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Calogero–Moser cells of dihedral groups at equal parameters

Cédric Bonnafé
Jérôme Germoni

Abstract

We prove that Calogero–Moser cells coincide with Kazhdan–Lusztig cells for dihedral groups in the
equal parameter case.

Cellules de Calogero-Moser des groupes diédraux à paramètres égaux
Résumé

Nous montrons que les cellules de Calogero-Moser coïncident avec les cellules de Kazhdan-Lusztig
pour les groupes diédraux dans le cas des paramètres égaux.

1. Introduction

Calogero–Moser cells have been defined by Rouquier and the first author for any finite
complex reflection group and any parameter, based on ramification theory for Calogero–
Moser spaces [4, 5]. It is conjectured that, for Coxeter groups, Calogero–Moser cells
coincide with Kazhdan–Lusztig cells [4, Conj. 3.1 and 3.2], [5, Conj. LR and L], which
were defined by Kazhdan–Lusztig [7] in the equal parameter case and by Lusztig [8] in
the general case. The aim of this paper is to prove this conjecture for dihedral groups in
the equal parameter case.

For Calogero–Moser left cells, an alternative (and partially conjectural) definition is
proposed in [5, Theo. 13.3.2], based on Gaudin operators. This definition is recalled in
Section 5. This is the point of view we adopt in this paper: in the relatively small case
of dihedral groups, an explicit diagonalization of these operators is possible, and the
computation of Calogero–Moser left cells becomes easy.

2. Setup

Let 𝑉 be a finite dimensional Euclidean real vector space, whose positive definite
symmetric bilinear form is denoted by ( · , · ), and let 𝑊 be a finite subgroup of the

The first author was partly supported by the ANR: Projects No ANR-16-CE40-0010-01 (GeRepMod) and
ANR-18-CE40-0024-02 (CATORE).
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orthogonal group O(𝑉) generated by reflections. For 𝑣 ∈ 𝑉 , we denote by 𝑣∗ the element
of the dual space 𝑉∗ defined by 𝑣∗ (𝑦) = (𝑦, 𝑣) for all 𝑦 ∈ 𝑉 . The map 𝑉 → 𝑉∗, 𝑣 ↦→ 𝑣∗ is
a 𝑊-equivariant isomorphism of vector spaces.

The set of reflections of 𝑊 is denoted by Ref (𝑊). For 𝛼 ∈ 𝑉 \ {0}, we denote by 𝑠𝛼

the orthogonal reflection such that 𝑠𝛼 (𝛼) = −𝛼. We set

Φ = {𝛼 ∈ 𝑉 | (𝛼, 𝛼) = 1 and 𝑠𝛼 ∈ 𝑊}.

Then Φ = −Φ, and we fix a subset Δ of Φ of cardinality dimRΦ such that every element
of Φ belongs to

∑
𝛼∈Δ R⩾0 𝛼 or to

∑
𝛼∈Δ R⩽0 𝛼. We set

𝑆 = {𝑠𝛼 | 𝛼 ∈ Δ},

so that (𝑊, 𝑆) is a finite Coxeter system. We set

Φ+ = Φ ∩
∑︁
𝛼∈Δ
R⩾0 𝛼 and Φ− = −Φ+,

so that Φ = Φ+ ¤∪ Φ− , where ¤∪ means disjoint union. We set

𝑣0 =
∑︁
𝛼∈Φ+

𝛼.

We denote by𝑤0 the longest element of𝑊 (with respect to the length function ℓ : 𝑊 → Z⩾0
defined by the choice of 𝑆). Then 𝑤0 is an involution and

𝑤0 (𝑣0) = −𝑣0. (2.1)

We set
𝑉reg = 𝑉 \

⋃
𝛼∈Φ

𝑉 𝑠𝛼 and ℭ = {𝑣 ∈ 𝑉 | ∀ 𝛼 ∈ Δ, (𝛼, 𝑣) > 0}.

Then ℭ is the fundamental chamber of 𝑊 associated with 𝑆, and 𝑣0 ∈ ℭ. Recall that its
closure is a fundamental domain for the action of 𝑊 on 𝑉 .

We denote by Reg𝑊 the character afforded by the regular representation and Irr(𝑊)
denotes the set of irreducible characters of 𝑊 . We denote by 1𝑊 the trivial character of
𝑊 and we set 𝜀 : 𝑊 → 𝝁2 = {±1}, 𝑤 ↦→ det(𝑤). We denote by CR the vector space of
maps 𝑐 : Ref (𝑊) −→ R such that 𝑐𝑠 = 𝑐𝑡 if 𝑠 and 𝑡 are conjugate in 𝑊 (the elements of
CR are called parameters). Finally, if 𝑋 is a subset of 𝑊 , we set 𝑋−1 = {𝑤−1 | 𝑤 ∈ 𝑊}.

3. Recollection about Kazhdan–Lusztig cells

Let 𝑐 ∈ CR. To the datum (𝑊, 𝑆, 𝑐) are associated three partitions of 𝑊 into Kazhdan–
Lusztig left, right, and two-sided 𝑐-cells (see for instance [2, Chap. 6]). To each Kazhdan–
Lusztig left 𝑐-cell 𝐶 is associated a Kazhdan–Lusztig 𝑐-cellular character that is denoted
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by 𝜒
𝑐,KL
𝐶

. Then
Reg𝑊 =

∑︁
𝐶

𝜒
𝑐,KL
𝐶

, (3.1)

where 𝐶 runs over the set of Kazhdan–Lusztig left 𝑐-cells.
On the other hand, to each Kazhdan–Lusztig two-sided 𝑐-cell Γ of 𝑊 is associated a

subset Irr𝑐,KL
Γ

(𝑊) called the Kazhdan–Lusztig 𝑐-family associated with Γ. They form a
partition of Irr(𝑊):

Irr(𝑊) = ¤⋃
Γ

Irr𝑐,KL
Γ

(𝑊), (3.2)

where Γ runs over the set of Kazhdan–Lusztig two-sided 𝑐-cells. Here are some other
properties of Kazhdan–Lusztig cells (see for instance [2, §6.1, §6.2, and Chap. 10]).

Proposition 3.1. Let 𝐶 (resp. Γ) be a Kazhdan–Lusztig left (resp. two-sided) 𝑐-cell. Then:

(a) 𝐶−1 is a Kazhdan–Lusztig right 𝑐-cell and |𝐶 | = 𝜒
𝑐,KL
𝐶

(1);

(b) Γ is a union of Kazhdan–Lusztig left (or right) 𝑐-cells. Moreover,

|Γ | =
∑︁

𝜒∈Irr𝑐,KL
Γ

(𝑊 )

𝜒(1)2;

(c) If 𝐶 ⊂ Γ, then every irreducible component of 𝜒𝑐,KL
𝐶

belongs to Irr𝑐,KL
Γ

(𝑊);

(d) 𝑤0Γ𝑤0 = Γ;

(e) 𝐶𝑤0 and 𝑤0𝐶 (resp. 𝑤0Γ = Γ𝑤0) are Kazhdan–Lusztig left (resp. two-sided)
𝑐-cells. Moreover,

𝜒
𝑐,KL
𝐶𝑤0

= 𝜒
𝑐,KL
𝑤0𝐶

= 𝜒
𝑐,KL
𝐶

· 𝜀 and Irr𝑐,KL
Γ𝑤0

(𝑊) = Irr𝑐,KL
Γ

(𝑊) · 𝜀;

(f) If 𝑐𝑠 ≠ 0 for all 𝑠 ∈ Ref (𝑊), then {1} and {𝑤0} are Kazhdan–Lusztig two-sided
𝑐-cells. If moreover 𝑐𝑠 > 0 for all 𝑠 ∈ Ref (𝑊), then{

𝜒
𝑐,KL
{1} = 𝜀,

𝜒
𝑐,KL
{𝑤0 } = 1𝑊 ,

and

{
Irr𝑐,KL

{1} (𝑊) = {𝜀},
Irr𝑐,KL

{𝑤0 } (𝑊) = {1𝑊 };

(g) If 𝜏 : 𝑊 → 𝝁2 is a linear character, then 𝐶 (resp. Γ) is a Kazhdan–Lusztig left
(resp. two-sided) 𝜏 · 𝑐-cell. Morever

𝜒
𝜏 ·𝑐,KL
𝐶

= 𝜒
𝑐,KL
𝐶

· 𝜏 and Irr𝜏 ·𝑐,KL
Γ

(𝑊) = Irr𝑐,KL
Γ

(𝑊) · 𝜏.

In the above statement (g), 𝜏 · 𝑐 denotes the element of CR defined by (𝜏 · 𝑐)𝑠 = 𝜏(𝑠)𝑐𝑠 .
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4. Gaudin operators

For 𝑦 ∈ 𝑉 , 𝑣 ∈ 𝑉reg, and 𝑣′ ∈ 𝑉 , we define an endomorphism 𝐷
𝑐,𝑣,𝑣′
𝑦 of the underlying

vector space of the group algebra R𝑊 by the following formula [5, §13.2]:

∀ 𝑤 ∈ 𝑊, 𝐷𝑐,𝑣,𝑣′
𝑦 (𝑤) = (𝑦, 𝑤−1 (𝑣′))𝑤 −

∑︁
𝛼∈Φ+

𝑐𝑠𝛼

(𝑦, 𝛼)
(𝑣, 𝛼)𝑤𝑠𝛼 .

The endomorphism 𝐷
𝑐,𝑣,𝑣′
𝑦 is called a Gaudin operator (and is somewhat similar to Dunkl

operators (see for instance [5, 3.1.B]). Then the map 𝐷𝑐,𝑣,𝑣′ : 𝑉 → EndR (R𝑊) is linear
and it follows from [5, §13.2]1 that[

𝐷𝑐,𝑣,𝑣′
𝑦 , 𝐷

𝑐,𝑣,𝑣′

𝑦′
]
= 0 (4.1)

for all 𝑦, 𝑦′ ∈ 𝑉 , 𝑣 ∈ 𝑉reg, and 𝑣′ ∈ 𝑉 . Now, for 𝜆 ∈ 𝑉∗, we set

𝐸
𝑐,𝑣,𝑣′

𝜆
= {𝑒 ∈ R𝑊 | 𝐷𝑐,𝑣,𝑣′

𝑦 (𝑒) = 𝜆(𝑦)𝑒}

and we define
S𝑝𝑐,𝑣,𝑣′ = {𝜆 ∈ 𝑉∗ | 𝐸𝑐,𝑣,𝑣′

𝜆
≠ 0}.

As all reflections of 𝑊 have order 2, the matrix of 𝐷𝑐,𝑣,𝑣′
𝑦 in the canonical basis of R𝑊

is real and symmetric, so it is diagonalizable. Therefore, for all (𝑣, 𝑣′) ∈ 𝑉reg × 𝑉 , the
family of commuting matrices D𝑐,𝑣,𝑣′ = (𝐷𝑐,𝑣,𝑣′

𝑦 )𝑦∈𝑉 is simultaneously diagonalizable.
In other words,

R𝑊 =
⊕

𝜆∈S𝑝𝑐,𝑣,𝑣′
𝐸
𝑐,𝑣,𝑣′

𝜆
(4.2)

for any (𝑣, 𝑣′) ∈ 𝑉reg × 𝑉 . The set S𝑝𝑐,𝑣,𝑣′ is called the spectrum of the family D𝑐,𝑣,𝑣′ .
We say that the family D𝑐,𝑣,𝑣′ has simple spectrum if |S𝑝𝑐,𝑣,𝑣′ | = |𝑊 | (in other words, if
dim 𝐸

𝑐,𝑣,𝑣′

𝜆
= 0 or 1 for all 𝜆 ∈ 𝑉∗).

Conjecture 4.1. If 𝑐 ∈ CR and (𝑣, 𝑣′) ∈ 𝑉reg × 𝑉reg, then the family D𝑐,𝑣,𝑣′ has simple
spectrum.

By the work of Mukhin–Tarasov–Varchenko [9], [10, Coro. 7.4], this conjecture is
known to hold in type 𝐴. Here is a weaker form of this conjecture.

Conjecture 4.2. If 𝑐 ∈ CR and 𝜉, 𝜉′ ∈ R>0, then the family D𝑐, 𝜉 𝑣0 , 𝜉
′𝑣0 has simple

spectrum.

1Note that we have not used exactly the convention of [5, §13.2]: our operators are obtained from those in
loc. cit. by conjugating by the R-linear map extending the inversion 𝑤 ↦→ 𝑤−1 in 𝑊 and by identifying 𝑉 and
𝑉∗ by means of the non-degenerate form ( · , · ) .
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We will prove in this paper that this weaker form holds if 𝑊 is dihedral and 𝑐 is
constant (which is the so-called “equal parameter case”).

Example 4.3. The matrix of the endomorphism 𝐷
0,𝑣,𝑣′
𝑦 in the canonical basis of R𝑊 is

diagonal, and so its spectrum can be easily computed. We get

S𝑝0,𝑣,𝑣′ = {𝑤(𝑣′∗) | 𝑤 ∈ 𝑊}.

In particular, D0,𝑣,𝑣′ has simple spectrum if and only if 𝑣′ ∈ 𝑉reg.

We conclude this subsection by some relations between Gaudin operators. For 𝑤 ∈ 𝑊 ,
we denote by 𝑙𝑤 (resp. 𝑟𝑤) the automorphism of the R-vector space R𝑊 defined by left
(resp. right) multiplication by 𝑤 (resp. 𝑤−1). If 𝜏 : 𝑊 → 𝝁2 is a linear character, we
denote by 𝜏• the automorphism of the R-algebra R𝑊 defined by 𝜏• (𝑤) = 𝜏(𝑤)𝑤 for all
𝑤 ∈ 𝑊 . The following formulas are straightforward:

𝑙𝑤𝐷
𝑐,𝑣,𝑣′
𝑦 𝑙−1

𝑤 = 𝐷
𝑐,𝑣,𝑤 (𝑣′ )
𝑦 ,

𝑟𝑤𝐷
𝑐,𝑣,𝑣′
𝑦 𝑟−1

𝑤 = 𝐷
𝑐,𝑤 (𝑣) ,𝑣′
𝑤 (𝑦) ,

𝜏•𝐷
𝑐,𝑣,𝑣′
𝑦 𝜏−1

• = 𝐷
𝜏 ·𝑐,𝑣,𝑣′
𝑦 .

(4.3)

5. Calogero–Moser cells

5.1. Calogero–Moser cellular characters

The operator 𝐷𝑐,𝑣0 ,0
𝑦 commutes with left multiplication by R𝑊 . So each subspace 𝐸

𝑐,𝑣0 ,0
𝜆

inherits a structure of R𝑊-module: we denote by 𝜒𝑐
𝜆

the character afforded by this
R𝑊-module. We define the Calogero–Moser 𝑐-cellular characters to be the characters
of the form 𝜒𝑐

𝜆
for some 𝜆 ∈ S𝑝𝑐,𝑣0 ,0. Note that we may have 𝜒𝑐

𝜆
= 𝜒𝑐

𝜇 even if 𝜆 ≠ 𝜇.
Then (4.2) implies that

Reg𝑊 =
∑︁

𝜆∈S𝑝𝑐,𝑣0 ,0

𝜒𝑐
𝜆 . (5.1)

In particular, every irreducible character of 𝑊 occurs in some Calogero–Moser 𝑐-cellular
character.

Replacing (𝑐, 𝑣0) by (𝜉𝑐, 𝜉′𝑣0) (with 𝜉, 𝜉′ ∈ R×) amounts to multiplying the Gaudin
operators by 𝜉/𝜉′: this does not change the list of Calogero–Moser cellular characters.
This shows that Calogero–Moser 𝑐-cellular characters coincide with Calogero–Moser
𝜉𝑐-cellular characters.

Remark 5.1. The family D𝑐,𝑣0 ,0 does not have a simple spectrum in general. Indeed, if
𝑊 is not abelian, then an irreducible character of degree > 1 occurs in some cellular
character 𝜒𝑐

𝜆
, which shows that dim 𝐸

𝑐,𝑣0 ,0
𝜆

⩾ 2.
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5.2. Left cells

In order to define Calogero–Moser left cells, we need to work under the following
hypothesis.

Hypothesis. In this subsection, and only in this subsection, we assume that Conjec-
ture 4.2 holds.

Let 𝑣1, 𝑣2 ∈ R>0𝑣0. We fix two continuous functions 𝛾, 𝜉 : [0, 1] −→ R⩾0 such that
𝛾(𝑡) ⩾ 0 and 𝜉 (𝑡) > 0 for all 𝑡 ∈ [0, 1) and{

𝛾(0) = 0, 𝜉 (0) = 1,
𝛾(1) = 1, 𝜉 (1) = 0.

Therefore, for 𝑡 ∈ [0, 1), the family D𝛾 (𝑡 )𝑐,𝑣1 , 𝜉 (𝑡 )𝑣2 has simple spectrum (indeed, if
𝛾(𝑡) = 0, then this follows from Example 4.3 and, if 𝛾(𝑡) > 0, then 𝐷

𝛾 (𝑡 )𝑐,𝑣1 , 𝜉 (𝑡 )𝑣2
𝑦 =

𝐷
𝑐,𝛾 (𝑡 )−1𝑣1 , 𝜉 (𝑡 )𝑣2
𝑦 and so this follows from the fact that we assume that Conjecture 4.2

holds). So this spectrum varies continuously according to the parameter 𝑡. But, for 𝑡 = 0,
we have S𝑝0,𝑣1 ,𝑣2 = {𝑤(𝑣∗2) | 𝑤 ∈ 𝑊} by Example 4.3. This means that, for each 𝑤 ∈ 𝑊 ,
there exists a unique continuous map 𝜆𝑤 : [0, 1] → 𝑉∗ such that{

𝜆𝑤 (0) = 𝑤(𝑣∗2)
𝜆𝑤 (𝑡) ∈ S𝑝𝛾 (𝑡 )𝑐,𝑣1 , 𝜉 (𝑡 )𝑣2 for all 𝑡 ∈ [0, 1],

and the family (𝜆𝑤)𝑤∈𝑊 satisfies that

∀ 𝑡 ∈ [0, 1), 𝜆𝑤 (𝑡) ≠ 𝜆𝑤′ (𝑡) (5.2)

whenever 𝑤 ≠ 𝑤′. However, it may happen that 𝜆𝑤 (1) = 𝜆𝑤′ (1) even if 𝑤 ≠ 𝑤′. This
leads to the following definition.

Definition 5.2. Two elements 𝑤 and 𝑤′ are said to belong to the same Calogero–Moser
left 𝑐-cell if 𝜆𝑤 (1) = 𝜆𝑤′ (1).

If 𝐶 is a Calogero–Moser left 𝑐-cell, we set 𝜒𝑐,CM
𝐶

= 𝜒𝑐
𝜆𝑤 (1) (where 𝑤 is some, or any,

element of 𝐶): it is called the Calogero–Moser 𝑐-cellular character associated with 𝐶.

Remark 5.3. A simple choice would be to take 𝑣1 = 𝑣2 = 𝑣0, 𝛾(𝑡) = 𝑡𝑐, and 𝜉 (𝑡) = 1 − 𝑡.
But we want to work with this slightly more general setting for more flexibility. Indeed,
one could wonder whether the notion of Calogero–Moser left 𝑐-cell depends on the
choices of 𝑣1, 𝑣2, 𝛾, 𝜉. In fact, it does not, because the topological space CR × R>0 × R>0
is simply connected.

For instance, this shows that, if 𝑟 ∈ R>0, then Calogero–Moser left 𝑟𝑐-cells coincide
with Calogero–Moser left 𝑐-cells, and their associated cellular characters agree.
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If we assumed moreover that Conjecture 4.1 holds, then we could have added some
more flexibility, by taking 𝑣1, 𝑣2 in ℭ × ℭ and replacing the path 𝑡 ↦→ 𝜉 (𝑡)𝑣2 by any path
𝜈2 : [0, 1] → ℭ such that 𝜈2 (𝑡) ∈ ℭ for 𝑡 ∈ [0, 1), 𝜈2 (0) = 𝑣2 and 𝜈2 (1) = 0 and the path
𝑡 ↦→ 𝛾(𝑡)𝑐 by any path [0, 1] → CR starting at 0 and ending at 𝑐.

The formula (5.1) can be rewritten as follows:

Reg𝑊 =
∑︁
𝐶

𝜒
𝑐,CM
𝐶

, (5.3)

where 𝐶 runs over the set of Calogero–Moser left 𝑐-cells.
The following conjecture has been proposed in [4, Conj. 3.2] and [5, Conj. L].

Conjecture 5.4. Calogero–Moser left 𝑐-cells coincide with Kazhdan–Lusztig left 𝑐-cells.
Moreover, if 𝐶 is one of these, then 𝜒

𝑐,CM
𝐶

= 𝜒
𝑐,KL
𝐶

.

A very weak evidence for this conjecture is the comparison between (3.1) and (5.3).
Note also that it holds for 𝑐 = 0, as easily shown in [5, Coro. 17.2.3]. A somewhat strong
evidence for this conjecture is that it holds in type 𝐴, by the work of Brochier–Gordon–
White [6]. The aim of this paper is to deal with the far easier (but still non-trivial) case of
dihedral groups whenever 𝑐 is constant. The following list of properties of Calogero–Moser
left cells shows that Conjecture 5.4 is compatible with Proposition 3.1.

Proposition 5.5. Let 𝐶 be a Calogero–Moser left 𝑐-cell. Then:

(a) |𝐶 | = 𝜒
𝑐,CM
𝐶

(1);

(b) 𝐶𝑤0 and 𝑤0𝐶 are Calogero–Moser left 𝑐-cells. Moreover,

𝜒
𝑐,CM
𝐶𝑤0

= 𝜒
𝑐,CM
𝑤0𝐶

= 𝜒
𝑐,CM
𝐶

· 𝜀;

(c) If 𝑐𝑠 ≠ 0 for all 𝑠 ∈ Ref (𝑊), then {1} and {𝑤0} are Calogero–Moser left 𝑐-cells.
If moreover 𝑐𝑠 > 0 for all 𝑠 ∈ Ref (𝑊), then

𝜒
𝑐,CM
{1} = 𝜀 and 𝜒

𝑐,CM
{𝑤0 } = 1𝑊 ;

(d) If 𝜏 : 𝑊 → 𝝁2 is a linear character, then 𝐶 (resp. Γ) is a Calogero–Moser left
(resp. two-sided) 𝜏 · 𝑐-cell. Morever

𝜒
𝜏 ·𝑐,CM
𝐶

= 𝜒
𝑐,CM
𝐶

· 𝜏.

Proof. As explained in Remark 5.3, we may assume that 𝑣1 = 𝑣2 = 𝑣0 and that 𝛾(𝑡) = 𝑡𝑐

and 𝜉 (𝑡) = 1 − 𝑡 for all 𝑡 ∈ [0, 1].

(a). It is clear.
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(b). Let 𝜏0 = 𝜀• ◦ 𝑙𝑤0 : R𝑊 −→ R𝑊 . Since 𝜀 · 𝑐 = −𝑐 and 𝑤0 (𝑣0) = −𝑣0, we get
from (4.3) that

𝜏0𝐷
𝑡𝑐,𝑣0 , (1−𝑡 )𝑣0
𝑦 𝜏−1

0 = 𝐷
−𝑡𝑐,𝑣0 , (𝑡−1)𝑣0
𝑦 = 𝐷

𝑡𝑐,𝑣0 , (1−𝑡 )𝑣0
−𝑦 .

This means that 𝜆 ∈ S𝑝𝑡𝑐,𝑣0 , (1−𝑡 )𝑣0 if and only if −𝜆 ∈ S𝑝𝑡𝑐,𝑣0 , (1−𝑡 )𝑣0 . Since 𝜆𝑤𝑤0 (0) =
𝑤𝑤0 (𝑣∗0) = −𝑤(𝑣∗0) = −𝜆𝑤 (0), this shows that 𝜆𝑤𝑤0 (𝑡) = −𝜆𝑤 (𝑡) for all 𝑡 ∈ [0, 1]. In
particular, 𝐶𝑤0 is a Calogero–Moser left 𝑐-cell.

Finally, if 𝜆 ∈ S𝑝𝑐,𝑣0 ,0, then 𝐸
𝑐,𝑣0 ,0
−𝜆 = 𝜏0 (𝐸𝑐,𝑣0 ,0

𝜆
) = 𝜀• (𝐸𝑐,𝑣0 ,0

𝜆
). This proves that

𝜒𝑐
−𝜆 = 𝜒𝑐

𝜆
· 𝜀, and completes the proof of (a).

(d). It follows from the third equality in (4.3) and the same argument as in (b).

(c). By using (d) and rectifying the signs if necessary thanks to a linear character, we
may, and we will, assume that 𝑐𝑠 > 0 for all 𝑠 ∈ Ref (𝑊). We have

𝐷
𝑡𝑐,𝑣0 , (1−𝑡 )𝑣0
−𝑣0 (𝑤) = (𝑡 − 1) (𝑣0, 𝑤

−1 (𝑣0))𝑤 +
∑︁
𝛼∈Φ+

𝑡𝑐𝑠𝛼𝑤𝑠𝛼 .

Let 𝐴 denote the diagonal endomorphism 𝐷
0,𝑣0 ,𝑣0
−𝑣0 and let 𝐵 denote the Gaudin operator

𝐷
𝑐,𝑣0 ,0
−𝑣0 , so that 𝐷𝑡𝑐,𝑣0 , (1−𝑡 )𝑣0

−𝑣0 = (1 − 𝑡)𝐴 + 𝑡𝐵.
The matrix 𝐵 is a real matrix with non-negative coefficients, which is primitive (because

𝑊 is generated by Ref (𝑊)). Let 𝜈 = (𝑣0, 𝑣0)+1. Then 𝐴+𝜈 IdR𝑊 is a diagonal matrix with
positive coefficients. Therefore, if 𝑡 > 0, the matrix 𝐷

𝑡𝑐,𝑣0 , (1−𝑡 )𝑣0
−𝑣0 + 𝜈 IdR𝑊 is a real matrix

with non-negative coefficients which is primitive. By the Perron–Frobenius theorem,
its spectral radius 𝜌𝑡 is an eigenvalue of 𝐷

𝑡𝑐,𝑣0 , (1−𝑡 )𝑣0
−𝑣0 + 𝜈 IdR𝑊 , with multiplicity 1.

Therefore, 𝜌𝑡 varies continuously as 𝑡 varies.
For 𝑡 = 0, 𝐴+𝜈 IdR𝑊 is diagonal and its largest diagonal coefficient is (𝑣0, 𝑣0)+𝜈, which

occurs with multiplicity 1 (and its eigenvector is 𝑤0). So the map 𝜌′ : [0, 1] → R>0,
𝑡 ↦→ 𝜌𝑡 − 𝜈 is continuous. Adding 𝜈 IdR𝑊 was an artefact to obtain a matrix with
non-negative coefficients and apply the Perron–Frobenius theorem. Coming back to
𝐷

𝑡𝑐,𝑣0 , (1−𝑡 )𝑣0
−𝑣0 , we have proven that 𝜌′𝑡 is its biggest eigenvalue, that it has multiplicity 1,

that it varies continuously for 𝑡 ∈ [0, 1], that 𝜌′0 = (𝑣0, 𝑣0) with eigenvector 𝑤0.
Let us now prove that 𝜌′1 = 𝑎, where 𝑎 =

∑
𝛼∈Φ+ 𝑐𝑠𝛼 . For this, note first that

∑
𝑤∈𝑊 𝑤

is an eigenvector of 𝐵 with eigenvalue 𝑎: this proves that 𝜌′1 ⩾ 𝑎. Now, if 𝜔 =
∑

𝑤∈𝑊 𝑝𝑤𝑤

is an eigenvector of 𝐵 for the eigenvalue 𝜌′1, then the Perron–Frobenius Theorem says
that 𝑝𝑤 > 0 for all 𝑤 ∈ 𝑊 . Let 𝑤1 ∈ 𝑊 be such that 𝑝𝑤1 is maximal. Then the coefficient
of 𝑤1 in 𝐵(𝜔) is equal to

∑
𝛼∈Φ+ 𝑐𝑠𝛼 𝑝𝑤1𝑠𝛼 ⩽ 𝑎𝑝𝑤1 . But this coefficient if 𝜌′1𝑝𝑤1 . This

proves that 𝜌′1 ⩽ 𝑎. Consequently, 𝜌′1 = 𝑎 and a corresponding eigenvector is
∑

𝑤∈𝑊 𝑤.
This shows that 𝜆𝑤0 (𝑡) (−𝑣0) = 𝜌′𝑡 and so 𝜆𝑤0 (1) has multiplicity 1 in S𝑝0,𝑣0 ,𝑣0 and

the corresponding eigenspace 𝐸
0,𝑣0 ,𝑣0
𝜆𝑤0 (1)

is the line spanned by
∑

𝑤∈𝑊 𝑤. This concludes
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the proof of the fact that {𝑤0} is alone in its Calogero–Moser left 𝑐-cell, and that the
associated cellular character is 1𝑊 . The statement for {1} instead of {𝑤0} is now obtained
by using (b). □

5.3. Two-sided cells

Until now, there is no alternative definition of Calogero–Moser two-sided 𝑐-cells in terms
of Gaudin operators or something related: the only available definition is based on the
ramification theory of the Calogero–Moser space [5, Part III]. This depends on the choice
of some prime ideal in some Galois closure of some ring extension. This choice can be
adapted to the choice of the two continuous functions 𝛾 and 𝜉 and we will follow this
choice.

Moreover, to each Calogero–Moser two-sided 𝑐-cell Γ is associated a subset Irr𝑐,CM
Γ

(𝑊)
of Irr(𝑊), which is called a Calogero–Moser 𝑐-family. They form a partition of Irr(𝑊):

Irr(𝑊) = ¤⋃
Γ

Irr𝑐,CM
Γ

(𝑊), (5.4)

where Γ runs over the set of Calogero–Moser two-sided 𝑐-cells. The following properties
are proved in [5, Theo. 10.2.7, Prop. 11.3.3, Prop. 11.4.2].

Proposition 5.6. Let Γ be a Calogero–Moser two-sided 𝑐-cell and𝐶 be a Calogero–Moser
left 𝑐-cell. Then:

(a) Γ is a union of Calogero–Moser left 𝑐-cell. Moreover,

|Γ| =
∑︁

𝜒∈Irr𝑐,CM
Γ

(𝑊 )

𝜒(1)2.

(b) If 𝐶 ⊂ Γ, then every irreducible component of 𝜒𝑐,CM
𝐶

belongs to Irr𝑐,CM
Γ

(𝑊).

It is conjectured [5, Conj. LR] that the analogue of Conjecture 5.4 also holds for
two-sided cells:

Conjecture 5.7. Calogero–Moser two-sided 𝑐-cells coincide with Kazhdan–Lusztig
two-sided 𝑐-cells. Moreover, if Γ is one of these, then Irr𝑐,CM

Γ
(𝑊) = Irr𝑐,KL

Γ
(𝑊).

This conjecture holds in type 𝐴 (see [6]). In this paper, we prove it for dihedral groups
whenever 𝑐 is constant.
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6. Dihedral groups, equal parameters

Hypothesis and notation. From now on, and until the end of this paper, we assume
that𝑉 = R2, endowed with its canonical Euclidean structure, and we denote by (𝑒1, 𝑒2)
its canonical basis (which is an orthonormal basis). We fix a natural number 𝑑 ⩾ 3
and, if 𝑘 ∈ Z, we set

𝛼𝑘 = cos
(
𝑘𝜋

𝑑

)
𝑒1 + sin

(
𝑘𝜋

𝑑

)
𝑒2

and 𝑠𝑘 = 𝑠𝛼𝑘
. We assume thatΔ = {𝛼0, 𝛼𝑑−1}, so that 𝑆 = {𝑠0, 𝑠𝑑−1}. For simplification,

we set 𝑠 = 𝑠0 and 𝑠′ = 𝑠𝑑−1.

Then 𝑊 = ⟨𝑠, 𝑠′⟩ is the dihedral group of order 2𝑑, and 𝑑 is the order of 𝑠𝑠′. Moreover,
𝛼𝑘+𝑑 = −𝛼𝑘 and

Φ = {𝛼𝑘 | 𝑘 ∈ Z} = {𝛼𝑘 | 0 ⩽ 𝑘 ⩽ 2𝑑 − 1}

and
Ref (𝑊) = {𝑠𝑘 | 𝑘 ∈ Z} = {𝑠𝑘 | 0 ⩽ 𝑘 ⩽ 𝑑 − 1}.

Moreover,
Φ+ = {𝛼𝑘 | 0 ⩽ 𝑘 ⩽ 𝑑 − 1}.

We aim to prove Conjectures 4.2, 5.4 and 5.7 whenever 𝑐 is constant. Conjectures 4.2
and 5.4 hold for 𝑐 = 0 by Example 4.3 and the remark following Conjecture 5.4. For
Conjecture 5.7, see [5, Coro. 15.3.3]. Thus we may assume that 𝑐 is constant and non-zero
and, by Remark 5.3, that 𝑐 = 1, the constant function with value 1.

6.1. Elements, characters

Recall that 𝑠 = 𝑠0 and 𝑠′ = 𝑠𝑑−1. For 𝑘 ⩾ 0, we set

𝜎𝑘 = 𝑠𝑠′𝑠 · · ·︸  ︷︷  ︸
𝑘 terms

and 𝜎′
𝑘 = 𝑠′𝑠𝑠′ · · ·︸   ︷︷   ︸

𝑘 terms

.

Then 𝜎0 = 𝜎′
0 = 1, 𝜎𝑑 = 𝜎′

𝑑
= 𝑤0, and

𝑊 = {1, 𝜎1, 𝜎
′
1, 𝜎2, 𝜎

′
2, . . . , 𝜎𝑑−1, 𝜎

′
𝑑−1, 𝑤0}. (6.1)

Let 𝑊+ = ⟨𝑠𝑠′⟩. It is a normal cyclic subgroup of order 𝑑 of 𝑊 . We fix a primitive 𝑑-th
root of unity 𝜔 and, for 𝑘 ∈ Z, we denote by 𝜃𝑘 : 𝑊+ → C× the linear character such that
𝜃𝑘 (𝑠𝑠′) = 𝜔𝑘 . We set

𝜒𝑘 = Ind𝑊𝑊+ 𝜃𝑘 .
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If 𝑑 is even, we denote by 𝜀𝑠 (resp. 𝜀𝑠′ ) the linear character of 𝑊 such that 𝜀𝑠 (𝑠) = −1 =

−𝜀𝑠 (𝑠′) (resp. 𝜀𝑠′ (𝑠) = 1 = −𝜀𝑠′ (𝑠′)). Then 𝜒𝑘 = 𝜒−𝑘 = 𝜒𝑘+𝑑 and

Irr(𝑊) =
{
{1𝑊 , 𝜀, 𝜒1, . . . , 𝜒(𝑑−1)/2} if 𝑑 is odd,
{1𝑊 , 𝜀, 𝜀𝑠 , 𝜀𝑠′ , 𝜒1, . . . , 𝜒(𝑑−2)/2} if 𝑑 is even.

(6.2)

We conclude this subsection with a fact that will be useful for our purpose: if 𝑘 ⩾ 0, then

(𝜎𝑘 − 𝜎′
𝑘)

∑︁
𝑠∈Ref (𝑊 )

𝑠 = 0. (6.3)

Proof. Note that Ref (𝑊) = 𝑊 \𝑊+. As it is clear that (𝜎𝑘 − 𝜎′
𝑘
)∑𝑤∈𝑊 𝑤 = 0, it is

sufficient to prove that (𝜎𝑘 − 𝜎′
𝑘
)∑𝑤∈𝑊+ 𝑤 = 0. But

(𝜎𝑘 − 𝜎′
𝑘)

∑︁
𝑤∈𝑊+

𝑤 =
∑︁

𝑤∈𝜎𝑘𝑊
+
𝑤 −

∑︁
𝑤∈𝜎′

𝑘
𝑊+

𝑤,

so the result follows from the fact that 𝜎𝑘𝑊
+ = 𝜎′

𝑘
𝑊+. □

6.2. Kazhdan–Lusztig cells

Let

𝐶𝑠 = {𝜎−1
1 , 𝜎−1

2 , . . . , 𝜎−1
𝑑−1} and 𝐶𝑠′ = {𝜎′−1

1 , 𝜎′−1
2 , . . . , 𝜎′−1

𝑑−1}.
The Kazhdan–Lusztig left 1-cells as well as the Kazhdan–Lusztig 1-cellular characters
are easily computed (see for instance [2, Chap. 21]):

Proposition 6.1. The Kazhdan–Lusztig left 1-cells are

{1}, {𝑤0}, 𝐶𝑠 , and 𝐶𝑠′ .

Moreover:

(a) If 𝑑 is odd, then

𝜒
1,KL
𝐶𝑠

= 𝜒
1,KL
𝐶𝑠′

= 𝜒1 + · · · + 𝜒(𝑑−1)/2.

(b) If 𝑑 is even, then

𝜒
1,KL
𝐶𝑠

= 𝜀𝑠′ + 𝜒1 + · · · + 𝜒(𝑑−2)/2 and 𝜒
1,KL
𝐶𝑠′

= 𝜀𝑠 + 𝜒1 + · · · + 𝜒(𝑑−2)/2.

6.3. Calogero–Moser cells

The main result of our paper is the following theorem.

Theorem 6.2. Conjectures 4.2, 5.4, and 5.7 hold whenever𝑊 is dihedral and 𝑐 is constant.

The rest of this section is devoted to the proof of this Theorem.
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6.4. Preliminaries

We use the flexibility of the definition of left cells explained in Remark 5.3. We take

𝑣1 = 𝑣2 = sin
( 𝜋

2𝑑

)
𝑒1 + cos

( 𝜋

2𝑑

)
𝑒2, 𝛾(𝑡) = 𝑡, and 𝜉 (𝑡) = 1 − 𝑡

(one can check that 𝑣0 is a positive multiple of 𝑣1). We also set

𝑣⊥1 = cos
( 𝜋

2𝑑

)
𝑒1 − sin

( 𝜋

2𝑑

)
𝑒2,

so that (𝑣1, 𝑣
⊥
1 ) is an orthonormal basis of 𝑉 . We have

(𝑣1, 𝛼𝑘) = sin
( (1 + 2𝑘)𝜋

2𝑑

)
,

(𝑣⊥1 , 𝛼𝑘) = cos
( (1 + 2𝑘)𝜋

2𝑑

) (6.4)

for all 𝑘 ⩾ 0. Also
𝜎𝑘 (𝑣1) = sin

( (1 − 2𝑘)𝜋
2𝑑

)
𝑒1 + cos

( (1 − 2𝑘)𝜋
2𝑑

)
𝑒2,

𝜎′
𝑘
(𝑣1) = sin

( (1 + 2𝑘)𝜋
2𝑑

)
𝑒1 + cos

( (1 + 2𝑘)𝜋
2𝑑

)
𝑒2.

(6.5)

Proof of (6.5). This is easily checked by induction on 𝑘 using the fact that 𝜎𝑘 = 𝑠𝜎′
𝑘−1

and 𝜎′
𝑘
= 𝑠′𝜎𝑘−1 for 𝑘 ⩾ 1. □

An immediate consequence is that

(𝜎𝑘 (𝑣1), 𝑣1) = (𝜎′
𝑘
(𝑣1), 𝑣1) = cos

(
𝑘𝜋

𝑑

)
,

(𝜎𝑘 (𝑣1), 𝑣⊥1 ) = − sin
(
𝑘𝜋

𝑑

)
,

(𝜎′
𝑘
(𝑣1), 𝑣⊥1 ) = sin

(
𝑘𝜋

𝑑

)
.

(6.6)

Now, we set 𝜌 = 𝑠𝑠′ (so that 𝜌 is the rotation with angle 2𝜋/𝑑). Recall that 𝜌 generates
𝑊+. Also

𝑠𝑘𝑠𝑙 = 𝜌𝑙−𝑘 (6.7)

for all 𝑘 , 𝑙 ∈ Z.
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6.5. Proof of Conjecture 4.2

Now, we set

𝐴 = 𝐷0,𝑣1 ,𝑣1
−𝑣1 , 𝐵 = 𝐷1,𝑣1 ,0

−𝑣1 , 𝐴⊥ = 𝐷
0,𝑣1 ,𝑣1
𝑣⊥1

, and 𝐵⊥ = 𝐷
1,𝑣1 ,0
𝑣⊥1

.

In particular,

𝐷𝑏·1,𝑣1 ,𝑎𝑣1
−𝑣1 = 𝑎𝐴 + 𝑏𝐵 and 𝐷

𝑏·1,𝑣1 ,𝑎𝑣1
𝑣⊥1

= 𝑎𝐴⊥ + 𝑏𝐵⊥.

Now, if 1 ⩽ 𝑘 ⩽ 𝑑 − 1, then{
𝜎−1
𝑘

− 𝜎′−1
𝑘

is an eigenvector of 𝑎𝐴 + 𝑏𝐵 for the eigenvalue −𝑎 cos(𝑘𝜋/𝑑),
𝜎−1
𝑘

− 𝜎′−1
𝑘

is not an eigenvector of 𝑎𝐴⊥ + 𝑏𝐵⊥ if 𝑎 > 0.
(6.8)

Proof of (6.8). Note that 𝜎−1
𝑘

−𝜎′−1
𝑘

= ±(𝜎𝑘 −𝜎′
𝑘
). By (6.6), we have 𝐴(𝜎−1

𝑘
−𝜎′−1

𝑘
) =

− cos(𝑘𝜋/𝑑) (𝜎−1
𝑘

− 𝜎′−1
𝑘

). Moreover, 𝐵(𝑤) = 𝑤
∑

𝑠∈Ref (𝑊 ) 𝑠, so 𝐵(𝜎−1
𝑘

− 𝜎′−1
𝑘

) = 0
by (6.3). The first assertion follows.

Again by (6.6), the coefficient of 𝜎−1
𝑘

(or 𝜎′−1
𝑘

) in (𝑎𝐴⊥ + 𝑏𝐵⊥) (𝜎−1
𝑘

− 𝜎′−1
𝑘

) is equal
to −𝑎 sin(𝑘𝜋/𝑑), so this proves the second statement because sin(𝑘𝜋/𝑑) ≠ 0. □

After these preliminaries, we are ready to prove the theorem. So let us first prove that
Conjecture 4.2 holds. Let us assume that 𝑎 > 0. Let 𝜌𝑎,𝑏 denote the largest eigenvalue
of 𝑎𝐴 + 𝑏𝐵 (as in the proof of Proposition 5.5(c)). Then it has multiplicity 1. By the
proof of Proposition 5.5(b), −𝜌𝑎,𝑏 is the smallest eigenvalue of 𝑎𝐴 + 𝑏𝐵, and it has
multiplicity 1. We denote by 𝐸max (𝑎, 𝑏) (resp. 𝐸min (𝑎, 𝑏)) the 𝜌𝑎,𝑏-eigenspace (resp. the
−𝜌𝑎,𝑏-eigenspace) of 𝑎𝐴 + 𝑏𝐵.

On the other hand, if 1 ⩽ 𝑘 ⩽ 𝑑 − 1, it follows from (6.8) that the vector space spanned
by 𝜎−1

𝑘
−𝜎′−1

𝑘
and its image by 𝑎𝐴⊥ +𝑏𝐵⊥ are contained in the −𝑎 cos(𝑘𝜋/𝑑)-eigenspace

of 𝑎𝐴 + 𝑏𝐵. So this eigenspace (let us denote it by 𝐸𝑘 (𝑎, 𝑏)) has dimension ⩾ 2. Since
𝑎 ≠ 0, 𝑎 cos(𝑘𝜋/𝑑) ≠ 𝑎 cos(𝑙𝜋/𝑑) if 1 ⩽ 𝑘 < 𝑙 ⩽ 𝑑 − 1. Therefore, the vector space

𝐸max (𝑎, 𝑏) ⊕ 𝐸min (𝑎, 𝑏) ⊕ 𝐸1 (𝑎, 𝑏) ⊕ 𝐸2 (𝑎, 𝑏) ⊕ · · · ⊕ 𝐸𝑑−1 (𝑎, 𝑏)

has dimension ⩾ 2 + 2(𝑑 − 1) = 2𝑑 = dimR𝑊 . So this proves that

R𝑊 = 𝐸max (𝑎, 𝑏) ⊕ 𝐸min (𝑎, 𝑏) ⊕ 𝐸1 (𝑎, 𝑏) ⊕ 𝐸2 (𝑎, 𝑏) ⊕ · · · ⊕ 𝐸𝑑−1 (𝑎, 𝑏) (6.9)

and that
dim 𝐸𝑘 (𝑎, 𝑏) = 2 (6.10)

for 1 ⩽ 𝑘 ⩽ 𝑑 − 1. This describes the diagonalization of 𝑎𝐴 + 𝑏𝐵. But now, the second
statement of (6.8) shows that 𝑎𝐴⊥+𝑏𝐵⊥ has two distinct eigenvalues on each 𝐸𝑘 (𝑎, 𝑏). So
the family D𝑎·1,𝑣1 ,𝑏𝑣1 has simple spectrum as soon as 𝑎 > 0. This is exactly Conjecture 4.2.
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6.6. Cellular characters

Let us define two elements of the group algebra R𝑊 by

𝔟 =

𝑑−1∑︁
𝑘=0

𝑠𝑘 and 𝔟⊥ =

𝑑−1∑︁
𝑘=0

cot
( (2𝑘 + 1)𝜋

2𝑑

)
𝑠𝑘 .

Then 𝐵 (resp. 𝐵⊥) is the right multiplication by 𝔟 (resp. 𝔟⊥). For 𝜒 ∈ Irr(𝑊), we denote
by 𝑒𝜒 ∈ Z(R𝑊) the corresponding central idempotent

𝑒𝜒 =
𝜒(1)
|𝑊 |

∑︁
𝑤∈𝑊

𝜒(𝑤−1)𝑤.

Then
R𝑊 =

⊕
𝜒∈Irr(𝑊 )

R𝑊𝑒𝜒

and 𝔟 = 𝑑 (𝑒1𝑊 − 𝑒𝜀). We denote by 𝐸𝑑 (resp. 𝐸−𝑑) the 𝑑-eigenspace (resp. (−𝑑)-
eigenspace) of 𝐵⊥. Then:

Lemma 6.3. With the above notation, we have:

(a) R𝑊 = R𝑒1𝑊 ⊕ R𝑒𝜀 ⊕ 𝐸𝑑 ⊕ 𝐸−𝑑 and

𝐸𝑑 ⊕ 𝐸−𝑑 =
⊕

𝜒∈Irr(𝑊 )\{1𝑊 , 𝜀}
R𝑊𝑒𝜒 .

(b) 𝐵 acts on R𝑒1𝑊 (resp. R𝑒𝜀 , resp. 𝐸𝑑 , resp. 𝐸−𝑑) by multiplication by 𝑑 (resp.
−𝑑, resp. 0, resp. 0).

(c) 𝐵⊥ acts on R𝑒1𝑊 and R𝑒𝜀 by multiplication by 0.

Proof. First, it follows from (6.7) and (A.1) that

(𝔟⊥)2 = 𝑑2 − 𝑑
∑︁

𝑤∈𝑊+
𝑤.

Moreover,
𝔟2 = 𝑑

∑︁
𝑤∈𝑊+

𝑤.

But

𝑒𝜒

( ∑︁
𝑤∈𝑊+

𝑤

)
=

{
𝑑𝑒𝜒 if 𝜒 ∈ {1𝑊 , 𝜀},
0 if 𝜒 ∉ {1𝑊 , 𝜀}.

This proves the lemma because 𝐵 and 𝐵⊥ are diagonalizable. □
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This shows that

S𝑝1,𝑣1 ,0 = {𝑑𝑣∗1,−𝑑𝑣
∗
1, 𝑑 (𝑣

⊥
1 )

∗,−𝑑 (𝑣⊥1 )
∗}

and that the decomposition in (a) is the decomposition (4.2) for (𝑐, 𝑣, 𝑣′) = (1, 𝑣1, 0). Let
us now determine the corresponding cellular characters:

Lemma 6.4. If 𝑑 is odd, then 𝐸𝑑 and 𝐸−𝑑 both afford the character 𝜒1+𝜒2+· · ·+𝜒(𝑑−1)/2.
If 𝑑 is even, then the R𝑊-module 𝐸𝑑 (resp. 𝐸−𝑑) affords the character 𝜀𝑠′ + 𝜒1 + 𝜒2 +

· · · + 𝜒(𝑑−2)/2 (resp. 𝜀𝑠 + 𝜒1 + 𝜒2 + · · · + 𝜒(𝑑−1)/2).

Proof. Let 𝜂 denote the automorphism of 𝑊 exchanging 𝑠 and 𝑠′. Then 𝜂𝔟⊥ = −𝔟⊥. So 𝜂

exchanges 𝐸𝑑 and 𝐸−𝑑 . Moreover, 𝜂𝜒 𝑗 = 𝜒 𝑗 for any 𝑗 .
But, if 𝑑 is odd, then 𝐸𝑑 ⊕ 𝐸−𝑑 affords the character 2(𝜒1 + 𝜒2 + · · · + 𝜒(𝑑−1)/2). So

this implies that both 𝐸𝑑 and 𝐸−𝑑 afford the character 𝜒1 + 𝜒2 + · · · + 𝜒(𝑑−1)/2.
Now, if 𝑑 is even, then 𝐸𝑑 ⊕ 𝐸−𝑑 affords the character 𝜀𝑠 + 𝜀𝑠′ + 2(𝜒1 + 𝜒2 + · · · +

𝜒(𝑑−1)/2). So this implies that 𝐸𝑑 affords the character 𝜀𝑠 + 𝜒1 + 𝜒2 + · · · + 𝜒(𝑑−2)/2 or
𝜀𝑠′ + 𝜒1 + 𝜒2 + · · · + 𝜒(𝑑−2)/2 (and 𝐸−𝑑 affords the other). To determine which one is
which, we just need to compute 𝑒𝜀𝑠𝔟

⊥. But 𝑒𝜀𝑠𝔟⊥ = 𝜆𝑒𝜀𝑠 where

𝜆 =

𝑑−1∑︁
𝑘=0

cot
( (2𝑘 + 1)𝜋

2𝑑

)
𝜀𝑠 (𝑠𝑘).

Since 𝜀𝑠 (𝑠𝑘) = (−1)𝑘+1, we get from (A.3) that 𝜆 = −𝑑. This proves the result. □

Lemmas 6.3 and 6.4, together with Proposition 6.1, prove that the list of Calogero–
Moser 1-cellular characters equals the list of Kazhdan–Lusztig 1-cellular characters.

6.7. Left cells

Assume that 𝑎 > 0. If 1 ⩽ 𝑘 ⩽ 𝑑−1, then 𝐸𝑘 (𝑎, 𝑏) has dimension 2 (see Section 6.5). Let
us determine the action of 𝑎𝐴⊥ + 𝑏𝐵⊥ on 𝐸𝑘 (𝑎, 𝑏). Let 𝑟𝑘 (𝑎, 𝑏) = (𝑎𝐴⊥ + 𝑏𝐵⊥) (𝜎−1

𝑘
−

𝜎′−1
𝑘

) ∈ 𝐸𝑘 (𝑎, 𝑏). Then

𝐸𝑘 (𝑎, 𝑏) = R(𝜎−1
𝑘 − 𝜎′−1

𝑘 ) ⊕ R𝑟𝑘 (𝑎, 𝑏).
So this means that we need to determine (𝑎𝐴⊥+𝑏𝐵⊥) (𝑟𝑘 (𝑎, 𝑏)), i.e. we need to determine
the two real numbers 𝑧, 𝑧′ such that

(𝑎𝐴⊥ + 𝑏𝐵⊥) (𝑟𝑘 (𝑎, 𝑏)) = 𝑧(𝜎−1
𝑘 − 𝜎′−1

𝑘 ) + 𝑧′𝑟𝑘 (𝑎, 𝑏).
For this, we will work modulo 𝐹𝑘 =

⊕
𝑤∈𝑊\{𝜎𝑘 ,𝜎

′
𝑘
} R𝑤. Then

𝑟𝑘 (𝑎, 𝑏) ≡ −𝑎 sin
(
𝑘𝜋

𝑑

)
(𝜎−1

𝑘 + 𝜎′−1
𝑘 ) mod 𝐹𝑘 .
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On the other hand,

(𝑎𝐴⊥ + 𝑏𝐵⊥)2 = 𝑎2 (𝐴⊥)2 + 𝑏2 (𝐵⊥)2 + 𝑎𝑏(𝐴⊥𝐵⊥ + 𝐵⊥𝐴⊥).

So

(𝑎𝐴⊥ + 𝑏𝐵⊥) (𝑟𝑘 (𝑎, 𝑏)) ≡ 𝑎2 sin2
(
𝑘𝜋

𝑑

)
(𝜎−1

𝑘 −𝜎′−1
𝑘 ) + 𝑏2 (𝐵⊥)2 (𝜎−1

𝑘 −𝜎′−1
𝑘 ) mod 𝐹𝑘 .

But the formula for (𝔟⊥)2 given in the proof of Lemma 6.3 shows that

(𝐵⊥)2 (𝜎−1
𝑘 − 𝜎′−1

𝑘 ) = 𝑑2 (𝜎−1
𝑘 − 𝜎′−1

𝑘 ).

All this together shows that

𝑧 = 𝑎2 sin2
(
𝑘𝜋

𝑑

)
+ 𝑏2𝑑2 and 𝑧′ = 0.

So we have proved the following fact.

Lemma 6.5. Assume that 𝑎 > 0. Then the restriction of 𝑎𝐴⊥ + 𝑏𝐵⊥ to 𝐸𝑘 (𝑎, 𝑏) has two
eigenvalues, namely

±

√︄
𝑎2 sin2

(
𝑘𝜋

𝑑

)
+ 𝑏2𝑑2.

Coming back to the family D𝑡 ·𝑐,𝑣1 , (1−𝑡 )𝑣1 (which corresponds to the case 𝑎 = 1 − 𝑡

and 𝑏 = 𝑡), this shows that
𝜆𝜎−1

𝑘
(𝑡) = −(1 − 𝑡) cos

(
𝑘𝜋

𝑑

)
𝑣∗1 −

√︄
(1 − 𝑡)2 sin2

(
𝑘𝜋

𝑑

)
+ 𝑡2𝑑2 (𝑣⊥1 )

∗,

𝜆𝜎′−1
𝑘

(𝑡) = −(1 − 𝑡) cos
(
𝑘𝜋

𝑑

)
𝑣∗1 +

√︄
(1 − 𝑡)2 sin2

(
𝑘𝜋

𝑑

)
+ 𝑡2𝑑2 (𝑣⊥1 )

∗,

(6.11)

for 1 ⩽ 𝑘 ⩽ 𝑑 − 1. Taking the limit at 𝑡 = 1, and using the cases 1 and 𝑤0 solved in
Proposition 5.5, we get (also thanks to Lemma 6.4):

Proposition 6.6. The Calogero–Moser left 1-cells are

{1}, {𝑤0}, 𝐶𝑠 , and 𝐶𝑠′ .
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Moreover:

(1) If 𝑑 is odd, then

𝜒
1,CM
𝐶𝑠

= 𝜒
1,CM
𝐶𝑠′

= 𝜒1 + · · · + 𝜒(𝑑−1)/2.

(2) If 𝑑 is even, then

𝜒
1,CM
𝐶𝑠

= 𝜀𝑠′ + 𝜒1 + · · · + 𝜒(𝑑−2)/2 and 𝜒
1,CM
𝐶𝑠′

= 𝜀𝑠 + 𝜒1 + · · · + 𝜒(𝑑−2)/2.

The proof of Conjecture 5.7 in this case is complete.

6.8. Two-sided cells

The Kazhdan–Lusztig two-sided 1-cells are

{1}, Γ = 𝐶𝑠 ∪ 𝐶𝑠′ , and {𝑤0}.

The Kazhdan–Lusztig 1-families are given by

Irr1,KL
{1} (𝑊) = {𝜀}, Irr1,KL

Γ
(𝑊) = Irr(𝑊) \ {1𝑊 , 𝜀}, and Irr1,KL

{𝑤0 } (𝑊) = {1𝑊 }.

The Calogero–Moser 1-families have been computed by Bellamy [1] (see also [3,
Table 5.1]) and coincide with the Kazhdan–Lusztig 1-families. Therefore, the fact that
Conjecture 5.7 holds in this case follows immediately from Proposition 5.6.

The proof of Theorem 6.2 is complete.

7. Complements

7.1. Other eigenvalues

Keep the notation of the proof of Theorem 6.2. In this proof, it was unnecessary to
determine the explicit value of the largest eigenvalue 𝜌𝑎,𝑏 of 𝑎𝐴 + 𝑏𝐵 and the action
of 𝑎𝐴⊥ + 𝑏𝐵⊥ on 𝐸min (𝑎, 𝑏) and 𝐸max (𝑎, 𝑏). This can easily be done, as shown in this
subsection.

First, note that tr(𝐴𝐵) = 0 because the diagonal coefficients are equal to zero. Also,

tr(𝐴2) =
2𝑑−1∑︁
𝑘=0

cos2
(
𝑘𝜋

𝑑

)
and tr(𝐵2) = 2𝑑2.

The last equality comes from the fact that the coefficient of 1 in (∑𝑠∈Ref (𝑊 ) 𝑠)2 is equal
to 𝑑. Therefore,

tr((𝑎𝐴 + 𝑏𝐵)2) = 2𝑎2
𝑑−1∑︁
𝑘=0

cos2
(
𝑘𝜋

𝑑

)
+ 2𝑏2𝑑2
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Since the eigenvalue of 𝑎𝐴 + 𝑏𝐵 on 𝐸min (𝑎, 𝑏) is −𝜌𝑎,𝑏, the decomposition (6.9) implies
that

tr((𝑎𝐴 + 𝑏𝐵)2) = 2𝜌2
𝑎,𝑏 + 2𝑎2

𝑑−1∑︁
𝑘=1

cos2
(
𝑘𝜋

𝑑

)
.

This shows that
𝜌𝑎,𝑏 =

√︁
𝑎2 + 𝑑2𝑏2 (7.1)

It remains to determine the action of 𝑎𝐴⊥ + 𝑏𝐵⊥ on 𝐸min (𝑎, 𝑏) and 𝐸max (𝑎, 𝑏). Both
spaces have dimension 1, so this action is by a scalar: if 𝜌 denotes the scalar by which
𝑎𝐴⊥ + 𝑏𝐵⊥ acts on 𝐸max (𝑎, 𝑏), then −𝜌 is the scalar by which 𝑎𝐴⊥ + 𝑏𝐵⊥ acts on
𝐸min (𝑎, 𝑏) (again by the proof of Proposition 5.5). Now, note that tr(𝐴⊥𝐵⊥) = 0 because
the diagonal coefficients are equal to zero. Also,

tr((𝐴⊥)2) =
2𝑑−1∑︁
𝑘=0

sin2
(
𝑘𝜋

𝑑

)
and tr((𝐵⊥)2) = 2𝑑2 (𝑑 − 1).

Therefore,

tr((𝑎𝐴⊥ + 𝑏𝐵⊥)2) = 2𝑎2
𝑑−1∑︁
𝑘=1

sin2
(
𝑘𝜋

𝑑

)
+ 2𝑏2𝑑2 (𝑑 − 1).

The last equality follows from the formula for (𝔟⊥)2 given in the proof of Lemma 6.3.
But the decomposition (6.9) implies that

tr((𝑎𝐴⊥ + 𝑏𝐵⊥)2) = 2𝜌2 + 2
𝑑−1∑︁
𝑘=1

(
𝑎2 sin2

(
𝑘𝜋

𝑑

)
+ 𝑏2𝑑2

)
.

This shows that 𝜌2 = 0 and so
𝜌 = 0. (7.2)

Keeping the notation of the proof of Theorem 6.2, this gives the following formula for the
paths 𝜆1 (𝑡) and 𝜆𝑤0 (𝑡):

𝜆1 (𝑡) =
√︁
(1 − 𝑡)2 + 𝑑2𝑡2 𝑣∗1 and 𝜆𝑤0 (𝑡) = −

√︁
(1 − 𝑡)2 + 𝑑2𝑡2 𝑣∗1. (7.3)

7.2. Some pictures

We provide in Figure 7.1 some pictures of the paths described in (6.11) and (7.3), whenever
𝑑 ∈ {3, 4, 5, 6, 7, 8}. In these pictures, we have identified 𝑉 and 𝑉∗ as all along the paper.
The gray points represent the roots, the gray lines represent the reflecting hyperplanes,
the blue dots are the points 𝑤(3𝑑𝑣1/5) (the reason for choosing 3𝑑𝑣1/5 is to have a
better-looking picture), the black dots represent the spectrum of the family D1,𝑣1 ,0 (i.e.
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they are in bĳection with Calogero–Moser left cells), the blue thick curves are the paths
𝜆𝑤 (𝑡) (renormalized as above, i.e. for the family D1,𝑡𝑣1 ,3𝑑 (1−𝑡 )𝑣1/5) for 𝑡 ∈ [0, 1] and the
blue thin lines are the extensions of these paths for arbitrary values of 𝑡.

Appendix A. Trigonometric identities

We aim to prove that

𝑑−1∑︁
𝑘=0

cot
( (2𝑘 + 1)𝜋

2𝑑

)
cot

( (2𝑘 + 2 𝑗 + 1)𝜋
2𝑑

)
=

{
𝑑2 − 𝑑 if 𝑗 = 0,
−𝑑 if 1 ⩽ 𝑗 ⩽ 𝑑 − 1.

(A.1)

Proof. For 𝑛 ⩾ 1, let 𝑓 (𝑛) = ∑𝑛−1
𝑘=1 cot2

(
𝑘𝜋

𝑛

)
. The fact that 𝑓 (𝑛) =

(𝑛 − 1) (𝑛 − 2)
3

goes

back (at least) to Cauchy. Now,

𝑑−1∑︁
𝑘=0

cot2
( (2𝑘 + 1)𝜋

2𝑑

)
= 𝑓 (2𝑑) − 𝑓 (𝑑),

so the first equality follows easily.
Assume now that 1 ⩽ 𝑗 ⩽ 𝑑 −1. Since cot(𝑥) cot(𝑦) = cot(𝑦− 𝑥) (cot(𝑥) − cot(𝑦)) −1

whenever 𝑦 . 𝑥 mod 𝜋, we get

𝑑−1∑︁
𝑘=0

cot
( (2𝑘 + 1)𝜋

2𝑑

)
cot

( (2𝑘 + 2 𝑗 + 1)𝜋
2𝑑

)
= −𝑑 + cot

(
𝑗𝜋

𝑑

) 𝑑−1∑︁
𝑘=0

(
cot

( (2𝑘 + 1)𝜋
2𝑑

)
− cot

( (2𝑘 + 2 𝑗 + 1)𝜋
2𝑑

))
.

But the sequences (𝑘 + 𝑗)0⩽𝑘⩽𝑑−1 and (𝑘)0⩽𝑘⩽𝑑−1 both cover all the integers modulo 𝑑.
So the sum of the terms in the last summand vanishes, as desired. □

Note also the following trivial identity:

𝑑−1∑︁
𝑘=0

cot
( (2𝑘 + 1)𝜋

2𝑑

)
= 0 (A.2)

(the terms indexed by 𝑘 and 𝑑 − 1 − 𝑘 are opposite to each other). Also, if 𝑑 is even, then

𝑑−1∑︁
𝑘=0

(−1)𝑘 cot
( (2𝑘 + 1)𝜋

2𝑑

)
= 𝑑. (A.3)
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𝑑 = 3 𝑑 = 4

𝑑 = 5 𝑑 = 6

𝑑 = 7 𝑑 = 8

Figure 7.1. Paths (𝜆𝑤)𝑤∈𝑊 for 3 ⩽ 𝑑 ⩽ 8
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Proof. Let 𝜉 = exp(𝑖𝜋/(2𝑑)) and 𝜁 = 𝜉2. Then 𝜁𝑑 = −1 and

cot
( (2𝑘 + 1)𝜋

2𝑑

)
= 𝜉𝑑

𝜉2𝑘+1 + 𝜉−2𝑘−1

𝜉2𝑘+1 − 𝜉−2𝑘−1 = 𝜉𝑑
𝜁2𝑘+1 + 1
𝜁2𝑘+1 − 1

.

Since 𝑑 is even, we can write 𝑑 = 2𝑚. Then 𝜉𝑑 = 𝜁𝑚 and

(−1)𝑘 = 𝜁2𝑚𝑘 = 𝜁𝑚(2𝑘+1)−𝑚 and (−1)𝑘𝜁2𝑘+1 = 𝜁 (𝑚+1) (2𝑘+1)−𝑚.

Therefore,

(−1)𝑘 cot
( (2𝑘 + 1)𝜋

2𝑑

)
=

𝜁𝑚(2𝑘+1) + 𝜁 (𝑚+1) (2𝑘+1)

𝜁2𝑘+1 − 1
.

The result follows from [3, (1.10)], specialized at 𝑋 = 𝑌 = 1. □
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