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Abstract

We study the discrete groups Λ whose duals embed into a given compact
quantum group, Λ̂ ⊂ G. In the matrix case G ⊂ U+

n the embedding condition is
equivalent to having a quotient map ΓU → Λ, where F = {ΓU | U ∈ Un} is a
certain family of groups associated to G. We develop here a number of techniques
for computing F , partly inspired from Bichon’s classification of group dual sub-
groups Λ̂ ⊂ S+

n . These results are motivated by Goswami’s notion of quantum
isometry group, because a compact connected Riemannian manifold cannot have
non-abelian group dual isometries.

Isométries quantiques et duaux de groupes
Résumé

On étudie les groupes discrets Λ dont les duaux se plongent dans un groupe
quantique compact donné, Λ̂ ⊂ G. Dans le cas matriciel G ⊂ U+

n la condition
de plongement est équivalente à l’existence d’une application quotient ΓU → Λ,
où F = {ΓU | U ∈ Un} est une certaine famille de groupes associés à G. On
dévéloppe ici un nombre de techniques pour le calcul de F , en partie inspirées pas la
classification de Bichon des sous-groupes Λ̂ ⊂ S+

n . Ces résultats sont motivés pas la
notion de groupe quantique d’isométrie de Goswami, car une variété Riemannienne
compacte et connexe ne peut pas avoir des isométries quantiques venant du dual
d’un groupe non-abélien.

Introduction

The quantum groups were introduced in the mid-eighties by Drinfeld [20]
and Jimbo [30]. Soon after, Woronowicz developed a powerful axiomatiza-
tion in the compact case [46, 47, 48]. His axioms use C as a ground field,
and the resulting compact quantum groups have a Haar measure, and

Keywords: Quantum isometry, Diagonal subgroup.
Math. classification: 58J42.
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are semisimple. The Drinfeld-Jimbo quantum groups Gq with q ∈ R (or
rather their compact forms) are covered by this formalism. In particular
the examples include the twists G−1, whose square of the antipode is the
identity.

Building on Woronowicz’s work, Wang constructed in the mid-nineties
a number of new, interesting examples: the free quantum groups [43],
[44]. Of particular interest are the quantum automorphism groups G+(X)
of the finite noncommutative spaces X, constructed in [44]. For instance
in the simplest case X = {1, . . . , n}, the quantum group G+(X), also
known as “quantum permutation group”, is infinite as soon as n ≥ 4. This
phenomenon, discovered by Wang in [44], was further investigated in [1],
the main result there being that we have a fusion semiring equivalence
G+(X) ∼ SO3, for any finite noncommutative space X subject to the
Jones index type condition |X| ≥ 4.

The next step was to restrict the attention to the classical case X =
{1, . . . , n}, but to add some extra structure: either a metric, or, equiva-
lently, a colored graph structure. The algebraic theory here was developed
in [2] and in subsequent papers. Also, much work has been done in connect-
ing the representation theory of G+(X) with the planar algebra formalism
of Jones [31] and with Voiculescu’s free probability theory [42], the con-
nection coming via the Collins-Śniady integration formula [16], and via
Speicher’s notion of free cumulant [39]. For some recent developments in
this direction, see [4].

A new direction of research, recently opened up by Goswami [24], is
that of looking at the quantum isometry groups of noncommutative Rie-
mannian manifolds. As for the finite noncommutative spaces, or the var-
ious noncommutative spaces in general, these manifolds have in general
no points, but they can be described by their spectral data. The relevant
axioms here, leading to the unifying notion of “spectral triple”, were found
by Connes [18], who was heavily inspired by fractal spaces, foliations, and
a number of key examples coming from particle physics and from number
theory. See [18, 19].

Following Goswami’s pioneering paper [24], the fundamentals of the the-
ory were developed in [10, 9, 11]. The finite-dimensional spectral triples,
making the link with the previous work on finite graphs, were studied in
[28]. A lot of recent work has been done towards the understanding of the
discrete group dual case [12], where several diagrammatic and probabilis-
tic tools are known to apply, cf. [4, 34]. The other important direction

2



Quantum isometries and group dual subgroups

of research is that of investigating the quantum symmetries of Connes’
Standard Model algebra, with the work here started in the recent papers
[29, 27].

There are, however, two main theoretical questions that still lie un-
solved, at the foundations of the theory. One of them is whether an arbi-
trary compact metric space (without Riemannian manifold structure) has
a quantum isometry group or not. For the difficulties in dealing with this
question, and for some partial results, we refer to [5, 22, 26, 36].

The second question, which is equally very important, and which actu-
ally belongs to a much more concrete circle of ideas, as we will see in this
paper, is as follows:

Conjecture. A non-classical compact quantum group G cannot act faith-
fully and isometrically on a compact connected Riemannian manifold M .

The first verification here, going back to [10], shows that the sphere
Sn has indeed no genuine quantum isometries. Note that this is no longer
true for the various noncommutative versions of Sn, such as the Podlés
spheres [11], or the free spheres [3].

Another key computation is the one in [8], where it was proved, via
some quite complex algebraic manipulations, that the torus Tk has no
genuine quantum isometries either.

Recently Goswami has shown that a large class of homogeneous spaces
have no genuine quantum isometries [23]. This gives strong evidence for
the above conjecture.

The starting point for the present work was the following elementary
observation, inspired from the work of Boca on ergodic actions in [15]:

Fact. A non-classical discrete group dual Λ̂ cannot act faithfully and iso-
metrically on a compact connected Riemannian manifold M .

The proof of this fact is quite standard, using a brief computation with
group elements. We should mention that this computation needs a bit
of geometry, namely the domain property (f, g 6= 0 =⇒ fg 6= 0) of
eigenfunctions on connected manifolds.

As a first consequence, all the group dual subgroups Λ̂ ⊂ G of a given
quantum isometry group G = G+(M) must be classical. Thus, we are led
to the following notions:
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Definition. A compact quantum group G is called “basic” if it is either
classical, or has a non-classical group dual subgroup Λ̂ ⊂ G, and “strange”
otherwise.

We should mention that the terminology here, while being quite natural
in view of the above fact, can of course seem a bit ackward. Here are a
few more explanations:

– We assume throughout this paper that our compact quantum groups
are of Kac type, so that the various q-deformations etc. are not concerned
by the above dichotomy.

– As we will see, most “basic” examples of compact quantum groups,
such as the compact groups, group duals, easy quantum groups etc. are
basic in the above sense.

– One problem however comes from the Kac-Paljutkin quantum group
[32], which, while being a very old and fundamental one, is “strange” in
the above sense.

– Summarizing, the terminology in the above definition is just the best
one that we could find, based on what we know, and should be of course
taken with caution.

Back to our quantum isometry considerations now, the above fact shows
that any compact quantum group contradicting the above conjecture must
be strange. So, we are naturally led to the problem of understanding the
structure of strange quantum groups.

The problem of deciding whether a given compact quantum group is
basic or strange is not trivial, and basically requires solving the following
question:

Question.What are the discrete groups Λ whose duals embed into a given
compact quantum group, Λ̂ ⊂ G?

It is this latter question, which is purely quantum group-theoretical,
that we will investigate here. As a first remark, the techniques for dealing
with it don’t lack:

(1) The guiding result, obtained by Bichon in [14], is that the group
dual subgroups Λ̂ ⊂ S+

n appear from quotients Zn1 ∗ . . .∗Zns → Λ,
with n =

∑
ni.
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(2) Yet another key result, obtained in [7], is that the “diagonally
embedded” group dual subgroups Λ̂ ⊂ O∗n appear from quotients
Zn−1 o Z→ Λ.

(3) Franz and Skalski classified in [21] all closed subgroups, so in par-
ticular all group dual subgroups, of Sekine’s quantum groups [38].

(4) There are some other quantum groups, all whose group dual sub-
groups can be computed: for instance the Hajac-Masuda quantum
double torus [25].

(5) The homogeneous spaces of type Λ̂/(Λ̂∩U+
k ), with Λ̂ ⊂ U+

n closed
subgroup and with k ≤ n, were investigated in the recent paper
[40].

(6) Finally, the projective representations of compact quantum groups,
partly generalizing Bichon’s formalism in [14], were investigated in
[17].

The problem is somehow to put all these ingredients together, by using
a convenient formalism. In the matrix case G ⊂ U+

n this can be done
by using the notion of “diagonal subgroup” from [7], and we have the
following answer to the above question:

Answer. The closed subgroups Λ̂ ⊂ G appear from quotients ΓU → Λ of
a certain family of discrete groups F = {ΓU | U ∈ Un} associated to G.

With this observation in hand, the above considerations can be orga-
nized and further processed. First, we will show that the quantum groups
in (2) and their generalizations are basic, and that the quantum groups
in (3) and (4) are strange. Also, by using some ideas from (5) and (6),
we will recover Bichon’s groups in (1). The problem of finding a wide
generalization of (1-6) above, in terms of the family F , remains however
open.

The paper is organized as follows: 1 is a preliminary section, in 2 we
present some basic results on quantum isometries, in 3 we discuss the
actions of group duals, in 4 we develop the general theory of diagonal
subgroups, and in 5 we some present explicit computations, in a number
of special cases. The final section, 6, contains a few concluding remarks.
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1. Quantum isometries

Let M be a compact Riemannian manifold. That is, M is a smooth real
manifold, that we will always assume to be compact, and given with a
real, positive definite scalar product 〈. , .〉 on each tangent space TxM ,
depending smoothly on x.

Definition 1.1. Associated to a compact Riemannian manifold M are:

(1) Diff(M): the group of diffeomorphisms ϕ : M →M .

(2) G(M) ⊂ Diff(M): the subgroup of isometries ϕ : M →M .

We use here the non-standard notation G(M) instead of the usual one
ISO(M), because this group will be subject to a “liberation” operation
G → G+, and the notation ISO+(M) is traditionally reserved for the
group of orientation-preserving isometries.

Let Ω1(M) be the space of smooth 1-forms on M , with scalar product:

〈ω, η〉 =
∫
M
〈ω(x), η(x)〉 dx

Consider the differential d : C∞(M) → Ω1(M), and define the Hodge
Laplacian L : L2(M) → L2(M) by L = d∗d. Note that we use here the
non-standard notation L instead of the usual one ∆, because we prefer
to keep ∆ for the comultiplication of the above-mentioned “liberated”
quantum group G+(M), to be introduced later on.

Following Goswami [24], we will make use of the following basic fact:

Proposition 1.2. G(M) is the group of diffeomorphisms ϕ : M → M
whose induced action on C∞(M) commutes with the Hodge Laplacian L =
d∗d.

In order to present now some quantum group analogues of the above
statements, we use the general formalism developed by Woronowicz in
[46], [47], [48]. Thus, a compact quantum group will be an abstract object
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G, having no points in general, but which is described by a well-defined
Hopf C∗-algebra “of functions” on it, A = C(G).

The axioms for Hopf C∗-algebras, found in [48], are as follows:
Definition 1.3. A Hopf C∗-algebra is a unital C∗-algebra A, given with
a morphism of C∗-algebras ∆ : A → A ⊗ A, subject to the following
conditions:

(1) Coassociativity: (∆⊗ id)∆ = (id⊗∆)∆.

(2) span∆(A)(A⊗ 1) = span∆(A)(1⊗A) = A⊗A.

The basic example is A = C(G), where G is a compact group, with
∆f(g, h) = f(gh). The fact that ∆ is coassociative corresponds to (gh)k =
g(hk), and the conditions in (2) correspond to the cancellation rules gh =
gk =⇒ h = k and gh = kh =⇒ g = k.

Conversely, any commutative Hopf C∗-algebra is of the form C(G).
Indeed, by the Gelfand theorem we have A = C(G), with G compact
space, and (1,2) above tell us that G is a semigroup with cancellation. By
a well-known result, G follows to be a group.

The other main example is A = C∗(Γ), where Γ is a discrete group, with
comultiplication ∆(g) = g ⊗ g. One can prove that any Hopf C∗-algebra
which is cocommutative, in the sense that Σ∆ = ∆, where Σ(a⊗b) = b⊗a
is the flip, is of this form.

These basic facts, together with some other general results in [48], lead
to:
Definition 1.4. Associated to any Hopf C∗-algebra A are a compact
quantum group G and a discrete quantum group Γ = Ĝ, according to the
formula A = C(G) = C∗(Γ).

The meaning of this definition is of course quite formal. The idea is
that, with a suitable definition for morphisms, the Hopf C∗-algebras form
a category X. One can define then the categories of compact and discrete
quantum groups to be X̂, and X itself, and these categories extend those
of the usual compact and discrete groups. See [48].

Let us go back now to the Riemannian manifolds, and to the groups
constructed in Definition 1.1. We cannot define their quantum analogues
as being formed of “quantum bijections” ϕ : M → M , simply because
these quantum bijections do not exist: remember, the quantum groups
are abstract objects, having in general no points.
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So, we will need the “spectral” point of view brought by Proposition
1.2. More precisely, following Goswami [24], we can formulate the following
definition:
Definition 1.5. Associated to a compact Riemannian manifold M are:

(1) Diff+(M): the category of compact quantum groups acting on M .

(2) G+(M) ∈ Diff+(M): the universal object with a coaction com-
muting with L.

In this definition the quantum group actions are defined in terms of the
associated coactions, α : C(M) → C(M) ⊗ C(G), which have to satisfy
the smoothness assumption α(C∞(M)) ⊂ C∞(M) ⊗ C(G). As for the
commutation condition with L, this regards the canonical extension of
the action to the space L2(M). See Goswami [24].

Observe that we have an inclusion of compact quantum groups G(M) ⊂
G+(M), coming from Proposition 1.2. In the disconnected case, this in-
clusion is in general proper. In the connected case, this inclusion is con-
jectured to be an isomorphism [23].

2. Some basic results

Let us first discuss some examples of genuine quantum group actions, in
the disconnected case. We use the following notion, due to Wang [43]:
Definition 2.1. Given two compact quantum groups G,H we let

C(G ∗̂ H) = C(G) ∗ C(H)
with the Hopf algebra operations extending those of C(G), C(H).

Here the notation ∗̂ comes from the fact that this operation is dual
to the free product operation ∗ for discrete quantum groups, given by
C∗(Γ ∗ Λ) = C∗(Γ) ∗ C∗(Λ).

We have the following basic examples of isometric quantum group ac-
tions:
Proposition 2.2. Let M = N1 t . . . tNk be a disconnected manifold.

(1) We have an inclusion G+(N1) ∗̂ . . . ∗̂ G+(Nk) ⊂ G+(M).

(2) If G(Ni) 6= {1} for at least two indices i, then G+(M) 6= G(M).
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Proof. We use the canonical identification C(M) = C(N1)⊕ . . .⊕C(Nk).
(1) For i = 1, . . . , k let αi : C(Ni)→ C(Ni)⊗ C(Gi) be isometric coac-

tions of Hopf C∗-algebras C(Gi) on the manifolds Ni, and let G = ∗̂ Gi.
By using the canonical embeddings C(Ni) ⊂ C(M) and C(Gi) ⊂ C(G)
we can define a map α : C(M) → C(M) ⊗ C(G) by α(f1, . . . , fk) =
α1(f1) . . . αk(fk), and it follows from definitions that this map is an iso-
metric coaction. With Gi = G+(Ni), this observation gives the result.

(2) Since we have inclusions G(Ni) ⊂ G+(Ni) for any i, by taking a
dual free product we obtain an inclusion ∗̂ G(Ni) ⊂ ∗̂ G+(Ni). By com-
bining with (1) we obtain an inclusion ∗̂ G(Ni) ⊂ G+(M), i.e. a surjective
morphism C(G+(M)) → ∗C(G(Ni)). Now since A,B 6= C implies that
A ∗B is not commutative, this gives the result. �

Let us investigate now the behavior of G+(.) with respect to product
operations. Given two Riemannian manifolds M,N we can consider their
Cartesian product M × N , with scalar product on each tangent space
T(x,y)(M ×N) = TxM ⊕ TyN given by:

〈u⊕ u′, v ⊕ v′〉 = 〈u, v〉〈u′, v′〉.

We use the standard identification C(M ×N) = C(M)⊗ C(N).

Lemma 2.3. LM×N = LM ⊗ 1 + 1⊗ LN .

Proof. This follows from the fact that the whole de Rham complex for
M ×N decomposes as a “tensor product” of the de Rham complexes for
M,N . First, we have:

Ωk(M ×N) =
⊕
i+j=k

Ωi(M)⊗ Ωj(N)

Also, the differential is d = dM ⊗ id+ id⊗ dN . Thus, we get:

〈d∗d(f ⊗ g), h⊗ k〉 = 〈dMf ⊗ g + f ⊗ dNg, dMh⊗ k + h⊗ dNk〉
= 〈dMf ⊗ g, dMh⊗ k〉+ 〈f ⊗ dNg, h⊗ dNk〉
= 〈d∗MdMf ⊗ g, h⊗ k〉+ 〈f ⊗ d∗NdNg, h⊗ k〉

This gives d∗d = d∗MdM ⊗ 1 + 1⊗ d∗NdN , as claimed. �

Observe that the above operation is “compatible” with the product
operation for graphs in [2], given at the level of adjacency matrices by
dX×Y = dX ⊗ 1 + 1⊗ dY .
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Theorem 2.4. Assume that M,N are connected and that their spectra
{λi} and {µj} “don’t mix”, in the sense that we have {λi−λj}∩{µi−µj} =
{0}. Then:

(1) G(M ×N) = G(M)×G(N).

(2) G+(M ×N) = G+(M)×G+(N).

Proof. We follow the proof in [2], where a similar result was proved for
finite graphs. Since the classical symmetry group is the classical version of
the quantum isometry group, it is enough to prove the second assertion,
for the quantum isometry groups.

Let LM =
∑
λ λ · Pλ and LN =

∑
µ µ · Qµ be the formal spectral de-

compositions of LM , LN . Since we have LM×N = LM ⊗ 1 + 1 ⊗ LN , we
get:

LM×N =
∑
λµ

(λ+ µ) · (Pλ ⊗Qν)

The non-mixing assumption in the statement tells us that the scalars
λ+µ appearing in this formula are distinct. Since the projections Pλ⊗Qν
form a partition of the unity, it follows that the above formula is the formal
spectral decomposition of LM×N .

We can conclude now as in [2]. The universal coaction of G+(M ×N)
must commute with any spectral projection Pλ⊗Qµ, and hence with both
the following projections:

P0 ⊗ 1 =
∑
µ

P0 ⊗Qµ

1⊗Q0 =
∑
λ

Pλ ⊗Q0

Now since M , N are connected, the above projections are both 1-
dimensional. It follows that the universal coaction of G+(M × N) is the
tensor product of its restrictions to the images of P0⊗ 1, i.e. to 1⊗C(N),
and of 1⊗Q0, i.e. to C(M)⊗ 1, and we are done. �

Corollary 2.5. If M , N are connected, without quantum isometries, and
their spectra don’t mix, then M × N doesn’t have quantum isometries
either.

Proof. This is clear from Theorem 2.4. �
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Observe that this kind of statement, and the above algebraic technology
in general, is far below from what would be needed for attacking the
conjecture in the introduction. For instance our results don’t cover the
torus Tk, obtained as a “mixing” product of k circles, and which is known
from [8] not to have genuine quantum isometries.

3. Group dual actions

As already mentioned in the introduction, the results in [8], [10], along
with the recent ones in [23], and also with those in the previous section,
give some substantial evidence for the conjectural statement “M classical
and connected implies G(M) = G+(M)”.

One way of attacking this conjecture would be by trying to extend first
Goswami’s recent results of homogeneous spaces in [23]. Another possible
way would be by trying to extend first Theorem 2.4 above, as to cover the
computations in [8] for the torus.

Yet another method, that we believe to be important as well, is by using
group dual subgroups. It is known indeed since the work of Boca [15] that
a compact space cannot have a genuine ergodic group dual action. We will
use here the same kind of idea.

We recall that for a connected Riemannian manifold M , the eigenfunc-
tions of the Laplacian have the domain property, namely f, g 6= 0 implies
fg 6= 0. This is for instance because the set of zeros of each nonzero eigen-
function of the Laplacian is known to have Hausdorff dimension dimM−1,
and hence measure zero. See e.g. [49].

By using now the same computation as in [15], we get:

Proposition 3.1. A compact connected Riemannian manifold M cannot
have genuine group dual isometries.

Proof. Assume that we have a group dual coaction α : C(M) → C(M)⊗
C∗(Γ).

Let E = E1 ⊕ E2 be the direct sum of two eigenspaces of L. Pick
a basis {xi} such that the corepresentation on E becomes diagonal, i.e.
α(xi) = xi ⊗ gi with gi ∈ Γ. The formula α(xixj) = α(xjxi) reads xixj ⊗
gigj = xixj⊗gjgi, and by using the domain property we obtain gigj = gjgi.
Also, the formula α(xix̄j) = α(x̄jxi) reads xix̄j ⊗ gig−1

j = xix̄j ⊗ g−1
j gi,

and by using the domain property again, we obtain gig−1
j = g−1

j gi. Thus

11
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the elements {gi, g−1
i } mutually commute, and with E varying, this shows

that Γ is abelian. �

The above result is quite interesting, because it shows that all the group
dual subgroups of a given quantum isometry group must be classical. More
precisely, let us first divide the compact quantum groups into two classes,
as suggested in the introduction:

Definition 3.2. We call a compact quantum group G:

(1) “Strange”, if it is non-classical, and all its group dual subgroups
are classical.

(2) “Basic”, if not (i.e. is either classical, or has a non-classical group
dual subgroup).

Observe that this definition is purely algebraic, making no reference to
manifolds and to their quantum isometry groups. As we will soon see, most
known examples of quantum groups are basic, and this can be usually
checked by purely algebraic computations. However, we will see as well
that several classes of strange quantum groups exist.

The relation with the quantum isometry groups comes from:

Proposition 3.3. A non-classical compact quantum group G acting iso-
metrically on a compact connected Riemannian manifold must be strange.

Proof. This is just a reformulation of Proposition 3.1, by using Defini-
tion 3.2. �

Thus, a counterexample to the conjecture in the introduction could only
come from a strange quantum group. So, let us try to understand what
these quantum groups are.

We begin with a few results on the basic quantum groups. We recall
that given two compact quantum groups G, H we can form their product
G×H, and their dual free product G ∗̂ H. In the case where G,H ⊂ K are
subgroups of a given compact quantum group, we can form the generated
group 〈G,H〉 ⊂ K. Finally, if H is a quantum permutation group, we can
form the free wreath product G o∗ H. See [13, 43].

Proposition 3.4. The class of basic quantum groups has the following
properties:

12
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(1) It contains all classical groups, and all group duals.

(2) It is stable by products, and by taking generating groups.

(3) It is stable by dual free products, and free wreath products.

Proof. (1) This is clear by definition.
(2) Assume indeed that G,H are basic. For the product assertion, if

G,H are classical then G×H is classical, and we are done. If not, assume
for instance that Γ̂ ⊂ G is non-classical. Then Γ̂ × 1 ⊂ G × H is non-
classical, and we are done again.

The generating assertion follows similarily, by replacing × by 〈 , 〉.
(3) Assume that G,H are basic. For the free product assertion, if G =

{1} or H = {1} we are done. If not, assume first that both G,H are clas-
sical. If we pick subgroups Ẑa ⊂ G and Ẑb ⊂ H with a, b ∈ {2, 3, . . . ,∞},
with the convention Z∞ = Z, then Γ = Za ∗ Zb is non-abelian and
Γ̂ ⊂ G ∗̂ H, and we are done again. Finally, if for instance Γ̂ ⊂ G is
non-classical, then Γ̂ ⊂ G ∗̂ H is non-classical either, and we are done
again.

The free wreath product assertion follows similarily, by replacingWang’s
dual free product operation ∗̂ with Bichon’s free wreath product operation
o∗ from [13]. �

In fact, most of known compact quantum groups are basic. Here is a
verification for the main examples of “easy” quantum groups, introduced
in [6] and studied in [41]:

Proposition 3.5. The main examples of easy quantum groups are all
basic:

(1) The classical ones: On, Sn, Hn, Bn, S
′
n, B

′
n.

(2) The free ones: O+
n , S

+
n , H

+
n , B

+
n , S

′+
n , B

′+
n .

(3) The half-liberated ones: O∗n, H∗n.

Proof. We refer to the papers [41], [6] for the definition of easiness, and for
the precise construction and interpretation of the above quantum groups.

(1) Any classical group is basic by definition.

13
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(2) The free examples, and the inclusions between them, are as follows:

B+
n ⊂ B′+n ⊂ O+

n

∪ ∪ ∪

S+
n ⊂ S′+n ⊂ H+

n

Let us first look at the case n = 2. Here, according to [6], the diagram
is:

Z2 ⊂ D̂∞ ⊂ O+
2

∪ ∪ ∪

Z2 ⊂ Z2 × Z2 ⊂ O−1
2

Thus all these quantum groups are basic, except perhaps for H+
2 =

O−1
2 . But this quantum group is basic too, because it is known that the

exceptional embedding B′2 ⊂ H2 has a free analogue B′+2 ⊂ H+
2 , which

reads D̂∞ ⊂ O−1
2 . At n = 3 now, the diagram is:

O+
2 ⊂ Z2 ∗̂ O+

2 ⊂ O+
3

∪ ∪ ∪

S3 ⊂ Z2 × S3 ⊂ H+
3

Here we have used the isomorphism B+
n ' O+

n−1, cf. [37]. Now since O+
2

is basic, so are the other two quantum groups in the upper row. As for
the remaining non-classical quantum group, namely H+

3 , this is basic too,
because it contains H+

2 .
Finally, at n ≥ 4 we can use the standard embeddings D̂∞ ⊂ S+

4 ⊂
S+
n ⊂ G+

n in order to conclude that any free quantum group G+
n contains

D̂∞, and hence is basic.
(3) At n = 2 it is known from [7] that we have O∗2 = O+

2 . Thus we have
as well H∗2 = H+

2 , and since we already know that O+
2 , H

+
2 are basic, we

are done.
At n ≥ 3 now, consider the group Ln = Z∗n2 /〈abc = cba〉, where the

relations abc = cba are imposed to the standard generators of Z∗n2 . By [7]

14



Quantum isometries and group dual subgroups

this group is not abelian, and we have inclusions L̂n ⊂ H∗n ⊂ O∗n. Thus
O∗n, H

∗
n are basic, and we are done. �

It is possible to prove that some other quantum groups from [41] are
basic as well. So, the following question appears: are there any examples
of strange quantum groups?

This is quite a tricky question, and the simplest answer comes from:

Theorem 3.6. The following quantum groups are strange:

(1) The Kac-Paljutkin quantum group [32].

(2) Its generalizations constructed by Sekine in [38].

Proof. The quantum groups in the statement are known to provide coun-
terexamples to the “quantum version” of a classical result of Kawada and
Itô [33], stating that all the idempotent states must come from subgroups.
More precisely:

(1) Pal computed in [35] all the quantum subgroups of the Kac-Paljutkin
quantum group, and constructed an idempotent state not coming from
them. But his classification can be used as well for our purposes, because
all the group dual subgroups found in [35] are abelian, and hence the
Kac-Paljutkin quantum group is strange.

(2) The situation here is very similar, with the classification of all the
quantum subgroups, which implies strangeness, done by Franz and Skalski
in [21]. �

Some other strange examples include the quantum double torus, intro-
duced by Hajac and Masuda in [25], for irrational values of the rotation
parameter. We will come back a bit later to these examples, after devel-
oping some general group dual subgroup theory.

4. Diagonal subgroups

We have seen in the previous section that one question of interest is that of
classifying the group dual subgroups of a given quantum group G. Indeed,
once such a classification is available, the question of deciding whether G
is basic or not becomes trivial. In fact, this latter question doesn’t seem
to be much simpler than the classification one.

15
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In this section we develop a number of techniques for dealing with this
problem, in the “matrix” case. Let us first recall the following definition,
due to Wang [43]:

Definition 4.1. C(U+
n ) is the universal C∗-algebra generated by variables

uij with i, j = 1, . . . , n with the relations making u = (uij) and ut = (uji)
unitary matrices.

As a first observation, this algebra is a Hopf C∗-algebra in the sense of
[46], hence in the sense of [48] as well, with comultiplication, counit and
antipode given by:

∆(uij) =
∑
k

uik ⊗ ukj

ε(uij) = δij

S(uij) = u∗ji

Observe the similarity with the usual formulae for the matrix multipli-
cation, unit and inversion. In fact, given any compact group of matrices
G ⊂ Un, we have a surjective morphism of Hopf C∗-algebras π : C(U+

n )→
C(G) given by π(uij) : g → gij .

We will need the following basic result, due to Woronowicz [46]:

Proposition 4.2. Let Λ = 〈g1, . . . , gn〉 be a discrete group, and set D =
diag(gi).

(1) We have a morphism π : C(U+
n )→ C∗(Λ) given by (id⊗π)u = D.

(2) In fact, for any U ∈ Un we have such a morphism, given by
(id⊗ π)u = UDU∗.

(3) All the group dual subgroups Λ̂ ⊂ U+
n appear from morphisms as

in (2).

Proof. (1) follows from (2), which follows from the fact that V = UDU∗

is unitary, with unitary transpose. As for (3), this follows from the rep-
resentation theory results in [46]. Indeed, an embedding Λ̂ ⊂ U+

n must
come from a surjective morphism π : C(U+

n )→ C∗(Λ). Now since the ma-
trix V = (id ⊗ π)u is a unitary corepresentation of C∗(Λ), we can find
a unitary U ∈ Un such that D = U∗V U is a direct sum of irreducible
corepresentations. But these irreducible corepresentations are known to
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be all 1-dimensional, and corresponding to the elements of Λ, so we have
D = diag(gi) for certain elements gi ∈ Λ. Moreover, since π is surjective
we have Λ = 〈g1, . . . , gn〉, and we are done. �

We will need as well the following basic result, from [7]:

Proposition 4.3. Let G ⊂ U+
n be a closed subgroup.

(1) The ideal I = 〈uij | i 6= j〉 is a Hopf ideal.

(2) The quotient algebra A = C(G)/I is cocommutative.

(3) The generators gi = uii of the algebra A are group-like.

(4) We have A = C∗(Γ1), where Γ1 = 〈g1, . . . , gn〉.

Proof. These assertions are more or less equivalent, and follow from the
fact that, when dividing by I, the relation ∆(uii) =

∑
k uik ⊗uki becomes

∆(uii) = uii ⊗ uii. See [7]. �

We should mention that in the above result we identify as usual the full
and reduced versions of our Hopf C∗-algebras, so that the equality in (4)
means that the full version of A equals the full group algebra C∗(Γ1). For
more on this subject, see [45].

We can combine the above two results, in the following way:

Definition 4.4. Let G = Γ̂ be a closed subgroup of U+
n . Associated to

any unitary matrix U ∈ Un is the classical discrete group quotient Γ→ ΓU
given by

C∗(ΓU ) = C(G)/〈vij = 0, ∀ i 6= j〉
where v = UuU∗. Also, we write ΓU = 〈g1, . . . , gn〉, where gi = vii.

Observe the compatibility with Proposition 4.3. Indeed, the discrete
group Γ1 constructed there coincides with the discrete group ΓU con-
structed here, at U = 1.

We can state now our main theoretical observation:

Proposition 4.5. Let G ⊂ U+
n be a closed subgroup.

(1) The group dual subgroups Λ̂ ⊂ G come from the quotients of type
ΓU → Λ.

17



T. Banica, J. Bhowmick & K. De Commer

(2) G is strange if and only if it is not classical, and all groups ΓU are
abelian.

Proof. (1) We have by definition an embedding Γ̂U ⊂ G for any U ∈ Un,
so if we take a quotient group ΓU → Λ then we will have embeddings
Λ̂ ⊂ Γ̂U ⊂ G.

Conversely, assume that we have a group dual subgroup Λ̂ ⊂ G. Thus
we have embeddings Λ̂ ⊂ G ⊂ U+

n , and Proposition 4.2 tells us, the
corresponding surjection ϕ : C(U+

n ) → C∗(Λ) must be of the form (id ⊗
ϕ)u = UDU∗, where D = diag(h1, . . . , hn) is a diagonal matrix formed by
a family of generators of Λ, and U ∈ Un. With this choice of U ∈ Un, we
have a surjective map ΓU → Λ given by gi → hi, and we are done.

(2) This follows from (1), because if a group is abelian, then so are all
its quotients. �

As a first application, consider the quantum double torus algebra Q =
C(T2) ⊕ A2θ, constructed by Hajac and Masuda in [25]. If we denote by
A,D the standard generators of C(T2) and by B,C the standard genera-
tors of A2θ, then the comultiplication of Q is by definition the one making
V =

(
A C
B D

)
a corepresentation. See [25].

Theorem 4.6. The quantum double torus is strange for θ /∈ 2πZ.

Proof. This follows by computing the diagonal subgroups, and by using
Proposition 4.5. Consider indeed an arbitrary matrix U ∈ U2. With d =
detU , we can write:

U = d

(
s t
−t̄ s̄

)
Here s, t are certain complex numbers satisfying |s|2+|t|2 = 1. We have:

UV U∗ =
(
ss̄A+ s̄tB + st̄C + tt̄D −stA− t2B + s2C + stD
−s̄t̄A+ s̄2B − t̄2C + s̄t̄D tt̄A− st̄B − st̄C + ss̄D

)
We know that C∗(ΓU ) is the quotient of Q by the relations making

vanish the off-diagonal entries of UV U∗. Now, according to the above
formula, these relations are:

st(A−D) = −t2B + s2C

s̄t̄(A−D) = s̄2B − t̄2C
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By multiplying the first relation by s̄t̄ and the second one by st we
obtain:

s̄t̄(−t2B + s2C) = st(s̄2B − t̄2C)
Thus we have st̄(ss̄+tt̄)C = s̄t(ss̄+tt̄)B, and by dividing by ss̄+tt̄ = 1

we obtain st̄C = s̄tB. Thus, in the case s, t 6= 0, the elements B,C are
proportional.

On the other hand, we know that BC = eiθCB. Thus in the case
s, t 6= 0 we obtain B = C = 0, so the quotient is generated by A,D, which
commute, and we are done.

Finally, in the case s = 0 or t = 0 the above two relations defining
C∗(ΓU ) simply become B = C = 0, so the same argument applies, and we
are done. �

5. Explicit computations

In this section we present some explicit computations of the family of
discrete groups F = {ΓU | U ∈ Un} associated to a compact quantum
group G ⊂ U+

n . Our main result here will concern the case where G = S+
n

is Wang’s quantum permutation group [43].
We have first the following basic result, in the group dual case:

Proposition 5.1. Let Γ = 〈g1, . . . , gn〉 be a discrete group, and regard
G = Γ̂ as a closed subgroup of U+

n , by using the biunitary matrix D =
diag(gi). Then:

ΓU = Γ/〈gs = gt | ∃j, Ujt 6= 0, Ujs 6= 0〉
Proof. We know that C∗(ΓU ) is the quotient of C∗(Γ) by the relations
making vanish the off-diagonal entries of the matrix UDU∗. But this ma-
trix is:

(UDU∗)ij =
∑
k

UikŪjkgk

Let now t ∈ {1, . . . , n}. By multiplying by Ūit and summing over i we
get: ∑

i

Ūit(UDU∗)ij =
∑
i

∑
k

ŪitUikŪjkgk

=
∑
k

Ūjkgk
∑
i

ŪitUik

= Ūjtgt
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Now assume that we are in the quotient algebra C∗(ΓU ). Since the
off-diagonal entries of UDU∗ vanish here, the above formula becomes
Ūjt(UDU∗)jj = Ūjtgt, so we get:

Ūjt
∑
k

|Ujk|2gk = Ūjtgt

In particular, for any j, t such that Ūjt 6= 0, we must have:

gt =
∑
k

|Ujk|2gk

Now fix an index j ∈ {1, . . . , n}. Since the expression on the right is
independent on t, we conclude that the elements gt, with t ∈ {1, . . . , n}
having the property that Ujt 6= 0, are all equal. So, in other words, ΓU is
a quotient of the group in the statement.

In order to finish now, consider the group in the statement. We must
prove that the off-diagonal coefficients of UDU∗ vanish. So, let us look at
these coefficients:

(UDU∗)ij =
∑
k

UikŪjkgk

In this sum k ranges over the set S = {1, . . . , n}, but we can of course
restrict the attention to the subset S′ of indices having the property
UikUjk 6= 0. But for these latter indices the elements gk are all equal,
say to an element g ∈ ΓU , and we obtain:

(UDU∗)ij =

∑
k∈S′

UikŪjk

 g =

∑
k∈S

UikŪjk

 g = δijgi

This finishes the proof. �

Observe the similarity between the above statement and proof and the
group dual computations in [40]. In fact, all these considerations seem to
belong to a wider circle of ideas, including as well the computation of the
groups ΓU for the quantum permutation group G = S+

n . Indeed, let us
first recall the following key result, due to Bichon [14]:

Proposition 5.2. Let Zn1 ∗ . . . ∗ Znk
→ Λ be a quotient group. Then

Λ̂ y Cn, where n = n1 + . . . + nk, and any group dual coaction on Cn

appears in this way.
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Proof. First, by taking the dual free product of the canonical coactions
Zni y Cni , coming from the usual group embeddings Zni ⊂ Sni , we
obtain a coaction as follows:

Zn1 ∗̂ . . . ∗̂ Znk
y Cn1 ⊕ . . .⊕Cnk

Thus with Γ = Zn1 ∗ . . .∗Znk
we have a coaction Γ̂ y Cn, and it follows

that for any quotient group Γ→ Λ we have a coaction Λ̂ y Cn as in the
statement.

Conversely, assume Λ̂ y Cn. The fixed point algebra of this coaction
must be of the form A = Cn1 ⊕ . . . ⊕Cnk , with n = n1 + . . . + nk. Now
since any faithful ergodic coaction Λ̂ y Cr must come from a quotient
group Zr → Λ, this gives the result. See [14]. �

In terms of diagonal subgroups now, we have the following result:

Theorem 5.3. For a quantum permutation group G = S+
n , the discrete

group ΓU is generated by elements g1, . . . , gn with the relations
gi = 1 if ci 6= 0
gigj = 1 if cij 6= 0
gigj = gk if dijk 6= 0

where ci =
∑
l Uil, cij =

∑
l UilUjl, dijk =

∑
l ŪilŪjlUkl.

Proof. Fix U ∈ Un, and write w = UvU∗, where v is the fundamental
representation of S+

n . Let X be an n-element set, and α be the coaction
of C(S+

n ) on C(X). Write:

ϕi =
∑
l

Ūilδl ∈ C(X)

Also, let gi = (UvU∗)ii ∈ C∗(ΓU ). If β is the restriction of α to C∗(ΓU ),
then:

β(ϕi) = ϕi ⊗ gi
Now C(X) is the universal C∗-algebra generated by elements δ1, . . . , δn

which are mutually orthogonal self-adjoint projections. Writing these con-
ditions in terms of the linearly independent elements ϕi by means of the
formulae δi =

∑
l Uilϕl, we find that the universal relations for C(X) in

terms of the elements ϕi are as follows:∑
i

ciϕi = 1, ϕ∗i =
∑
j

cijϕj , ϕiϕj =
∑
k

dijkϕk
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Let Γ̃U be the group in the statement. Since β preserves these relations,
we get:

ci(gi − 1) = 0, cij(gigj − 1) = 0, dijk(gigj − gk) = 0

Thus ΓU is a quotient of Γ̃U . On the other hand, it is immediate that
we have a coaction C(X) → C(X) ⊗ C∗(Γ̃U ), hence C(Γ̃U ) is a quotient
of C(S+

n ). Since w is the fundamental corepresentation of S+
n with respect

to the basis {ϕi}, it follows that the generator wii is sent to g̃i ∈ Γ̃U ,
while wij is sent to zero. We conclude that Γ̃U is a quotient of ΓU . Since
the above quotient maps send generators on generators, we conclude that
ΓU = Γ̃U . �

As an example, let us work out the case where U is a direct sum of
Fourier matrices. We obtain here the class of maximal group dual sub-
groups of S+

n :

Proposition 5.4. Let U = diag(Fn1 , . . . , Fnk
), where Fr = (ξij)/

√
r with

ξ = e2πi/r is the Fourier matrix. Then for G = S+
n with n =

∑
ni we have

ΓU = Zn1 ∗ . . . ∗ Znk
.

Proof. We apply Theorem 5.3, with the index set X chosen to be X =
Zn1 t · · · tZnk

. First, we have ci = δi0 for any i. Also, cij = 0 unless i, j, k
belong to the same block to U , in which case cij = δi+j,0, and dijk = 0
unless i, j, k belong to the same block of U , in which case dijk = δi+j,k.
Thus ΓU is the free product of k groups which have generating relations
gigj = gi+j and g−1

i = g−i, so that ΓU = Zn1 ∗ · · · ∗ Znk
, as stated. �

Finally, let us mention that the method in the proof of Theorem 5.3
applies as well to the more general situation where G = G+(X) is the
quantum automorphism group of a finite noncommutative set X. This
will be discussed in detail somewhere else.

6. Concluding remarks

We have seen in this paper that, given a compact connected Riemannian
manifold M , its quantum isometry group G = G+(M) cannot contain
non-classical group duals Λ̂.

In addition, we have seen that in the case G ⊂ U+
n , the classification of

group dual subgroups of G reduces to the computation of a certain family
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F = {ΓU | U ∈ Un} of groups associated to G, which appear as “universal
objects” for the problem Λ̂ ⊂ G.

The computation of this family F is therefore a key problem, that we
solved here in the group dual case G = Γ̂, and in the quantum permutation
group case G = S+

n .
The main question that we would like to address here concerns of course

the potential unification of these computations. But we do not have further
results here.

We have as well some other questions, of more theoretical nature. For
instance the family of maximal group dual subgroups of a given compact
quantum group G, taken modulo isomorphism, seems to be always finite.
We do not know if this is the case.
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