
h , we denote w̃, the extension of w by 0 outside Ω. Then w̃ ∈ Vh.

Owing to Theorem 1.4.3.1 of [11], there exists an extension Eu ∈ H1
0 (S) ∩H3(S)

of u such that

||Eu||3,S 6 c||u||3,Ω, (5.9)

where c is a positive constant independent of u and that depends only on Ω and
most importantly, Eu coincides with u on Ω. Then for w ∈ V Ω

h ,

aΩ
h (u,w)− FΩ(w) =

Nh,Ω∑
i=1

∫
eΩ

i

u′i(x)w′i(x)dx−
Nh,Ω∑
i=1

∫
eΩ

i

f̃i(x)wi(x)dx

= −
Nh,Ω∑
i=1

∫
eΩ

i

u′′i (x)wi(x)dx−
Nh,Ω∑
i=1

∫
eΩ

i

f̃i(x)wi(x)dx

where we have used Kirchoff’s law satisfied by u at each interior nodes. Conse-
quently,

aΩ
h (u,w)− FΩ(w) = −

Nh,Ω∑
i=1

∫
eΩ

i

(u′′i + f̃i)(x)wi(x)dx

= −
Nh∑
i=1

∫
ei

((Eu)′′i + f̃i)(x)w̃i(x)dx

since w̃ = 0 in S \ Ω and Eu′′ = u′′ in Ω. As h < h0, w̃ = 0 in Rhv defined by (3.3)
for v ∈ N ext

h and hence

aΩ
h (u,w)− FΩ(w) = −

∑
v∈N int

h

∫
Rh

v

((Eu)′′ + f̃)(x)w̃(x)dx.

Thanks to (3.20),

∣∣aΩ
h (u,w)− FΩ(w)

∣∣ 6 ∑
v∈N int

h

∣∣∣∣∣
∫
Rh

v

((Eu)′′ + f̃)(x)w̃(x)dx

∣∣∣∣∣
.
√
h
∑

v∈N int
h

(
|w̃|1,Rh

v
||Eu||3,Ch

v
+ ||w̃||Rh

v
|Eu|3,Ch

v

)
.

The Cauchy-Schwarz inequality leads to∣∣aΩ
h (u,w)− FΩ(w)

∣∣ . √h (|w̃|1,Rh
||Eu||3,S + ||w̃||Rh

|Eu|3,S) .

Applying Lemma 2.1 to w̃ ∈ Vh, we get∣∣aΩ
h (u,w)− FΩ(w)

∣∣ . √h|w̃|1,Rh
||Eu||3,S .

As |w̃|1,Rh
= |w|1,RΩ

h
, and thanks to (5.9), we arrive at (5.8). �

The estimates (5.7) and (5.8) directly lead to the

Corollary 5.2. — Let u denote the solution of (5.1), and let uΩ
h be the solution

of (5.6). If u ∈ H3(S), then

||u− uΩ
h ||h,Ω .

√
h||u||3,Ω. (5.10)
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5.2. The finite element method on the networks. Let us define the discrete
variational space

WΩ
h = {wh = (wi)i=1,...,Nh,Ω ∈ V Ω

h s.t. wi ∈ P1(eΩ
i ),∀i = 1, . . . , Nh,Ω}. (5.11)

We write UΩ
h ∈WΩ

h for the unique solution of the finite element problem

aΩ
h (UΩ

h , wh) = FΩ(wh),∀wh ∈WΩ
h . (5.12)

Proposition 5.3. — Let uΩ
h ∈ V Ω

h denote the solution of (5.6) and let UΩ
h ∈

WΩ
h be the solution of (5.12). Let us assume that the datum f belongs to C(Ω).

Then
||uΩ

h − UΩ
h ||h,Ω .

√
h||f ||∞,Ω. (5.13)

Proof. — As in the proof of Lemma 4.3, we can show that

||f ||2L`∩Ω 6 ||f ||2∞,Ω. (5.14)

So the equivalent of Lemma 4.3 holds:

||f ||Rh,Ω 6
√

2h−1/2||f ||∞,Ω. (5.15)

Then we argue exactly as in the proof of Proposition 4.4, replacing Lemma 4.3 with
inequality (5.15). �

Note that under the assumptions u ∈ H3(Ω) and f ∈ C(Ω), the estimates (5.10)
and (5.13) yield

||u− UΩ
h ||h,Ω .

√
h(||u||3,Ω + ||f ||∞,Ω),

which shows the convergence of UΩ
h to u. Note further that a similar estimate in

the H1-norm of Ω (i.e. an estimate like (4.18)) seems difficult to obtain since the
estimate of ũ− Ihũ (where ũ is the extension of u by zero outside Ω) is problematic
near the boundary of Ω. Nevertheless such an estimate holds far from the boundary,
namely if we set

Ωh = ∪k,`:K̄k,`⊂ΩKk,`,

then, with the same assumptions as before, as in Theorem 4.5 we can prove that

|u−RhŨΩ
h |1,Ωh

. h (||u||3,Ω + ||f ||∞,Ω) , (5.16)

where ŨΩ
h is the extension by zero of UΩ

h outside Ω.

Remark 5.4. — The error estimates (4.18) and (5.16) show the same order of
convergence than the standard finite element method but require a higher regularity
on the solution and on the data. Nevertheless, our method can be considered as an
attractive alternative to the standard ones for the three following reasons:
1. the cartesian networks RΩ

h are easily built,
2. the associated stiffness matrix is easier to compute and is still symmetric, positive
definite and sparse,
3. as no two-dimensional mesh is necessary, our method is easy to implement for
arbitrary domains.

6. Numerical results

To illustrate our theoretical results we propose some numerical tests. First we
take as exact solution:

u(x, y) = (x(1− x)y(1− y))α,

with a parameter α > 1.5. Note that this solution belongs to H3(S) whenever
α > 2.5.
First of all, we want to compare the solution uh of problem (2.2) and the approxi-
mation of u (solution of problem (2.1)) by the P1-finite element method in S, called
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uFE . On the one hand, we easily compute uh since for example, on a horizontal
edge y = y0

uh(x, y0) =
∫ ∫

f̃(·, y0) +Q(x)

where Q is a linear polynomial. By imposing Dirichlet boundary conditions, the
continuity at the nodes and Kirchoff’s law, we obtain that the coefficients of those
polynomials are solutions of a linear system. On the other hand, uFE is computed
with the help of the FreeFem++ software [10] using a triangular mesh with as many
nodes as there are in the network. First for α = 3, we observe in Figure 6.1 that
the contour lines of uh and of uFE at the same level of resolution are very similar.
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(a) Contour lines of uh for α = 3
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(b) Contour lines of uF E for α = 3

Figure 6.1. Comparison between uh and uFE

In Figures 6.2 and 6.3, we have plotted the L∞-error and the H1-error between the
exact solution u and the solution uh (defined on the network) on a log-log scale for
different values of α. As expected, straight lines are obtained with different slopes
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specified in Table 6.1. We recover the expected rate of convergence 1/2 for the H1

error whenever α > 2.5 whereas the results regarding the L∞ norm are better than
those stated by Corollary 3.6. It is even better than the case of a regular solution
treated by Theorem 4.13 that predicted a converence rate of one. Actually for the
chosen solution this improvement is caused by the small size of the term estimated
in Proposition 4.12.

Figure 6.2. L∞ error for some values α

Figure 6.3. H1 error for some values of α

That is why a second example is considered where the exact solution is defined
by u(x, y) = sin(10πx) sin(10πy). In Figure 6.4, we see that the experimental rate
of convergence of the L∞-norm is 1, as asserted in Theorem 4.13.
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α L∞ error H1 error
2.505 1.988 0.502
1.9 1.767 0.474
1.6 1.443 0.371

Table 6.1. Convergence rates of L∞ and H1 errors
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Figure 6.4. L∞ error for the second example
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