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Calogero—Moser cells of dihedral groups at equal parameters

CEpric BONNAFE
JEROME GERMONI

Abstract

We prove that Calogero—Moser cells coincide with Kazhdan—Lusztig cells for dihedral groups in the
equal parameter case.

Cellules de Calogero-Moser des groupes diédraux a parameétres égaux

Résumé

Nous montrons que les cellules de Calogero-Moser coincident avec les cellules de Kazhdan-Lusztig
pour les groupes diédraux dans le cas des parameétres égaux.

1. Introduction

Calogero—Moser cells have been defined by Rouquier and the first author for any finite
complex reflection group and any parameter, based on ramification theory for Calogero—
Moser spaces [4, 5]. It is conjectured that, for Coxeter groups, Calogero—Moser cells
coincide with Kazhdan—Lusztig cells [4, Conj. 3.1 and 3.2], [5, Conj. LR and L], which
were defined by Kazhdan—Lusztig [7] in the equal parameter case and by Lusztig [8] in
the general case. The aim of this paper is to prove this conjecture for dihedral groups in
the equal parameter case.

For Calogero—Moser left cells, an alternative (and partially conjectural) definition is
proposed in [5, Theo. 13.3.2], based on Gaudin operators. This definition is recalled in
Section 5. This is the point of view we adopt in this paper: in the relatively small case
of dihedral groups, an explicit diagonalization of these operators is possible, and the
computation of Calogero—Moser left cells becomes easy.

2. Setup

Let V be a finite dimensional Euclidean real vector space, whose positive definite
symmetric bilinear form is denoted by (-,-), and let W be a finite subgroup of the
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C. Bonnafé & J. Germoni

orthogonal group O(V) generated by reflections. For v € V, we denote by v* the element
of the dual space V* defined by v*(y) = (y,v) forally € V.Themap V — V*, v i v¥ is
a W-equivariant isomorphism of vector spaces.

The set of reflections of W is denoted by Ref(W). For @ € V' \ {0}, we denote by s,
the orthogonal reflection such that s, (@) = —a. We set

O={aeV]|(a,a)=1and s, € W}.

Then @ = —®, and we fix a subset A of ® of cardinality dim R® such that every element
of @ belongs to Y ,cp Rsp @ or to Y ,cp Rep @. We set

S={sq|aeA},
so that (W, S) is a finite Coxeter system. We set

ot =dn ZR>0a and @ = —OF,

We denote by wq the longest element of W (with respect to the length function £ : W — Z
defined by the choice of S). Then wy is an involution and

wo(vo) = —vo. (2.1)
We set
Viee =V \ U Ve and €={veV|VaceA, (a,v) >0}
acd
Then € is the fundamental chamber of W associated with S, and vy € €. Recall that its
closure is a fundamental domain for the action of W on V.

We denote by Regy, the character afforded by the regular representation and Irr(W)
denotes the set of irreducible characters of W. We denote by 1y the trivial character of
W and wesete : W — u, = {1}, w — det(w). We denote by Cg the vector space of
maps ¢ : Ref(W) — R such that ¢y = ¢, if s and ¢ are conjugate in W (the elements of
Cr are called parameters). Finally, if X is a subset of W, we set X! = {w~! | w € W}.

3. Recollection about Kazhdan-Lusztig cells

Let ¢ € Cr. To the datum (W, S, ¢) are associated three partitions of W into Kazhdan—
Lusztig left, right, and two-sided c-cells (see for instance [2, Chap. 6]). To each Kazhdan—
Lusztig left c-cell C is associated a Kazhdan—Lusztig c-cellular character that is denoted
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Calogero—Moser cells of dihedral groups

by x&". Then
Regy = ) X&', 3.1)
C

where C runs over the set of Kazhdan—Lusztig left c-cells.
On the other hand, to each Kazhdan—Lusztig two-sided c-cell I' of W is associated a
c,KL

subset Irr>™ (W) called the Kazhdan—Lusztig c-family associated with T'. They form a
partition of Irr(W):

Trr(W) = U e (W), (3.2)
T

where I" runs over the set of Kazhdan—Lusztig two-sided c-cells. Here are some other
properties of Kazhdan—Lusztig cells (see for instance [2, §6.1, §6.2, and Chap. 10]).

Proposition 3.1. Let C (resp. I') be a Kazhdan—Lusztig left (resp. two-sided) c-cell. Then:

(a) C~'is a Kazhdan—Lusztig right c-cell and |C| = ,\{E’KL(I);

(b) T is a union of Kazhdan—Lusztig left (or right) c-cells. Moreover,

Irl= > x()%

Xelrr?’K"(W)
(c) If C C T, then every irreducible component of " belongs to Irr2""(W);
(d) wol'wog =T

() Cwq and woC (resp. wol” = I'wq) are Kazhdan—Lusztig left (resp. two-sided)
c-cells. Moreover,

C,KL c,KL c,KL

Xowe = Xmme =x&< - & and I SH (W) = Ir g™ (W) - &;

r wo

(f) Ifcs # 0 forall s € Ref(W), then {1} and {wq} are Kazhdan—Lusztig two-sided
c-cells. If moreover cg > 0 for all s € Ref(W), then

C,KL _ C,KL _
,\({.l} =g, nd Irr{.l} (W) = {e},
/\/g‘foL} = 1w, Irrz;ﬁ;} (W) ={1w};

(g) If T : W — 5, is a linear character, then C (resp. I') is a Kazhdan—Lusztig left
(resp. two-sided) T - c-cell. Morever

-t and Tl (W) = Trrl ™ (W) - 7.

T-C,KL _ _ C,KL
Xc =Xc

In the above statement (g), 7 - ¢ denotes the element of Cg defined by (7 - ¢)s = 7(s)cs.
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4. Gaudin operators

Fory € V,v € Viee, and v' € V, we define an endomorphism D;’V"’/ of the underlying
vector space of the group algebra RW by the following formula [5, §13.2]:

(v, @)

Cs, 7 WSq-
Sa (V,O/) a

Vw e W, DE(w) = (w™ 0w )
acdt
The endomorphism D§’V’V/ is called a Gaudin operator (and is somewhat similar to Dunkl
operators (see for instance [5, 3.1.B]). Then the map DV LV - Endg (RW) is linear
and it follows from [5, §13.2]! that

[DS, DG ] =0 .1
forall y,y" € V,v € Vieg, and v’ € V. Now, for 4 € V*, we set

ES™ ={e e RW | DS (e) = A(y)e}

and we define
SpeY = {ae V| EYVY # 0},

As all reflections of W have order 2, the matrix of D;"V"" in the canonical basis of RW
is real and symmetric, so it is diagonalizable. Therefore, for all (v, v’) € Vieq X V, the
family of commuting matrices D" = (D;’V’V/)yev is simultaneously diagonalizable.
In other words,

RW = @ ES™Y 4.2)

/IGSpC’V’V'

c,v,v

for any (v,v") € Vieg X V. The set Sp is called the spectrum of the family D",
We say that the family D¢¥+¥" has simple spectrum if |Sp®***"| = |W| (in other words, if
dimE}YY =0or 1 forall A € V).

Conjecture 4.1. If c € Cr and (v,V’) € Vieg X Vieg, then the family DY has simple
spectrum.

By the work of Mukhin—Tarasov—Varchenko [9], [10, Coro. 7.4], this conjecture is
known to hold in type A. Here is a weaker form of this conjecture.

Conjecture 4.2. If ¢ € Cg and &, &' € Ruq, then the family D¢Y-¢"0 has simple
spectrum.

Note that we have not used exactly the convention of [5, §13.2]: our operators are obtained from those in
loc. cit. by conjugating by the R-linear map extending the inversion w +— w~! in W and by identifying V and
V* by means of the non-degenerate form ( -, - ).
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We will prove in this paper that this weaker form holds if W is dihedral and c is
constant (which is the so-called “equal parameter case”).

Example 4.3. The matrix of the endomorphism Dg"”V’ in the canonical basis of RW is
diagonal, and so its spectrum can be easily computed. We get

SpP = {w(v) | w € W}
In particular, ©%"-"" has simple spectrum if and only if v’ € Vieg-
We conclude this subsection by some relations between Gaudin operators. For w € W,
we denote by /,, (resp. ry,) the automorphism of the R-vector space RW defined by left
(resp. right) multiplication by w (resp. w™'). If T : W — pu, is a linear character, we

denote by 7, the automorphism of the R-algebra RW defined by 7.(w) = 7(w)w for all
w € W. The following formulas are straightforward:

cvV =1 _ pev,w(v')
Ly Dy, I, =Dy s

c,v,V o —1 _ pew(v),y

reD§ Y gl = DG 43)
c,v,V _—1 _ pTee,v,y

Dy 1. =Dy, .

5. Calogero-Moser cells

5.1. Calogero—Moser cellular characters

The operator D;’V"’O commutes with left multiplication by RW. So each subspace Ej’v"’o

inherits a structure of RW-module: we denote by x the character afforded by this
RW-module. We define the Calogero—Moser c-cellular characters to be the characters
of the form y¢ for some A € Sp<*09 Note that we may have X4 = xpevenif A # p.
Then (4.2) implies that

Regy, = Z X5 5.1)

2eSpe-00

In particular, every irreducible character of W occurs in some Calogero—Moser c-cellular
character.

Replacing (¢, vo) by (&c, &'vg) (with &, & € R*) amounts to multiplying the Gaudin
operators by &/&’: this does not change the list of Calogero—Moser cellular characters.
This shows that Calogero—Moser c-cellular characters coincide with Calogero—Moser
&c-cellular characters.

Remark 5.1. The family D¢*-% does not have a simple spectrum in general. Indeed, if
W is not abelian, then an irreducible character of degree > 1 occurs in some cellular
character ¢, which shows that dim E/Cl’v‘)’o > 2.
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5.2. Left cells

In order to define Calogero—Moser left cells, we need to work under the following
hypothesis.

Hypothesis. In this subsection, and only in this subsection, we assume that Conjec-
ture 4.2 holds.

Let vy, vo € Rogvg. We fix two continuous functions vy, & : [0, 1] — R such that
v(t) 2 0and £(z) > O forall ¢ € [0, 1) and

{ym) =0, £(0)=1,
y(Iy=1, &(1)=0.

Therefore, for ¢ € [0, 1), the family DYe-vi-£(v2 hag simple spectrum (indeed, if
y(t) = 0, then this follows from Example 4.3 and, if y(¢) > 0, then D§(t)c""’§(’)vz =

-1
D;’y(t) v1€(0V2 and so this follows from the fact that we assume that Conjecture 4.2

holds). So this spectrum varies continuously according to the parameter . But, for t = 0,
we have Sp%V1-"2 = {w(v3) | w € W} by Example 4.3. This means that, for each w € W,
there exists a unique continuous map 4,, : [0, 1] — V* such that

{Aw«» = w(v3)
(1) € SpY DV foral 1 € [0,1],
and the family (1,,),,ew satisfies that
Vie[0,1), () # A (1) (5.2)
whenever w # w’. However, it may happen that 1,,(1) = A,,»(1) even if w # w’. This

leads to the following definition.

Definition 5.2. Two elements w and w’ are said to belong to the same Calogero—Moser
left c-cell if A, (1) = A,/ (1).

If C is a Calogero—Moser left c-cell, we set Xé’CM
element of C): it is called the Calogero—Moser c-cellular character associated with C.

— c 3
=X, () (where w is some, or any,

Remark 5.3. A simple choice would be to take vi = vy = vg, y(t) =tc,and £(¢) = 1 —¢.
But we want to work with this slightly more general setting for more flexibility. Indeed,
one could wonder whether the notion of Calogero—Moser left c-cell depends on the
choices of v1, vy, v, &. In fact, it does not, because the topological space Cr X R-o X R
is simply connected.

For instance, this shows that, if r € R.(, then Calogero—Moser left rc-cells coincide
with Calogero—Moser left c-cells, and their associated cellular characters agree.
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Calogero—Moser cells of dihedral groups

If we assumed moreover that Conjecture 4.1 holds, then we could have added some
more flexibility, by taking vy, v, in € X € and replacing the path ¢ — £(f)v, by any path
vy :[0,1] — © such that va(t) € € fort € [0, 1), v2(0) = vy and v (1) = 0 and the path
t — y(t)c by any path [0, 1] — Cy starting at 0 and ending at c.

The formula (5.1) can be rewritten as follows:

Regy, = Z x&™, (5.3)
C

where C runs over the set of Calogero—Moser left c-cells.
The following conjecture has been proposed in [4, Conj. 3.2] and [5, Conj. L].

Conjecture 5.4. Calogero—Moser left c-cells coincide with Kazhdan—Lusztig left c-cells.

Moreover, if C is one of these, then ™ = &

A very weak evidence for this conjecture is the comparison between (3.1) and (5.3).
Note also that it holds for ¢ = 0, as easily shown in [5, Coro. 17.2.3]. A somewhat strong
evidence for this conjecture is that it holds in type A, by the work of Brochier—Gordon—
White [6]. The aim of this paper is to deal with the far easier (but still non-trivial) case of
dihedral groups whenever c is constant. The following list of properties of Calogero-Moser
left cells shows that Conjecture 5.4 is compatible with Proposition 3.1.

Proposition 5.5. Let C be a Calogero—Moser left c-cell. Then:
@ ICl=xc™(1);

(b) Cwg and woC are Calogero—Moser left c-cells. Moreover,
Xy = Xuge =X &
(¢) Ifcs # 0 forall s € Ref(W), then {1} and {w} are Calogero—Moser left c-cells.
If moreover cs > 0 for all s € Ref(W), then
Xy =¢ and vafs/]l» = 1y;
(d) If T : W — u, is a linear character, then C (resp. I') is a Calogero—Moser left
(resp. two-sided) T - c-cell. Morever

7-c,CM c,cM

Xc =Xc T.

Proof. As explained in Remark 5.3, we may assume that v = v, = v¢ and that y(¢) = ¢
and £(t) =1 —tforallt € [0, 1].

(a). Itisclear.
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(b). Let 9 = g4 0 l,,, : RW — RW. Since ¢ - ¢ = —c and wqo(vg) = —vo, we get
from (4.3) that

te,vo,(1=t)vo__—1 _ py—tc,vo,(t=1)vo _ pytc,vo,(1-1)vg
70D, 7, =D, =D_; .

This means that A € Sp’¢* (=% if and only if —1 € Sp’¢*- (17" _Since A,,,,, (0) =
wwo(vg) = —w(vg) = —A,,(0), this shows that Ay, (1) = —4,,(¢) for all € [0, 1]. In
particular, Cw is a Calogero—Moser left c-cell.

Finally, if 1 € SpS"*°, then Ef’/{’"’o = TO(E/Cl"’“’O) = g.(E;’v"’O). This proves that
X<, = x4 - & and completes the proof of (a).

(d). It follows from the third equality in (4.3) and the same argument as in (b).

(c). By using (d) and rectifying the signs if necessary thanks to a linear character, we
may, and we will, assume that ¢y > 0 for all s € Ref(W). We have

DI_CV’OV”’(I_I)VO(W) =(t—1)(vo, w ' (vo))w + Z 1Cs,WSq-
acdt

Let A denote the diagonal endomorphism D‘}‘fg’VO

DC_"J(?’O, so that Dt_cv’;“’(l*t)vo =(1-1t)A+1tB.

The matrix B is a real matrix with non-negative coefficients, which is primitive (because
W is generated by Ref(W)). Let v = (v, vg)+ 1. Then A+v Idgy is a diagonal matrix with
positive coefficients. Therefore, if # > 0, the matrix DS’ 0-(1=0%0 4y, [dg v is a real matrix
with non-negative coefficients which is primitive. By the Perron—Frobenius theorem,
its spectral radius p, is an eigenvalue of D'’ 0-0=0% 4y Idgyy, with multiplicity 1.
Therefore, p; varies continuously as ¢ varies.

Fort = 0, A+v Idgw is diagonal and its largest diagonal coefficient is (v, vo)+v, which
occurs with multiplicity 1 (and its eigenvector is wg). So the map p’ : [0,1] — R.,
t — p; — v is continuous. Adding v Idrw was an artefact to obtain a matrix with
non-negative coefficients and apply the Perron—Frobenius theorem. Coming back to
D' 0-07% \ve have proven that p! is its biggest eigenvalue, that it has multiplicity 1,
that it varies continuously for ¢ € [0, 1], that p) = (vo, vo) with eigenvector wy.

Let us now prove that p| = a, where a = 3. ,cq+ s, - For this, note first that 3, ey w
is an eigenvector of B with eigenvalue a: this proves that p| > a. Now, ifw = 3, cw pww
is an eigenvector of B for the eigenvalue p, then the Perron-Frobenius Theorem says
that p,, > O for allw € W. Let w; € W be such that p,,, is maximal. Then the coefficient
of wy in B(w) is equal t0 3 ,eq+ Cs, Pwise < dPw,- But this coefficient if p|py, . This
proves that p| < a. Consequently, p| = a and a corresponding eigenvector is 3, cy w.

This shows that A,,,(t)(—vo) = p; and so A, (1) has multiplicity 1 in Sp% Vv and

the corresponding eigenspace Eg"’oi‘]"; is the line spanned by },,cw w. This concludes
wo

and let B denote the Gaudin operator

194



Calogero—Moser cells of dihedral groups

the proof of the fact that {wg} is alone in its Calogero—Moser left c-cell, and that the
associated cellular character is 1y . The statement for {1} instead of {wq} is now obtained
by using (b). O

5.3. Two-sided cells

Until now, there is no alternative definition of Calogero—Moser two-sided c-cells in terms
of Gaudin operators or something related: the only available definition is based on the
ramification theory of the Calogero—Moser space [5, Part III]. This depends on the choice
of some prime ideal in some Galois closure of some ring extension. This choice can be
adapted to the choice of the two continuous functions y and & and we will follow this
choice.

Moreover, to each Calogero—Moser two-sided c-cell I is associated a subset Irr?’c“’l (W)
of Irr(W), which is called a Calogero—Moser c-family. They form a partition of Irr(W):

(W) = | e w), (5.4)
I

where I” runs over the set of Calogero-Moser two-sided c-cells. The following properties
are proved in [5, Theo. 10.2.7, Prop. 11.3.3, Prop. 11.4.2].

Proposition 5.6. Let I" be a Calogero—Moser two-sided c-cell and C be a Calogero—Moser
left c-cell. Then:

(a) T is a union of Calogero—Moser left c-cell. Moreover,

ri= > x()

/\/elrrlf’CM(W)
(b) If C C T, then every irreducible component of ,\(E’CM belongs to Irr?’CM(W).

It is conjectured [5, Conj. LR] that the analogue of Conjecture 5.4 also holds for
two-sided cells:

Conjecture 5.7. Calogero—Moser two-sided c-cells coincide with Kazhdan—Lusztig
two-sided c-cells. Moreover, if T is one of these, then Irrp™ (W) = Irr. " (W).

This conjecture holds in type A (see [6]). In this paper, we prove it for dihedral groups
whenever c is constant.
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6. Dihedral groups, equal parameters

Hypothesis and notation. From now on, and until the end of this paper, we assume
that V = R2, endowed with its canonical Euclidean structure, and we denote by (e1, e)
its canonical basis (which is an orthonormal basis). We fix a natural number d > 3

and, if k € Z, we set
kn  (krm
ayg = COS(7)€1 T Sln(7)€2

and si = S o, . We assume that A = {ap, @g—1}, sothat S = {s¢, sq—1}. For simplification,
we set s = sgand s’ = sg4_1.

Then W = (s, s") is the dihedral group of order 2d, and d is the order of ss’. Moreover,
Qlerd = — A and

O={ay|keZ}={ar |0<k<2d-1}
and
Ref(W) ={sx |keZ}={sx |0< k <d-1}.
Moreover,
O ={ox |0<k<d-1}

We aim to prove Conjectures 4.2, 5.4 and 5.7 whenever c is constant. Conjectures 4.2
and 5.4 hold for ¢ = 0 by Example 4.3 and the remark following Conjecture 5.4. For
Conjecture 5.7, see [5, Coro. 15.3.3]. Thus we may assume that ¢ is constant and non-zero
and, by Remark 5.3, that ¢ = 1, the constant function with value 1.

6.1. Elements, characters

Recall that s = sg and s’ = s4_;1. For k > 0, we set

Ok =555 and op =858
——— ———
k terms k terms

Then o = 0y = 1, 04 = 0, = wo, and
W=A{l,01,0{,02,04,...,04-1,0,_1,Wo}. 6.1)

Let W* = (ss’). It is a normal cyclic subgroup of order d of W. We fix a primitive d-th
root of unity w and, for k € Z, we denote by 8 : W* — C* the linear character such that
Ox(ss’) = w*. We set

Xk = Indg+ Qk.
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If d is even, we denote by &, (resp. €,) the linear character of W such that g5(s) = —1 =
—&,(s") (resp. g (s) =1 = —g¢(s’)). Then yx = ¥—k = Xk+a and

1w.& X155 X(d- if d is odd,
Tre(W) = {lw. &, x1 X(d-1)/2} e 6.2)
{lw, &, 85,85, X1, ..., X(d-2)2y if d is even.
We conclude this subsection with a fact that will be useful for our purpose: if k& > 0, then
(0% — o)) Z s =0. 6.3)
s€Ref (W)

Proof. Note that Ref(W) = W \ W*. As it is clear that (o — 07) Xyeww = 0, it is
sufficient to prove that (o — ) X,,ew+ w = 0. But

(O’k—O',/()ZWZ Z w— Z w,

wew+ weo W+ weo; W+

so the result follows from the fact that oy W* = o, W*. O

6.2. Kazhdan-Lusztig cells
Let
Cs={0'1_1,0'2_1,...,0'(;11 and Csr={0’l’_],0'2’_],...,0';,__11}.

The Kazhdan—Lusztig left 1-cells as well as the Kazhdan—Lusztig 1-cellular characters
are easily computed (see for instance [2, Chap. 21]):

Proposition 6.1. The Kazhdan—Lusztig left 1-cells are
{]}5 {W0}> Cs, and Cs’~

Moreover:

(a) Ifd is odd, then
XIC;KL :/\/lc’ﬁL = X1+ X(d-1)/2-
(b) If d is even, then

XaKL =gyt X1+ +X(a-2p and )(IC’;L =&+ x1+ 0+ X(d-2))2-

6.3. Calogero—Moser cells

The main result of our paper is the following theorem.
Theorem 6.2. Conjectures 4.2, 5.4, and 5.7 hold whenever W is dihedral and c is constant.

The rest of this section is devoted to the proof of this Theorem.
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6.4. Preliminaries
We use the flexibility of the definition of left cells explained in Remark 5.3. We take

b Vs
= = si _ —_— = = 1 -1
Vi =Vvy s1n(2d)e1 +cos(2d)e2, y(t) =t, and &(r)
(one can check that v is a positive multiple of v{). We also set

n T . e
Vi = COS(ﬁ)el - sm(ﬂ)eg,

so that (vq, vli) is an orthonormal basis of V. We have

(1+2k)m

2d ’
(14+2k)m
)

(v, @g) = sin
(6.4)

(vi.ax) = cos(
for all k£ > 0. Also

(1 =2k)n (1-2k)m
or(vy) = sm(T)el +cos(T)ez,

, ((1+2k)m (1+2k)m
O'k(Vl) = SIH(T)el +COS(T)62.

(6.5)

Proof of (6.5). This is easily checked by induction on k using the fact that oy = so; _,
and o-,’{ =s'op_1 fork > 1. O

An immediate consequence is that

km
(ok(vi),vi) = (o (vi),v1) = 005(7),

kn

(ox(v1),vy) = —sin(;), (6.6)

km

(o (v),vi) = sin(j).

Now, we set p = 55" (so that p is the rotation with angle 27/d). Recall that p generates
W*. Also

sksp=pl 7k (6.7)
forall k, [ € Z.
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6.5. Proof of Conjecture 4.2

Now, we set
A=D, B=DW0  At=Dp""" and B=D)".
1 1

In particular,

Db}V =qA+bB  and DU =gAt +bBE.

-V
! 1

Now, if 1 < k < d -1, then

k
1

{0"1 — o is an eigenvector of aA + bB for the eigenvalue —a cos(kr/d), 68
-1 ’— .
Ok ~ %%

is not an eigenvector of aAt + bB* if a > 0.

Proof of (6.8). Note that o' — o™ = (0% — 7). By (6.6), we have A(o, ' —o(7!) =
—COS(kﬂ'/d)(O’k_l - 0','{‘1). Moreover, B(W) = W X scref(w) 5> SO B(O’k_l - o-,’(‘l) =0
by (6.3). The first assertion follows.

Again by (6.6), the coeflicient of o-k‘1 (or 0']’{_1) in (aA* + bBJ‘)(O'k_l - o-,’{‘l) is equal
to —a sin(kx/d), so this proves the second statement because sin(kr/d) # 0. m|

After these preliminaries, we are ready to prove the theorem. So let us first prove that
Conjecture 4.2 holds. Let us assume that a > 0. Let p, 5 denote the largest eigenvalue
of aA + bB (as in the proof of Proposition 5.5(c)). Then it has multiplicity 1. By the
proof of Proposition 5.5(b), —p4,» is the smallest eigenvalue of aA + bB, and it has
multiplicity 1. We denote by Emax(a, b) (resp. Enin(a, b)) the p, p-eigenspace (resp. the
—pa,p-cigenspace) of aA + bB.

On the other hand, if 1 < k£ < d — 1, it follows from (6.8) that the vector space spanned
by O'k_l - o-,’;l and its image by aA* + b B+ are contained in the —a cos(kx/d)-eigenspace
of aA + bB. So this eigenspace (let us denote it by Ey (a, b)) has dimension > 2. Since
a#0,acos(kn/d) # acos(in/d) if 1 < k < < d - 1. Therefore, the vector space

Emax(a’ b) @ Emin(as b) @ El(aa b) @ E2(a, b) @ e @ Ed—l(as b)
has dimension > 2 + 2(d — 1) = 2d = dimRW. So this proves that
RW = Emax(a, b) @ Emin(a, b) @ El(a3 b) @ E2(a, b) &0 Ed—l(a9 b) (69)

and that
dim Ey(a,b) =2 (6.10)
for 1 < k < d — 1. This describes the diagonalization of aA + bB. But now, the second

statement of (6.8) shows that aA++bB* has two distinct eigenvalues on each E (a, b). So
the family D¢ 1-V1-6V1 has simple spectrum as soon as a > 0. This is exactly Conjecture 4.2.
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6.6. Cellular characters

Let us define two elements of the group algebra RW by
“ S (Qk+ D
b= Z Sk and bt = Z cot(T)Sk.
k=0 k=0

Then B (resp. B1) is the right multiplication by b (resp. b*). For y € Irr(W), we denote
by e, € Z(RW) the corresponding central idempotent

x(1)
ey = W Z x(w Hw.

wew
Then
RW= (P RWe,
X Elrr(W)
and b = d(eyr,, — e.). We denote by E; (resp. E_g4) the d-eigenspace (resp. (—d)-
eigenspace) of B*. Then:

Lemma 6.3. With the above notation, we have:

(a) RW=Rey,, ®Re, @ E; ® E_4 and

Eq®0Eq= (P  RWe,.
xelr(W)\{1w, &}

(b) B acts on Rey,, (resp. Reg, resp. Eq, resp. E_q) by multiplication by d (resp.
—d, resp. 0, resp. 0).

(c) B* acts on Rey,, and Re ;. by multiplication by 0.

Proof. First, it follows from (6.7) and (A.1) that
") =d’—d > w.

weWw+
Moreover,
b’ =d Z w.
weWw+
But
de, if v € {1w, e},
eX(Zw)= o e (lwe)
W 0 if y ¢ {1w, €}.
This proves the lemma because B and B* are diagonalizable. O
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This shows that
Sp' 0 = {dvi, —dvi, d(vi)" ~d(v)'}

and that the decomposition in (a) is the decomposition (4.2) for (¢, v,v") = (1,v1,0). Let
us now determine the corresponding cellular characters:

Lemma 6.4. Ifd is odd, then E 4 and E_; both afford the character 1+ 2+ - -+ X (a-1)/2-
If d is even, then the RW-module E 4 (resp. E_g4) affords the character €g + x1 + x2 +

st Y-y (resp. es+ x1+ x2 0+ Xa-1)2)

Proof. Let i denote the automorphism of W exchanging s and s’. Then 7b* = —b*. So 5
exchanges Eg4 and E_4. Moreover, 7y; = y, for any j.

But, if d is odd, then E4 ® E_g4 affords the character 2(y1 + x2 + - - - + X (d-1)/2). SO
this implies that both E4 and E_ afford the character y1 + x2 + -+ - + x(a-1)2-

Now, if d is even, then E; & E_, affords the character e, + &5 + 2(y1 + x2 + -+ +
X(d-1)/2)- So this implies that E; affords the character &5 + x1 + x2 + - - - + x(4-2)/2 OF
&y + X1+ X2+ -+ X(a-2)/2 (and E_g; affords the other). To determine which one is
which, we just need to compute e b+. But e b = le, where

d-l 2k + Dr
A= cot(—
25

Since &5 (sx) = (=1)k*!, we get from (A.3) that 1 = —d. This proves the result. O

)8s(sk)-

Lemmas 6.3 and 6.4, together with Proposition 6.1, prove that the list of Calogero—
Moser 1-cellular characters equals the list of Kazhdan—Lusztig 1-cellular characters.

6.7. Left cells

Assume thata > 0.If 1 < k < d -1, then E¢(a, b) has dimension 2 (see Section 6.5). Let
us determine the action of aA* + bB* on Ey(a, b). Let ri(a, b) = (aA* + bB*) (o' -
0',2_1) € Ex(a,b). Then

Ei(a,b) = ]R(O'k_1 - 0','{_1) ® Rri(a,b).

So this means that we need to determine (aA*+bB~*)(rr(a, b)), i.e. we need to determine
the two real numbers z, 7’ such that

(aA* +bB*)(re(a, b)) = z(op ' = oY) + 'ri(a, b).

For this, we will work modulo Fy = P Rw. Then

weW\{oy,o}

(krm | |
ri(a,b) = -a sm(7)(0'k_ +0;,” ) mod Fy.
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On the other hand,
(aA* + bBY)? = a®(AY)? + b*(BY)? + ab(A*B* + B*AY).
So
L L ook i 1
(aA~+bB~)(ri(a,b)) = a” sin = (op =0y )+b°(B7) (o, —0o, ) mod Fy.
But the formula for (b+)? given in the proof of Lemma 6.3 shows that
(B (o' =0y ) =dP (o = 7).
All this together shows that

km
7=a° sin2(7) + b*d? and 7 =0.

So we have proved the following fact.

Lemma 6.5. Assume that a > 0. Then the restriction of aA* + bB* to Ex(a, b) has two

eigenvalues, namely
) km
+4[a? sin (7) + b2d?.

Coming back to the family D1~V (which corresponds to the case a = 1 — ¢
and b = 1), this shows that

km . 5 2 km 5 s
/lU;l(t) = —(1 —t) COS(;)V1 - (1 —t) sim (7) +1°d (Vl) ,
6.11)

km . 52 km 5 i
/lai_l(t)=—(1—t)cos(7)vl+ (1 —1)?sin (7)+t = (vi)”,

for 1 < k < d — 1. Taking the limit at # = 1, and using the cases 1 and wq solved in
Proposition 5.5, we get (also thanks to Lemma 6.4):

Proposition 6.6. The Calogero—Moser left 1-cells are

{1}7 {WO}’ CSa and Cs'-
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Moreover:

(1) Ifd is odd, then

1, 1,
)(CSCM =XCSC,M =xtt-+ Xd-1)2-

(2) If d is even, then

1, L,
Xc:_:M =&y +tXx1t+-- +X(d—2)/2 and /\/CSC’M =&+ x1+--- +/\/(d—2)/2‘

The proof of Conjecture 5.7 in this case is complete.

6.8. Two-sided cells

The Kazhdan—Lusztig two-sided 1-cells are
{1}, T'=CyUCy, and {wq}.
The Kazhdan—Lusztig 1-families are given by

Irr}f‘}L(W)z{g}, Irr (W) = Irr(W) \ {1w, &}, and Irr;‘j(f}(vv)z{lw}.

The Calogero-Moser 1-families have been computed by Bellamy [1] (see also [3,
Table 5.1]) and coincide with the Kazhdan—Lusztig 1-families. Therefore, the fact that
Conjecture 5.7 holds in this case follows immediately from Proposition 5.6.

The proof of Theorem 6.2 is complete.

7. Complements

7.1. Other eigenvalues

Keep the notation of the proof of Theorem 6.2. In this proof, it was unnecessary to
determine the explicit value of the largest eigenvalue p, 5 of aA + bB and the action
of aA+ + bB* on Eyyn(a, b) and Eyax(a, b). This can easily be done, as shown in this
subsection.

First, note that tr(AB) = 0 because the diagonal coefficients are equal to zero. Also,

2d-1
k
tr(A%) = Z 0082(7”) and tr(B%) = 2d>.
k=0

The last equality comes from the fact that the coefficient of 1 in (X erer(w) s)? is equal

to d. Therefore,
d-1

k
tr((aA+bB)?) = 24>y 0052(—7r) +202d?
k=0 d
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Since the eigenvalue of aA + bB on Enin(a, b) is —p.p, the decomposition (6.9) implies
that

d-1

kn

tr((aA + bB)?) =2p% , +2a° cosz(—).
((ad+bB)) =20, +20° ) Jeos’(

Pap = Va2 + d?b? (7.1)

It remains to determine the action of aA* + bB* on Ejn(a, b) and Epa(a, b). Both
spaces have dimension 1, so this action is by a scalar: if p denotes the scalar by which
aA*t + bB* acts on Enax(a, b), then —p is the scalar by which aA* + bB* acts on
Emin(a, b) (again by the proof of Proposition 5.5). Now, note that tr(A+B*) = 0 because
the diagonal coefficients are equal to zero. Also,

This shows that

2d-1 kn
tr((A4)?) = Z sin2(—) and  tr((BY)?) =2d%(d - 1).

k=0 d

Therefore,
“ km
tr((aA* + bBY)?) = 24> Z sin2(7) +2b%d%(d - 1).
k=1

The last equality follows from the formula for (6+) given in the proof of Lemma 6.3.
But the decomposition (6.9) implies that

d-1
k
tr((aA* + bBH)?) = 2p% +2 Z(cﬂ sin2(—7r) + bzdz).
k=1 d

This shows that p?> = 0 and so
p=0. (12)

Keeping the notation of the proof of Theorem 6.2, this gives the following formula for the
paths A (¢) and A, (¢):

A1(2) =N (1 —1)> + d** v} and Ay (1) = =V (1 = 1)2 + d?1% v]. (7.3)

7.2. Some pictures

We provide in Figure 7.1 some pictures of the paths described in (6.11) and (7.3), whenever
d € {3,4,5,6,7,8}. In these pictures, we have identified V and V* as all along the paper.
The gray points represent the roots, the gray lines represent the reflecting hyperplanes,
the blue dots are the points w(3dv;/5) (the reason for choosing 3dv;/5 is to have a
better-looking picture), the black dots represent the spectrum of the family D1-0 (ie.
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they are in bijection with Calogero—Moser left cells), the blue thick curves are the paths
A, (1) (renormalized as above, i.e. for the family DV1-3¢(1=01/5) for t € [0, 1] and the
blue thin lines are the extensions of these paths for arbitrary values of ¢.

Appendix A. Trigonometric identities

We aim to prove that

¢! 2k + Dn 2k +2j+ Dr d*-d ifj=0
co (( ) )Cot(( i+ ): n=T (A1)
= 2d —d fl<j<d-1
km (n-1)(n-2)
Proof. Forn > 1,let f(n) = ¥}, cotz( ) The fact that f(n) = fgoes

back (at least) to Cauchy. Now,

4l ((2k+ D

Z cot2 2d

k=0

) = f(2d) - f(d),

so the first equality follows easily.
Assume now that 1 < j < d— 1. Since cot(x) cot(y) = cot(y —x)(cot(x) —cot(y)) —1
whenever y # x mod 7, we get

4] 2k + Dn Rk +2j+ )1
S 2o 220

. d—1 .
=—d+ cot(%) Z(cot(%) - cot(W)).

k=0

i

But the sequences (k + j)o<k<a—1 and (k)o<k<qa—-1 both cover all the integers modulo d.
So the sum of the terms in the last summand vanishes, as desired. m]

Note also the following trivial identity:

<l 2k +Dn

> cot(T) =0 (A2)

k=0

(the terms indexed by k and d — 1 — k are opposite to each other). Also, if d is even, then
d-1
2k + )

Z( 1)* cot (( ) ) d. (A.3)
k=0
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FiGure
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Proof. Let & = exp(in/(2d)) and ¢ = £€%. Then (¢ = —1 and

Qk+Dmy gkl kel
COt( 2d ) TS gk gkl S kel

Since d is even, we can write d = 2m. Then £4 = ¢ and

(=1)k = F2mk — pmkt1)-m and (=1)k g2kt = ) @kt =m.

Therefore,
(2k+ 1)71' gm(2k+l) +é«(m+l)(2k+l)
(=1)¥ cot =
2d §2k+1 -1
The result follows from [3, (1.10)], specialized at X = Y = 1. O
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