
ANNALES MATHÉMATIQUES

BLAISE PASCAL
Hossein Movasati
Quasi-modular forms attached to elliptic curves, I

Volume 19, no 2 (2012), p. 307-377.

<http://ambp.cedram.org/item?id=AMBP_2012__19_2_307_0>

© Annales mathématiques Blaise Pascal, 2012, tous droits réservés.
L’accès aux articles de la revue « Annales mathématiques Blaise Pas-
cal » (http://ambp.cedram.org/), implique l’accord avec les condi-
tions générales d’utilisation (http://ambp.cedram.org/legal/). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit
contenir la présente mention de copyright.

Publication éditée par le laboratoire de mathématiques
de l’université Blaise-Pascal, UMR 6620 du CNRS

Clermont-Ferrand — France

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://ambp.cedram.org/item?id=AMBP_2012__19_2_307_0
http://ambp.cedram.org/
http://ambp.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Annales mathématiques Blaise Pascal 19, 307-377 (2012)

Quasi-modular forms attached to elliptic curves,
I

Hossein Movasati

Abstract

In the present text we give a geometric interpretation of quasi-modular forms
using moduli of elliptic curves with marked elements in their de Rham cohomolo-
gies. In this way differential equations of modular and quasi-modular forms are
interpreted as vector fields on such moduli spaces and they can be calculated
from the Gauss-Manin connection of the corresponding universal family of ellip-
tic curves. For the full modular group such a differential equation is calculated
and it turns out to be the Ramanujan differential equation between Eisenstein se-
ries. We also explain the notion of period map constructed from elliptic integrals.
This turns out to be the bridge between the algebraic notion of a quasi-modular
form and the one as a holomorphic function on the upper half plane. In this way
we also get another interpretation, essentially due to Halphen, of the Ramanu-
jan differential equation in terms of hypergeometric functions. The interpretation
of quasi-modular forms as sections of jet bundles and some related enumerative
problems are also presented.

Formes quasimodulaires attachées aux courbes elliptiques, I
Résumé

Dans ce texte, on donne une interprétation géométrique des formes quasimo-
dulaires en utilisant les modules des courbes elliptiques avec un point marqué dans
leurs cohomologies de de Rham. De cette façon, les équations différentielles des
formes modulaires et quasimodulaires sont interprétées comme des champs de vec-
teurs de ces espaces de modules. Elles peuvent être établies grâce à la connection de
Gauss-Manin de la famille universelle de courbes elliptiques correspondante. Pour
le groupe modulaire, on calcule une telle équation différentielle qui apparaît être
celle de Ramanujan qui relie entre elles les séries d’Eisenstein. On explique aussi la
notion de périodes construites à partir des intégrales elliptiques. Elles apparaissent
comme le pont entre la notion algébrique de forme quasimodulaire et la définition
en terme de fonction holomorphe sur le demi-plan de Poincaré. De cette façon,
nous obtenons aussi une autre interprétation, essentiellement due à Halphen, de
l’équation différentielle de Ramanujan en termes de fonctions hypergéométriques.
L’interprétation des formes quasimodulaires comme sections de fibrés des jets et
des problèmes de combinatoire énumérative sont aussi présentés.
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1. Introduction

The objective of this note is to develop the theory of quasi-modular forms
in the framework of Algebraic Geometry. The request for an algebra which
contains the classical modular forms and which is closed under derivation
leads in a natural way to the theory of quasi-modular forms and this can be

309



H. Movasati

the main reason why the name differential modular form is more natural
(see [22, 23]). The literature on modular forms and their applications is
huge and a naive mind may look for similar applications of quasi-modular
forms. At the beginning of our journey, we may think that we are dealing
with a new theory. However, the main examples of quasi-modular forms
and their differential equations go back to 19th century, due to G. Darboux
(1878) and G. Halphen (1881).

The development of the theory of modular forms as holomorphic func-
tions in the Poincaré upper half plane has shown that many of problems
related to modular forms can be proved if we take a modular form into
Algebraic Geometry and interpret it in the following way: a modular form
of weight m is a section of m-times tensor power of the line bundle F on
compactified moduli spaces of elliptic curves, where the fiber of F at the
elliptic curve E is defined to be Lie(E)∨. This is equivalent to say that a
modular form is a function from the pairs (E,ω) to k, where E is an ellip-
tic curve defined over a field k of arbitrary characteristic and ω is a regular
differential form on E, such that f(E, aω) = a−mf(E,ω) for all a ∈ k∗.
Some additional properties regarding the degeneration of the pair (E,ω)
is also required. The first interpretation can be generalized to the context
of quasi-modular forms using the notion of jet bundles (see Appendix A).
We found it much more convenient for calculations to generalize the later
interpretation to the context of quasi-modular forms. The differential form
ω is replaced with an element in the first algebraic de Rham cohomology of
E such that it is not represented by a regular differential form. Algebraic
de Rham cohomology is introduced for an arbitrary smooth variety by
A. Grothendieck (1966) in [11] after a work of Atiyah and Hodge (1955).
Apart from the multiplicative group k∗, we have also the additive group
of k acting on such pairs and the corresponding functional equation of a
quasi-modular form. In order to use the algebraic de Rham cohomology
we have to assume that the field k is of characteristic zero. It turns out
that the Ramanujan relations between Eisenstein series can be derived
from the Gauss-Manin connection of families of elliptic curves and such
series in the q-expansion form are uniquely and recursively determined by
the Ramanujan relations. Looking in this way, we observe that the theory
is not so much new. We find the Darboux-Halphen differential equation
which gives rise to the theory of quasi-modular forms for Γ(2).

We have given some applications of our effort; in order to find differen-
tial and polynomial equations for modular forms attached to congruence
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groups it is sufficient to construct explicit affine coordinates on the mod-
uli of elliptic curves enhanced with certain torsion point structure, and
then to calculate its Gauss-Manin connection. As the geometrization of
modular forms was an important tool in understanding many difficult
problems in number theory, such as the Taniyama-Shimura conjecture
and its solution which is known under modularity theorem, I hope that
the geometrization presented in this text helps to understand many enu-
merative problems related to quasi-modular, and even modular, forms (see
Appendix B). However, the main justification in our mind for writing a
text which apparently deals with the mathematics of a century ago, is
to prepare the ground for a dreaming program: to develop a theory at-
tached to an arbitrary family of varieties similar to the modular form
theory attached to elliptic curves. Apart from Siegel and Hilbert modular
forms attached to Abelian varieties, such a theory is under construction
for a certain family of Calabi-Yau varieties which appears in mathematical
physics, see for instance [24]. The text is written in such a way that the
way for generalizations becomes smoother.

We assume that the reader has a basic knowledge in algebraic geometry,
complex analysis in one variable and Riemann surfaces. At the end of
each sub section the reader finds many exercises with different degrees of
difficulty. The reader who is interested on the content of this note and
who is not worry with the details, may skip them. We have collected such
exercises in order to avoid statements like it is left to the reader, it is easy
to check and so on. The students are highly recommended to do some good
piece of the exercises.

The reader who wants to have a fast overview of the text is invited to
read the small introductions at the beginning of each section. There, we
have tried to write the content of each section in a down-to-earth way. In
this way it turns out that the mathematics presented in this text go back
to a century ago, to mathematicians like Gauss, Halphen, Ramanujan,
Abel, Picard, Poincaré and many others. The reader gets only a flavor of
the history behind the mathematics of the present text. A full account
of the works of all these respected mathematicians would require a deep
reading of many treatises that they have left to us. Another relatively fast
reading of the present text would be in the following order: §2.1, §3.1,
§4.1, §4.3, §4.4, §B, §5.1, §6.1, §7.1 and the entire §8.

The text is organized in the following way. For the definition of a geo-
metric quasi-modular form we need to introduce the algebraic de Rham
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cohomology of an elliptic curve and its intersection form. This is done in
§2. We have also included the residue calculus in this chapter. We need
this for the definition of the intersection form and also for the definition
of Eisenstein series in the algebraic context. §3 is dedicated to the defini-
tion and calculation of the Gauss-Manin connection of families of elliptic
curves. Using this, in §4 we describe how we get some of our main protag-
onists, namely the differential equations satisfied by quasi-modular forms.
Therefore, we can work with such differential equations and formal q-
expansions uniquely determined by them without knowing a word about
quasi-modular forms. For this reason the definition of a quasi-modular
form comes later in §6. This is done after §5 in which we describe some
classical facts such as Weierstrass form, group structure, torsion points
and so on. The algebraic definition of a quasi-modular form is done in
§6. In §7 we give the classical definition of a quasi-modular form as a
holomorphic function in the upper half plane. The relation between the
algebraic and holomorphic notions of quasi-modular forms is explained at
the end of §8 using the inverse of the period map. In this section we ex-
plain how SL(2,Z) can be interpreted as the monodromy group of families
of elliptic curves, and how elliptic integrals are hypergeometric functions
with special parameters. Appendix A is dedicated to the description of
quasi-modular forms in terms of jet bundles over the moduli of elliptic
curves and Appendix B is dedicated to examples of quasi-modular forms
with enumerative aspects.

Acknowledgments. The present text arose from my lecture notes at
Besse summer school on quasi-modular forms, 2010. Here, I would like to
thank the organizers, and in particular, Emmanuel Royer and François
Martin for the wonderful job they did. The text is also used in a mini
course given at IMPA during the summer school 2011. Prof. P. Deligne
sent me some comments on the first and final draft of the present text
which is essentially included in Appendix A. Here, I would like to thank
him for his clarifying comments. My sincere thanks go to Prof. E. Ghys
who drew my attention to the works of Halphen. Finally, I would like to
apologize from all the people whose works is related to the topic of the
present text and I do not mention them. There is a huge literature on
elliptic curves and modular forms and I am sure that I have missed many
related works.
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2. De Rham cohomology of smooth varieties

2.1. Introduction
In many calculus books we find tables of integrals and there we never find
a formula for elliptic integrals ∫ b

a

Q(x)dx√
P (x)

, (2.1)

where P (x) is a degree three polynomial in one variable x and with real
coefficients, for simplicity we assume that it has real roots, and a, b are two
consecutive roots of P or ±∞. Since Abel and Gauss it was known that
if we choose P randomly (in other words for generic P ) such integrals
cannot be calculated in terms of until then well-known functions (for a
polynomial P with a double root we can calculate the elliptic integrals,
see Exercise 2.1. For other particular examples of P we have some formulas
calculating elliptic integrals in terms of the values of the Gamma function
on rational numbers. The Chowla-Selberg theorem, see for instance Gross’s
article [10], describes this phenomenon in a complete way). It was also
well known that any such elliptic integral, say it

∫
δ Q(x)ω with ω :=

dx/
√
P (x), with the integration domain δ = [a, b] and polynomial P fixed,

is a linear combination of two integrals
∫
δ ω and

∫
δ xω, that is, it is possible

to calculate effectively two numbers r1, r2 ∈ R such that∫
δ
Q(x)ω = r1

∫
δ
ω + r2

∫
δ
xω. (2.2)

For instance, take

P (x) = 4(x− t1)3 − t2(x− t1)− t3, t1, t2, t3 ∈ R (2.3)

(in §5 we explain why we write P in this form). For examples of the
equality (2.2) see Exercise 2.4. The equalities there, are written just by
neglecting

∫
δ. The next historical step was to consider the integration on

the complex domain instead of integration on the real interval. Now, the
integration is on any path which connects two roots or ∞ to each other.
Soon after it was invented the new variable y representing the quantity√
P (x) and the integration took place on a closed path in the topologi-

cal space E := {(x, y) ∈ C2|y2 = P (x)}. The integrand Q(x)dxy is now
called a differential 1-form and the topological space E is called an elliptic
curve (for a brief description of how the study of integrals contributed to
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the development of Algebraic Topology, see the introduction of §8). The
study of elliptic, and later Abelian and multiple, integrals by Abel, Picard
and Poincaré prepared the ground for the definition of the de Rham co-
homology of varieties and its algebraic version due to Atiyah, Hodge and
Grothendieck. Nowadays, algebraic geometers prefer to avoid the usage of
integrals for expressing an equality like (2.2). Instead, they say that the
algebraic de Rham cohomology of the elliptic curve y2 = P (x) is a two
dimensional vector space generated by two differential forms xidxy , i = 0, 1.

In this section we want to explain equalities like (2.2) without men-
tioning integrals and domains of integration. Moreover, we work with a
ring R instead of the field of real numbers. We assume a basic knowledge
in Algebraic Geometry. The reader may consult the book of Hartshorne
[14], for any lacking definition or proof. We need to work with families of
elliptic curves and so we use projective and affine schemes over a commu-
tative ring R with multiplicative identity element 1. We assume that R is
an integral domain, that is, it is without zero divisors. For simplicity, we
take a field of characteristic zero and we consider R as a finitely generated
k-algebra. We denote by k1 the fractional field of R.

Let E be an elliptic curve over k. The algebraic de Rham cohomologies
H i

dR(E), i = 0, 1, 2
are k-vector spaces of dimensions respectively 1, 2 and 1, see Proposition
2.2, Proposition 2.4 and Proposition 2.5. We have H0

dR(E) = k, an iso-
morphism

Tr : H2
dR(E) ∼= k

and a bilinear map
H1

dR(E)×H1
dR(E)→ H2

dR(E)
The map Tr composed with the bilinear map gives us:

〈·, ·〉 : H1
dR(E)×H1

dR(E)→ k
which is non-degenerate and anti symmetric, see §2.10. We call it the
intersection bilinear form. We have also a natural filtration of H1

dR(E)
which is called the Hodge filtration:

{0} = F 2 ⊂ F 1 ⊂ F 0 = H1
dR(E)

Its non-trivial piece F 1 is generated by a regular differential form (a dif-
ferential form of the first kind). The objective of this section is to define
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all these in a down-to-earth manner. Grothendieck’s original article [11]
is still a main source for the definition of algebraic de Rham cohomology.

Exercise. (1) Calculate the integral (2.1) for P with a double root.

(2) For particular examples of P there are some formulas for elliptic
integrals in terms of the values of the Gamma function on ratio-
nal numbers. Collect some of these formulas and explain why the
formula holds.

(3) Show that
∫
δ 1/

√
P (x) dx, where δ is an interval between two con-

secutive real roots of P or ±∞, and deg(P ) = 4, can be calculated
in terms of elliptic integrals.

2.2. Differential forms
LetA be a commutative k-algebra and R→ A be a morphism of k-algebras.
Using this morphism, A can be seen as an R-algebra. We assume that A
as an R-algebra is finitely generated.

Let ΩA/R denote the module of relative (Kähler) differentials, that is,
ΩA/R is the quotient of the A-module freely generated by symbols dr, r ∈
A, modulo its submodule generated by

dr, r ∈ R, d(ab)− adb− bda, d(a+ b)− da− db, a, b ∈ A.
The A-module ΩA/R is finitely generated and it is equipped with the
derivation

d : A→ ΩA/R, r 7→ dr.

It has the universal property that for any R-linear derivation D : A→M
with the A-module M , there is a unique A-linear map ψ : ΩA/R → M
such that D = ψ ◦ d.

Let X = Spec(A) and T = Spec(R) be the corresponding affine varieties
over k and X → T be the map obtained by R → A. We will mainly use
the Algebraic Geometry notation Ω1

X/T := ΩA/R. Let

Ωi
X/T =

i∧
k=1

ΩA/R,

be the i-th wedge product of ΩX/T over A, that is, Ωi
X/T is the quotient

of the A-module freely generated by the symbols ω1∧ω2∧· · ·∧ωi modulo
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its submodule generated by elements which make ∧ A-linear in each ωi
and

ω1 ∧ · · · ∧ ωj ∧ ωj+1 ∧ · · · ∧ ωi = 0, for ωj = ωj+1.

It is convenient to define
Ω0
X/T := A.

The differential operator

di : Ωi
X/T → Ωi+1

X/T

is defined by assuming that it is R-linear and

di(ada1 ∧ · · · ∧ dai) = da ∧ da1 ∧ · · · ∧ dai, a, a1, . . . , ai ∈ A.

Sometimes it is convenient to remember that di’s are defined relative to
R. One can verify easily that di is in fact well-defined and satisfy all the
properties of the classical differential operator on differential forms on
manifolds. From now on we simply write d instead of di. If R = k is a field
then we write X instead of X/T .

Exercise. (1) Prove the universal property of the differential map
d : A→ ΩA/R.

(2) Prove the following properties of the wedge product: For α ∈
Ωi
X/T , β ∈ Ωj

X/T , γ ∈ Ωr
X/T

(α ∧ β) ∧ γ = α ∧ (β ∧ γ),

α ∧ β ∧ γ = (−1)ij+jr+irγ ∧ β ∧ α,

(3) Prove that d ◦ d = 0.

(4) For α ∈ Ωi
X/T , β ∈ Ωj

X/T we have:

d(α ∧ β) = (dα) ∧ β + (−1)iα ∧ (dβ).

2.3. De Rham cohomology
After the definition of differential forms, we get the de Rham complex of
X/T , namely:

Ω0
X/T → Ω1

X/T → · · ·Ω
i
X/T → Ωi+1

X/T → · · ·
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Since d ◦ d = 0, we can define the de Rham cohomologies

H i
dR(X/T ) :=

ker(
d

Ωi
X/T → Ωi+1

X/T )

Im(
d

Ωi−1
X/T → Ωi

X/T )
.

Exercise. (1) Let m be the number of generators of the R-algebra A.
Show that for i ≥ m+1 we have Ωi

X/T = 0 and henceH i
dR(X/T ) =

0.

(2) Let A = R[x1, x2, . . . , xn]. In this case, we use the notation AnR :=
Spec(A). The A-module Ω1

AnR
is freely generated by the elements

dx1, dx2, . . . , dxn. Prove that

H i(AnR) = 0, i = 1, 2, . . .

This is Exercise 16.15 c, p. 414. of [7].

(3) Let us come back to the case of an arbitrary A. Let a1, a2, . . . , am ∈
A generate the R-algebra A. Define

I = {P ∈ R[x1, x2, . . . , xm] | P (a1, a2, . . . , am) = 0}.

The set I is an ideal of R[x1, x2, . . . , xm] and we have

A ∼= R[x1, x2, . . . , xm]/I,

Ωi
X/T
∼= Ωi

AnR
/(dI ∧ Ωi−1

AnR
+ IΩi

AnR
),

where by dI ∧ Ωi−1
AnR

+ IΩi
AnR

we mean the A-module generated by

dr1 ∧ ω1 + r2ω2, r1, r2 ∈ I, ω1 ∈ Ωi−1
AnR
, ω2 ∈ Ωi

AnR
.

(4) Discuss conditions on A such that H0(X/T ) = R. For instance,
show that if R = k is an algebraically closed field of characteristic
zero and X is an irreducible reduced variety over k then H0(X) =
k.
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2.4. An incomplete elliptic curve, I
In this section we find an explicit basis for the de Rham cohomology of
the main examples of this text, that is, affine elliptic curves in Weierstrass
form. The general theory uses the notion of a Brieskorn module which is
essentially the same as de Rham cohomology. Our main source for this
section is [25, 19].

Let t1, t2, t3 ∈ R, P (x) = 4(x − t1)3 − t2(x − t1) − t3 ∈ R[x] and f =
y2 − P (x). Define

A = R[x, y]/〈f〉.
where 〈f〉 is the ideal generated by f . We have

Ω1
X/T = Ω1

A2
R
/〈fΩ1

A2
R

+ Ω0
A2

R
df〉, Ω2

X/T = Ω2
A2

R
/〈fΩ2

A2
R

+ df ∧ Ω1
A2

R
〉.

We have to say some words about Ω2
X/T . We define the auxiliary R-module:

V := Ω2
A2

R
/df ∧ Ω1

A2
R
,

and
∆ := 27t23 − t32.

The quotient R[x, y]/〈fx, fy〉 is isomorphic to V by sending P ∈ V to
Pdx ∧ dy.

Proposition 2.1. We have

∆Ω2
X/T = 0

Proof. Using the explicit form of f , we can easily verify that the R-module
V is freely generated by dx∧dy, xdx∧dy (here we use the fact that 2 and
3 are invertible in R). Let M : V → V, M(ω) = fω. We write M in the
basis dx ∧ dy, xdx ∧ dy:

M =
(

2
3 t1t2 + t3 −2

3 t
2
1t2 + 1

18 t
2
2

2
3 t2 −2

3 t1t2 + t3

)
.

Let p(z) := z2− tr(M)z+ det(M) = det(M − zI2×2) be the characteristic
polynomial of M . We have P (f)V = 0 and since Ω2

X/T = V/〈f〉, we
conclude that det(M)Ω2

X/T = 0. From another side det(M) = −1
27 ∆. �

From now on we assume that ∆ is irreducible in R and we replace R
with its localization on its multiplicative group generated by ∆. Therefore,
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∆ is invertible in R and we can talk about the pole or zero order along ∆
of an element in any R-module. In this way Ω2

X/T = 0 and

H1
dR(X/T ) ∼= Ω1

A2
R
/〈fΩ1

A2
R

+ dfΩ0
A2

R
+ dΩ0

A2
R
〉.

There are two polynomials A,B ∈ R[x] such that AP + BP ′ = ∆. We
define

ω = 1
∆(Aydx+ 2Bdy)

which satisfies:

dx = yω, dy = 1
2P
′ω (2.4)

We denote by dx
y and xdx

y the elements ω, respectively xω. Note that these
two elements have poles of order at most one along ∆.

Proposition 2.2. The R-module H1
dR(X/T ) is freely generated by the

elements dx
y and xdx

y .

Proof. Using Equation (2.4) and y2 = P (x), every element of H1
dR(X/T )

can be written in the form (C + yD)ω, C,D ∈ R[x]. Since Dyω = Ddx is
exact, this reduces to Cω. From another side the elements

d(xay) = (1
2P
′xa + axa−1P )ω

are cohomologous to zero. If deg(C) ≥ 2, we can choose a monomial
F = xa in such a way that the leading coefficient of (1

2P
′F +F ′P ) is equal

to the leading coefficient of C. We subtract d(Fy) from Cω and we get
smaller degree for C. We repeat this until getting a degree one C. �

Exercise. Verify the following equalities in H1
dR(X/T ):

x2dx

y
= (2t1)xdx

y
+ (−t21 + 1

12 t2)dx
y
,

x3dx

y
= (3t21 + 3

20 t2)xdx
y

+ (−2t31 + 1
10 t1t2 + 1

10 t3)dx
y
,

x4dx

y
= (4t31 + 3

5 t1t2 + 1
7 t3)xdx

y
+ (−3t41 −

1
10 t

2
1t2 + 9

35 t1t3 + 5
336 t

2
2)dx
y
,
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x5dx

y
= (5t41 + 3

2 t
2
1t2 + 5

7 t1t3 + 7
240 t

2
2)xdx

y

+ (−4t51 −
2
3 t

3
1t2 + 2

7 t
2
1t3 + 19

420 t1t
2
2 + 1

30 t2t3)dx
y
.

2.5. An incomplete elliptic curve, II
Let P (x) ∈ R[x] be as in the previous section and

A = R[x, y, z]/〈y2 − P (x), yz − 1〉

We will simply write 1
y instead of z.

Proposition 2.3. The R module H1
dR(X/T ) is freely generated by

dx

y
,
xdx

y
,
dx

y2 ,
xdx

y2 ,
x2dx

y2 ,

Proof. In this example dy = 1
2yP

′dx and so every element ω of H1
dR(X/T )

can be written in the form Cy−kdx + Cy−k+1, C,D ∈ R[x], k ≥ 1. We
use the equality

d(xay−b) = axa−1y−bdx+ −b2 xay−b−2P ′dx

for b = −1,−2, . . . and see that ω is reduced to a form with k = 1 (each
time we multiply ω with ∆ = BP ′ + Ay2). Now, for terms Cy−2dx we
make the division of C by P and we are thus left with the generators
dx
y2 ,

xdx
y2 ,

x2dx
y2 . For terms Dy−1dx we proceed as in Proposition 2.2 and we

are left with the generators dx
y ,

xdx
y . �

2.6. De Rham cohomology of projective varieties
Let X be a projective reduced variety over R. We have the complex of
sheaves of differential forms (Ω•X/T , d) and we define the i-th de Rham
cohomology of X as the i-th hypercohomology of the complex (Ω•X/T , d),
that is

H i
dR(X) = Hi(Ω•X/T , d).

The reader is referred to [34] for the full categorical definition of the hy-
percohomology. In this section we take an open covering of X and define
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the hypercohomology using such a covering. In this way, we explain how
its elements look like and how to calculate it.

Let U = {Ui}i∈I be any open covering of X by affine subsets, where I
is a totally ordered finite set. We have the following double complex

...
...

...
↑ ↑ ↑

Ω0
2 → Ω1

2 → Ω2
2 → · · ·

↑ ↑ ↑
Ω0

1 → Ω1
1 → Ω2

1 → · · ·
↑ ↑ ↑

Ω0
0 → Ω1

0 → Ω2
0 → · · ·

(2.5)

Here Ωi
j is the product over I1 ⊂ I, #I1 = j + 1 of the set of global

sections ωσ of Ωi
X/T in the open set σ = ∩i∈I1Ui. The horizontal arrows are

usual differential operator d of Ωi
X/T ’s and vertical arrows are differential

operators δ in the sense of Cech cohomology, that is,

δ : Ωi
j → Ωi

j+1, {ωσ}σ 7→ {
j+1∑
k=0

(−1)kωσ̃k |σ̃}σ̃. (2.6)

Here σ̃k is obtained from σ̃, neglecting the k-th open set in the definition
of σ̃. The k-th piece of the total chain of (2.5) is

Lk := ⊕ki=0Ωi
k−i

with the differential operator
d′ = d+ (−1)kδ : Lk → Lk+1. (2.7)

The hypercohomology Hk(M,Ω•) is the total cohomology of the double
complex (2.5), that is

Hk(M,Ω•) = ker(Lk d→ Lk+1)
Im(Lk−1 d→ Lk)

.

Exercise. (1) Show that the above definition does not depend on the
choice of covering, that is, if U1 and U2 are two open covering of
X then the corresponding hypercohomologies are isomorphic in a
canonical way.

(2) For which varieties X, we have H0
dR(X) = R.
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2.7. Complete elliptic curve, I
Let us consider the projective variety

E = Proj(R[x, y, z]/〈zy2 − 4(x− t1z)3 + t2(x− t1z)z2 + t3z
3〉)

which is covered by two open sets
U0 = Spec(R[x, y]/〈y2 − 4(x− t1)3 + t2(x− t1) + t3〉),

U1 = Spec(R[x, z]/〈z − 4(x− t1z)3 + t2(x− t1z)z2 + t3z
3〉).

Note that U0 and U0∩U1 are the affine varieties in §2.4, respectively §2.5.
For simplicity, we will cut /R and /T from our notations. The variety
E has a closed point O := [0; 1; 0] which is in the affine chart U1. It is
sometimes called the point at infinity. By definition, we have
H1

dR(E) = {(ω0, ω1) ∈ Ω1
U0 × Ω1

U1 | ω1 − ω0 ∈ d(Ω0
U0∩U1)}/dΩ0

U0 × dΩ0
U1 ,

H2
dR(E) = Ω1

U0∩U1/(Ω
1
U0 + Ω1

U1 + dΩ0
U0∩U1).

In the definition of H1
dR(E) as above, we sometimes take U1 smaller but

always containing O.

2.8. Residue calculus
We need to carry out some residue calculus near the closed smooth point
O, see for instance [33]. Such a machinery is usually developed for curves
over a field and so it seems to be necessary to consider the elliptic curve
E over the fractional field k1 of R, that is, we use E ⊗R k1 instead of E.
However, most of our calculations lead to elements in R which will be used
later in the theory of quasi-modular forms.

A regular function t in a neighborhood of O = [0; 1; 0] is called a coordi-
nate system at O if t(O) = 0 and t generates the one dimensional k1-space
mO/m

2
O, where mO is the ring of regular functions in a neighborhood of

O such that they vanish at O, and m2
O is the OX,O-module generated by

ab, a, b ∈ mO. Recall that O is a smooth point of E. Any meromorphic
function f (meromorphic 1-form ω) near O has an expansion in t:

f =
∞∑

i=−a
fit

i, resp. ω = (
∞∑

i=−a
fit

i)dt, fi ∈ k1, (2.8)

where a is some integer. The stalk of the ring of meromorphic differential
1-forms at O is a OX,O-module generated by dt and so ω = fdt for some
meromorphic function near O. Therefore, it is enough to explain the first
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equality. Let a be the pole order of f at O. We work with taf and so
without loosing the generality we can assume that f is regular at O. Let
f0 = f(O). For some f1 ∈ k1 we have f − f0 − f1t ∈ m2

O. We repeat this
process and get a sequence f0, f1, f2, . . . , fm, fm+1, . . . ∈ k1 such that

f −
m∑
i=0

fit
i ∈ mm+1

O .

Another way of reformulating the above statement is:

f =
m∑
i=0

fit
i +O(tm+1),

where O(ti) means a sum
∑
j≥i ajt

j . This is what we have written in (2.8).
The residue of ω at O is defined to be f−1. It is independent of the choice

of the coordinate t. In our example, we take the coordinate t = x
y with

the notation of chart U0 (in the chart U1 we have t = x). The expansions
of x and y in t are of the form:

x = 1
4 t
−2 +O(t0), y = 1

4 t
−3 +O(t−1). (2.9)

Exercise. (1) Show that O is a smooth point of E, that is, the k1-
vector space mO/m

2
O is one dimensional.

(2) Verify the equalities (2.9) and prove that the notion of residue does
not depend on the coordinate system t.

(3) Calculate the residue of xndx
y2 , n = 0, 1, 2, 3, 4, 5 at O.

(4) Calculate the first 4 coefficients of the expansion of dx
y in the co-

ordinate t = x
y .

(5) Let us take the coordinates (x, z) in which the elliptic curve E
is given by z − 4(x − t1z)3 − t2(x − t1z)z2 − t3z

3 and we have
O = (0, 0), t = x. Consider E over the ring R. A regular function
f at O can be written as P (x,z)

Q(x,z) with Q(0, 0) 6= 0. Show that if
Q(0, 0) is invertible in R and P,Q ∈ R[x, z] then all the coefficients
in the expansion of f belong to R (Hint: Verify this for f = z.)
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2.9. Complete elliptic curve, II
Recall the open covering {U0, U1} of E introduced in §2.7. In this section
we prove the following proposition:

Proposition 2.4. The canonical restriction map
H1
dR(E)→ H1

dR(U0), (ω0, ω1)→ ω0

is an isomorphism of R-modules.

Proof. First we check that it is injective. Let us take an element (ω0, ω1) ∈
H1

dR(X) with ω0 = 0. By definition ω1 = ω1−ω0 = df, f ∈ Ω0
U0∩U1

. Since
ω1 has not poles at the closed point O ∈ X, f has not too, which implies
that (ω0, ω1) is cohomologous to zero.

Now, we prove the surjectivity. The restriction map is R-linear and so
by Proposition 2.2, it is enough to prove that dx

y ,
xdx
y are in the image

of the restriction map. In fact, the corresponding elements in H1
dR(E) are

respectively

(dx
y
,
dx

y
), (xdx

y
,
xdx

y
− 1

2d(y
x

)).

We prove this affirmation for xdx
y . We define Ũ1 = U1\{x = 0} and use the

definition of hypercohomology with the covering {U0, Ũ1}. We compute x
and y in terms of the local coordinate t = y

x around the point at infinity O
and we have (2.9). Substituting this in xdx

y , we get the desired result. �

Let U0, U1 be an arbitrary covering of E. We have a well-defined map
Tr : H2

dR(X)→ R,
Tr(ω) = sum of the residues of ω01 around the points X\U0,

where ω is represented by ω01 ∈ Ω1
U0∩U1

. As usual, we take the canonical
charts of X described in §2.7. The map Tr turns out to be an isomorphism
of R-modules.

Proposition 2.5. The R-module H2
dR(X) is of rank one.

Proof. According to Proposition 2.3 any element in Ω1
U0∩U1

modulo exact
forms can be reduced to an R-linear combination of 5 elements. The classes
of all these elements in H2

dR(X) is zero, except the last one x2dx
y2 . The

first two elements are regular forms in U0 and the next two forms are
regular in U1. We have proved that any element ω ∈ H2

dR(X) is reduced to

324



Quasimodular forms and elliptic curves

r x
2dx
y2 , r ∈ R. Since x2dx

y2 at O has the residue −1
2 (use the local coordinate

t = x
y and the equalities (2.9)), we get the desired result. �

Exercise. (1) Let us take two open sets U1, Ũ1 ⊂ E which contain O.
Show that the definition of de Rham cohomologies of E attached
to the coverings {U0, U1} and {U0, Ũ1} are canonically isomorphic.

(2) By our definition of residue, it takes values in k1, the fractional
field of E. Show that the map Tr has values in R.

2.10. The intersection form
Let X be a smooth irreducible reduced projective variety over R. One can
define the cup product

H i
dR(X)×Hj

dR(X)→ H i+j
dR (X) (2.10)

which is the translation of the usual wedge product for the de Rham
cohomologies of real manifolds. Further, we can define an isomorphism

Tr : H2n
dR(X) ∼= R (2.11)

which imply that H2n
dR(X) is a rank one R-module. For i = j = dim(X),

the map (2.10) composed with (2.11) gives us a bilinear maps
〈·, ·〉 : Hn

dR(X)×Hn
dR(X)→ R.

(for all these see Deligne’s lectures in [4]). We have already defined Tr in
the case of elliptic curves over the ring R. In this section we are going to
define the cup product in the case of a curve defined over R.

Let us take two elements ω, α ∈ H1
dR(X). We take an arbitrary covering

X = ∪iUi of X and we assume that ω and α are given by {ωij}i,j∈Iand
{αij}i,j∈Iwith

ωj − ωi = dfij , αj − αi = dgij .

We define
γ := ω ∪ α ∈ H2

dR(X)
which is given by:

γij = gijωj − fijαj + fijdgij . (2.12)
Let us consider the situation of §2.7. In this case

dx

y
∪ xdx

y
= {ω01}, ω01 = −1

2
dx

x
,
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and
〈dx
y
,
xdx

y
〉 = 1. (2.13)

Exercise. (1) Show that the definition of ω ∪ α does not depend on
the covering of the curve X and that ∪ is non-degenerate.

(2) For a curve over complex numbers show its algebraic de Rham
cohomology, cup product and intersection form are essentially the
same objects defined by C∞-functions.

3. Gauss-Manin connection

3.1. Introduction
In 1958 Yu. Manin solved the Mordell conjecture over function fields and
A. Grothendieck after reading his article invented the name Gauss-Manin
connection. I did not find any simple exposition of this subject, the one
which could be understandable by Gauss’s mathematics. I hope that the
following explains the presence of the name of Gauss on this notion. Our
story again goes back to integrals. Many times an integral depends on
some parameter and so the resulting integration is a function in that
parameter. For instance take the elliptic integral (2.2) and assume that P
and Q depends on the parameter t and the interval δ does not depend on
t. In any course in calculus we learn that the integration and derivation
with respect to t commute:

∂

∂t

∫
δ

Q(x)√
P (x)

dx =
∫
δ

∂

∂t
( Q(x)√

P (x)
)dx.

As before we know that the right hand side of the above equality can
be written as a linear combination of two integrals

∫
δ ω and

∫
δ xω. This

is the historical origin of the notion of Gauss-Manin connection, that is,
derivation of integrals with respect to parameters and simplifying the re-
sult in terms of integrals which cannot be simplified more. For instance,
take P (x) as in (2.3) which depends on three parameters t1, t2, t3. We have

∂

∂ti
I = IAi, i = 1, 2, 3, where I := [

∫
δ

dx

y

∫
δ

xdx

y
], (3.1)

and Ai is a 2 × 2 matrix whose coefficients can be calculated effectively.
When the integrand depends on many parameters the best way to put the
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information of derivations with respect to all parameters in one object is
by using differential forms (recall that differential forms are also used to
represent the integrand). We define

A = A1dt1 +A2dt2 +A3dt3,

that is, Aij := (A1)ijdt1 + (A2)ijdt2 + (A3)ijdt3, i, j = 1, 2. Now, we write
(3.1) in the form dI = I ·A. In this section we calculate the Gauss-Manin
connection, that is, we calculate the matrix A, see Proposition 3.1.

3.2. Gauss-Manin connection
What we do in this section in the framework of Algebraic Geometry is
as follows: Let X be a smooth reduced variety over R. We construct a
connection

∇ : H i
dR(X)→ Ω1

T ⊗R H
i
dR(X),

where Ω1
T is by definition Ω1

R/k, that is, the R-module of differential at-
tached to R. By definition of a connection, ∇ is k-linear and satisfies the
Leibniz rule

∇(rω) = dr ⊗ ω + r∇ω.
A vector field v in T is an R-linear map Ω1

T → R. We define

∇v : H i
dR(X)→ H i

dR(X)
to be ∇ composed with

v ⊗ Id : Ω1
T ⊗R H

i
dR(X)→ R⊗R H

i
dR(X) = H i

dR(X).

If R is a polynomial ring Q[t1, t2, . . .] then we have vector fields ∂
∂ti

which
are defined by the rule

∂

∂ti
(dtj) = 1 if i = j and = 0 if i 6= j.

In this case we simply write ∂
∂ti

instead of ∇ ∂
∂ti

.
Sometimes it is useful to choose a basis ω1, ω2, . . . , ωh of the R-modular

H i(X/T ) and write the Gauss-Manin connection in this basis:

∇


ω1
ω2
...
ωh

 = A⊗


ω1
ω2
...
ωh

 , (3.2)
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where A is a h× h matrix with entries in Ω1
T .

3.3. Construction
Recall the notation of §2.6. Let us take a covering U = {Ui}i∈I of X by
affine open sets and ω ∈ Hk

dR(X). By our definition ω is represented by
⊕ki=0ωi, ωi ∈ Ωi

k−i and ωi is a collection of i-forms {ωi,σ}σ. By definition
we have d′ω = 0, where d′ is given by (2.7). Recall that the differential
map d used in the definition of d′ is relative to R, that is, by definition
dr = 0, r ∈ R. Now, let us consider d in the double complex (2.5) relative
to k and not R. The condition d′ω = 0 turns to be

d′ω = η, η = ⊕k+1
i=0 ηi ∈ L

k+1, ηi ∈ Ωi
k+1−i

and each ηi, i 6= 0 is a collection of i-forms that is a finite sum of the form∑
j drj ⊗ ωj . Since d has no contribution in Ω0

k+1, we know that η0 = 0.
We make the tensor product ⊗R of the double complex (2.5) with Ω1

T and
finally get an element in Ω1

T ⊗R H
k
dR(X). Of course we have to verify that

everything is well-defined.
Let us now assume that k = C. The main motivation, which is also the

historical one, for defining the Gauss-Manin connection is the following:
For any ω ∈ H i

dR(X) and a continuous family of cycles δt ∈ Hi(Xt,Z) we
have

d

(∫
δt
ω

)
=
∫
δt
∇ω. (3.3)

Here, by definition ∫
δt
α⊗ β = α

∫
δt
β,

where β ∈ H i
dR(X) and α ∈ Ω1

T . Integrating both side of the equality (3.2)
over a a basis δ1, δ2, . . . , δh ∈ Hi(Xt,Q) we conclude that

d([
∫
δj

ωi]) = [
∫
δj

ωi] ·A. (3.4)

3.4. Gauss-Manin connection of families of elliptic curves
Let us consider the ring R = Q[t1, t2, t3, 1

∆ ] and the family of elliptic curves
in §2.4. By Proposition 2.4 we know that the first de Rham cohomology
of E is isomorphic to the first de Rham cohomology of the affine variety
U0. Therefore, we calculate the Gauss-Manin connection attached to U0.
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Proposition 3.1. The Gauss-Manin connection of the family of elliptic
curves y2 = 4(x− t1)3− t2(x− t1)− t3 written in the basis dx

y ,
xdx
y is given

as bellow:

∇
(

dx
y
xdx
y

)
= A

(
dx
y
xdx
y

)
(3.5)

where

A = 1
∆

(
−3

2 t1α−
1
12d∆ 3

2α
∆dt1 − 1

6 t1d∆− (3
2 t

2
1 + 1

8 t2)α 3
2 t1α+ 1

12d∆

)
,

∆ = 27t23 − t32, α = 3t3dt2 − 2t2dt3.

Proof. The proof is a mere calculation which is classical and can be found
in ([30] p. 304, [29] ). We explain only the calculation of ∂

∂t3
(dxy ) . For

p(x) = 4t0(x− t1)3 − t2(x− t1)− t3 we have:
∆ = −p′ · a1 + p · a2,

where

a1 = −36t30x4 +144t30t1x3 +(−216t30t21 +15t20t2)x2 +(144t30t31−30t20t1t2)x
− 36t30t41 + 15t20t21t2 − t0t22

a2 = (−108t30)x3 + (324t30t1)x2 + (−324t30t21 + 27t20t2)x
+ (108t30t31 − 27t20t1t2 − 27t20t3)

We have
∂

∂t3
(dx
y

) = −dy ∧ dx
y2 = 1

2
dx

py

= 1
∆

(−p′a1 + pa2)dx
2py = 1

∆(1
2a2 − a′1)dx

y

= (3t20t1t2 −
9
2 t

2
0t3)dx

y
− 3t20t2

xdx

y
.

Note that in the fourth equality above we use y2 = p(x) and the fact that
modulo exact forms we have

p′a1dx

2py = a1dp

2py = a1dy

p
= −a1d(1

y
) = a′1dx

y
.

�
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Exercise. In a similar way as in the proof of Proposition 3.1 calculate
∂
∂ti

(dxy ), i = 1, 2.

3.5. Another family of elliptic curves

We modify a little bit the parameter space of our family of elliptic curves.
Let

ER : y2 − 4(x− t1)3 + t2(x− t1) + t3 = 0,

(t1, t2, t3) ∈ TR := {(t1, t2, t3) ∈ k3 | 27t23 − t32 6= 0}
be our previous family of elliptic curves and

EH : y2 − 4(x− t1)(x− t2)(x− t3) = 0, (3.6)

(t1, t2, t3) ∈ TH := (t1, t2, t3) ∈ k3 | t1 6= t2 6= t3}
Note that we have used the same notation t1, t2, t3 for the coordinates
system both in TH and TR. I hope that this will not make any confusion.
The algebraic morphism α : TH → TR defined by

α : (t1, t2, t3) 7→ (T, 4
∑

1≤i<j≤3
(T − ti)(T − tj), 4(T − t1)(T − t2)(T − t3)),

where
T := 1

3(t1 + t2 + t3),

connects two families, that is, if in ER we replace t with α(t) we obtain
the family EH. The Gauss-Manin connection matrix associated to EH is
just the pull-back of the Gauss-Manin connection associate to E. In this
way we obtain

α∗AR = AH = dt1
2(t1 − t2)(t1 − t3)

(
−t1 1

t2t3 − t1(t2 + t3) t1

)
+ (3.7)

dt2
2(t2 − t1)(t2 − t3)

(
−t2 1

t1t3 − t2(t1 + t3) t2

)
+ dt3

2(t3 − t1)(t3 − t2)

(
−t3 1

t1t2 − t3(t1 + t2) t3

)
.

Exercise. Verify the equality (3.7).
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4. Modular differential equations

4.1. Introduction
After calculation of the Gauss-Manin connection of families of elliptic
curves, we immediately calculate the Ramanujan and Darboux-Halphen
differential equation (Proposition 4.1). The history of these differential
equations is full of rediscoveries. The first example of differential equations
which has a particular solution given by theta constants was studied by
Jacobi in 1848. Later, in 1978 G. Darboux studied the system of differential
equations 

ṫ1 + ṫ2 = 2t1t2
ṫ2 + ṫ3 = 2t2t3
ṫ1 + ṫ3 = 2t1t3

, (4.1)

in connection with triply orthogonal surfaces in R3(see [3]). G. Halphen
(1881), M. Brioschi (1881), and J. Chazy (1909) contributed to the study
of the differential equation (4.1). In particular, Halphen expressed a solu-
tion of the system (4.1) in terms of the logarithmic derivatives of the null
theta functions, see §4.4. Halphen generalized also (4.1) to a differential
equation with three parameters corresponding to the three parameters of
the Gauss hypergeometric function. His method of calculating such dif-
ferential equations is essentially described in §8.7 and it is near in spirit
to the methods used in the present text. The history from number theory
point of view is different. S. Ramanujan, who was a master of convergent
and formal series and who did not know about the geometry of differential
equations, in 1916 observed that the derivation of three Eisenstein series
E2, E4 and E6 are polynomials in Ei’s. Therefore, he had the solution and
he found the corresponding differential equation. This is opposite to the
work of Halphen who had the differential equation and he calculated a
solution (the later in general is more difficult than the former). Halphen
even calculated the Ramanujan differential equation years before Ramanu-
jan and apparently without knowing about Eisenstein series (see [13] page
331). It is remarkable to say that Darboux-Halphen differential equations
was rediscovered in mathematical physics by M. Atiyah and N. Hitchin
in 1985. Even the author of the present text calculated Ramanujan and
Darboux-Halphen differential equations independently without knowing
about Ramanujan, Darboux and Halphen’s work. All these rediscoveries
were useful because they have helped us to understand the importance
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and applications of such differential equations and also to find the gen-
eral context of such differential equations in relation with Gauss-Manin
connections and in general multi dimensional linear differential systems.

4.2. Ramanujan vector field

Our main observation in this section is the following:

Proposition 4.1. In the parameter space of the family of elliptic curves
y2 = 4(x− t1)3− t2(x− t1)− t3 there is a unique vector field R, such that

∇R(dx
y

) = −xdx
y
, ∇R(xdx

y
) = 0. (4.2)

The vector field R is given by

R = (t21 −
1
12 t2) ∂

∂t1
+ (4t1t2 − 6t3) ∂

∂t2
+ (6t1t3 −

1
3 t

2
2) ∂

∂t3
. (4.3)

Proof. The proof is based on explicit calculations. �

Exercise. Perform the calculations leading to a proof of Proposition 4.1.

4.3. Vector field or ordinary differential equation?

Any vector field in Cn represent an ordinary differential equation, for
which we can study the dynamics of its solutions. For instance, the vec-
tor field R of the previous section can be seen as the following ordinary
differential equation:

R :


ṫ1 = t21 − 1

12 t2
ṫ2 = 4t1t2 − 6t3
ṫ3 = 6t1t3 − 1

3 t
2
2

(4.4)

where dot means derivation with respect to a variable. S. Ramanujan
verfied that the Eisenstein series:

E2i(q) :=

1 + bi

∞∑
n=1

∑
d|n

d2i−1

 qn
 , i = 1, 2, 3, (4.5)

(b1, b2, b3) = (−24, 240,−504)
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with the derivation Ė2i = q ∂E2i
∂q satisfy an ordinary differential equation

which is obtained from (4.4) after the affine transformation

(t1, t2, t3) 7→ ( 1
12 t1,

1
12 t2,

2
3(12)2 t3),

see [26], p. 4 or [22].
For a moment forget all what we have done to obtain R. We are going

to explain how the differential equation (4.4) determines uniquely the
Eisenstein series (4.5) up to a constant. We write each ti as a formal
power series in q, ti =

∑∞
n=0 ti,nq

n, i = 1, 2, 3 and substitute in the above
differential equation. We define the derivation to be:

ṫ = aq
∂t

∂q

for a fixed non zero number a. Comparing the coefficients of q0 we have
(t1,0, t2,0, t3,0) = (b, 12b2, 8b3), for some b ∈ C.

Comparing the coefficients of q1 we have

MV = aV, where , M :=

 2b − 1
12 0

48b2 4b −6
48b3 −8b2 6b

 , V :=

t1,1t2,1
t3,1

 .
Assume that V is not zero and so we have det(M−aI3×3) = (12b−a)a2 = 0
which implies that a = 12b. We also calculate V up to multiplication by
a constant:

V tr = c[−24b, 240(12b2),−504(8b3)], for some c ∈ C.
We realize that all the coefficients ti,n, n > 1 are determined uniquely and
recursively:

(12nbI3×3 −M)

t1,nt2,n
t3,n

 =


∑n−1
i=1 t1,it1,n−i

4
∑n−1
i=1 t1,it2,n−i∑n−1

i=1 6t1,it3,n−i − 1
3 t2,it2,n−i


Proposition 4.2. We have ti = aiE2i(cq), where E2i’s are the Eisenstein
series (4.5) and (a1, a2, a3) = (b, 12b2, 8b3).

Note that the solutions ti, i = 1, 2, 3 of (4.4) depend on a parameter c
which cannot be calculated from the differential equation (the parameter
b can be fixed by fixing the derivation). Later, we will see that ti’s are con-
vergent in the unit disc. If we set q = e2πiz and look at ti’s as holomorphic
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functions in z, which varies in the upper half plane {z ∈ C | =(z) > 0},
then they are basic examples of quasi-modular forms. Note that for b = 2πi

12
and a = 2πi we have 2πiq ∂∂q = ∂

∂z and so if we define

(g1(z), g2(z), g3(z)) = (2πi
12 E2, 12(2πi

12 )2E4, 8(2πi
12 )3E6) (4.6)

then gi’s satisfy the Ramanujan differential equation (4.4), where dot
means derivation with respect to z.

Exercise. (1) For a moment forget Proposition 4.2. Let

ti =
∞∑
n=0

ti,nq
n, i = 1, 2, 3

be formal power series in q with unknown coefficients as before
and assume that ti satisfy the differential equation 4.4, where dot
is 12q ∂∂q and we know the initial value t1,2 = −24. Calculate the
first five coefficients tk,n, k = 1, 2, 3, n = 1, 2, . . . 5 and compare
them with the coefficients in the Eisenstein series.

(2) Find a proof for Proposition 4.2 in the literature (see [26, 22]).

4.4. Halphen vector field

Let us consider the family of elliptic curves considered in §3.5. A vector
field with the properties (4.2) is given by

H = (t1(t2 + t3)− t2t3) ∂

∂t1
+(t2(t1 + t3)− t1t3) ∂

∂t2
+(t3(t1 + t2)− t1t2) ∂

∂t3
.

The corresponding ordinary differential equation is

H :


ṫ1 = t1(t2 + t3)− t2t3
ṫ2 = t2(t1 + t3)− t1t3
ṫ3 = t3(t1 + t2)− t1t2

(4.7)

which is the same as (4.1). Halphen expressed a solution of the system
(4.7) in terms of the logarithmic derivatives of the null theta functions:

Proposition 4.3. The holomorphic functions

u1 = 2(ln θ4(0|z))′, u2 = 2(ln θ2(0|z))′, u3 = 2(ln θ3(0|z))′
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where 
θ2(0|z) :=

∑∞
n=−∞ q

1
2 (n+ 1

2 )2

θ3(0|z) :=
∑∞
n=−∞ q

1
2n

2

θ4(0|z) :=
∑∞
n=−∞(−1)nq

1
2n

2
, q = e2πiz, z ∈ H

satisfy the ordinary differential equation (4.7), where the derivation is with
respect to z.

Exercise. (1) Give a proof of Proposition 4.3, see [12, 27].

4.5. Relations between theta and Eisenstein series

As we mentioned in §3.5, the map α : TH → TR maps the Gauss-Manin
connection matrix of EH to the Gauss-Manin connection matrix of ER,
both written in the basis dx

y ,
xdx
y . We know that X = R or H are both

determined uniquely by ∇X dx
y = −xdx

y , ∇X xdx
y = 0. All these imply that

the vector field H is mapped to the vector field R through the map α.
Let u : H → C3, u(z) = (u1(z), u2(z), u3(z)) be the solution of H by the
logarithmic derivative of theta functions. It turns out that α(u(z)) is a
solution of R, and we claim that it is (g1, g2, g3) defined in (4.6). Two
solutions of (4.4) with the same t1 coordinates are equal (this follows by
the explicit expression of (4.4)). From this and the discussion in §4.3 it
follows that it is enough to prove that both 1

3(u1 +u2 +u3) and g1(z) have
the form 2πi

12 (1− 24q + · · · ). Finally, we get the equalities:

2
3 ln(θ2(0|z)θ3(0|z)θ4(0|z))′ = 2πi

12 E2(z),

4 · 4
∑

2≤i<j≤4
ln((θ2(0|z)θ3(0|z)θ4(0|z))

1
3

θi(0|z)
)′ ln((θ2(0|z)θ3(0|z)θ4(0|z))

1
3

θj(0|z)
)′

= 12(2πi
12 )2E4(z),

4 · 8
3∏
i=1

ln((θ2(0|z)θ3(0|z)θ4(0|z))
1
3

θi(0|z)
)′ = 8(2πi

12 )3E6(z).
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4.6. Automorphic properties of the special solutions

Let us define

SL(2,Z) := {
(
a b
c d

)
| a, b, c, d ∈ Z, ad− bc = 1}

and

Γ(d) := {A ∈ SL(2,Z) | A ≡
(

1 0
0 1

)
mod d}, d ∈ N.

For a holomorphic function f(z) let also define:

(f |0m A)(z) := (cz + d)−mf(Az),

(f |1m A)(z) := (cz + d)−mf(Az)− c(cz + d)−1,

A =
(
a b
c d

)
∈ SL(2,C), m ∈ N.

Exercise. If φi(z), i = 1, 2, 3 with φ̇i = ∂φi
∂z are the coordinates of a

solution of R(resp. H) then

φ1 |12 A, φ2 |04 A, φ |06 A

(resp.

φi |12 A, i = 1, 2, 3,

) are also coordinates of a solution of R (resp. H) for all A ∈ SL(2,C). The
subgroup of SL(2,C) which fixes the solution given by Eisenstein series
(resp. theta series) is SL(2,Z) (resp. Γ(2)). The second part of the exercise
will be verified in §8.

4.7. Another example

Let

η(z) := q
1

24

∞∏
n=1

(1− qn), q = e2πiz
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be the Dedekind’s η-function. In [28] Y. Ohyama has found that

W = (3 log η(z3)− log η(z))′ (4.8)

X = (3 log η(3z)− log η(z))′ (4.9)

Y = (3 log η(z + 2
3 )− log η(z))′ (4.10)

Z = (3 log η(z + 1
3 )− log η(z))′ (4.11)

satisfy the equations:

ṫ1 + ṫ2 + ṫ3 = t1t2 + t2t3 + t3t1
ṫ1 + ṫ3 + ṫ4 = t1t3 + t3t4 + t4t1
ṫ1 + ṫ2 + ṫ4 = t1t2 + t2t4 + t4t1
ṫ2 + ṫ3 + ṫ4 = t2t3 + t3t4 + t4t2
ζ2

3 (t2t4 + t3t1) + ζ3(t2t1 + t3t4) + (t2t3 + t4t1) = 0

,

where ζ3 = e
2πi

3 and ṫi = ∂ti
∂z . We write the first four lines of the above

equation as a solution to a vector field V in C4 and let F (t1, t2, t3, t4) be
the polynomial in the fifth line. Using a computer, or by hand if we have
a good patience for calculations, we can verify the equality dF (V ) = 0
and so V is tangent to T := {t ∈ C4 | F (t) = 0}. Our discussion leads to
a problem which is presented in Exercise 4.7. For more examples, see the
article [35].

Exercise. Show that there is a family of elliptic curves E → T and a
basis ω1, ω2 ∈ H1

dR(E/T ) such that ω1 is a regular differential formal and
∇R(ω1) = −ω2, ∇R(ω2) = 0,

where R is the restriction of V to T .

5. Weierstrass form of elliptic curves

5.1. Introduction
We can think of an elliptic curve over rational numbers as the Diophantine
equation

y2 = 4P (x),
where P is a monic degree three polynomial in x with rational coefficients
and without double roots in C. In fact, this is the Weierstrass form of
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any elliptic curve in the framework of algebraic geometry. The moduli
of elliptic curves is one dimensional and we have apparently three inde-
pendent parameters in the polynomial P . It turns out that there is an
algebraic group of dimension two which acts on the coefficients space of
P and the resulting quotient is the moduli of elliptic curves, see §6.3. In
this section, we remark that the coefficients space of P has also a moduli
interpretation. We consider elliptic curves with elements in their algebraic
de Rham cohomologies and we ask for normal forms of such objects. It
turns out that the three independent coefficients of the polynomial P are
the coordinates system of the moduli of such enhanced elliptic curves.

5.2. Elliptic curves
Let k be a field of characteristic zero. For a reduced smooth curve C over k
we define its genus to be the dimension of the space of regular differential
forms on C.
Definition 5.1. An elliptic curve over k is a pair (E,O), where E is a
genus one complete smooth curve and O is a k-rational point of E.

Therefore, by definition an elliptic curve over k has at least a k-rational
point. A smooth projective curve of degree 3 is therefore an elliptic curve
if it has a k-rational point. For instance, the Fermat curve

F3 : x3 + y3 = z3

is an elliptic curve over Q. It has Q-rational points [0; 1; 1] and [1; 0; 1].
However

E : 3x3 + 4y3 + 5z3 = 0
has not Q-rational points and so it is not an elliptic curve defined over Q.
It is an interesting fact to mention that E(Qp) for all prime p and E(R)
are not empty. This example is due to Selmer (see [2, 31]).

5.3. Weierstrass form
In this section we prove the following proposition:
Proposition 5.2. Let E be an elliptic curve over a field k of characteristic
6= 2, 3 and let ω be a regular differential form on E. There exist unique
functions x, y ∈ k(E) such that the map

E → P2, a 7→ [x(a); y(a); 1]
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gives an isomorphism between the curve E and the curve in P2 given by
y2 = 4x3 − t2x− t3, t2, t3 ∈ k

Under this isomorphism O is identified with [0; 1; 0] and ω = dx
y .

We call x and y the Weierstrass coordinates of E. Since x, y ∈ k(E)
the above isomorphism is defined over k. Note that x

y has a zero of order
one at O and hence the map E → P2 is well-defined at O and it takes
the value [xy (O); 1; 1

y (O)] = [0; 1; 0]. For a curve E of genus one defined
over k and with O ∈ E(k), there is a unique abelian algebraic group
structure on E with the neutral element O, and so, the above isomorphism
is automatically an isomorphism of algebraic groups.

Proof. For a divisor D on a curve C over k̄ define the linear system
L(D) = {f ∈ k̄(C), f 6= 0 | div(f) +D ≥ 0} ∪ {0}

and
l(D) = dimk̄(L(D)).

We know by Riemann-Roch theorem that
l(D)− l(K −D) = deg(D)− g + 1,

where K is the canonical divisor of C and g is the genus of C. We have
deg(K) = 2g−2 and so for deg(D) > 2g−2, equivalently deg(K−D) < 0,
we have

l(D) = deg(D)− g + 1.
For g = 1 and D = nO we get l(D) = n. Using this for n = 2, 3, we can
choose x, y ∈ k(E) such that 1, x form a basis of L(2O) and 1, x, y form
a basis of L(3O). The function x (resp. y) has a pole of order 2 (resp.
3) at O. In fact, we need the following choice of y, y := dx

ω . Note that
ω is regular and vanishes nowhere. The map σ : E → E, P 7→ −P acts
trivially on any x in L(2O) because σx− x has a simple pole, and hence
by residue formula for (σx − x)ω, has no pole and so σx = x. We have
l(6O) = 6 and so there is a linear relation between 1, x, x2, x3, y2, y, xy.
The last two terms y, xy does not appear on such a linear relation: a point
p is a non-zero 2-torsion point of E if and only if p is a double root of
x−x(p) (equivalently y(p) = 0). We can further assume that the coefficient
of y2 is one and of x3 is 4. After a substitution of x with x + a for some
a ∈ k, we get the desired polynomial relation between x and y.

�
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For an elliptic curve E defined over k, let F 1 ⊂ H1
dR(E) be the one

dimensional k-vector space of regular differential 1-forms on E.

Proposition 5.3. Let E be an elliptic curve over a field k of characteristic
zero and ω ∈ H1

dR(E)\F 1. There exist unique functions x, y ∈ k(E) such
that the map

E → P2, a 7→ [x(a); y(a); 1]
gives an isomorphism between the curve E and the curve in P2 given by

y2 = 4(x− t1)3 − t2(x− t1)− t3, t1, t2, t3 ∈ k

Under this isomorphism O is identified with [0; 1; 0] and ω = xdx
y .

Proof. We have a regular differential form ω1 on E which is determined
uniquely by 〈ω1, ω〉 = 1. We apply Proposition 5.2 for the pair (E,ω1).
In the corresponding Weierstrass coordinates by Proposition 2.2 we can
write ω = t1

dx
y + t0

xdx
y , t1, t0 ∈ k. Using (2.13) and 〈ω1, ω〉 = 1, we have

t0 = 1. We now substitute x by x− t1. �

Exercise. Prove that the map E → P2 in Proposition 5.2 and Proposition
5.3 gives an isomorphism between the curve E and its image.

5.4. Group structure
From now on we will simply write E instead of (E,O). An elliptic curve
carries a structure of an abelian group. We explain this for a smooth cubic
in P2.

Let E be a smooth cubic curve in P2 and O ∈ E(k). Let also P,Q ∈ E(k)
and L be the line in P2 connecting two points P and Q. If P = Q then L
is the tangent line to E at P . The line L is defined over k and it is easy
to verify that the third intersection R := PQ of E(k̄) with L(k̄) is also in
E(k). Define

P +Q = O(PQ)
For instance, for an elliptic curve in the Weierstrass form take O = [0; 1; 0]
the point at infinity. By definition O + O = O. The above construction
turns E(k) into a commutative group with the zero element O.

Exercise. (1) Let E be an elliptic curve over k, a ∈ E(k) and f :
E → E, f(x) = x + a. Prove that the induced map in the de
Rham cohomology is identity.
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(2) For g : E → E, g(x) = nx, n ∈ N, prove that the induced map
in the de Rham cohomology is multiplication by n. In fact in the
Weierstrass coordinates, and using Weierstrass p function, we have
the equality:

f∗(xdx
y

) = (1
4( y − y0
x− x0

)2 − x− x0)dx
y
, a = (x0, y0).

This is a real equality between differential forms and not modulo
exact forms.

5.5. Moduli spaces of elliptic curves
Let R = k[t1, t2, t3, 1

∆ ], ∆ := 27t23 − t32 and T = Spec(R). Let also E be
the subvariety of P2 × T given by:
E : zy2− 4(x− t1)3 + t2z

2(x− t1) + t3z
3 = 0, [x; y; z]× (t1, t2, t3) ∈ P2×T

(5.1)
and

E → T

be the projection on T . The differential forms dx
y ,

xdx
y form a free basis

of the R-module H1
dR(E/T ), dx

y is a regular differential form on E, and
〈dxy ,

xdx
y 〉 = 1. The discussion in §5 leads to:

Proposition 5.4. The affine variety T is the moduli of the pairs (Ẽ, ω),
where Ẽ is an elliptic curve over k and ω ∈ H1

dR(Ẽ)\F 1, where F 1 is
the one dimensional subspace of H1

dR(Ẽ) containing regular differential
1-forms.

Note that from the beginning we could work with the elliptic curve E
in the Weierstrass form with t1 = 0. We have the isomorphism

({y2 = 4(x− t1)3− t2(x− t1)− t3},
xdx

y
) ∼= ({y2 = 4x3− t2x− t3},

xdx

y
+ t1

dx

y
),

(x, y) 7→ (x− t1, y).

5.6. Torsion points
For an elliptic curve over k we define E[N ] to be the set of N -torsion
points of E:

E[N ](k) := {p ∈ E(k) | Np = 0}.
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When the base field is clear from the text, we simply write E[N ] =
E[N ](k).

Proposition 5.5. Let E be an elliptic curve over k. We have an isomor-
phism of groups

E[N ](k̄) ∼= (Z/NZ)2

and so the cardinality of E[N ](k) is less than N2.

For a proof see [32], Theorem 6.1 page 165.

6. Quasi-modular forms

6.1. Introduction
In the present section we introduce quasi-modular forms in the framework
of Algebraic Geometry. For an elliptic curve with an element in its de
Rham cohomology, which is not represented by a regular differential form,
we can associate three quantities t1, t2, t3 which appear in Weierstrass form
of E, see Proposition 5.3. These quantities satisfy a simple functional prop-
erty with respect to the action of an algebraic group which turn them our
first examples of quasi-modular forms. These are algebraic version of the
Eisenstein series. In fact, we can describe the algebraic version of all Eisen-
stein series by using residue calculus, see §6.5. For future applications, we
introduce quasi-modular forms for elliptic curves enhanced with certain
torsion elements structure.

6.2. Enhanced elliptic curves
Let N be a positive integer. In this section we use the notation of groups
Γ0(N), Γ1(N) and Γ(N) without using them, see §7 for their definitions.
Their appearance in this section is for the sake of following the terminology
in the literature. The reason for all these, which have apparently nothing
to do with our algebraic context, will be clear in §8.

An enhanced elliptic curve for Γ0(N) is a 3-tuple (E,C, ω), where E is
an elliptic curve over k, C is a cyclic subgroup of E(k) of order N and
ω is an element in H1

dR(E)\F 1. An enhanced elliptic curve for Γ1(N) is
a 3-tuple (E,Q, ω), where E,ω are as before and Q is a point of E(k) of
order N . Let us fix a primitive root of unity of order N in k, say ζ. An
enhanced elliptic curve for Γ(N) is a 3-tuple (E, (P,Q), ω), where E,ω
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are as before and P and Q are a pair of points of E(k) that generates
the N -torsion subgroup E[N ] with Weil pairing eN (P,Q) = ζ. For the
definition of Weil pairing see Chapter 3, Section 8 of Silverman [32]. We
call C,Q or (P,Q) a torsion structure on E. The number of enhanced
elliptic curves for Γ with fixed E and ω is finite and it can be shown that
it is the cardinality of the quotient Γ\SL(2,Z). For N = 1 an enhanced
elliptic curve for all Γ0(N),Γ1(N) and Γ(N) is the same and so we write
Γ = SL(2,Z) = Γ0(N) = Γ1(N) = Γ(N).

The choice of ω ∈ H1
dR(E)\F 1 determines in a unique way a regular

differential 1-form ω1 ∈ F 1 with 〈ω1, ω〉 = 1. This is because F 1 is a one
dimensional subspace of H1

dR(E) and any non-zero element in F 1 together
with ω form a basis of H1

dR(E), and hence, it has non-zero intersection
with ω (otherwise the intersection form would be identically zero). In this
way, ω1, ω form a basis of the k-vector space H1

dR(E).
In a similar way we can define a family of enhanced elliptic curves (see

[14], Chapter III, Section 10).

6.3. Action of algebraic groups

Let Γ be one of the Γ0(N),Γ1(N) and Γ(N) and TΓ be the set of enhanced
elliptic curves for Γ modulo canonical isomorphisms. The additive group
Ga = (k,+) and the multiplicative group Gm = (k∗, ·) acts in a canonical
way on TΓ:

(∗, ∗, ω) • k = (∗, ∗, k−1ω), k ∈ Gm, (∗, ∗, ω) ∈ TΓ,

(∗, ∗, ω) • k = (∗, ∗, k′ω1 + ω), k′ ∈ Ga, (∗, ∗, ω) ∈ TΓ.

Both these actions can be summarized in the action of the algebraic group

G =
{(

k k′

0 k−1

)
| k′ ∈ k, k ∈ k− {0}

}
∼= Ga ×Gm (6.1)

i.e.
(∗, ∗, ω) • g = (∗, ∗, k′ω1 + k−1ω), g ∈ G, (∗, ∗, ω) ∈ TΓ.

It is expected that TΓ is the set of k-rational points of an affine variety
equipped with an action of the algebraic group G, all defined over k, and
compatible with the action of G on TΓ. In the present text we have verified
this in the case N = 1, where an enhanced elliptic curve becomes a pair
(E,ω), ω ∈ H1

dR(E)\F 1 (see §5.5), and Γ = Γ(2). Since the main example
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of the present text is the case N = 1, the study of such affine varieties
and maps between them is postponed to forthcoming articles.

Proposition 6.1. Let Γ = SL(2,Z). The canonical map

T (k)→ TΓ, t 7→ (Eπ−1t,
xdx

y
)

is an isomorphism. Under this isomorphism the action of the algebraic
group G is given by

t • g := (t1k−2 + k′k−1, t2k
−4, t3k

−6), t = (t1, t2, t3), g =
(
k k′

0 k−1

)
∈ G.

Proof. The first part follow from Proposition 5.4. The proof of the second
part is as follows: Let

α : A2
k → A2

k, (x, y) 7→ (k2x− k′k, k3y)

and f = y2 − 4(x− t1)3 + t2(x− t1) + t3. We have

k−6α∗(f) = y2 − 4k−6(k2x− k′k − t1)3 + t2k
−6(k2x− k′k − t1) + t3k

−6 =

y2 − 4(x− k′k−1 − t1k−2)3 + t2k
−4(x− k′k−1 − t1k−2) + t3k

−6.

This implies that α induces an isomorphism of elliptic curves

α : (Et•g, α∗(
xdx

y
)→ (Et,

xdx

y
).

Since
α∗
xdx

y
= k

xdx

y
− k′dx

y

we get the result. �

6.4. Quasi-modular forms
The algebraic group G acts from the right on TΓ and so it acts from the
left on the space of functions on TΓ. A quasi-modular form f of weight
m and differential order or depth n for Γ is a function TΓ → k with the
following properties:

(1) With respect to the action of Gm, f satisfies

k • f = kmf, k ∈ Gm. (6.2)

344



Quasimodular forms and elliptic curves

(2) With respect to the action ofGa, f satisfies the following condition:
there are functions fi : TΓ → k, i = 0, 1, 2, . . . , n such that

k′ • f =
n∑
i=0

(
n

i

)
k′
i
fi, k

′ ∈ Ga. (6.3)

(3) (Growth condition)?

We were not able to formulate a growth condition for quasi-modular forms
in a purely algebraic and intrinsic way using degeneration of curves. Such a
condition would correspond to the classical growth condition for holomor-
phic quasi-modular forms. In [18], this condition is formulated in terms of
Tate curves and Eisenstein series. This does not seem to be a natural one
because it assumes a priori that we know Eisenstein series. The formula-
tion in [15] allows modular forms to have poles on cusps. We are going
to introduce this condition using one of its main consequences, namely,
the k-algebra of quasi-modular forms for SL(2,Z) is generated by three
Weierstrass coordinates.

Note that combining both actions (6.2) and (6.3) we have:

f • g = k−m
n∑
i=0

(
n

i

)
k′
i
kifi, ∀g =

(
k k′

0 k−1

)
∈ G. (6.4)

Let us consider the case Γ = SL(2,Z). We are going to describe the
growth condition in this case. Using Proposition 6.1, the Weierstrass co-
ordinate ti, i = 1, 2, 3 of an enhanced elliptic curve (E,ω) satisfies the
functional equations (6.2) and (6.3) with weight m = 2i and differential
order n = 1 for t1 and n = 0 for t2 and t4. The growth condition for f in
this case is that f is an element in the k-algebra

k[t1, t2, t3], weight(ti) = 2i, i = 1, 2, 3.
It follows that it is homogeneous with deg(f) = m and degt1 f ≤ n. A
quasi-modular form for SL(2,Z) is also called a full quasi-modular form.

Let us now describe the growth condition for arbitrary Γ. Assume that
k is algebraically closed and consider f : TΓ → k with the properties
(6.2) and (6.3). For simplicity we write T = TSL(2,Z). We define gi : T →
k, i = 1, 2, . . . , a = Γ\SL(2,Z) satisfying (6.2) and (6.3) with weight mi
and differential order ni in the following way:

gi : T → k,

345



H. Movasati

gi(E,ω) :=
∑

∗1,∗2,∗2,...,∗i
f(E, ∗1, ω)f(E, ∗2, ω) · · · f(E, ∗i, ω),

where ∗1, ∗2, ∗2, . . . , ∗i runs through i-tuples of torsion structures on E
and attached to Γ. It follows that f is a root of the polynomial

Xa − g1X
a−1 + g2X

a−2 − · · ·+ (−1)a−1ga−1X + (−1)aga. (6.5)
The growth condition for the form f is that the corresponding gi’s are
quasi-modular forms for SL(2,Z). It follows that

gi ∈ k[t1, t2, t3], gi homogeneous, deg(gi) = mi, degt1(gi) ≤ ni.
For n = 0 we recover the definition of modular forms of weight m, see
[18]. A modular form of weight m is a function from the set of enhanced
elliptic curves as before but with this difference that ω ∈ F 1 is a regular
differential form and not an element in H1

dR(E)\F 1. The action of Gm is
given by (∗, ∗, ω) • k = (∗, ∗, kω) and f satisfies k • f = k−mf, k ∈ Gm.
The growth condition in this case can be also expressed using Tate curves.

We denote by Mn
m(Γ) the set of quasi-modular forms of weight m and

differential order n and we set
M (Γ) =

∑
m∈Z,n∈N0

Mn
m(Γ).

When there is no confusion we simply write M = M (Γ) and so on. If
n ≤ n′ then Mn

m ⊂Mn′
m and

Mn
mM

n′
m′ ⊂Mn+n′

m+m′ , M
n
m +Mn′

m = Mn′
m .

We see thatM has a structure of a graded k-algebra. The k-algebra of full
quasi-modular forms has also a differential structure which is given by:

Mn
m →Mn+1

m+2, t 7→ dt(R) =
3∑
i=1

∂t

∂ti
Ri

where R =
∑3
i=1 Ri

∂
∂ti

is the Ramanujan vector field. We sometimes use
R : M →M to denote this differential operator.

The family y2 − 4(x − s1)(x − s2)(x − s3) = 0 is the universal family
for the moduli of 3-tuple (E, (P,Q), ω), where E,ω are as before and P
and Q are a pair of points of E(k) that generates the 2-torsion subgroup
E[N ] with Weil pairing e(P,Q) = −1. The points P and Q are given by
(s1, 0) and (s2, 0). In this case each si, i = 1, 2, 3 is a quasi-modular form
of weight 2 and differential order 1. They generate the algebra M (Γ(2))
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freely. The corresponding differential structure is defined by the Halphen
vector field.

Exercise. (1) There is a canonical bijection between modular forms
of weight m and quasi-modular forms of weight m and differential
order 0.

(2) Verify that fi is a quasi-modular form of weight m − 2i and dif-
ferential order n− i. In particular, fn is a modular form of weight
m− 2n.

(3) Show that the family mentioned in Exercise 4.7 is the universal
family of enhanced elliptic curves for Γ(3).

(4) The algebra M (Γ(2)) is freely generated by three quasi-modular
form s1, s2, s3 of weight 2 and differential order 1. Show that the
polynomial in (6.5) for each si is

((X − t1)3 − 1
4 t2(X − t1)− 1

4 t3)2.

6.5. Eisenstein modular forms
Let E be an elliptic curve over k and ω ∈ H1

dR(E)\F 1. We take the Weier-
strass coordinates of the pair (E,ω) as we have described it in Proposition
5.3. Let also t be a coordinate system around the point O, for instance
take t = x

y . We have dx
y = Pdt for some regular function P in a neighbor-

hood of O. Let us write the formal series of P at O and then write it as
a derivation of some other formal power series z = z(t) =

∑∞
i=1 zit

i. We
have

dx

y
= dz, z1 = −2.

We call z the analytic coordinate system on E. Note that the first coeffi-
cients in the formal power series of t3y, t2x in t are invertible and so z(t)
has coefficients in R.

Proposition 6.2. We have

x = 1
z2 +

∞∑
k=1

g2k+2z
2k,
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and

y = ∂x

∂z
= −2

z3 +
∞∑
k=1

2k · g2k+2z
2k, g2k+2 ∈ R.

Proof. We have z(t) = −2t + O(t2) and write t in terms of z, that is,
t = t(z) = −1

2 z + O(z2). Since the coefficients of z(t) are in R and z(t)
starts with −2t, the coefficients of t(z) are also in R. We write x in terms
of z and we have: x =

∑∞
k=−2 gkz

k for some gk ∈ R. The elliptic curve
E is invariant under the involution (x, y) 7→ (x,−y). The coordinates t
and z are mapped to −t and −z, respectively, and x is invariant. This
implies that gk = 0 for all odd integers k. Calculating g0, g2 we see that
g0 = g2 = 0. The expansion of y follows from the equality dx = ydz. �

Proposition 6.3. The mapping (E,ω)→ g2k+2 is a full modular form of
weight 2k + 2.

We denote this modular form with G2k+2 and we call it the Eisenstein
modular form of weight 2k + 2.

Proof. The growth condition in the definition of a quasi-modular form fol-
lows from the fact that in the process of defining G2k+2, all the coefficients
are in R. For k ∈ Ga, the Weierstrass coordinates system of (E,ω) • k is
(x+k, y) and so dx

y does not change. This implies that g2k+2’s are invariant
under the action of Ga. For k ∈ Gm, the Weierstrass coordinates system
of (E,ω) • k is (x̃, ỹ) = (k−2x, k−3y). In this coordinates system t̃ = kt
and z̃ = kz which give us the desired functional property of g2k+2’s with
respect to the action of Gm. �

Exercise. Show the last piece of the proof of Proposition 6.2, that is,
g0 = g2 = 0. Calculate G4 and G6.

7. Quasi-modular forms over C

7.1. Introduction
The name quasi-modular form seems to appear for the first time in the
work [17] of M. Kaneko and D. Zagier. In this article they give a direct
proof for a formula stated by R. Dijkgraaf in [6] which deals with counting
ramified covering of elliptic curves, see §B.1. In fact if we want to extend
the algebra of full modular forms to an algebra which is closed under the
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canonical derivation then we naturally suspect the existence of the Eisen-
stein series E2. The full functional equation can be derived by consecutive
derivations of the functional equation of a modular form. This is the way
in which the author of the present text rediscovered all these, see [23], and
for this reason called them differential modular forms.

The classical modular or quasi-modular forms are holomorphic func-
tions on the Poincaré upper half plane which satisfy a functional property
with respect to the action of a congruence subgroup of SL(2,Z) on H and
have some growth condition at infinity. The aim of this section is to show
that what we we have developed so far in the context of algebraic geome-
try is essentially the same as its complex counterpart. The bridge between
two notions is the period map which is constructed by elliptic integrals.

7.2. Quasi-modular forms
In this section we recall the definition of a quasi-modular form. For more

details see [22, 23]. We use the notations A =
(
aA bA
cA dA

)
∈ SL(2,R) and

I =
(

1 0
0 1

)
, T =

(
1 1
0 1

)
, Q =

(
0 −1
1 0

)
.

When there is no confusion we will simply write A =
(
a b
c d

)
. We denote

by H the Poincaré upper half plane and

j(A, z) := cAz + dA.

For A ∈ SL(2,R) and m ∈ Z we use the slash operator

f |mA = j(A, z)−mf(Az).

Let Γ be a subgroup of SL(2,Z). For instance, take a congruence group of
level N . This is by definition any subgroup Γ ⊂ SL(2,Z) which contains:

Γ(N) := {A ∈ SL(2,Z) | A ≡
(

1 0
0 1

)
( mod N)}.

It follows that Γ has finite index in SL(2,Z). Our main examples are Γ(N)
itself and

Γ0(N) := {A ∈ SL(2,Z) | A ≡
(
∗ ∗
0 ∗

)
( mod N)},
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Γ1(N) := {A ∈ SL(2,Z) | A ≡
(

1 ∗
0 1

)
( mod N)}.

We define the notion of an Mn
m(Γ)-function, a quasi-modular form of

weight m and differential order n for Γ. For simplicity we write Mn
m(Γ) =

Mn
m. For n = 0 an M0

m-function is a classical modular form of weight m
on H (see below). A holomorphic function f on H is called Mn

m if the
following two conditions are satisfied:

(1) There are holomorphic functions fi, i = 0, 1, . . . , n on H such that

f |mA =
n∑
i=0

(
n

i

)
ciAj(A, z)−ifi, ∀A ∈ Γ. (7.1)

(2) fi |m A, i = 0, 1, 2, . . . , n have finite growths when =(z) tends to
+∞ for all A ∈ SL(2,Z), that is

lim
=(z)→+∞

(fi |m A)(z) = ai,A <∞, ai,A ∈ C.

We will also denote by Mn
m the set of Mn

m-functions and we set

M :=
∑

m∈Z,n∈N0

Mn
m.

For an f ∈ Mn
m we have f |mI = f0 and so f0 = f . Note that for an

Mn
m-function f the associated functions fi are unique. If f isMn

m-function
with the associated functions fi then fi is an Mn−i

m−2i-function with the
associated functions fij := fi+j . The set M is a differential C-algebra:

d

dz
: Mn

m →Mn+1
m+2

If n ≤ n′ then Mn
m ⊂Mn′

m and Mn
mM

n′
m′ ⊂M

n+n′
m+m′ . It is useful to define

f ||mA := (detA)m−n−1
n∑
i=0

(
n

i

)
ciA−1j(A, z)i−mfi(Az), (7.2)

for A ∈ GL(2,R), f ∈Mn
m. The equality (7.1) is written in the form
f = f ||mA,∀A ∈ Γ (7.3)

One can prove that
f ||mA = f ||m(BA), ∀A ∈ GL(2,R), B ∈ Γ, f ∈Mn

m.
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Using this we can prove that the growth condition on f is required only
for a finite number of cases fi||mα, α ∈ Γ\SL(2,Z), i = 0, 1, 2 . . . , n. The
relation of ||m with d

dz is given by:
d(f ||mA)

dz
= df

dz
||m+2A, ∀A ∈ GL(2,R). (7.4)

Let A ∈ SL(2,Z). If f ∈Mn
m(Γ) with associated functions fi then f ||mA ∈

Mn
m(A−1ΓA) with associated functions fi||mA ∈Mn−i

m−2i(A−1ΓA).

7.3. q-expansion
Let us assume that there is h ∈ N such that Th :=

( 1 h
0 1
)
∈ Γ. Take

h > 0 the smallest one. Recall that Γ is a normal subgroup of SL(2,Z).
For an f ∈ Mn

m(Γ) and A ∈ SL(2,Z) with [A] = α ∈ Γ\SL(2,Z) we have
(f ||mA)|mTh = f and so we can write the Fourier expansion of f ||mA at
α

f ||mA =
+∞∑
n=0

anq
n
h , an ∈ C, qh := e2πihz.

We have used the growth condition on f to see that the above function in
qh is holomorphic at 0.

7.4. Period domain
Quasi-modular forms are best viewed as holomorphic functions on the
period domain

P :=
{(

x1 x2
x3 x4

)
| xi ∈ C, x1x4 − x2x3 = 1, =(x1x3) > 0

}
. (7.5)

We let the group SL(2,Z) (resp. G in (6.1) with k = C) act from the left
(resp. right) on P by usual multiplication of matrices. The Poincaré upper
half plane H is embedded in P in the following way:

z → z̃ =
(
z −1
1 0

)
.

We denote by H̃ the image of H under this map. Note that any element
of P is equivalent to an element of H̃ under the action of G because:(

x1 x2
x3 x4

)
=
(
x1
x3
−1

1 0

)(
x3 x4
0 det(x)

x3

)
. (7.6)
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The map

J : GL(2,R)×H→ G, J(A, z) =
(

j(A, z) −c
0 j(A, z)−1 det(A)

)
is an automorphy factor, that is, it satisfies the functional equation:

J(AB, z) = J(A,Bz)J(B, z), A,B ∈ GL(2,R), z ∈ H.
This follows from the equality

A

(
z −1
1 0

)
=
(
Az −1
1 0

)
J(A, z), A ∈ GL(2,R), z ∈ H.

Proposition 7.1. Quasi-modular forms f ∈ Mn
m are in a one to one

correspondence with holomorphic functions F = φ(f) : P → C with the
following properties:

(1) The function F is Γ-invariant.

(2) There are holomorphic functions Fi : P → C, i = 0, 1, . . . , n such
that

F (x · g) = k−m
n∑
i=0

(
n

i

)
k′
i
kiFi(x), ∀x ∈ P, g ∈ G, (7.7)

(3) For all α ∈ SL(2,Z) the restriction of Fi to H̃α has finite growth
at infinity, where H̃α is be the image of H̃ under the action of α
from the left on P.

In fact we have Fi = φ(fi). The proof is a mere calculation and can be
found in [23], Proposition 6.

Exercise. (1) Verify that the vector field

X := −x2
∂

∂x1
− x4

∂

∂x3
(7.8)

is invariant under the action of SL(2,Z) and hence it induces a
vector field X̃ in the quotient Γ\P.

(2) Show that under the the correspondence in Proposition 7.1, the
differential operator on quasi-modular forms as functions on Γ\P
is given by the vector field X̃. Note that X restricted to the loci H̃
is ∂

∂z .
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8. Elliptic integrals

8.1. Introduction

The study of multiple integrals requires an independent study of their
domain of integration. For the elliptic integral (2.1) we have apparently five
different domain of integration: [−∞, a1], [a1, a2], [a2, a3], [a3,+∞], where
a1, a2, a3 are three consecutive roots of P . However, the complexification
and then the geometrization process of such integrals, showed that if we fix
the integrand ω then all such integrals can be written in terms of just two
of them. All such integrals up to some constants, which can be calculated
effectively, can be written in the form

∫
δ ω, where δ is an element in the

homotopy group G := π1(E, b) of the elliptic curve E : y2 = P (x) with a
base point b ∈ E. The integral is zero over the group [G,G] generated by
the commutators of G, that is, elements of the form δ1δ2δ

−1
1 δ−1

2 , and so
we can choose δ from the first homology group:

δ ∈ H1(E,Z) := G/[G,G].

The homology group H1(E,Z) is a Z-module of rank two and in this way
we get our affirmation. This simple observation can be considered as the
beginning of singular homology. H. Poincaré in his book named Analysis
Situs founded the Algebraic Topology and if we look more precisely for
his motivation, we find his articles on multiple integrals. E. Picard was
a first who wrote the treatise Théorie des fonctions algébriques de deux
variables indépendantes on double integrals. For him the study of the
integration domain was justified by the study of integrals, but after him
and in particular for S. Lefschetz, it was done as an independent subject.
The classical theorems of Lefschetz on the topology of algebraic varieties
are an evidence to this fact. One of the beautiful topological theories which
arose from the study of elliptic and multiple integrals is the so called
Picard-Lefschetz theory. A brief description of this is done in §8.2. It can
be considered as the complex counterpart of Morse theory, however, it is
older than it. In families of elliptic curves that we consider the topology
is fixed, all elliptic curves are tori. However, some interesting phenomena
occur when we turn around degenerated elliptic curves. This is described
by Picard-Lefschetz theory. It says that when we are dealing with families
of elliptic curves, SL(2,Z) and its subgroups are there, even we do not
mention them explicitly.
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I have avoided to use Weierstrass uniformization theorem for elliptic
curves. Instead, I have tried to use Hodge theoretic arguments in order
to derive many statements which follow from it. The main reason for this
is the possibility of the generalizations for other type of varieties. For
an introduction to Hodge theory (Hodge structures, period maps, Torelli
problem and etc.) the reader is referred to the books of C. Voisin (2003). In
§8.5 we describe how Eisenstein series appear in the inverse of the period
map. The case of E4 and E6 follow from the Weierstrass uniformization
theorem, however, the case of E2 is not covered by this theorem. In order to
calculate the q-expansion of a quasi-modular form we need first its differ-
ential equation and second, its first coefficients. In order to calculate such
coefficients we need to write down the Taylor series of elliptic integrals
in a degenerated elliptic curve. Doing this, we get the formulas of elliptic
integrals in terms of hypergeometric functions (see 8.6) and immediately
after, we give another characterization of the Ramanujan differential equa-
tion in terms of hypergeometric functions (see §8.7). This is in fact the
method which G. Halphen used to derive a differential equation depend-
ing on three parameters of the Gauss hypergeometric function. We also
get the Schwarz map whose image gives us the well-known triangulation
of the upper half plane such that each triangle is a fundamental domain
for SL(2,Z). The bridge between the analytic and algebraic versions of
quasi-modular forms is the notion of period map constructed from elliptic
integrals (see §8.4). In this section we also explain this.

Exercise. Calculate the integrals (2.2), where δ is one of

[−∞, a1], [a1, a2], [a2, a3], [a3,+∞]

and a1, a2, a3 are three consecutive roots of P in terms of two of them.

8.2. The monodromy group

In the framework of algebraic geometry, the arithmetic group SL(2,Z) is
hidden and it appears as the monodromy group of the family of elliptic
curves Et over C. In order to calculate such a monodromy group we need
a machinery called Picard-Lefschetz theory. See for instance [1] for the
local version of such a theory and see [20] for a global version.

The elliptic curve Et, t ∈ T given by (5.1) as a topological space is a
torus and hence H1(Et,Z) is a free rank two Z-module. Smooth variations
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of t, gives us the monodromy representation

π1(T, b)→ Iso(H1(Eb,Z)),

where b is a fixed point in T . We would like to calculate the image of
the monodromy representation in a fixed basis of δ1, δ2 of H1(Eb,Z). A
classical way for choosing such a basis is given by the Picard-Lefschetz
theory. Fix the parameters t1 and t2 6= 0 and let t3 varies. Exactly for two
values t̃3, ť3 = ±

√
t32
27 of t3, the curve Et is singular. In Eb − {∞} we can

take two cycles δ1 and δ2 such that 〈δ1, δ2〉 = −1 and δ1 (resp. δ2) vanishes
along a straight line connecting b3 to t̃3 (resp. ť3). The corresponding
anti-clockwise monodromy around the critical value t̃3 (resp ť3) can be
computed using the Picard-Lefschetz formula:

δ1 7→ δ1, δ2 7→ δ2 + δ1 ( resp. δ1 7→ δ1 − δ2, δ2 7→ δ2).

The canonical map π1(C\{t̃3, ť3}, t) → π1(T, t) induced by inclusion is a
surjection and so the image of π1(T, t) under the monodromy representa-
tion is

SL(2,Z) = 〈A1, A2〉, where A1 :=
(

1 0
1 1

)
, A2 :=

(
1 −1
0 1

)
.

Let us explain the above topological picture by the following one param-
eter family of elliptic curves:

Eψ : y2 − 4x3 + 12x− 4ψ = 0.

For b a real number between 2 and −2 the elliptic curve Eb intersects the
real plane R2 in two connected pieces which one of them is an oval and
we can take it as δ2 with the anti clockwise orientation. In this example
as ψ moves from −2 to 2, δ2 is born from the point (−1, 0) and ends up
in the α-shaped piece which is the intersection of E2 with R2. The cycle
δ1 lies in the complex domain and it vanishes on the critical point (1, 0)
as ψ moves to 2. It intersects each connected component of Eb ∩ R2 once
and it is oriented in such away that 〈δ1, δ2〉 = −1.

Exercise. If we fix t1 and t3 and let t2 vary then we get three criti-
cal curves. Describe the intersection number between the corresponding
vanishing cycles δi, i = 1, 2, 3, linear relations between δi’s and the mon-
odromy around each critical fiber.
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Figure 8.1. Elliptic curves: y2 − x3 + 12x− 4ψ, ψ = −1.9,−1, 0, 2, 3, 5, 10

8.3. Hodge structure of elliptic curves

Let E be an elliptic curves over C. We can regard E as a complex manifold
and so we have de Rham cohomologies of H i

dR(E), i = 0, 1, 2 defined
using C∞ and C-valued differential forms. In the C∞ context we have
also the wedge product H1

dR(E) × H1
dR(E) → H2

dR(E) bilinear map and
the isomorphism

H2
dR(E) ∼= C, ω 7→ 1

2πi

∫
E
ω.

The 2πi factor is there, because in this way the above isomorphism is
the complexification of an isomorphism of Z-modules H2(E,Z) ∼= Z. The
translation of all these in the algebraic context is done in §2 and we leave
it to the reader the details of comparison of algebraic and C∞ contexts.
For this and the details of what we are going to describe the reader is
referred to the classical Book of Griffiths and Harris (1978) or to the two
volume book of C. Voisin (2002) on Hodge theory.

There is a one dimensional subspace F 1 ⊂ H1
dR(E) which is spanned

by regular differential forms on E. We have the complex conjugation in
H1

dR(E) and it turns out that F 1 ∩ F 1 = {0} and so

H1
dR(E) = F 1 ⊕ F 1,
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which is called the Hodge decomposition. The bilinear map 〈·, ·〉 con-
structed in §2.10 turns out to be

〈·, ·〉 : H1
dR(E)×H1

dR(E)→ C, (ω, α) 7→ 1
2πi

∫
E
ω ∧ α.

It satisfies the following inequality

− 〈ω, ω〉 > 0, ω ∈ F 1. (8.1)

From all these we want to conclude two well-known facts about elliptic
integrals.

Proposition 8.1. Let E be an elliptic curve in the Weierstrass form and
let δ1, δ2 ∈ H1(E,Z) with 〈δ1, δ2〉 = −1. We have

(1) The integral
∫
δ
dx
y , δ ∈ H1(E,Z) never vanishes and

=
(∫

δ1
dx
y∫

δ2
dx
y

)
> 0. (8.2)

(2) We have ∫
δ2

dx

y

∫
δ1

xdx

y
−
∫
δ1

dx

y

∫
δ2

xdx

y
= 2πi. (8.3)

Proof. The first part follows, for instance, from [32], Proposition 5.2. The
second part is known as Legendre relations between elliptic integrals, see
for instance [32], Exercise 6.4 d. We give another proof of all these based
on de Rham cohomology arguments presented in this section.

Let δ̌i ∈ H1(Et,Z), i = 1, 2 be the Poincaré dual of δi, that is,
∫
δ δ̌i =

〈δi, δ〉 for all δ ∈ H1(E,Z). The bilinear map 〈·, ·〉 in cohomology is dual
to the intersection linear map in cohomology and so 〈δ̌1, δ̌2〉 = −1. In the
de Rham cohomology H1

dR(E) we have

ω = −(
∫
δ2
ω)δ̌1 + (

∫
δ1
ω)δ̌2, ω = dx

y
,
xdx

y
.
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We use this for ω = dx
y and we see that the inequality (8.1) is equivalent

to the first part of the proposition. The second part follows from

2πi = 2πi〈dx
y
,
xdx

y
〉

= 〈−(
∫
δ2

dx

y
)δ̌1 + (

∫
δ1

dx

y
)δ̌2,−(

∫
δ2

xdx

y
)δ̌1 + (

∫
δ1

xdx

y
)δ̌2〉

= (
∫
δ2

dx

y

∫
δ1

xdx

y
−
∫
δ1

dx

y

∫
δ2

xdx

y
)

�

8.4. Period map
Recall the notations of §6 for the base field k = C. Recall also that that
for Γ = SL(2,Z) we have

T := TΓ = {(t1, t2, t3) ∈ C3 | 27t23 − t32 6= 0}.
If Γ is one of Γ(N),Γ1(N),Γ0(N) then we know that the projection map
β : TΓ → T (neglecting the torsion point structure) is a covering of degree
#(Γ\SL(2,Z)) (see Exercise 8.4) and so TΓ has a natural structure of a
complex manifold. We define RΓ to be the pull-back of the Ramanujan
vector field in TΓ.

Let us fix b ∈ TΓ and a basis δ0
1 , δ

0
2 of the Z-module H1(Eβ(b),Z) with

〈δ0
1 , δ

0
2〉 = −1. For any path γ which connects b to an arbitrary point

t ∈ TΓ we define δ1, δ2 ∈ H1(Et,Z) to be the monodromy of δ0
1 and δ0

2
along the path γ. The period map is defined by

pm : TΓ → Γ\P, t 7→
[

1√
−2πi

(∫
δ1

dx
y

∫
δ1

xdx
y∫

δ2
dx
y

∫
δ2

xdx
y

)]
.

Brackets [·] means the equivalence class in the quotient Γ\P. It is well-
defined because of Proposition 8.1 and the following fact: different choices
of the path γ lead to the action of Γ from the left on P which is already
absorbed in the quotient Γ\P. Different choices of b and δ0

1 , δ
0
2 lead to the

composition of the period map with canonical automorphisms of Γ\P (see
Exercise 8.4, 2). The factor 1√

−2πi is inserted so that the determinant of
the matrix is one (Legendre relation between elliptic integrals).

Proposition 8.2. We have
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(1) The period map is a local biholomorphism;

(2) It satisfies

pm(t • g) = pm(t) · g, t ∈ TΓ, g ∈ G; (8.4)

(3) The push forward of the vector field RΓ by the period map pm is
the vector field X in (7.8).

Proof. It is enough to prove the Proposition for Γ = SL(2,Z) (Exercise
8.4, 4). The equality (8.4) follows from Proposition 6.1. The last statement
follows from Proposition 3.1 and (3.3) as follows:

dpm(R) = pm(t) ·Atr(R) = pm
(

0 0
−1 0

)
=
(
−x2 0
−x4 0

)
.

We have used the notation pm =
(
x1 x2
x3 x4

)
. Using the equality (3.4), (8.3)

we have:

dx1 ∧ dx3 ∧ dx2 = A11 ∧A12 ∧ (x1A3 + x2A22)

= 1
∆3 (− 1

12d∆) ∧ (3
2α) ∧ (x1∆dt1)

= 3x1
4∆ dt1 ∧ dt2 ∧ dt3,

where A = [Aij ] is the Gauss-Manin connection in the basis in Proposition
3.1. Using (8.2) we conclude that pm is a local biholomorphism. �

Exercise. (1) For Γ = Γ0(N), Γ1(N), Γ(N) show that the cardinal-
ity of Γ\SL(2,Z) is the number of enhanced elliptic curves for Γ
with (E,ω) fixed.

(2) Show that the period map pm is well-defined.

(3) For A ∈ Γ\SL(2,Z) we have the well-defined map FA : Γ\P →
Γ\P, x 7→ Ax. A different choice of δ0

1 , δ
0
2 in the definition of the

period map leads to the composition pm ◦ FA.

(4) Proposition 8.2 for Γ = SL(2,Z) implies the same proposition for
arbitrary Γ.
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8.5. Inverse of the period map
In this section we consider the case Γ = SL(2,Z). Let

g = (g1, g2, g3) : H→ T

be the composition H → SL(2,Z)\P pm−1
→ T . Here, pm−1 is the local

inverse of the period map, however, since H is simply connected, g is
a well-defined one valued holomorphic function on H. For a moment, we
assume that the period map is a global biholomorphism. From Proposition
8.2 part 2 it follows that gi’s satisfy

(cz + d)−2igi(
az + b

cz + d
) = gi(z), i = 2, 3, (8.5)

(cz + d)−2g1(az + b

cz + d
) = g1(z) + c(cz + d)−1, z ∈ H,

(
a b
c d

)
∈ SL(2,Z).

From Proposition 8.2 part 3 it follows also that g is a solution of the vector
field R, that is,

dg1
dz

= g2
1 −

1
12g2,

dg2
dz

= 4g1g2 − 6g3,
dg3
dz

= 6g1g3 −
1
3g

2
2 (8.6)

Since
(

1 1
0 1

)
∈ SL(2,Z), the functions gi are invariant under z 7→ z +

1, and so, they can be written in terms of the new variable q = e2πiz.
Later, we will prove that gi’s have a finite growth at infinity and hence as
functions in q are holomorphic at q = 0.

8.6. Hypergeometric functions
Let us consider the following one parameter family of elliptic curves

Eψ : y2 − 4x3 + 12x− 4ψ = 0
and the cycles δ1, δ2 ∈ H1(Eψ,Z) described in §8.2: for ψ a real number
between −2 and 2, δ2 is the closed curve inside Eψ ∩ R2 which encircles
(−1, 0) and δ1 ∈ H1(Eψ,Z) vanishes on the nodal point (1, 0). Whenever
we need to emphasize that δi, i = 1, 2 depends on ψ we write δi = δi(ψ).
The cycles δi, i = 1, 2 form a basis of H1(Eψ,Z) and it follows from
Proposition 3.1 and the equality (3.4) that the matrix

Y =
( ∫

δ1
dx
y

∫
δ2

dx
y∫

δ1
xdx
y

∫
δ2

xdx
y

)
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forms a fundamental system of the linear differential equation:

Y ′ = 1
ψ2 − 4

(
−1
6 ψ

1
3−1

3
1
6ψ

)
Y, (8.7)

that is, any solution of (8.7) is a linear combination of the columns of Y .
This example shows a little bit the historical aspects of the Gauss-Manin
connection. From (8.7) it follows that the elliptic integral

∫
δ2

dx
y (resp.∫

δ2
xdx
y ) satisfies the differential equation

5
36I+2ψI ′+(ψ2−4)I ′′ = 0 ( resp. −7

36 I+2ψI ′+(ψ2−4)I ′′ = 0) (8.8)

which is called a Picard-Fuchs equation. We make a linear transformation

τ = ψ + 2
4

which sends the singularities ψ = −2, 2 of (8.7) to τ = 0, 1. We write
(8.7) in the variable τ . The integrals

∫
δ2

dx
y and

∫
δ2

xdx
y are holomorphic

around τ = 0. We write X := [
∫
δ2

dx
y ,
∫
δ2

xdx
y ]tr as a formal power series

in τ X =
∑∞
i=0 Yiτ

i, substitute it in (8.7) and obtain a recursive formula
for Yi’s. We also obtain Y0 = [a0,−a0]tr, where a0 is the value of

∫
δ2

dx
y

at ψ = −2. This must be calculated separately. The intersection of the
elliptic curve Eψ,−2 < ψ < 2 with the real plane R2 has two connected
component, one of them is δ2 and the other δ̃2 is a closed path in Eψ
which crosses the point at infinity [0; 1; 0]. It turns out that if we give the
clockwise orientation to δ̃2 then it is homotopic to δ2 in Eψ and

a0 =
∫
δ̃2

dx

y

∣∣∣∣
ψ=−2

= 2
∫ ∞

2

dx

2(x+ 1)
√
x− 2

=
2tang−1(

√
x−2√

3 )
√

3

∣∣∣∣∣∣
∞

2

= π√
3
.

Note that for ψ a real number near −2, by Stokes formula we have
∫
δ2

dx
y =∫

∆2
dx∧dy
y2 > 0, where ∆2 is the region in R2 bounded by δ2, and so we

already knew that a0 ≥ 0. This explain the fact that why δ2 is homotopic
to clockwise oriented δ̃2. The result of all these calculations is:∫

δ2

dx

y
= π√

3
F (1

6 ,
5
6 , 1|

ψ + 2
4 ), (8.9)∫

δ2

xdx

y
= − π√

3
F (−1

6 ,
7
6 , 1|

ψ + 2
4 ),

361



H. Movasati

where

F (a, b, c|z) =
∞∑
n=0

(a)n(b)n
(c)nn! z

n, c 6∈ {0,−1,−2,−3, . . .}, (8.10)

is the Gauss hypergeometric function and (a)n := a(a+ 1)(a+ 2) · · · (a+
n− 1).

Let us now calculate the integrals
∫
δ1

xidx
y , i = 0, 1. We have the iso-

morphism E−ψ → Eψ, (x, y) 7→ (−x, iy) which sends the cycle δ2(−ψ) to
δ1(ψ) and δ1(−ψ) to −δ2(ψ). This gives us the equalities:∫

δ1(ψ)

xjdx

y
= (−1)ji

∫
δ2(−ψ)

xjdx

y

Finally, we have calculated all the entries of Y :

Y =

 πi√
3F (1

6 ,
5
6 , 1|

−ψ+2
4 ) π√

3F (1
6 ,

5
6 , 1|

ψ+2
4 )

πi√
3F (−1

6 ,
7
6 , 1|

−ψ+2
4 ) − π√

3F (−1
6 ,

7
6 , 1|

ψ+2
4 )


The monodromy around τ = 0 leaves δ2 invariant and takes δ1 to δ1 + δ2.
From this it follows that for a fixed complex number a:∫
δ1

dx

y
= ln(aτ)

2πi (
∫
δ2

dx

y
) + 1

2i
√

3
f(τ) = 1

2i
√

3
(F (1

6 ,
5
6 , 1|τ) ln(aτ) + f(τ)),

(8.11)
where f is a one valued function in a neighborhood of τ = 0. From Exer-
cises 8.6, 4 it follows that f is holomorphic at τ = 0. We choose a in such
a way that the value of f at τ = 0 is 0. This is equivalent to the following
formula for a:

a = exp(2πi(lim
τ→0

∫
δ1

dx

y
− ln τ

2πi

∫
δ2

dx

y
)).

According to Exercise 8.6, 4 we have

a = 1
432 .

We write f =
∑∞
i=1 fnτ

n and substitute (8.11) in the Picard-Fuchs
equation (8.9) and we obtain the following recursion for fn’s: f0 = 0,

fn+1 =
(n− 1

6)(n− 5
6)

(n+ 1)2 fn +
(1

6)n(5
6)n

(n!)2
2n+ 1

(n+ 1)2 −
2

n+ 1
(1

6)n+1(5
6)n+1

((n+ 1)!)2 .

We will need the value f1 = 13
18 .
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Exercise. (1) Deduce (8.8) from (8.7).

(2) The integrals
∫
δ2

dx
y and

∫
δ2

xdx
y are holomorphic at τ = 0.

(3) Do the details of the calculations which lead to the equalities (8.9).

(4) Prove

lim
τ→0

πi√
3
F (1

6 ,
5
6 , 1|1− τ)− π√

3
F (1

6 ,
5
6 , 1|τ) ln τ

2πi = ln(432)
2πi .

8.7. Periods and Ramanujan

In this section consider the full modular group Γ = SL(2,Z) and the
corresponding period map. We are interested in the image L of the map
g constructed in §8.5. This is the locus L of parameters t ∈ T such that:∫

δ1

xdx

y
= −
√
−2πi,

∫
δ2

xdx

y
= 0, for some δ1, δ2 ∈ H1(Et,Z) (8.12)

with 〈δ1, δ2〉 = −1. Using Proposition 8.2, part 2 and and the equality
(7.6), we know that the locus of such parameters is given by:

I = (I1, I2, I3) := (t1, t2, t3) •
(

( 1√
−2πi

∫
δ2

dx
y )−1 − 1√

−2πi
∫
δ2

xdx
y

0 1√
−2πi

∫
δ2

dx
y

)
=

(
−t1(2πi)−1(

∫
δ2

dx

y
)2 + (2πi)−1

∫
δ2

xdx

y

∫
δ2

dx

y
, t2 · (2πi)−2(

∫
δ2

dx

y
)4,

− t3(2πi)−3(
∫
δ2

dx

y
)6
)

The mentioned locus is one dimensional and the above parametrization
is by using three parameters t1, t2, t3. We may restrict it to a one dimen-
sional subspace t = (0, 12,−4ψ) as in §8.6, use the formulas of elliptic
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integrals in terms of hypergeometric functions (8.9) and obtain the fol-
lowing parametrization of L:

I =
(
a1F (−1

6 ,
7
6 , 1 | τ)F (1

6 ,
5
6 , 1 | τ), a2F (1

6 ,
5
6 , 1 | τ)4,

a3(1− 2τ)F (1
6 ,

5
6 , 1 | τ)6

)

where

(a1, a2, a3) = (2πi
12 , 12(2πi

12 )2, 8(2πi
12 )3).

From ∇R
xdx
y = 0 and (8.12) it follows that L is tangent to the vector

field R. In other words, it is a leaf of the foliation induced by R. Since the
period map sends R to X, and the canonical map H→ P sends ∂

∂z to X,
we conclude that Ii’s can be written in terms of the new variable

z =
∫
δ1

dx
y∫

δ2
dx
y

= i
F (1

6 ,
5
6 , 1|1− τ)

F (1
6 ,

5
6 , 1|τ)

that is
(I1, I2, I3) = (g1(z), g2(z), g3(z)),

where (g1, g2, g3) : H→ C3 is given in §8.5. Let us define

E2i(z) = a−1
i gi(z), i = 1, 2, 3.

We get the equalities:

F (−1
6 ,

7
6 , 1 | τ)F (1

6 ,
5
6 , 1 | τ) = E2(i

F (1
6 ,

5
6 , 1|1− τ)

F (1
6 ,

5
6 , 1|τ)

), (8.13)

F (1
6 ,

5
6 , 1 | τ)4 = E4(i

F (1
6 ,

5
6 , 1|1− τ)

F (1
6 ,

5
6 , 1|τ)

),

(1− 2τ)F (1
6 ,

5
6 , 1 | τ)6 = E6(i

F (1
6 ,

5
6 , 1|1− τ)

F (1
6 ,

5
6 , 1|τ)

).
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8.8. Torelli problem
In Hodge theory the global injectivity of the period map is known as global
Torelli problem. As the reader may have noticed we need only the local
injectivity of the period map in order to extract quasi-modular forms from
the inverse of the period map.

The period map pm in §8.4 is a global biholomorphism if and only if
the induced map p : T/G → SL(2,Z)\P/G ∼= SL(2,Z)\H is a biholo-
morphism. The last statement follows from Weierstrass uniformization
theorem. We give another proof based on a q-expansion argument. The
quotient SL(2,Z)\H has a canonical structure of a Riemann surface such
that the map p is a local biholomorphism. Let U be a subset of SL(2,Z)\H
containing all z with =(z) > 1. The map

U → D(0, e−2π), z 7→ q = e2πiz,

where D(0, r) is a disk in C with center 0 and radius r, is a coordinate
system around each point of U . Using this map S̄ := SL(2,Z)\H ∪ {∞}
becomes a compact Riemann surface, where the value of the above coor-
dinate at ∞ is q = 0. From another side T/G admits also the canonical
compactification T/G := C3/G which is obtained by adding the single
point p = {∆ = 0}/G to T/G. A coordinate system around p for T/G is
given by (C, 0)→ T/G, τ 7→ (0, 12,−4(4τ − 2)) (recall the one parameter
family of elliptic curves in §8.6). The map p written in these coordinates
is

τ 7→ q = e
2πi

∫
δ1

dx
y∫

δ2
dx
y = 1

432τe
f(τ)

F ( 1
6 ,

5
6 ,1|τ) = 1

432τe
13
18 τ+···

1+ 5
36 τ+··· (8.14)

This is an invertible map at τ = 0. This implies that p extends to a local
biholomorphism T/G → S̄ without critical points. Since both the image
and domain of this map are compact Riemann surfaces of genus zero, we
conclude that p is a global biholomorphism.

8.9. q-expansion

The subgroup of SL(2,Z) which leaves the set {
(
z −1
1 0

)
| z ∈ H} invari-

ant is generated by the matrix
(

1 1
0 1

)
, therefore, the variable q gives us
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a biholomorphism between the image H̃ of H in SL(2,Z)\P and the punc-
tured disc of radius one. In other words, q is a global coordinate system
on H̃. Therefore, we can write gi’s of §8.7 in terms of q:

gi := Ii(p−1(q)).
where p : (C, 0) → (C, 0) is the map given by (8.14). It follows that gi as
a function in q is one valued and holomorphic in the disc of radius one
and center 0. If we write gi as a formal Laurent series in q, and substitute
in (8.13), then we get a recursion for the coefficients of gi’s. There is a
better way to calculate such formal power series. We calculate the first
two coefficients of g1 as above:

E2 = 1− 24.q + · · ·
The functions gi = aiEi’s as formal power series satisfy the Ramanujan
differential equation (4.4) and so according to discussion in §4.3, we can
calculate all the coefficients of Ei knowing the initial values 1 and −24 as
above and the recursion given by (4.4).

8.10. Schwarz map
The multivalued function

p : C− {0, 1} → H, τ 7→
∫
δ1

dx
y∫

δ2
dx
y

= i
F (1

6 ,
5
6 , 1|1− τ)

F (1
6 ,

5
6 , 1|τ)

is called the Schwarz map. We summarize its global behavior in the fol-
lowing proposition:

Proposition 8.3. Let

U := {z ∈ C | <(z) < 1
2}\{z ∈ R | z ≤ 0}.

and consider the branch of the Schwarz map in U which has pure imagi-
nary values in 0 < τ < 1

2 . Its image is the interior of the classical funda-
mental domain of the action of SL(2,Z) in H depicted in Picture (8.2). Its
analytic continuation result in the triangulation of H as in Picture (8.2).

Basic ingredients of the proof are the global injectivity of the period
map discussed in §8.8 and the following exercise:

Exercise. Let p be the branch of the Schwarz map described in Proposition
8.3. Prove the following:
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Figure 8.2. Fundamental domain

(1)
lim

τ∈R, τ→0+
p(τ) = +∞.

(2)
|p(1

2 + ix)| = 1, x ∈ R.

(3)

lim
x∈R, x→±∞

p(1
2 + ix) = ±1

2 +
√

3
2 .

(4) The analytic continuation of p from the upper half (resp. lower
half) of C to R− has the constant real part 1

2 (resp. −1
2).

8.11. Comparison theorem
Now, we are in a position to prove that the algebraic and analytic notions
of quasi-modular forms are equivalent.
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Theorem 8.4. The differential graded algebra of quasi-modular forms in
the Poincaré upper half plane together with the differential operator d

dz
is isomorphic to the graded differential algebra of quasi-modular forms
defined in §6 together with the differential operator RΓ.

Proof. According to Proposition 7.1, quasi-modular forms can be viewed
as functions on Γ\P. Now, the period map which is a biholomorphism
gives us the desired isomorphism of algebras.

�

Appendix A. Quasi-modular forms as sections of jet bundles

In this appendix we explain the geometric interpretation of quasi-modular
forms in terms of sections of jet bundles of tensor powers of line bundles
on the moduli of elliptic curves. The main ingredients of this appendix
are taken from a private communication with Prof. P. Deligne. We leave
to the reader the comparison of the material of this appendix with Lee’s
article [21] and in particular the notion of quasi-modular polynomial. For
simplicity, we work with elliptic curves over C.

Let Γ ⊂ SL(2,Z) be one of the modular groups Γ0(N),Γ(N),Γ0(N). As
we noticed M = Γ\H is the moduli space of elliptic curves over C with a
certain torsion structure. Let G be any algebraic group, for instance take
G the multiplicative group (C∗, ·) or the group (6.1) for k = C. We usually
identify G with a linear subgroup of GL(n,C), for some n ∈ N, and hence
assume that G acts on Cn. A G-automorphy factor on H is a map:

j : Γ×H→ G

which satisfies

j(AB, z) = j(A,Bz)j(B, z), A,B ∈ Γ, z ∈ H.

Any G-automorphy factor gives us a G-vector bundle onM and vice verse:
the quotient H× Cn/ ∼, where

(z, v) ∼ (Az, j(A, z)v), ∀z ∈ H, A ∈ Γ, v ∈ Cn,

gives us a G-bundle in M . For G = (C∗, ·) we get line bundles on M .
Holomorphic functions f : H→ Cn with the functional equation

f(Az) = j(A, z)f(z), A ∈ Γ, z ∈ H
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are in one to one correspondence with holomorphic sections of the G-
bundle associated to the automorphy factor j.

For z ∈ H we have the elliptic curve C/〈1, z〉 and the one dimensional
vector space Cdτ , where τ is the canonical coordinate on C. This can be
also identified with Lie(E)∨, the linear dual of the Lie algebra of E, that
is, the linear dual of the tangent space of E at 0 ∈ E. This gives us a line
bundle, say it ω. The corresponding automorphy factor is given by

j(A, z) = (cz + d), A =
(
a b
c d

)
∈ Γ, z ∈ H. (A.1)

(Exercise A,1). We have also the canonical line bundle Ω ofM (dual of the
tangent bundle of M) which is given by the automorphy factor j(A, z)2.
It follows that

Ω = ω ⊗ ω. (A.2)
For a vector bundle F → M over a complex manifold M , the n-th jet

bundle JnF of F is defined as follows: the fiber JnFx of JnF at x ∈M is
defined to be the set of sections of F in a neighborhood of x modulo those
which vanish at x of order n. In other words, JnFx is the set of Taylor
series at x of the sections of F up to order n. A section of JnF in a small
open set U ⊂M with a coordinate system (z1, z2, . . . , zm) is a sum∑

0≤k1,k2,...,km≤n
fk1,k2,...,km(z)(w1 − z1)k1(w2 − z2)k2 · · · (wm − zm)km ,

where fk1,k2,...,km(z) are holomorphic sections of F in U and w is an extra
multi variable.

Let M := Γ\H and ωm := ω ⊗ ω ⊗ · · ·⊗, m times, be as before. A
section of Jnωm corresponds to a sum

F (z, w) =
n∑
i=0

fi(z)
i! (w − z)i, z ∈ H, w ∈ C,

where fi’s are holomorphic functions on H such that

F (Az,Aw) = F (z, w)j(A,w)m +O((Aw −Az)n+1).

We perform i-times the derivation ∂
∂(Aw) = (cw + d)2 ∂

∂w in both sides of
the above equality and then put w = z. We get functional equations for
fi’s:

fi(Az) = ((cz + d)2 ∂

∂z
)(i)(f(z)j(A, z)m).
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Here f = f0 and we redefine the derivation of fi’s: ∂fi
∂z := fi+1 (the

derivation in other terms is the usual one). Neglecting the growth condition
for fi’s we conclude that fi is a quasi-modular form of weight m+ 2i and
differential order i.

We discuss briefly the growth condition. From j(
(

1 1
0 1

)
, z) = 1 it

follows that the line bundles ω and Ω have canonical extensions ω̄ and
Ω̄ to M̄ = Γ\(H ∪ Q). Sections of ω̄m are in one to one correspondence
with modular forms of weight m. We end this section with the following
affirmation: the following map is a bijection

global sections of Jnω̄m−2n →Mn
m,

n∑
i=0

fi(z)
i! (w − z)i 7→ fn. (A.3)

Exercise. (1) The automorphy factor associated to ω and Ω are re-
spectively j and j2, where j is given by (A.1).

(2) The cohomology bundle H on Γ\H associates to each point z ∈
Γ\H the two dimensional vector space H1(C/〈1, z〉,C). We have a
canonical inclusion ω ⊂ H and an isomorphism of bundles H/ω ∼=
ω−1.

(3) Calculate the automorphy factor of J1ω
−1 and conclude that

J1ω
−1 = H.

(4) Prove that the Gauss-Manin connection induces an isomorphism
ω
∼→ Ω⊗H/ω.

(5) Prove the bijection (A).

Appendix B. Examples of quasi-modular forms as generat-
ing functions

The field Q(E2, E4, E6) generated by three Eisenstein series

E2k = 1− 4k
B2k

∞∑
n=1

∑
d|n

d2k−1

 qn, k = 1, 2, 3, (B.1)
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where B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , . . . are Bernoulli numbers, and its

algebraic closure contain many interesting generating functions. We list
some of them without proofs. It is convenient to use the weights

weight(E2k) = 2k, k = 1, 2, 3

for the ring Q[E2, E4, E6].

B.1. Ramified elliptic curves

Let E be a complex elliptic curve and let p1, . . . , p2g−2 be distinct points
of E, where g > 1. We will discuss the case g = 1 separately. The set
Xg(d) of equivalence classes of holomorphic maps φ : C → E of degree
d from compact connected smooth complex curves C to E, which have
only one double ramification point over each point pi ∈ E and no other
ramification points, is finite. By the Hurwitz formula the genus of C is
equal to g. Define

Ng,d :=
∑

[φ]∈Xg(d)

1
|Aut (φ) | (B.2)

and

Fg :=
∞∑
d=1

Ng,dq
d.

After R. Dijkgraaf, M. Douglas, D. Zagier, M. Kaneko, see [6, 17], we know
that

Fg ∈ Q[E2, E4, E6],
For instance,

F2(q) = 1
103680(10E3

2 − 6E2E4 − 4E6),

F3(q) =
1

35831808(−6E6
2 + 15E4

2E4 − 12E2
2E

3
4 + 7E3

4 + 4E3
2E6 − 12E2E4E6 + 4E2

6).

For g = 1 we do note have ramification points and for φ : C → E
as before, Aut(φ) consists of translations by elements of φ−1(0) and so
#Aut(φ)) = d. Therefore, d · Nd,1 =

∑
i|d i is the number of group plus

Riemann surface morphisms C → E of degree d. In this case we have the

371



H. Movasati

contribution of constant maps which is given by N1,0 log q = − 1
24 log q.

Therefore,
q
∂F1
∂q

= − 1
24E2.

Exercise. Calculate N2,2 and N3,3 from the formulas for F2(q) and F3(q)
respectively and prove that in fact they satisfy (B.2).

B.2. Elliptic curves over finite field
For an elliptic curve E over a finite field Fq, q = pn and p a prime number,
a theorem of Hasse tells us that there is an algebraic integer α ∈ Q̄ with
|α| = √q and such that

#E(Fq) = q + 1− (α+ ᾱ).
The expression

σk(q) = −
∑
E/Fq

(αk+1 − ᾱk+1)/(α− ᾱ)
#AutFq(E)

can be considered as average of the quantities (αk+1−ᾱk+1)/(α−ᾱ) for all
elliptic curves over Fq. Here, AutFq(E) is the group of Fq-automorphisms
of E. Let

1
1728(E3

4 − E2
6) = q

∞∏
n=1

(1− qn)24

= (q − 24q2 + 253q3 − 3520q4 + 4830q5 + · · ·+ τ(n)qn + · · · ).
It turns out that

σ10(p) = τ(p), ∀p prime.
See the article of van der Geer [9] for more history behind this phenome-
non.

B.3. Monstrous moonshine conjecture
We write the q expansion of the j-function

j = 1728 E3
4

E3
4 − E2

6
=

q−1 + 744 + 196884q + 21493760q2 + 864299970q3 + · · · .
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In 1978 MacKay noticed that 196884 = 196883 + 1 and 196883 is the
number of dimensions in which the Monster group can be most simply
represented. Based on this observation J.H. Conway and S.P. Norton in
1979 formulated the Monstrous moonshine conjecture which relates all
the coefficients in the j-function to the representation dimensions of the
Monster group. In 1992 R. Borcherds solved this conjecture and got fields
medal. See [8] for more information on this conjecture.

B.4. Modularity theorem

Let E be an elliptic curve defined by the equation g(x, y) = 0, where g is
a polynomial with integer coefficients and with the discriminant ∆ 6= 0.
For instance, take a2 and a3 integers with ∆ := a3

2 − 27a2
3 6= 0 and let

E : y2 = 4x3 − a2x − a3. Let also p be a prime, Np be the number
of solutions of E working modulo p and ap(E) := p − Np (we have not
counted the point at infinity [0; 1; 0]). A version of modularity theorem
says that there is an element f =

∑∞
n=0 anq

n in the algebraic closure of
Q(E4, E6) such that ap = ap(E) for all primes p 6 |∆. In fact f is a cusp
form of weight 2 associated to some Γ0(N). Here, N is the conductor
of E. This was originally known as Taniyama-Shimura conjecture and it
is solved by A. Wiles, R. Taylor, C. Breuil, B. Conrad, F.Diamond. For
further information see [5]. As an example consider E : y2 + y = x3 − x2.
This has conductor N = 11. The corresponding modular form is

η(q)2η(q11)2 = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7

− 2q9 − 2q10 + q11 − 2q12 + 4q13 + · · · ,

where η(q) = q
1

24
∏∞
n=1(1 − qn) is the Dedekind eta function. For further

examples see [16].

B.5. Rational curves on K3 surfaces

A K3 surface by definition is a simply connected complex surface with
trivial canonical bundle. Projective K3 surfaces fall into countable many
families Fk, k ∈ N. A surface in Fk admits a k-dimensional linear system
|L| of curves of genus k. A curve C in |L| depends on k-parameters and so if
we put k conditions on that curve, we would get an isolated curve and so we
can count the number of such curves. For instance take k = n+g, n, g ∈ N

373



H. Movasati

and assume that C passes through g generic fixed points and it is singular
with n nodal singularities (and hence the geometric genus of C is g). In
fact for a generic K3 surface the number Nn(g) of such curves turns out
to be finite. The generating function for the numbers Nn(0), that is the
number of rational curves in the linear system |L|, was first discovered by
Yau-Zaslow (1996), Beauville (1999) and Göttsche (1994):
∞∑
n=0

Nn(0)qn = 1728q
E3

4 − E2
6

= 1 + 24q + 324q2 + 3200q3 + 25650q4

+ 176256q5 + 1073720q6 + · · ·

(by definition N0(0) = 1). For instance, a smooth quadric X in P3 is K3
and for such a generic X the number of planes tangent to X in three
points is 3200.

For arbitrary genus g we have the following generalization of Bryan-
Leung (1999):

∞∑
n=0

Nn(g)qn = (−1
24

∂E2
∂q

)g 1728q
E3

4 − E2
6
.

Some first coefficients for g = 1 and g = 2 are given respectively by
1 + 30q + 480q2 + 5460q3 + · · · , 1 + 36q + 672q2 + 8728q3 + · · · .
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