
ANNALES MATHÉMATIQUES

BLAISE PASCAL
Pradeep Boggarapu & Sundaram Thangavelu
Mixed norm estimates for the Riesz transforms associated
to Dunkl harmonic oscillators

Volume 22, no 1 (2015), p. 89-120.

<http://ambp.cedram.org/item?id=AMBP_2015__22_1_89_0>

© Annales mathématiques Blaise Pascal, 2015, tous droits réservés.
L’accès aux articles de la revue « Annales mathématiques Blaise Pas-
cal » (http://ambp.cedram.org/), implique l’accord avec les condi-
tions générales d’utilisation (http://ambp.cedram.org/legal/). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit
contenir la présente mention de copyright.

Publication éditée par le laboratoire de mathématiques
de l’université Blaise-Pascal, UMR 6620 du CNRS

Clermont-Ferrand — France

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://ambp.cedram.org/item?id=AMBP_2015__22_1_89_0
http://ambp.cedram.org/
http://ambp.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Annales mathématiques Blaise Pascal 22, 89-120 (2015)

Mixed norm estimates for the Riesz transforms
associated to Dunkl harmonic oscillators

Pradeep Boggarapu
Sundaram Thangavelu

Abstract

In this paper we study weighted mixed norm estimates for Riesz transforms
associated to Dunkl harmonic oscillators. The idea is to show that the required
inequalities are equivalent to certain vector valued inequalities for operator defined
in terms of Laguerre expansions. In certain cases the main result can be deduced
from the corresponding result for Hermite Riesz transforms.

1. Introduction

Let G be a Coxeter group (finite reflection group) associated to a root
system R in Rd, d ≥ 2. We use the notation 〈., .〉 for the standard inner
product on Rd. Let κ be a multiplicity function which is assumed to be
non-negative and let

hκ(x) =
∏
ν∈R+

|〈x, ν〉|κ(ν)

where R+ is the set of all positive roots in R. Let Tj , j = 1, 2, . . . , d be
the difference-differential operators defined by

Tjf(x) = ∂f

∂xj
(x) +

∑
ν∈R+

κ(ν)νj
f(x)− f(σνx)
〈ν, x〉

.

where σν is the reflection defined by ν. The Dunkl Laplacian ∆κ is then
defined to be the operator

∆κ =
d∑
j=1

T 2
j

Keywords: Reflection groups, Dunkl operators, Hermite and generalised Hermite func-
tions, Riesz transforms, singular integrals, weighted inequalities.
Math. classification: 42C10, 47G40, 26A33, 43A90, 42B20, 42B35, 33C44.
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which can be explicitly calculated, see Theorem 4.4.9 in Dunkl-Xu [7]. The
Dunkl harmonic oscillator is then defined by

Hd,κ = −∆κ + |x|2

which reduces to the Hermite operator Hd = −∆ + |x|2 when κ = 0.

Our aim in this paper is to study the Lp mapping properties of Riesz
transforms associated to the Dunkl harmonic oscillator. The spectral the-
ory of the operator Hd,κ has been developed by Rösler in [16]. The eigen-
functions of Hd,κ are called the generalised Hermite functions and denoted
by Φκ

µ, µ ∈ Nd. It has been proved that they form an orthonormal basis for
L2(Rd, h2

κdx). In analogy with the Riesz transforms associated to the Her-
mite operator, one can define the Riesz transformsRκj , Rκ∗j , j = 1, 2, . . . , d
by

Rκj =
(
Tj + xj

)
H
− 1

2
d,κ , Rκ∗j =

(
− Tj + xj

)
H
− 1

2
d,κ .

Note that the operators Rκj and Rκ∗j are densely defined i.e., they are
defined on the subspace V consisting of finite linear combinations of the
generalised Hermite functions Φκ

α. In the particular case of G = Zd2 treated
in [14] the authors have shown that the L2 norm of (Tj + xj)Φκ

α behaves
like (2|α|+d+ 2γ)1/2 where γ =

∑
ν∈R+ κ(ν). Since Φκ

α are eigenfunctions
of Hd,κ with eigenvalues (2|α| + d + 2γ) the operator H−

1
2

d,κ defined by

spectral theorem satisfies H−
1
2

d,κ Φκ
α = (2|α| + d + 2γ)−1/2Φκ

α. From these
two facts, it is clear that the Riesz transforms defined on V satisfy the
inequalities

‖Rκj f‖2 ≤ C‖f‖2, ‖Rκ∗j f‖2 ≤ C‖f‖2
for all f ∈ V. Consequently, they extend to L2 as bounded linear operators.
In [1] a very cute argument based on the fact that

Hd,κ = 1
2

d∑
j=1

((Tj + xj)(−Tj + xj) + (−Tj + xj)(Tj + xj))

is used to show that the L2 boundedness on V holds for any reflection
group G. We make use of these definitions and results in the sequel.

If it can be shown that Rκj and Rκ∗j satisfy the inequalities
‖Rκj f‖p ≤ C‖f‖p, ‖Rκ∗j f‖p ≤ C‖f‖p
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Mixed norm estimates for Riesz transforms

for any 1 < p < ∞ whenever f ∈ V then by density arguments they can
be extended to the whole of Lp(Rd, h2

κdx), 1 < p <∞ as bounded opera-
tors. This was proved in [14] by Nowak and Stempak in the particular case
when G = Zd2. For general Coxeter groups the boundedness properties of
the Riesz transforms are proved by Amri in [1]. We refer to these two
papers for details and further information on Riesz transforms associated
to the Dunkl harmonic oscillator. Weighted norm inequalities or mixed
norm inequalities are not known for these Riesz transforms. In this paper
our main goal is to establish certain weighted mixed norm estimates for
these operators.

For α ≥ −1
2 , let A

α
p (R+) be the Muckenhoupt’s class of Ap-weights

on R+ associated to the doubling measure dµα(t) = t2α+1dt. Let dσ be
the surface measure on unit sphere Sd−1 and let w be a positive function
on R+. We denote by Lp,2(Rd, w(r)rd+2γ−1h2

κ(ω)dσ(ω)dr) the space of all
measurable functions f on Rd for which∫ ∞

0

( ∫
Sd−1
|f(rω)|2h2

κ(ω)dσ(ω)
) p

2
w(r)rd+2γ−1dr <∞.

The p−th root of the above quantity is a norm with respect to which
the space becomes a Banach space. For 1 < p < ∞ the dual of the Ba-
nach space Lp,2(Rd, w(r)rd+2γ−1h2

κ(ω)dσ(ω)dr) is nothing but the space
Lp
′,2(Rd, w(r)rd+2γ−1h2

κ(ω)dσ(ω)dr) where p′ is the index conjugate to p.
This follows from a general theorem proved in [4] since we can think of the
space Lp,2(Rd, w(r)rd+2γ−1h2

κ(ω)dσ(ω)dr) as an Lp space on R+ of func-
tions taking values in the Hilbert space L2(Sd−1, h2

κ(ω)dσ(ω)) taken with
respect to the measure w(r)rd+2γ−1dr. Since L2(Sd−1, h2

κ(ω)dσ(ω)) is a
separable Hilbert space, it can be identified with the sequence space l2(N)
and hence a simple independent proof also can be given for the fact about
the dual. We denote by Lp,2G (Rd, w(r)rd+2γ−1h2

κ(ω)dσ(ω)dr) the subspace
of G-invariant functions in Lp,2(Rd, w(r)rd+2γ−1h2

κ(ω)dσ(ω)dr).

Let VG stand for the set of all G-invariant functions in V. To see that
VG is a nontrivial subspace of V we proceed as follows. Given a function
f on Rd we define the G-invariant function f# by averaging over G. Thus

f#(x) = 1
|G|

∑
g∈G

f(gx)
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where |G| stands for the cardinality of G. We claim that VG is precisely
the set of all f# where f runs through V. Indeed, it is obvious that for
any G-invariant f ∈ V we have f = f#. On the other hand, if f ∈ V then
f# is G-invariant and f# belongs to V . The latter can be easily seen as
follows: Since f ∈ V , it is of the form

f(x) =
∑
α∈F

cαΦκ
α(x),

where F is a finite subset of Nd. Since Hd,κ is G-invariant and Hd,κΦκ
α =

(2|α|+ d+ 2γ)Φκ
α (see Section 2.2 below) it follows that

Hd,κ(Φκ
α)# = (2|α|+ d+ 2γ)(Φκ

α)#.

Note thatHd,κ is a self-adjoint operator with discrete spectrum. Moreover,
each eigenspace is finite dimensional and {Φκ

α : α ∈ Nd} is an orthonormal
basis for L2(Rd, h2

κdx) consisting of eigenfunctions of Hd,κ. Consequently,
(Φκ

α)# which is an eigenfunction of Hd,κ can be written as
∑
|β|=|α| aβΦκ

β.
This shows that f# =

∑
α∈F cα(Φκ

α)# belongs to V . This proves our claim.

Also note that the density of V in Lp,2(Rd, w(r)rd+2γ−1h2
κ(ω)dσ(ω)dr)

implies the density of VG in Lp,2G (Rd, w(r)rd+2γ−1h2
κ(ω)dσ(ω)dr) which is

an immediate consequence of Minkowski’s inequality since the measures
given by h2

κ(ω)dσ(ω) and w(r)rd+2γ−1dr are G- invariant. In Subsection
2.4 we will show that V is dense in Lp,2(Rd, w(r)rd+2γ−1h2

κ(ω)dσ(ω)dr)
for all w ∈ A

d
2 +γ−1
p (R+), 1 < p < ∞. Thus, Rκj and Rκ∗j are well defined

on the dense subspace VG.

Theorem 1.1. Let d ≥ 2, 1 < p <∞. Then for j = 1, 2, · · · , d the Riesz
transforms Rκj and Rκ∗j initially defined on VG satisfy the estimates∫ ∞

0

( ∫
Sd−1
|Rκj f(rω)|2h2

κ(ω)dσ(ω)
) p

2
w(r)rd+2γ−1dr

≤ Cj(w, p, κ)
∫ ∞

0

( ∫
Sd−1
|f(rω)|2h2

κ(ω)dσ(ω)
) p

2
w(r)rd+2γ−1dr

for all f ∈ VG, w ∈ A
d
2 +γ−1
p (R+). Consequently Rκj and Rκ∗j can be ex-

tended as bounded operators from Lp,2G (Rd, w(r)rd+2γ−1h2
κ(ω)dσ(ω)dr) into

Lp,2(Rd, w(r)rd+2γ−1h2
κ(ω)dσ(ω)dr).
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Mixed norm estimates for Riesz transforms

The proof of this theorem is based on the fact that on radial functions
the Dunkl harmonic oscillator Hd,κ coincides with the Hermite operator
Hd+2γ , when 2γ is an integer. More generally, using an analogue of Funk-
Hecke formula for h-harmonics we can show that the mixed norm estimates
for the Riesz transforms Rκj are equivalent to a vector valued inequality
for a sequence of Laguerre Riesz transforms. When 2γ is an integer these
inequalities can be deduced from the weighted norm inequalities satisfied
by Hermite Riesz transforms. In the general case when 2γ is not an inte-
ger, we can appeal to a recent result of Ciaurri and Roncal [5].

The plan of the paper is as follows. In Section 2 we collect some facts
from the spectral theory of Dunkl harmonic oscillators. Especially, we need
an analogue of Mehler’s formula for the generalised Hermite functions. We
also collect some basic facts about h-harmonics which are analogues of
spherical harmonics on Sd−1. The most important result is an analogue
of Funk-Hecke formula for h-harmonics. In Section 3 we consider the vec-
tor Rκf = (Rκ1 , · · · , Rκd) of Riesz transforms and show that mixed norm

inequalities for |Rκf | =
(∑d

j=1 |Rκj f |2
) 1

2 can be reduced to vector valued
inequalities for operators related to Laguerre expansions. In Section 4 we
prove the required inequalities by considering the vector of Hermite Riesz
transforms.

Though we have considered only the Riesz transforms in this paper,
we can also treat multipliers (e.g. Bochner-Riesz means) for the Dunkl
harmonic oscillator. Using the known results for the Hermite operator, we
can prove an analogue of Theorem 1.1 for multipliers associated to Dunkl
harmonic oscillator.

2. Preliminaries

2.1. Coxeter groups and Dunkl operators:
We assume that the reader is familiar with the notion of finite reflection
groups associated to root systems. Given a root system R we define the
reflection σν , ν ∈ R by

σνx = x− 2 〈ν, x〉
|ν|2

ν.
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Recall that 〈ν, x〉 is the inner product on Rd. These reflections σν , ν ∈ R
generate a finite group which is called a Coxeter group. A function κ
defined on R is called a multiplicity function if it is G invariant. We assume
that our multiplicity function κ is non negative. The Dunkl operators Tj
defined by

Tjf(x) = ∂

∂xj
f(x) +

∑
ν∈R+

κ(ν)νj
f(x)− f(σνx)
〈ν, x〉

.

form a commuting family of operators. There exists a kernel Eκ(x, ξ)
which is a joint eigenfunction for all Tj :

TjEκ(x, ξ) = ξjEκ(x, ξ).

This is the analogue of the exponential e〈x, ξ〉 and Dunkl transform is
defined in terms of Eκ(ix, ξ). For all these facts we refer to Dunkl [6] and
Dunkl-Xu [7]. The weight function associated to R and κ is defined by

h2
κ(x) =

∏
ν∈R+

|〈x, ν〉|2κ(ν).

Recall that γ =
∑
ν∈R+ κ(ν) and the multiplicity function κ(ν) is always

assumed to be non-negative. We consider Lp spaces defined with respect
to the measure h2

κ(x)dx. Note that h2
κ(x) is homogeneous of degree 2γ.

2.2. Generalised Hermite functions:
In [16] Rösler has studied generalised Hermite polynomials associated to
Coxeter groups. She has shown that there exists an orthonormal ba-
sis Φκ

α, α ∈ Nd for L2(Rd, h2
κ(x)dx) consisting of functions for which

Φκ
α(x)e

1
2 |x|

2 are polynomials. Moreover, they are eigenfunctions of the
Dunkl harmonic oscillator:(

−∆κ + |x|2
)
Φκ
α = (2|α|+ d+ 2γ)Φκ

α.

They are also eigenfunctions of the Dunkl transform. For our purpose, the
most important result is the generating function identity or the Mehler’s
formula for the generalised Hermite functions. For 0 < r < 1, one has

∑
α∈Nd

Φκ
α(x)Φκ

α(y)r|α| = cd(1− r2)−
d
2−γe

− 1
2

(
1+r2
1−r2

)
(|x|2+|y|2)

Eκ
( 2rx

1− r2 , y
)
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Mixed norm estimates for Riesz transforms

see Theorem 3.12 in [16]. By taking r = e−2t, t > 0 we see that the kernel
of the heat semigroup generated by −∆κ + |x|2 is given by

Kt(x, y) = cd,γ(sinh 2t)−
d
2−γe−

1
2 (coth 2t)(|x|2+|y|2)Eκ

( x

sinh 2t , y
)
. (2.1)

We will make use of this kernel in the study of Riesz transforms.

Recall that the subspace V defined in the introduction is the algebraic
span of the generalised Hermite functions Φκ

α, α ∈ Nd. As every Φκ
α is

a Schwartz function it follows that elements of V are also of Schwartz
class. It is known that V is dense in Lp(Rd, h2

κ(x)dx), 1 ≤ p <∞. Indeed,
in [21] the authors have shown that Bochner-Riesz means SδRf , for large
enough δ, converge to f in the norm as R → ∞ as long as 1 ≤ p < ∞.
Since SδRf ∈ V for any f ∈ Lp(Rd, h2

κ(x)dx) it follows that V is dense in
Lp(Rd, h2

κ(x)dx). The same thing can be proved using the fact that the
heat semigroup, e−tHd,κ generated by Hd,κ is strongly continuous in each
of Lp(Rd, h2

κ(x)dx), 1 ≤ p < ∞. We also need to know the density of V
in certain weighted Lp spaces. This will be addressed in Subsection 2.4
below.

2.3. h-harmonics and Funk-Hecke formula:
The best reference for this section is Chapter 5 of [7]. For the space
L2(Sd−1, h2

κ(ω)dσ(ω)) there exists an orthonormal basis consisting of h-
harmonics. These are analogues of spherical harmonics and defined using
∆κ in place ∆. A homogeneous polynomial P (x) is said to be a solid h-
harmonic if ∆κP (x) = 0. Restrictions of such solid harmonics to Sd−1 are
called spherical h-harmonics. The space L2(Sd−1, h2

κdσ) is the orthogonal
direct sum of the finite dimensional spaces Hdm consisting of h-harmonics
of degree m. We can choose an orthonormal basis Y h

m,j , j = 1, 2, . . . , d(m),
d(m) = dim(Hhm) so that the collection {Y h

m,j : j = 1, 2, . . . , d(m), m =
0, 1, 2, . . .} is an orthonormal basis for L2(Sd−1, h2

κdσ).

In order to state the Funk-Hecke formula we need to recall the inter-
twining operator. It has been proved that there is an operator Vκ satisfying
TjVκ = Vκ

∂
∂xj

. The explicit form of Vκ is not known, except in a couple
of simple cases, but it is a useful operator. In particular, the Dunkl ker-
nel is given by Eκ(x, ξ) = Vκe

〈·, ξ〉(x). The operator Vκ also intertwines
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h-harmonics (see Proposition 5.2.8 of [7]).

The classical Funk-Hecke formula for spherical harmonics states the fol-
lowing. For any continuous function f on [−1, 1] and a spherical harmonic
Ym of degree m, one has the formula∫

Sd−1
f(〈x′, y′〉)Ym(y′)dσ(y′) = λm(f)Ym(x′)

where λm(f) is a constant defined by

λm(f) =
B(d−1

2 , 1
2)−1

C
d
2−1
m (1)

∫ 1

−1
f(t)C

d
2−1
m (t)(1− t2)

d−3
2 dt.

Here Cλm stand for ultraspherical polynomials of type λ and B(r, s) stands
for the beta function. A similar formula is true for h-harmonics (see The-
orem 5.3.4 in [7]);∫

Sd−1
Vκf(x′, ·)(y′)Y h

m(y′)h2
κ(y′)dσ(y′) = λm(f)Y h

m(x′)

where

λm(f) =
B(d−1

2 + γ, 1
2)−1

C
d
2−1+γ
m (1)

∫ 1

−1
f(t)C

d
2−1+γ
m (t)(1− t2)

d−3
2 +γdt.

Let Jδ(z) stand for Bessel function of type δ > −1 and define Iδ(z) =
e−i

π
2 δJδ(iz). If we take f(t) = eitz in the above we get

B(d−1
2 + γ, 1

2)−1

C
d
2−1+γ
m (1)

∫ 1

−1
eitzC

d
2−1+γ
m (t)(1− t2)

d−3
2 +γdt = cd,γ

J d
2 +γ+m−1(z)

z
d
2 +γ−1

(see page 204-205 in [3]). By taking f(t) = et|x| |y| and making use of the
above formula we get

∫
Sd−1

Eκ(x, y)Y h
m(y′)h2

κ(y′)dσ(y′) = cd,γ
I d

2 +γ+m−1(|x| |y|)

(|x| |y|)
d
2 +γ−1

Y h
m(x′).
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In view of this and (2.1) we have∫
Sd−1

Kt(rx′, sy′)Y h
m(y′)h2

κ(y′)dσ(y′)

= cd,γ(sinh 2t)−1e−
1
2 (coth 2t)(r2+s2)

I d
2 +γ+m−1( rs

sinh 2t)

(rs)
d
2 +γ−1

Y h
m(x′). (2.2)

We will make use of this formula in calculating the action of e−tHd,κ on
functions of the form g(r)Y h

m(x′).

2.4. The density of V :

In this subsection we take up the issue of proving the density of V, defined
in the introduction, in the spaces Lp,2(Rd, w(r)rd+2γ−1h2

κ(ω)dσ(ω)dr) for
1 < p < ∞ and w ∈ Ad/2+γ−1

p (R+). In order to do this we will make use
of the Laguerre connection. For each δ ≥ −1

2 we consider the Laguerre
differential operator

Lδ = − d2

dr2 + r2 − 2δ + 1
r

d

dr

whose normalised eigenfunctions are given by

ψδk(r) =
( 2Γ(k + 1)

Γ(k + δ + 1)
) 1

2
Lδk(r2)e−

1
2 r

2

where Lδk(r) are Laguerre polynomials of type δ. These functions form an
orthonormal basis for L2(R+, dµδ), where dµδ(r) = r2δ+1dr. The operator
Lδ generates the semigroup T δt = e−tLδ whose kernel is given by

Kδ
t (r, s) =

∞∑
k=0

e−(4k+2δ+2)tψδk(r)ψδk(s). (2.3)

The generating function identity ((1.1.47) in [20]) for Laguerre functions
gives the explicit expression

Kδ
t (r, s) = (sinh 2t)−1e−

1
2 (coth 2t)(r2+s2)(rs)−δIδ

( rs

sinh 2t
)

(2.4)

where Iδ(z) = e−i
π
2 δJδ(iz) is the modified Bessel function.
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The Dunkl-Hermite semigroup e−tHd,κ generated by the operator Hd,κ

is an integral operator given by

e−tHd,κf(x) =
∫
Rd
f(y)Kt(x, y)h2

κ(y)dy

where Kt(x, y) is the kernel defined in (2.1). The relation between this
semigroup and the Laguerre semigroups T δt = e−tLδ is given by the follow-
ing proposition. In what follows, Y h

m,j , j = 1, 2, · · · , d(m), m = 0, 1, 2, · · ·
stands for the orthonormal basis for L2(Sd−1, h2

κ(ω)dσ(ω)) described in
Subsection 2.3.

Proposition 2.1. For any Schwartz class function f on Rd let

f̃m,j(r) = r−m
∫

Sd−1
f(rω)Y h

m,j(ω)h2
κ(ω)dσ(ω).

Then we have the relation∫
Sd−1

e−tHd,κf(rω)Y h
m,j(ω)h2

κ(ω)dσ(ω) = cd,γ r
m
(
T
d/2+m+γ−1
t f̃m,j

)
(r).

The proof of this proposition is immediate from the expressions (2.1)
and (2.4) for the kernels of e−tHd,κ and T d/2+m+γ−1

t and the Funk-Hecke
formula.

We make use of the following lemma in order to prove that V is a
dense subspace of Lp,2(Rd, w(r)rd+2γ−1h2

κ(ω)dσ(ω)dr). That V is a sub-
space follows immediately from the lemma as every member of V being a
finite linear combination of Φκ

α is a Schwartz class function.

Lemma 2.2. Let 1 ≤ p < ∞ and f be a Schwartz class function on Rd.
Then ∫ ∞

0

( ∫
Sd−1
|f(rω)|2h2

κ(ω)dσ(ω)
) p

2
w(r)rd+2γ−1dr <∞

whenever w ∈ Ad/2+γ−1
p (R+).

Proof. First we observe that if f is a Schwartz class function on Rd, then

the function f0(r) :=
( ∫

Sd−1 |f(rω)|2h2
κ(ω)dσω

) 1
2 is a continuous function

on R+ and for every positive integer N there exists CN > 0 such that
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f0(r) ≤ CN (1 + r)−N for all r ∈ R+. To prove the lemma, it is enough to
prove that ∫ ∞

0
(f0(r))pw(r)rd+2γ−1dr <∞.

Let δ = d/2 + γ − 1 and the above integral can be written as∫ ∞
0

(f0(r))pw(r)r2δ+1dr =
(∫ 1

0
+
∫ ∞

1

)
((f0(r))pw(r)r2δ+1dr).

The first integral on the left hand side of the above is finite as f0 is
continuous and w is locally integrable. And the second integral can be
written as

∞∑
j=1

∫
2j−1≤r<2j

(f0(r))pw(r)r2δ+1dr

which can be bounded by
∞∑
j=1

(f0(rj))p
∫ 2j

0
w(r)r2δ+1dr

where rj ∈ [2j−1, 2j ] are the points at which f0 attains maximum on
[2j−1, 2j ]. Such rj ’s exist in the closed interval [2j−1, 2j ], since f0 is contin-
uous. The Ap-weight condition on w implies

∫ R
0 w(r)r2δ+1dr ≤ CR2p(δ+1)

for R > 0, see page 252, Eqn.16 in [12]. Choose a positive integer N such
that N > 2(δ + 1). Finally we see that∫ ∞

1
(f0(r))pw(r)r2δ+1dr ≤

∞∑
j=1

((1 + rj)Nf0(rj))p(1 + rj)−Np 22pj(δ+1)

≤ C
∞∑
j=1

2−jNp22pj(δ+1)

≤ C
∞∑
j=1

2−jp(N−2(δ+1)) <∞.

The second inequality in the above is due to the facts that (1 + r)Nf0(r)
is bounded on R+ and 1 + rj ≥ 2j−1. This proves the lemma. �

We are now in a position to prove the density of V in the mixed
norm space Lp,2(Rd, w(r)rd+2γ−1h2

κ(ω)dσ(ω)dr) for 1 < p < ∞, w ∈
A
d/2+γ−1
p (R+). If V is not dense in Lp,2(Rd, w(r)rd+2γ−1h2

κ(ω)dσ(ω)dr), by
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duality there exists a nontrivial function f ∈ Lp′,2(Rd, w(r)rd+2γ−1h2
κ(ω)

dσ(ω)dr) (where 1
p + 1

p′ = 1) such that∫
Rd
f(y)Φκ

α(y)w(|y|)h2
κ(y)dy = 0 (2.5)

for all α ∈ Nd. Since w ∈ A
d
2 +γ−1
p (R+) if and only if w1−p′ ∈ A

d
2 +γ−1
p′ (R+)

it follows that the function g defined by g(y) = f(y)w(|y|) belongs to
Lp
′,2(Rd, w1−p′(r)rd+2γ−1h2

κ(ω)dσ(ω)dr). Since the heat kernel Kt(x, y) is
a Schwartz function, it follows from Lemma 2.2 that e−tHd,κg is well de-
fined. Moreover, by Mehler’s formula

e−tHd,κg(x) =
∑
α∈Nd

e−(2|α|+d+2γ)t
(∫

Rd
g(y)Φκ

α(y)h2
κ(y)dy

)
Φκ
α(x).

Consequently, e−tHd,κg = 0 for all t > 0 in view of (2.5). In view of
Proposition 2.1 it follows that for any m = 0, 1, 2, . . ., j = 1, 2, · · · , d(m)

(T d/2+m+γ−1
t g̃m,j)(r) = 0.

Hence we only need to conclude that the above implies g̃m,j = 0 for all m
and j which leads to a contradiction.

But this follows from the theory of Laguerre semigroups. Indeed, what
we have is∫ ∞

0
(rs)mKd/2+m+γ−1

t (r, s)fm,j(s)w(s)sd+2γ−1ds = 0.

Here w ∈ A
d/2+γ−1
p (R+) and fm,j ∈ Lp

′(R+, w(s)dµd/2+γ−1(s)). Once
again, the above can be rewritten as∫ ∞

0
(rs)mKd/2+m+γ−1

t (r, s)gm,j(s)sd+2γ−1ds = 0

for all t > 0. Note that the function gm,j(s) = fm,j(s)w(s) belongs to
Lp
′(R+, w1−p′(s)dµd/2+γ−1(s)) with w1−p′ ∈ Ad/2+γ−1

p′ (R+). Invoking the

fact that the modified Laguerre semigroup T̃t
d/2+m+γ−1 defined by

T̃t
d/2+m+γ−1

h(r) =
∫ ∞

0
(rs)mKd/2+m+γ−1

t (r, s)h(s)sd+2γ−1ds
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is strongly continuous on Lp′(R+, u(s)sd+2γ−1ds) for any u ∈ A
d
2 +γ−1
p′ (R+)

we conclude that gm,j = 0 for all m and j.

Finally, we briefly indicate how the strong continuity of T̃t
d/2+m+γ−1

can be proved. It is almost trivial to prove that the kernel of this semi-
group satisfies the estimates stated in Proposition 3.4 of Ciaurri-Roncal
[5]. Actually, we need not care about the uniformity in m. These esti-
mates in turn can be used to prove that T̃t

d/2+m+γ−1
f is dominated by

the maximal function Md/2+γ−1f adapted to the space of homogeneous
type (R+, dµd/2+γ−1). As this maximal function is known to be bounded on
Lp(R+, wdµd/2+γ−1), w ∈ Ad/2+γ−1

p (R+), see e.g. Duoandikoetxea [8], we
conclude that T̃t

d/2+m+γ−1 is strongly continuous on Lp(R+, wdµd/2+γ−1),
w ∈ Ad/2+γ−1

p (R+), 1 < p <∞. This completes the proof.

3. Riesz transforms for the Dunkl harmonic Oscillator

3.1. Preliminaries on Riesz transforms:
As in the case of Hermite operator which corresponds to the case κ = 0,
we define the Riesz transforms Rκj , j = 1, 2, . . . , d associated to the Dunkl
harmonic oscillator Hd,κ by

Rκj f = (Tj + xj)H
− 1

2
d,κ f

where H−
1
2

d,κ is defined by spectral theorem. More precisely,

H
− 1

2
d,κ f =

∑
α

(2|α|+ 2γ + d)−
1
2 (f,Φκ

α)Φκ
α

where Φκ
α are the generalised Hermite functions and (f, g) =

∫
Rd f(x)g(x)

h2
κ(x)dx. We can also define Rκ∗j by as in the Hermite case. It is easy to

see that Rκj are bounded on L2(Rd, h2
κ(x)dx), see Proposition 2.1 in [1] . In

the same paper, Amri has proved that Rκj are singular integral operators
whose kernels satisfy a modified Calderón-Zygmund condition and hence
by a theorem of Amri and Sifi [2] they are all bounded on Lp(Rd, h2

κ(x)dx),
1 < p <∞.
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In the case of Hermite operator, the Riesz transforms satisfy weighted
norm estimates. More precisely, if w ∈ Ap(Rd), then R0

j are bounded on
Lp(Rd, wdx), 1 < p < ∞. This has been proved by Stempak and Torrea
[19] and it follows from the fact that the kernels of R0

j satisfy standard
Calderón-Zygmund conditions. In the present situation we do not have
weighted inequalities for the Riesz transforms Rκj . Later we will show that
the weighted inequalities for R0

j can be used to prove mixed norm inequal-
ities for the Hermite Riesz transforms which will then be used to prove
similar results for Rκj .

Assume that 2γ is an integer. Then the action ofHd,κ on radial functions
coincides with that ofHd+2γ on radial functions. More generally, let f(x) =
g(r)Y h(ω), r = |x|, ω ∈ Sd−1 where Y h is h-harmonic of degree m. Then
Mehler’s formula for the generalised Hermite functions along with Funk-
Hecke formula yields the result

e−tHd,κf(x) = ce−tHd+2γ+2mg(|x|)Y h(ω)

where on the right hand side g is considered as a radial function on
Rd+2γ+2m. It is also possible to write e−tHd+2γ+2mg(|x|) in terms of La-
guerre semigroup. We will make use of these observations in the proof of
our main result.

3.2. More on h-harmonics:

As indicated in the previous subsection, we plan to expand the given
function f on Rd in terms of h-harmonics. In order to find out the action
of Riesz transforms on individual terms which are of the form g(|x|)Y h

m(ω)
we need formulas for the action of Tj on such terms. More generally we
let ∇κ = (T1, T2, · · · , Td) stand for the Dunkl gradient which is the sum
of the gradient ∇ =

(
∂
∂x1

, · · · , ∂
∂xd

)
and Eκ where

Eκf(x) =
∑
ν∈R+

κ(ν) f(x)− f(σνx)
〈x, ν〉

ν.

Let ∇0 be the spherical part of ∇. Then the Dunkl gradient is written as

∇κ = ω
∂

∂r
+ 1
r
∇κ0
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with ∇κ0 = ∇0 + Eκ0 standing for the spherical part of the Dunkl gradi-
ent, where Eκ0 f(ω) =

∑
ν∈R+ κ(ν) f(ω)−f(σνω)

〈ω,ν〉 ν for functions f defined on
Sd−1.

For ξ ∈ Rd, let Tξ stand for the Dunkl derivative given by

Tξf = ∂ξf +
∑
ν∈R+

κ(ν)〈ν, ξ〉 f(x)− f(σνx)
〈x, ν〉

.

If one of f and g is G-invariant then

Tξ(fg) = f Tξg + (Tξf) g

remains true. Moreover, we also know that∫
Rd
Tξf(x)g(x)h2

κ(x)dx = −
∫
Rd
f(x)Tξg(x)h2

κ(x)dx.

In view of this we get∫
Rd
〈∇κf(x),∇κg(x)〉h2

κ(x)dx = −
∫
Rd

∆κf(x)g(x)h2
κ(x)dx

We will make use of these properties in the following calculation.

We begin with some simple observations. When f is a radial function
we have

∇κ(fg) = f ∇κg + g ∇κf
and consequently

∇κ(fg)(rω) = f(r) ∇κg(rω) + g(rω) ∂f
∂r

ω. (3.1)

Let Ym be a homogeneous polynomial of degree m on Rd. Then
d∑
j=1

(∇0)j(ωjYm(ω)) = (d− 1)Ym(ω) (3.2)

where (∇0)j stand for the jth component of ∇0. To see this, consider
d∑
j=1

∂

∂xj
(xjYm(x)) = dYm(x) +

d∑
j=1

xj
∂

∂xj
Ym(x)

= (m+ d)Ym(x)
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in view of Euler’s formula. On the other hand
d∑
j=1

∂

∂xj
(xjYm(x)) =

d∑
j=1

∂

∂xj
(rm+1ωjYm(ω)).

Since ∂
∂xj

= ωj
∂
∂r + 1

r (∇0)j it follows that
d∑
j=1

∂

∂xj
(xjYm(x)) = (m+ 1)Ym(x) +

d∑
j=1

rm(∇0)j(ωjYm(ω)).

Comparing this with the earlier expression we get the assertion.
Proposition 3.1. Let Yn and Ym be h-harmonic polynomials of degree n
and m respectively. Then we have the following identities. Let ρκYn(ω) =∑
ν∈R+ κ(ν)Yn(σνω).
(1) 〈∇κ0Yn(ω), ω〉 = γYn(ω)− ρκYn(ω)

(2) 〈∇κYn(x), ω〉 = rn−1((n+ γ)Yn(ω)− ρκYn(ω))

(3)
∑d
j=1(∇κ0)j(ωjYn(ω)) = (d+ γ − 1)Yn(ω) + ρκYn(ω)

(4)
∫

Sd−1〈∇κ0Yn(ω),∇κ0Ym(ω)〉h2
κ(ω)dσ(ω) = 0 if n 6= m.

Proof. (1) follows from the definition of ∇κ0 = ∇0 + Eκ0 and the fact that
〈∇0Yn(ω), ω〉 = 0 for any homogeneous polynomial, see Lemma 2.2 in [15].
(2) follows from (1) since

∇κYn(x) = nrn−1Yn(ω)ω + rn−1∇κ0Yn(ω). (3.3)
To prove (3) use the definition of ∇κ0 = ∇0 + Eκ0 ;

d∑
j=1

(∇κ0)j(ωjYn(ω)) =
d∑
j=1

(∇0)j(ωjYn(ω)) +
d∑
j=1

(Eκ0 )j(ωjYn(ω))

and
d∑
j=1

(Eκ0 )j(ωjYn(ω)) =
d∑
j=1

∑
ν∈R+

κ(ν)ωjYn(ω)− (σνω)jYn(σνω)
〈ν, ω〉

νj

= γYn(ω)−
∑
ν∈R+

κ(ν)Yn(σνω)〈σνω, ν〉
〈ν, ω〉
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Since 〈σνω, ν〉 = 〈ω, σνν〉 = −〈ω, ν〉 we get (3) in view of (3.2) and the
definition of ρκ.

Finally, in order to prove (4) we evaluate the integral∫
Rd
〈∇κf(x),∇κg(x)〉h2

κ(x)dx

where f(x) = e−
1
2 |x|

2
Yn(x) and g(x) = e−

1
2 |x|

2
Ym(x) in two different ways.

As we have already observed, the above integral is equal to

−
∫
Rd

∆κf(x)g(x)h2
κ(x)dx.

The Dunkl Laplacian decomposes as (see Dunkl-Xu [7] )

∆κ = ∂2

∂r2 + 2λκ + 1
r

∂

∂r
+ 1
r2 ∆κ,0

= p(∂r) + 1
r2 ∆κ,0

where λκ = γ + d−2
2 and p(∂r) = ∂2

∂r2 + 2λκ+1
r

∂
∂r . Thus

∆κf(x) = p(∂r)(rne−
1
2 r

2)Yn(ω) + rn−2e−
1
2 r

2∆κ,0Yn(ω).
Since h-harmonics are eigenfunctions of the spherical part ∆κ,0 we have

∆κ,0Yn(ω) = −n(n+ 2λκ)Yn(ω)
and consequently,

∆κf(x) = p(∂r)(rne−
1
2 r

2)Yn(ω)− n(n+ λκ)rn−2e−
1
2 r

2
Yn(ω).

Clearly, integrating the above against g(x) = e−
1
2 r

2
Ym(ω) produces 0

whenever m 6= n.

We will now evaluate the same integral using the expression ∇κ =
ω ∂
∂r + 1

r (∇0 + Eκ0 ). Note that

∇κf(x) = (nrn−1 − rn+1)e−
1
2 r

2
Yn(ω)ω + rn−1e−

1
2 r

2∇κ0Yn(ω)
with a similar expression for ∇κg(x). Thus 〈∇κf(x),∇κg(x)〉 involves
terms of the form Yn(ω)Ym(ω), Yn(ω)〈ω,∇κ0Ym(ω)〉, Ym(ω)〈ω,∇κ0Yn(ω)〉
and 〈∇κ0Yn(ω),∇κ0Ym(ω)〉. Hence the proposition will be proved if we show
that ∫

Sd−1
Yn(ω)〈ω,∇κ0Ym(ω)〉h2

κ(ω)dσ(ω) = 0
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whenever n 6= m. In view of (1) of the proposition it suffices to show that∫
Sd−1

Yn(ω)(
∑
ν∈R+

κ(ν)Ym(σνω))h2
κ(ω)dσ(ω) = 0.

But this is obvious, since the space Hhn is invariant under the action of the
orthogonal group. This completes the proof of (4). �

If Ym,j and Ym,k are h-harmonics of the same degree which are orthog-
onal to each other, then we cannot claim that∫

Sd−1
〈∇κ0Ym,j(ω),∇κ0Ym,k(ω)〉h2

κ(ω)dσ(ω) = 0.

This is clear from the above proof. However, if we assume that Ym,j and
Ym,k are both G-invariant, then the orthogonally relation holds.

Proposition 3.2. Let Ym,j and Ym,k be h-harmonics of degree m which
are G-invariant. Then∫

Sd−1
〈∇κ0Ym,j(ω),∇κ0Ym,k(ω)〉h2

κ(ω)dσ(ω)

= λd(m, γ)
∫

Sd−1
Ym,j(ω)Ym,k(ω)h2

κ(ω)dσ(ω) (3.4)

where λd(m, γ) = m(m+ 2λκ), with λκ = γ + d−2
2 .

Proof. Proceeding as in the proof of Proposition 3.1 and noting that
〈∇κ0Ym,j , ω〉 = 0 in view of (1) and the G-invariance we get∫

Sd−1
〈∇κ0Ym,j(ω),∇κ0Ym,k(ω)〉h2

κ(ω)dσ(ω) = 0

whenever Ym,j is orthogonal to Ym,k. When they are not orthogonal, the
constant λd(m, γ) is given by

λd(m, γ) = Ad(m, γ)−Bd(m, γ)− Cd(m, γ)
Dd(m, γ)

where

Ad(m, γ) = m(m+ 2λκ)
∫ ∞

0
e−r

2
rd+2γ+2m−3dr,

Bd(m, γ) =
∫ ∞

0
p(∂r)(rme−

1
2 r

2)e−r2
rd+2γ+m−1dr,

Cd(m, γ) =
∫ ∞

0
(mrm−1 − rm+1)2e−r

2
rd+2γ−1dr
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and

Dd(m, γ) =
∫ ∞

0
e−r

2
rd+2γ+2m−3dr.

Simplifying we obtain the expression for λd(m, γ). �

3.3. The vector of Riesz transforms:

In this subsection we consider the vector of Riesz transforms Rf = (Rκ1f,
· · · , Rκdf) and show that for G-invariant functions, the mixed norm esti-
mates for 〈Rf,Rf〉

1
2 can be reduced to certain vector valued inequalities.

Let L2
G(Sd−1, h2

κ(ω)dσ) stand for the subspace of L2(Sd−1, h2
κ(ω)dσ)

consisting of G-invariant functions. Each space Hhm can be decomposed
into the subspace (Hhm)G consisting of G-invariant h-harmonics in Hhm and
its orthogonal complement. We choose an orthonormal basis Y h

m,j ; j =
1, 2, . . . , d1(m), d1(m) ≤ d(m) for (Hhm)G and then augment it with an
orthonormal basis Y h

m,j , d1(m) < j ≤ d(m) for the orthogonal complement.
Thus, we get an orthonormal basis {Y h

m,j : 1 ≤ j ≤ d(m),m ∈ N} for
L2(Sd−1, h2

κ(ω)dσ) such that for each m, Y h
m,j , 1 ≤ j ≤ d1(m) are G-

invariant. It is easy to see that {Y h
m,j : 1 ≤ j ≤ d1(m),m ∈ N} is an

orthonormal basis for L2
G(Sd−1, h2

κ(ω)dσ). Indeed, if f is G-invariant and
orthogonal to all Y h

m,j , 1 ≤ j ≤ d1(m), m ∈ N then for any Y h
m,k, k >

d1(m) we have

γ

∫
Sd−1

f(ω)Y h
m,k(ω)hκ(ω)dσ(ω)

=
∑
ν∈R+

κ(ν)
∫

Sd−1
f(σνω)Y h

m,k(ω)h2
κ(ω)dσ(ω)

=
∫

Sd−1
f(ω)

( ∑
ν∈R+

κ(ν)Y h
m,k(σνω)

)
h2
κ(ω)dσ(ω).

As
∑
ν∈R+ κ(ν)Y h

m,k(σνω) is G-invariant h-harmonic of degree m, it can
be written as

∑d1(m)
j=1 ck,jY

h
m,j and consequently f is orthogonal to Y h

m,k.
Let L2

G(Rd, h2
κ(x)dx) stand for the subspace of L2(Rd, h2

κ(x)dx) consist-
ing of G-invariant functions. Thus if f ∈ Lp,2G (Rd, rd+2γ−1h2

κ(ω)dσdr) ∩
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L2
G(Rd, h2

κ(x)dx) then we have the expansion

f(rω) =
∞∑
m=0

d1(m)∑
j=1

fm,j(r)Y h
m,j(ω)

where fm,j(r) =
∫

Sd−1 f(rω)Y h
m,j(ω)h2

κ(ω)dσ(ω). Note that VG is a sub-
space of Lp,2G (Rd, rd+2γ−1h2

κ(ω)dσ(ω)dr) ∩ L2
G(Rd, h2

κ(x)dx).

If we let F = (−∆κ + |x|2)−
1
2 f , then F is also G-invariant and hence

F (rω) =
∞∑
m=0

d1(m)∑
j=1

Fm,j(r)Y h
m,j(ω).

This expansion is justified since the operator (−∆κ+|x|2)−
1
2 is bounded on

L2(Rd, h2
κ(x)dx) and it takes G-invariant functions into G-invariant func-

tions. We remark that VG is also invariant under (−∆κ+ |x|2)−
1
2 . This can

be easily seen as follows: Since the kernel Kt(x, y) of the semigroup e−tHd,κ
satisfies Kt(gx, gy) = Kt(x, y), g ∈ G, e−tHd,κ preserves G-invariant func-
tions. Consequently, (−∆κ + |x|2)−

1
2 f is G-invariant whenever f is.

We are now ready to prove the following.

Proposition 3.3. Let d ≥ 2 and 1 < p <∞. For functions f in the space
Lp,2G (Rd, rd+2γ−1h2

κ(ω)dσ(ω)dr) ∩ L2
G(Rd, h2

κ(x)dx), we have∫
Sd−1
〈Rf(rω),Rf(rω)〉h2

κ(ω)dσ(ω) = A1(r)2 +A2(r)2

where

A1(r)2 =
∞∑
m=0

d1(m)∑
j=1

∣∣∣( ∂
∂r

+ r
)
Fm,j(r)

∣∣∣2
and

A2(r)2 =
∞∑
m=0

d1(m)∑
j=1

λd(m, γ)
r2 |Fm,j(r)|2.

Proof. As Rf = (∇κ + x)(−∆κ + |x|2)−
1
2 f we see that

Rf(rω) = (ω ∂

∂r
+ rω + 1

r
∇κ0)F (rω).
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Now

(ω ∂

∂r
+ rω + 1

r
∇κ0)(Fm,j(r)Y h

m,j)(ω)

= ( ∂
∂r

+ r)Fm,j(r)Y h
m,j(ω)ω + 1

r
Fm,j(r)∇κ0Y h

m,j(ω),

and consequently

Rf(rω) =
∞∑
m=0

d1(m)∑
j=1

( ∂
∂r

+ r
)
Fm,j(r)Y h

m,j(ω)ω + 1
r
Fm,j(r)∇κ0Y h

m,j(ω).

As Y h
m,j ’s are G-invariant we can make use of Proposition 3.2. Also, note

that 〈ω,∇κ0Y h
m,j(ω)〉 = 0. Therefore, integrating out 〈Rf(rω),Rf(rω)〉

over Sd−1 and making use of the orthogonality relations we get the propo-
sition. �

3.4. The Laguerre connection and a proof of Theorem 1.1:
In view of the above proposition, Theorem 1.1 will be proved once we
show that∫ ∞

0
Ai(r)pw(r)rd+2γ−1dr

≤ C
∫ ∞

0

( ∞∑
m=0

d1(m)∑
j=1
|fm,j(r)|2

) p
2
w(r)rd+2γ−1dr

for i = 1, 2 for all w ∈ A
n
2 +γ−1
p (R+). Actually, we get∫ ∞

0

( ∫
Sd−1
〈Rf(rω),Rf(rω)〉h2

κ(ω)dσ(ω)
) p

2
w(r)rd+2γ−1dr

≤ c
∫ ∞

0

( ∫
Sd−1
|f(rω)|2h2

κ(ω)dσ(ω)
) p

2
w(r)rd+2γ−1dr

for all G-invariant functions f in Lp,2(Rd, w(r)rd+2γ−1h2
κ(ω)dσ(ω)dr). We

now show that the above inequalities for Ai, i = 1, 2 can be interpreted
as certain vector valued inequalities for Laguerre Riesz transforms.

For each δ ≥ −1
2 the Laguerre differential operator Lδ has been intro-

duced in Subsection 2.4. The Laguerre functions ψδk are eigenfunctions of
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Lδ and the semigroup generated by Lδ is denoted by e−tLδ or T δt . Using
spectral theory we can define L−

1
2

δ which is also given by the integral

L
− 1

2
δ = 1√

π

∫ ∞
0

e−tLδ t−
1
2dt.

The operators Rδ =
(
∂
∂r + r

)
L
− 1

2
δ are called Laguerre Riesz transforms

and they have been studied in [13]. It is known that they are bounded on
Lp(R+, dµδ), 1 < p <∞. Recently Ciaurri and Roncal [5] have proved the
following vector inequality.

Theorem 3.4 (Ciaurri-Roncal). Let δ ≥ −1
2 and 1 < p <∞. Then

∫ ∞
0

( ∞∑
m=0

r2m|Rδ+mf̃m(r)|2
) p

2
w(r)dµδ(r)

≤ C
∫ ∞

0

( ∞∑
m=0
|fm(r)|2

) p
2
w(r)dµδ(r)

for all w ∈ Aδp(R+). Here f̃m(r) = r−mfm(r).

We only need to prove the above inequality when the right hand side
is finite. If (fm) is a sequence with this property then each function fm
belongs to L2(R+, w(r)dµδ) which will then imply that f̃m ∈ L2(R+, w(r)
dµδ+m) so that Rδ+mf̃m are well defined. A similar remark applies to
L
− 1

2
δ+mf̃m which appears in the next theorem. Actually it is enough to

prove the inequality when the sequence (fm) is finite with a constant C
independent of the number of terms in the sequence. In the same paper
[5] they have also proved the following inequality.

Theorem 3.5 (Ciaurri-Roncal). Let δ ≥ −1
2 and 1 < p <∞. Then

∫ ∞
0

( ∞∑
m=0

m2r2m−2|L−
1
2

δ+mf̃m(r)|2
) p

2
w(r)dµδ(r)

≤ C
∫ ∞

0

( ∞∑
m=0
|fm(r)|2

) p
2
w(r)dµδ(r)

for all w ∈ Aδp(R+). Here f̃m(r) = r−mfm(r).
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We claim that the required inequalities for A1 and A2 can be deduced
from the above two theorems. Recall that Fm,j is defined as

Fm,j(r) =
∫

Sd−1
(−∆κ + |x|2)−

1
2 f(rω)Y h

m,j(ω)h2
κ(ω)dσ(ω)

which can be expressed in terms of the semigroup e−tHd,κ as follows:

Fm,j(r) = 1√
π

∫
Sd−1

( ∫ ∞
0

e−tHd,κf(rω)t−
1
2dt
)
Y h
m,j(ω)h2

κ(ω)dσ(ω)

= 1√
π

∫ ∞
0

( ∫
Sd−1

e−tHd,κf(rω)Y h
m,j(ω)h2

κ(ω)dσ(ω)
)
t−

1
2dt.

Use Proposition 2.1 stated in the Subsection 2.4 to conclude that

Fm,j(r) = cd,γr
mL
− 1

2
d
2 +γ+m−1f̃m,j(r).

Consequently,

( ∂
∂r

+ r)Fm,j(r) = cd,γr
mR

d
2 +γ+m−1f̃m,j(r) + cd,γ

m

r
Fm,j(r).

From these expressions for Fm,j and ( ∂∂r + r)Fm,j(r) it is clear that the
weighted inequalities for A1 and A2 follow from Theorem 3.4 and 3.5.

In the next section we give a simple proof Theorem 3.4 and 3.5 when
2γ is an integer.

4. Riesz transforms for the Hermite operator

4.1. Hermite operator in spherical coordinates:

The Hermite operator H = −∆ + |x|2 admits a family of eigenfunctions
viz., the Hermite functions Φα, α ∈ Nd which forms an orthonormal basis
for L2(Rd). On the other hand there is another family of orthonormal basis
given by

ϕ̃m,j,l(x) =
( 2Γ(j + 1)

Γ(m− j + d
2)

) 1
2
L
d
2−1+m−2j
j (|x|2)Ym−2j,l(x)e−

1
2 |x|

2

where m ≥ 0, j = 0, 1, . . . , [m2 ], l = 1, 2, . . . , d(m − 2j), Ym−2j,l(x) are
solid spherical harmonics and Lδk are Laguerre polynomials of type δ. The
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Hermite operator in spherical coordinates takes the form

H = − ∂2

∂r2 −
d− 1
r

∂

∂r
+ r2 − 1

r2 ∆0

where ∆0 is the spherical Laplacian on Sd−1. It can be shown that H =
A∗A+ d, where

A =
( ∂
∂r

+ r
)
ω + 1

r
∇0

where ∇0 is the spherical part of the gradient and

A∗ = −
( ∂
∂r
− r

)
ω − 1

r
(div)0

where (div)0 is the spherical part of the divergence. It is therefore natural
to look at the vector valued Riesz transform AH−

1
2 f . The natural space

suitable for studying this is the mixed norm space Lp,2(Rd, w(r)rd−1drdσ)
consisting of functions for which∫ ∞

0

( ∫
Sd−1
|f(rω)|2dσ(ω)

) p
2
w(r)rd−1dr <∞.

In [5] Ciaurri and Roncal have proved the following theorem.

Theorem 4.1 (Ciaurri-Roncal). Let d ≥ 2, 1 < p < ∞ and w ∈
A
d
2−1
p (R+). Then

‖〈AH−
1
2 f, AH−

1
2 f〉

1
2 ‖Lp,2(Rd,wrd−1drdσ) ≤ C‖f‖Lp,2(Rd,wrd−1drdσ) (4.1)

for all f in the algebraic span of Hermite functions with a constant C
independent of f. Consequently, the above inequality remains valid for all
f ∈ Lp,2(Rd, wrd−1drdσ).

For the Hermite operator we also have the standard Riesz transforms
Rj = AjH

− 1
2 studied by several authors in the literature, see [20] and

[19]. It is well known that Rj are Calderón-Zygmund singular integral
operators and hence satisfy the weighted norm inequalities( ∫

Rd
|Rjf(x)|pw(x)dx

) 1
p ≤ C

( ∫
Rd
|f(x)|pw(x)dx

) 1
p

for every w ∈ Ap(Rd), 1 < p < ∞. This has been proved by Stempak
and Torrea in [19]. We will give an easy proof of the above theorem of
Ciaurri and Roncal based on the connection between AH−

1
2 and the vector

Rf = (R1f, · · · , Rdf).
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Theorem 4.2. Let d ≥ 2 and 1 < p < ∞. Then the inequality (4.1) for
AH−

1
2 stated in the previous theorem holds for all finite linear combination

of Hermite functions if and only if

‖
( d∑
j=1
|Rjf(x)|2

) 1
2 ‖Lp,2(Rd,wrd−1drdσ) ≤ C‖f‖Lp,2(Rd,wrd−1drdσ). (4.2)

for all such functions.

The proof of this theorem is easy. We have already observed in the pre-
vious section that the mixed norm estimates for the Riesz transforms Rjf ,
(which corresponds to κ = 0 of Theorem 1.1) is equivalent to the weighted
norm inequalities for A1(r) and A2(r) appearing in Proposition 3.3. Our
claim is substantiated by comparing this with the proof of Theorem 2.1
in [5]. The terms they call O1(f) and O2(f) are precisely our terms A1(r)
and A2(r) respectively.

4.2. A simple proof of Theorem 4.1:
We now give a simple proof of mixed norm estimates (4.2) for the (stan-
dard) Riesz transforms associated to the Hermite operator, which implies
Theorem 4.1. When 2γ is an integer it also implies the weighted norm in-
equalities for A1(r) and A2(r) and hence we get another proof of Theorem
1.1 without using the result of Ciaurri and Roncal [5].

We will be following an idea of Rubio de Francia. This method described
briefly in [17] is based on an extension of a theorem of Marcinkiewicsz and
Zygmund as expounded in Herz and Riviere [11]. Indeed, we make use of
the following lemma which can be found in [11]

Lemma 4.3 (Herz-Riviere). Let (G,µ) and (H, ν) be arbitrary measure
spaces and T : Lp(G)→ Lp(G) a bounded linear operator. Then if p ≤ q ≤
2 or p ≥ q ≥ 2, there exists a bounded linear operator T̃ : Lp(G;Lq(H))→
Lp(G;Lq(H)) with ‖T̃‖ ≤ ‖T‖ such that for g ∈ Lp(G;Lq(H)) of the form
g(x, ξ) = f(ξ)u(x) where f ∈ Lp(G) and u ∈ Lq(H) we have

(T̃ g)(ξ, x) = (Tf)(ξ)u(x).

The idea of Rubio de Francia is as follows (we are indebted to Gustavo
Garrigos for bringing this to our attention). Suppose T : Lp(Rd, dx) →
Lp(Rd, dx) is a bounded linear operator. Then by the lemma of Herz and
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Riviere, it has an extension T̃ to H valued functions on Rd where H is
the Hilbert space L2(K), K = SO(d). Moreover, the extension satisfies
(T̃ f̃)(x, k) = Tg(x)h(k) if f̃(x, k) = g(x)h(k), x ∈ Rd, k ∈ SO(d). Given
f ∈ Lp(Rd, dx) consider f̃(x, k) = f(kx). Then

∫
Rd(
∫
K |f̃(x, k)|2dk)

p
2 dx

can be calculated as follows. If x = rω , ω ∈ Sd−1, f̃(x, k) = f(rkω) and
hence ∫

K
|f̃(x, k)|2dk =

∫
Kω

( ∫
K/Kω

|f(rkω)|2dµ
)
dν (4.3)

where Kω = {k ∈ K : kω = ω} is the isotropy subgroup of K, dν is the
Haar measure on Kω and dµ is the Kω invariant measure on K/Kω which
can be identified with Sd−1. Hence∫

K
|f̃(x, k)|2dk = c

∫
Sd−1
|f(rω)|2dσ(ω). (4.4)

Therefore,∫
Rd

( ∫
K
|f̃(x, k)|2dk

) p
2
dx = c′

∫ ∞
0

( ∫
Sd−1
|f(rω)|2dσ(ω)

) p
2
rd−1dr. (4.5)

Let us define ρ(k)f(x) = f(kx) so that f̃(x, k) = ρ(k)f(x). If T com-
mutes with rotation i.e. Tρ(k) = ρ(k)T then

T̃ f̃(x, k) = T (ρ(k)f)(x)
= ρ(k)(Tf)(x)
= (Tf)(kx).

The boundedness of T̃ on Lp(Rd,H) gives∫
Rd

( ∫
K
|Tf(kx)|2dk

) p
2
dx ≤ C

∫
Rd

( ∫
K
|f(kx)|2dk

) p
2
dx (4.6)

which translates into the mixed norm estimate for T .

Given a unit vector u ∈ Sd−1 let us consider the operator Tuf =
∑d
j=1 uj

Rjf(x) where Rj = AjH
− 1

2 are the Hermite Riesz transforms. This oper-
ator Tu is not rotation invariant but has a nice transformation property
under the action of SO(d). Indeed,

Tuf(x) = (x · u+ u · ∇)H−
1
2 f(x)
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and as H−
1
2 commutes with ρ(k) it follows that
Tuρ(k)f = ρ(k)Tkuf or Tk−1uρ(k)f = ρ(k)Tuf.

This leads us to

Tuf(kx) =
d∑
j=1

(k−1u)jRj(ρ(k)f)(x).

We make use of this in proving the mixed norm estimate (4.2) .

The operator Rj are singular integral operators and hence bounded on
Lp(Rd, wdx) for any weight function w ∈ Ap(Rd), 1 < p < ∞. By the
lemma of Herz and Riviere, Rj extends as a bounded operator R̃j on
Lp(Rd,H;wdx) where H = L2(Sd−1) and R̃j(ρ(k)f)(x) = Rj(ρ(k)f)(x).
When w is radial, it can be easily checked that

‖ρ(k)f(x)‖p
Lp(Rd,H; wdx) =

∫
Rd

( ∫
K
|ρ(k)f(x)|2dk

) p
2
w(x)dx (4.7)

= c

∫ ∞
0

( ∫
Sd−1
|f(rω)|2dσ(ω)

) p
2
w(r)rd−1dr.

Moreover, by the result of Duoandikoetxea et al (Theorem 3.2 in [9]), a
radial weight w belongs to Ap(Rd) if and only if w(r) ∈ A

d
2−1
p (R+). From

the identity

Tuf(kx) =
d∑
j=1

(k−1u)jRj(ρ(k)f)(x)

=
d∑
j=1

(k−1u)jR̃j(ρ(k)f)(x)

we obtain

‖Tuf(kx)‖Lp(Rd,H; wdx) ≤ C
d∑
j=1
‖R̃j(ρ(k)f)(x)‖Lp(Rd,H; wdx)

≤ C
d∑
j=1
‖ρ(k)f(x)‖Lp(Rd,H; wdx)

which translates into the required inequality (4.2) by (4.7) and taking u
to be coordinate vectors.
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4.3. Higher order Riesz transforms:

In this section we show that Theorem 1.1 remains true for higher order
Riesz transforms associated to the Hermite operator Hd. As explained
in Sanjay-Thangavelu [18], operators of the form RP f = G(P )H−(m+n

2 )

where P is a solid bigraded harmonic of total degree (m + n) and G(P )
is the Weyl correspondence of P , are natural analogues of higher order
Riesz transforms. When

P (z) =
∑

|α|=m,|β|=n
cα,βz

αz̄β

is a solid harmonic, Geller [10] has shown that

G(P ) =
∑

|α|=m,|β|=n
cα,βA

αA∗β

where A = (A1, · · · , Ad), A∗ = (A∗1, · · · , A∗d). In particular when P (z) =
zα (resp. z̄α),G(P ) = Aα (resp. A∗α). The Riesz transformsG(P )H−(m+n

2 )

have been studied in [18]. There, by using a transference result of Mauceri
it has been shown that G(P )H−(m+n

2 ) are all bounded on Lp(Rd), 1 < p <
∞.

However, we can also directly prove the boundedness of G(P )H−(m+n
2 ).

In fact,

G(P )H−(m+n
2 ) = 1

Γ(m+n
2 )

∫ ∞
0

G(P )e−tHt
m+n

2 −1dt

and hence the kernel KP (x, y) of RP := G(P )H−(m+n
2 ) is given by

KP (x, y) = 1
Γ(m+n

2 )

∫ ∞
0

G(P )Kt(x, y)t
m+n

2 −1dt

where Kt is the kernel of e−tH which is explicitly known. Though it is
tedious, it is not difficult to show that KP is a Calderón-Zygmund kernel
(see Stempak-Torrea [19] for the case m+ n = 1). Hence the Riesz trans-
forms RP are bounded on Lp(Rd, wdx), 1 < p < ∞, w ∈ Ap(Rd). Using
this we can prove
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Theorem 4.4. Let P be a solid harmonic of bidegree (m,n), 1 < p <∞
and w ∈ A

d
2−1
p (R+). Then there exists C > 0 such that∫ ∞

0

( ∫
Sd−1
|RP f(rω)|2dσ(ω)

) p
2
w(r)rd−1dr

≤ C
∫ ∞

0

( ∫
Sd−1
|f(rω)|2dσ(ω)

) p
2
w(r)rd−1dr (4.8)

for all f ∈ Lp,2(Rd, w(r)rd−1drdσ(ω)).

The proof is similar to that of Theorem 4.1. Consider Hm,n the space of
all bigraded spherical harmonics of bidegree (m,n). If Y ∈ Hm,n then
P (z) = |z|m+nY (z′), z = |z|z′ is a solid harmonic. The group U(d)
acts on Hm,n and we have an irreducible unitary representation, denoted
by R(σ) supported by Hm,n. We choose an orthonormal basis Yj , j =
1, 2, . . . , d(m,n) and let Pj stand for the corresponding solid harmonics.
Consider the operator T which takes Lp(Cd) into Lp(Cd,Hm,n) given by
the prescription

Tf(z, ζ) =
d(m,n)∑
j=1

RPjf(z)Yj(ζ).

This operator has a very nice transformation property. Let ρ(σ)f(z) =
f(σ−1z) stand for the action of U(d) on functions on Cd.

Lemma 4.5. For any σ ∈ U(d) we have

Tf(z, σ−1ζ) =
d(m,n)∑
j=1

ρ(σ)RPjρ(σ−1)f(z)Yj(ζ).

This lemma has been essentially proved in [18], see the proof of Theorem
1.4. Once we have the above Lemma we can easily prove Theorem 4.4.
Indeed, from the lemma we have

Tf(σz, ζ) =
d(m,n)∑
j=1

RPjρ(σ−1)f(z)Yj(σζ).

With the same notation as in the proof of Theorem 4.1, the above reads
as

ρ(σ−1)Tf(z, ζ) =
d(m,n)∑
j=1

R̃Pj f̃(z, σ−1)Yj(σζ).
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where we keep ζ ∈ S2d−1 fixed. Then by similar calculations, using the
Lemma of Herz-Riviere we can obtain the desired inequality for T (·, ζ)
and hence for any RPjf . This completes the proof of Theorem 4.4.
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