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Quantitative Isoperimetric Inequalities on the
Real Line

Yohann de Castro

Abstract

In a recent paper A. Cianchi, N. Fusco, F. Maggi, and A. Pratelli have shown
that, in the Gauss space, a set of given measure and almost minimal Gauss bound-
ary measure is necessarily close to be a half-space.

Using only geometric tools, we extend their result to all symmetric log-concave
measures on the real line. We give sharp quantitative isoperimetric inequalities
and prove that among sets of given measure and given asymmetry (distance to
half line, i.e. distance to sets of minimal perimeter), the intervals or complements
of intervals have minimal perimeter.

Inégalités Isopérimétriques Quantitatives sur la Droite Réelle
Résumé

Dans un récent papier, A. Cianchi, N. Fusco, F. Maggi, et A. Pratelli ont
montré que, dans l’espace de Gauss, un ensemble de mesure donnée et de frontière
de Gauss presque minimal est nécessairement proche d’être un demi-espace.

En utilisant uniquement des outils géométriques, nous étendons leur résultat
au cas des mesures log-concaves symétriques sur la droite réelle. On donne des
inegalités isopérimétriques quantitatives optimales et l’on prouve que parmi les
ensembles de mesure donnée et d’asyḿétrie donnée (distance à la demi-droite, i.e.
distance aux ensembles de périmètre minimal), les intervalles ou les complémen-
taires d’intervalles ont le plus petit périmètre.

In this paper, we study the Gaussian isoperimetric inequality in dimen-
sion n = 1 and we prove a sharp quantitative version of it. More precisely,
denote the one-dimensional Gaussian measure by

γ := exp(−t2/2)/
√

2π · L1,

where L1 is the one-dimensional Lebesgue measure. The classical Gaussian
isoperimetric inequality [6] states that among sets of given measure in

Keywords: Isoperimetric inequalities, Asymmetry, Log-concave measures, Gaussian
measure.
Math. classification: 26B15, 49Q15.
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(Rn, γn), where γn denotes the standard n-dimensional Gaussian measure,
half spaces have minimal Gauss boundary measure. This reads as

Pγn(Ω) ≥ Jγ (γn(Ω)) ,

where Jγ is optimal (and defined later on in the text). In their paper [4] A.
Cianchi, N. Fusco, F. Maggi, and A. Pratelli have derived an improvement
of the form

Pγn(Ω)− Jγ(γn(Ω)) ≥ Θγn (γn(Ω), λ(Ω)) ≥ 0,

where λ(Ω) measures (in a suitable sense, see formula (1.6) below) how
far Ω is from a half-space, and Θγn is a function of two variables, whose
form depends on the reference measure γn, and such that Θγn(x, y) → 0
as y → 0, i.e. it tends to zero as λ(Ω) tends to zero (at least for the case of
the Gaussian measure). In their result the dependence on λ(Ω) is precise,
whereas the dependence on γn(Ω) is not explicit. We focus on the one
dimensional case: in this setting Theorem 1.2 of [4] gives that

Pγ(Ω) ≥ Jγ(γ(Ω)) + λ(Ω)
C(γ(Ω))

√
log (1/λ(Ω)), (0.1)

where C(γ(Ω)) is a constant that depends only on γ(Ω). In this paper,
Theorem 2.10 is a version of this statement which is actually valid for
all symmetric log-concave measures µ on the real line. In addition, when
the measure µ is not exponential-like (see Section 3), this quantitative in-
equality implies that a set of given measure and almost minimal perimeter
is necessarily "close" to be a half-line, i.e. an isoperimetric set.

Organization of the paper

The outline of the paper is as follows: the first section recalls basic proper-
ties of the log-concave measures and the definition of the asymmetry. The
second part gives the main tool, named the shifting lemma, and establishes
a sharp quantitative isoperimetric inequality in Theorem 2.10. Moreover,
we provide (slightly weaker) estimates invoking only classical functions.
The last section is devoted to prove that non-exponential measures are, in
a suitable sense, stable. As a matter of fact, we prove a continuity lemma:
the asymmetry goes to zero as the isoperimetric deficit goes to zero.
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Quantitative Isoperimetric Inequalities

1. The isoperimetric inequality on the real line

In this section, we recall the standard isoperimetric inequality for the log-
concave measures, and the definition of the asymmetry which measures the
gap between a given set and the sets of minimal perimeter. Let µ = f · L1

be a measure with density function f with respect to the 1-dimensional
Lebesgue measure. Throughout this paper, we assume that

(i) f is supported and positive over some interval (af , bf ), where af and
bf can be infinite,

(ii) µ is a probability measure:
∫
R f = 1,

(iii) µ is a log-concave measure:

∀x, y ∈ (af , bf ), ∀ θ ∈ (0, 1), f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ,

(iv) and µ is symmetric with respect to the origin:

∀x ∈ R, f(x) = f(−x).

Remark 1.1. Observe that (iv) is not restrictive. As a matter of fact, the
measure µ(. + α), where α ∈ R, shares the same isoperimetric properties
as the measure µ. By the same token, Assumption (ii) is obviously not
restrictive.

We recall the definition of the µ-perimeter. Denote by Ω a measurable set.
Define the set Ωd of all points with density exactly d ∈ [0, 1] as

Ωd =
{
x ∈ R, lim

ρ→0

L1(Ω ∩Bρ(x))
L1(Bρ(x)) = d

}
,

where Bρ(x) denotes the ball with center x and radius ρ. Define the es-
sential boundary ∂MΩ as the set R \

(
Ω0 ∪ Ω1). Define the µ-perimeter

as
Pµ(Ω) = H0

µ(∂MΩ) =
∫
∂M Ω

f(x) dH0(x), (1.1)

whereH0 is the Hausdorff measure of dimension 0 over R andH0
µ := f ·H0.

The isoperimetric function Iµ of the measure µ is defined by

Iµ(r) = inf
µ(Ω)=r

Pµ(Ω). (1.2)
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Under Assumption (iii), we can give an explicit form to the isoperimetric
function using a so-called function Jµ. Indeed, denote F the distribution
function of the measure µ. Since the function f is supported and positive
over some interval (af , bf ) then the cumulative distribution function is
increasing on the interval (af , bf ). Define

Jµ(r) = f
(
F−1(r)

)
, (1.3)

where r is such that 0 < r < 1, Jµ(0) = Jµ(1) = 0, and F−1 denotes
the inverse function of F . Following the article [2] of S. G. Bobkov, since
the measure µ is symmetric with respect to the origin, then the inverse
function of F satisfies,

F−1(r) =
∫ r

1/2

dt
Jµ(t) , ∀r ∈ (0, 1). (1.4)

Using (1.4), one can check [2] that the following lemma holds.

Lemma 1.2. The measure µ is log-concave if and only if Jµ is concave
on (0, 1).

Furthermore, it is known [3] that the infima of (1.2) are exactly (up to a µ-
negligible set) the intervals (−∞, σ−) and (σ+,+∞), where σ− = F−1(r)
and σ+ = F−1(1− r). The isoperimetric inequality states

Pµ(Ω) ≥ Jµ(µ(Ω)), (1.5)
where Ω is a Lebesgue measurable set. This shows that, in the log-concave
case, the isoperimetric function coincides with the function Jµ.

The asymmetry
We concern with quantifying the difference between any measurable set Ω
and an isoperimetric infimum (i.e. measurable set such that the isoperimet-
ric inequality (1.5) is an equality). Following [4], define the asymmetry
λ(Ω) of a set Ω as

λ(Ω) = min {µ(Ω∆(−∞, σ−)) , µ(Ω∆(σ+,+∞))} , (1.6)
where σ− = F−1(µ(Ω)) and σ+ = F−1(1−µ(Ω)), and ∆ is the symmetric
difference operator.

Remark 1.3. The name asymmetry [5] is inherited from the case of the
Lebesgue measure on Rn. In this case, the sets with minimal perimeter
are balls, hence very symmetric.
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Quantitative Isoperimetric Inequalities

Define the isoperimetric projection of a set Ω as the open half-line
achieving the minimum in (1.6). In the case where this minimum is not
unique we can choose whatever infima as an isoperimetric projection.

2. Sharp quantitative isoperimetric inequalities

This section gives a sharp improvement of (1.5) involving the asymmetry
λ(Ω). In [4], the authors use a technical lemma (Lemma 4.7, Continuity
Lemma) to complete their proof. Their lemma applies in the n-dimensional
case and is based on a compactness argument derived from powerful results
in geometric measure theory. In the one-dimensional case, our approach
is purely geometric and does not involve the continuity lemma.

2.1. The shifting lemma
The shifting lemma plays a key role in our proof. This lemma was in-
troduced in [4] for the Gaussian measure. It naturally extends to even
log-concave probability measures. For sake of readability, we begin with
the shifting property.
Definition 2.1 (The shifting property). We say that a measure ν satisfies
the shifting property when for every open interval (a, b), the following
is true:

- If a+ b ≥ 0 then for every (a′, b′) such that a ≤ a′ < b′ ≤ +∞ and
ν((a, b)) = ν((a′, b′)), it holds Pν((a, b)) ≥ Pν((a′, b′)). In other
words, if an interval is more to the right of 0, shifting it to the
right with fixed measure, does not increase the perimeter.

- If a+ b ≤ 0 then for every (a′, b′) such that −∞ ≤ a′ < b′ ≤ b and
ν((a, b)) = ν((a′, b′)), it holds Pν((a, b)) ≥ Pν((a′, b′)). In other
words, if an interval is more to the left of 0, shifting it to the left
with fixed measure, does not increase the perimeter.

Remark 2.2. As the perimeter is complement-invariant, we may also shift
"holes". The shifting property is equivalent to the following property.

- If a + b ≥ 0 then for every (a′, b′) such that a ≤ a′ < b′ ≤
+∞ and ν((a, b)) = ν((a′, b′)), it holds Pν((−∞, a) ∪ (b,+∞)) ≥
Pν((−∞, a′) ∪ (b′,+∞)).
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- If a + b ≤ 0 then for every (a′, b′) such that −∞ ≤ a′ < b′ ≤
b and ν((a, b)) = ν((a′, b′)), it holds Pν((−∞, a) ∪ (b,+∞)) ≥
Pν((−∞, a′) ∪ (b′,+∞)).

Roughly, the next lemma shows that, for all measures such that Assump-
tions (i), (ii), and (iv) hold, Assumption (iii) is equivalent to the shifting
property.
Lemma 2.3 (The shifting lemma). Every log-concave probability measure
symmetric with respect to the origin has the shifting property.

Conversely, let f be a continuous function, positive on an open interval
and null outside. If the probability measure with density function f is
symmetric with respect to the origin and enjoys the shifting property then
it is log-concave.
Proof. Let x, r be in (0, 1) and t be in (r/2, 1 − r/2). Define ϕ(t) =
Jµ(t − r/2) + Jµ(t + r/2). It represents the µ-perimeter of (F−1(t −
r/2), F−1(t + r/2)) with measure equal to r. The function Jµ is sym-
metric with respect to 1/2 since the density function f is supposed to be
symmetric. As the function Jµ is concave and symmetric with respect to
1/2, so is the function ϕ. In particular ϕ is non-decreasing on (r/2, 1/2]
and non-increasing on [1/2, 1− r/2). This gives the shifting property.
Conversely, let f be a continuous function, positive on an open interval and
null outside. Define the isoperimetric function Jµ as in (1.3). We recall that
µ is log-concave if and only if Jµ is concave on (0, 1). Since the function Jµ
is continuous, it is sufficient to have Jµ(x) ≥ (1/2) (Jµ(x− d) + Jµ(x+ d)),
for all x ∈ (0, 1), where d is small enough to get x − d ∈ (0, 1) and
x + d ∈ (0, 1). Let x and d be as in the previous equality. Since µ is
symmetric, assume that x ≤ 1/2. Put a = F−1(x), b = F−1(1 − x),
a′ = F−1(x + d), b′ = F−1(1 − x + d), then (a′, b′) is a shift to the right
of (a, b). By the shifting property, we get Pµ((a, b)) ≥ Pµ((a′, b′)). The
function Jµ is symmetric with respect to 1/2, it yields (see Figure 2.1),
Pµ((a, b)) = Jµ(x) + Jµ(1− x) = 2Jµ(x),
Pµ((a′, b′)) = Jµ(x+ d) + Jµ(1− x+ d) = Jµ(x+ d) + Jµ(x− d).

This ends the proof. �

The key idea of the previous lemma is based on standard properties of the
concave functions. Nevertheless, it is the main tool to derive quantitative
isoperimetric inequalities. We see that the "shifting property" is particular
to the one dimensional case and do not extend to higher dimensions.
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Figure 2.1. The log-concavity is equivalent to the shifting property

2.2. Lower bounds on the perimeter

We now recall a result on the structure of sets with finite perimeter on
the real line.

Lemma 2.4. Let Ω be a set of finite µ-perimeter. Then

Ω =
( ⋃
n∈I

(an, bn)
)⋃
E ,

where I is at most countable, E such that µ(E) = 0, and (an, bn) such that

d
(
(an, bn),

⋃
k∈I\{n}

(ak, bk)
)
> 0, (2.1)

for all n in I.

Proof. Consider (Kk)k∈N a sequence of compact sets such that, for all
k ≥ 0, K0 ⊂ . . . ⊂ Kk ⊂ (−af , af ) and ∪k∈NKk = (−af , af ). Then, it
yields

Ω =
( ⋃
k∈N

(Ω ∩Kk)
)⋃

E, (2.2)

where E is such that µ(E) = 0. Let k be an integer. On the compact Kk

the function f is bounded from below by a positive real. Thus if Ω ∩Kk

has finite µ-perimeter, it also has finite perimeter. As mentioned in [1],
one knows that every set with finite Lebesgue perimeter can be written
as at most countable union of open intervals and a set of measure equal

257



Y. de Castro

to zero. It holds
Ω ∩Kk =

( ⋃
n∈Ik

(an, bn)
)⋃
Ek,

where Ik is at most countable, Ek is such that µ(Ek) = 0, and (an, bn) is
such that

d
(
(an, bn),

⋃
l∈Ik\{n}

(al, bl)
)
> 0, (2.3)

for all n in Ik and d the euclidean distance over the real line. Denote
11Ω the indicator function of Ω and 11′Ω its distributional derivative. The
property (2.3) is a consequence of the fact that 11′Ω is locally finite). Since
Kk is compact, the set Ik is finite. One can check that the decomposition
(2.2) gives the result. �

The newt lemma shows that among sets of given measure and given asym-
metry, the intervals or complements of intervals have minimal perimeter.

Lemma 2.5. Let Ω be a measurable set with µ-measure at most 1/2 and
λ(Ω) be the asymmetry of Ω. Then, it holds

Pµ(Ω) ≥ min
{
Pµ (Ωc) , Pµ (Ωd)

}
,

where

• Ωc =
(
F−1(λ(Ω)

2
)
, F−1(µ(Ω) + λ(Ω)

2
))
,

• Ωd =
(
−∞ , F−1(µ(Ω)− λ(Ω)

2
))⋃ (

F−1(1− λ(Ω)
2
)
, +∞

)
,

are sets such that λ(Ωc) = λ(Ωd) = λ(Ω) and µ(Ωc) = µ(Ωd) = µ(Ω).

Let us emphasize that the sets Ωc and Ωd have fixed isoperimetric projec-
tion (i.e. (−∞,−σ)), asymmetry, and measure. Observe that these prop-
erties are satisfied only for particular values of µ(Ω) and λ(Ω).

Proof. For sake of readability, the proof can be found in Appendix A. �

In the following, we describe the conditions on (µ(Ω, λ(Ω)) for which the
sets Ωc and Ωd exist. The next lemma shows that asymmetry and perime-
ter are complement invariant.

Lemma 2.6. The symmetric difference, the asymmetry, and the perimeter
are complement-invariants. Moreover, it holds m(A) = m(Ac) where

m(A) = min {µ(A), 1− µ(A)} .
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Proof. Remark that 11A∆B = |11A − 11B|, it follows that the symmetric dif-
ference is complement-invariant. The essential boundary is complement-
invariant, thus Definition 1.1 shows that the µ-perimeter is complement-
invariant. Considering the symmetry of the isoperimetric function Jµ, we
claim that the isoperimetric projections are complements of the isoperi-
metric projections of the complement. This latter property and the fact
that the symmetric difference is complement-invariant give that the asym-
metry is complement-invariant. The last equality is easy to check since µ
is a probability measure. �

Consider the domain D = {(µ(Π), λ(Π)), Π measurable set}. Since the
asymmetry is complement-invariant, the domain D is symmetric with re-
spect to the axis x = 1/2. Furthermore, we have the next lemma.

Lemma 2.7. It holds 0 ≤ λ(Π) ≤ min (2m(Π) , 1−m(Π)), where Π is a
measurable set, and m(Π) = min {µ(Π) , 1− µ(Π)}.

Proof. Let Π be a measurable set. As asymmetry λ(Π) and m(Π) are
complement-invariant (see Lemma 2.6), suppose that µ(Π) ≤ 1/2 thus
m(Π) = µ(Π). Using symmetry with respect to the origin, suppose that
(−∞,−σ) is an isoperimetric projection of Π (where σ = −F−1(µ(Π)).
We begin with the inequality λ(Π) ≤ 1 − µ(Π). Since (−∞,−σ) is an
isoperimetric projection of Π, it holds

µ(Π ∩ (σ,+∞)) ≤ µ(Π ∩ (−∞,−σ)) = µ(Π)− λ(Π)/2.

Remark that µ((−σ, σ)) = 1−2µ(Π). Hence, λ(Π)/2 = µ(Π∩(−σ,+∞)) ≤
1− 2µ(Π) + µ(Π)− λ(Π)/2, which gives the expected result.
The inequality λ(Π) ≤ 2µ(Π) can be deduced from

λ(Π)/2 = µ((−∞,−σ)\Π) and µ((−∞,−σ)\Π) ≤ µ((−∞,−σ)) = µ(Π).

It is clear that λ(Π) ≥ 0, this ends the proof. �

Lemma 2.8. Let Ω be a measurable set with µ-measure at most 1/2 and
λ(Ω) be the asymmetry of Ω. Then

• the connected set of the form

Ωc =
(
F−1(λ(Ω)/2

)
, F−1(µ(Ω) + λ(Ω)/2

))
satisfies µ(Ωc) = µ(Ω) and λ(Ωc) = λ(Ω) when 0 < λ(Ω) ≤ 1 −
µ(Ω),
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• and the disconnected set of the form
Ωd =

(
−∞ , F−1(µ(Ω)− λ(Ω)/2

))
∪
(
F−1(1− λ(Ω)/2

)
, +∞

)
satisfies µ(Ωd) = µ(Ω) and λ(Ωd) = λ(Ω) when 0 < λ(Ω) ≤ µ(Ω).

Besides, when 0 < λ(Ω) ≤ µ(Ω), Pµ(Ωd) ≤ Pµ(Ωc) with equality if and
only if µ(Ω) = 1/2.

Proof. By construction (see Appendix A), the sets Ωc and Ωd verify three
properties:

(1) their measure is µ(Ω),

(2) their asymmetry is λ(Ω),

(3) their isoperimetric projection is (−∞,−σ).

We recall that µ(Ω) ≤ 1/2. Using Lemma 2.7, it is easy to check that Ωc

satisfies these properties if and only if
0 ≤ λ(Ω) ≤ min(2µ(Ω), 1− µ(Ω)). (2.4)

Using the definition of the isoperimetric projection, one can check that Ωd

satisfies these properties if and only if
0 ≤ λ(Ω) ≤ µ(Ω). (2.5)

Notice that on domain 0 ≤ λ(Ω) ≤ µ(Ω) both sets exist. On this domain,
Pµ(Ωd)− Pµ(Ωc) = Jµ

(
µ(Ω)− λ(Ω)/2

)
− Jµ

(
µ(Ω) + λ(Ω)/2

)
.

Since µ(Ω) − λ(Ω)/2 ≤ µ(Ω) + λ(Ω)/2 ≤ 1 − µ(Ω) + λ(Ω)/2, we deduce
from the concavity and the symmetry of the isoperimetric function that
Pµ(Ωd) ≤ Pµ(Ωc) with equality if and only if µ(Ω) = 1/2. Using (2.4) and
(2.5), we conclude the proof. �

We are concerned with an upper bound on the asymmetry of sets of given
measure and given perimeter. Define the isoperimetric deficit of Ω as

δµ(Ω) = Pµ(Ω)− Jµ(µ(Ω)). (2.6)
Define the isoperimetric deficit function Kµ as follows.

• On 0 < y ≤ x ≤ 1/2, set Kµ(x, y) = Jµ (x− y/2) − Jµ (x) +
Jµ (y/2).
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• On 0 < x ≤ 1/2 and x < y ≤ min(2x, 1− x), set

Kµ(x, y) = Jµ (x+ y/2)− Jµ (x) + Jµ (y/2) .

The isoperimetric deficit function Kµ(x, y) is defined on the domain of
all the possible values of (m(Ω), λ(Ω)) (see Lemma 2.7). The next lemma
focuses on the variations of Kµ.

Lemma 2.9. Let 0 < x ≤ 1/2. The function y 7→ Kµ(x, y) is a non-
decreasing lower semi-continuous function. Besides, it is concave on x <
y ≤ min(2x, 1− x).

Proof. The proof is essentially based on the concavity of Jµ.

On 0 < y ≤ x: Let Ψ(t) = 1/2 (Jµ (x/2− t) + Jµ (x/2 + t)). Then
the point (x/2, Ψ(t)) is the middle of the chord joining (x/2 −
t, Jµ(x/2− t)) and (x/2 + t, Jµ(x/2 + t)). Since Jµ is concave, it
is well known that Ψ is a non-increasing function. Remark that
Kµ(x, y) = 2 Ψ(x/2 − y/2) − Jµ (x), thus y 7→ Kµ(x, y) is non-
decreasing. Moreover the function is continuous as sum of contin-
uous functions.

On x < y ≤ min(2x, 1− x): The function y 7→ Kµ(x, y) is clearly
concave as sum of two concave functions (thus continuous). On
this domain,

(y/2) + (x+ y/2) = x+ y ≤ x+ min(2x, 1− x) ≤ 1.

Hence the interval ωy = (F−1(y/2), F−1(x+ y/2)) is on the left of
the origin. Remark that Kµ(x, y) = Pµ(ωy)− Jµ (x). The shifting
lemma (Lemma 2.3) applies here and shows that the function y 7→
Kµ(x, y) is non-decreasing (as y increases, ωy shifts to the right).

The variation at x is given byKµ
(
x, x+)−Kµ(x, x) = Jµ (3/2x)−Jµ (x/2),

where Kµ
(
x, x+) = limy→x+ Kµ (x, y). One can check that |1/2− x/2| ≥

|1/2− 3x/2|. Using the symmetry with respect to 1/2 and the concav-
ity of Jµ, one can check that Jµ (3/2x) ≥ Jµ (x/2). Hence Kµ

(
x, x+) ≥

Kµ(x, x).
This discussion shows that y 7→ Kµ(x, y) is non-decreasing and lower
semi-continuous on the whole domain. This ends the proof. �
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Define the generalized inverse function of y 7→ Kµ(x, y) as
K−1
µ, x(d) = sup {y | 0 ≤ y ≤ min(2x, 1− x) and Kµ(x, y) ≤ d} .

Lemma 2.9 shows that y 7→ Kµ(x, y) is a non-decreasing lower semi-
continuous function. It is easy to check that K−1

µ, x is non-decreasing. The
next theorem is the main result of this paper.
Theorem 2.10. Let Ω be a measurable set and λ(Ω) be the asymmetry of
Ω. Set m(Ω) = min {µ(Ω) , 1− µ(Ω)}, then

δµ(Ω) ≥ Kµ(m(Ω), λ(Ω)) , (2.7)
and this inequality is sharp. Moreover, it holds

λ(Ω) ≤ K−1
µ,m(Ω)(δ(Ω)). (2.8)

Proof. Let Ω be a measurable set. If Ω has infinite µ-perimeter the result
is true, hence assume that Ω has finite µ-perimeter. Then, it suffices to
prove that

• If 0 < λ(Ω) ≤ m(Ω) then
Pµ(Ω) ≥ Jµ

(
m(Ω)− λ(Ω)/2

)
+ Jµ

(
λ(Ω)/2

)
, (2.9)

• If m(Ω) < λ(Ω) ≤ min(2m(Ω), 1−m(Ω)) then
Pµ(Ω) ≥ Jµ

(
m(Ω) + λ(Ω)/2

)
+ Jµ

(
λ(Ω)/2

)
, (2.10)

and that these inequalities are sharp. We distinguish four cases as illus-
trated in Figure 2.2.
If Ω has measure at most 1/2, then m(Ω) = µ(Ω). Consider sets Ωc

defined in (A.1) and Ωd defined in (A), compute
Pµ
(
Ωd

)
= Jµ

(
µ(Ω)− λ(Ω)/2

)
+ Jµ

(
λ(Ω)/2

)
,

Pµ(Ωc) = Jµ
(
µ(Ω) + λ(Ω)/2

)
+ Jµ

(
λ(Ω)/2

)
.

(2.11)

Lemma 2.5 says that Ω has µ-perimeter greater or equal than Ωc or Ωd.

Domain 1: If µ(Ω) < λ(Ω) ≤ 1 − µ(Ω) (and thus m(Ω) < λ(Ω) ≤
1−m(Ω)) then from Lemma 2.8 we know that Ωd does not exist
for such range of asymmetry. Necessary, it follows that Pµ(Ω) ≥
Pµ(Ωc). Using (2.11), we complete (2.10).

Domain 2: If 0 < λ(Ω) ≤ µ(Ω) (and thus 0 < λ(Ω) ≤ m(Ω)) then
from Lemma 2.8 we know that Pµ(Ωd) ≤ Pµ(Ωc). Thus Pµ(Ω) ≥
Pµ(Ωd). Using (2.11), we get (2.9).
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Figure 2.2. Domains of the sets with minimal perimeter
given measure and asymmetry

If Ω has measure greater than 1/2, then 1−µ(Ω) = m(Ω). The Lemma
2.6 shows how to deal with sets of large measure and allows us to consider
either Ω or its complement.

Domain 3: If 0 < λ(Ω) ≤ 1−µ(Ω) (and thus 0 < λ(Ω) ≤ m(Ω)), the
complement of Ω satisfies 0 < λ(Ωc) ≤ µ(Ωc) (Domain 2). Thus
we know that Pµ(Ωd) ≤ Pµ(Ωc) (see the previous case on Domain
2). Finally, Pµ(Ω) ≥ Pµ (Ωc

d) where Ωd has same asymmetry and
measure equal to m(Ω). Using (2.11), we complete (2.9).

Domain 4: If 1 − µ(Ω) < λ(Ω) ≤ µ(Ω) (and thus m(Ω) < λ(Ω) ≤
1−m(Ω)), the complement of Ω satisfies µ(Ωc) < λ(Ωc) ≤ 1−µ(Ωc)
(Domain 1). From the case on Domain 1, we know that Pµ (Ωc) ≥
Pµ(Ωc). Thus, Pµ(Ω) ≥ Pµ (Ωc

c) where Ωc has same asymmetry
and measure equal to m(Ω). Using (2.11), we get (2.10).

This case analysis shows (2.7). Set x = m(Ω), the upper bound (2.8)
is a consequence of the definition of K−1

µ, x and (2.7). This concludes the
proof. �

Remark 2.11. We focus on the Gaussian measure γ. Observe that

Jγ(t) ∼
t→0

t
√

2 log (1/t),

so that
Kγ(x, y) ∼

y→0
Jγ

(
y

2

)
∼
y→0

y

2

√
2 log (2/y).

263



Y. de Castro

In particular, there exists a constant C(x) that depends only on x such
that

Kγ(x, y) ≥ y

C(x)

√
log (1/y), with 0 ≤ y ≤ min(2x, 1− x).

Eventually, we recover (0.1) from Theorem 2.10.

The equalities (2.11) and the case analysis of the proof of Theorem 2.10
give the explicit lower bounds on µ-perimeter.

Proposition 2.12. Given two positive numbers µ, λ, we consider the
following penalized isoperimetric problem:

min
{
Pµ(Ω) : Ω ⊆ R, with µ(Ω) = µ and λ(Ω) = λ

}
. (2.12)

Then the solution is given by the following sets (see Figure 2.2)

• Ωc =
(
F−1(λ

2
)
, F−1(µ+ λ

2
))
, with 0 < µ < λ ≤ 1−µ and µ ≤ 1/2

(Domain 1),

• Ωd =
(
−∞ , F−1(µ− λ

2
))
∪
(
F−1(1− λ

2
)
, +∞

)
, with 0 < λ ≤ µ

and µ ≤ 1/2 (Domain 2),

• Ωc
d =

(
F−1(1 − µ − λ

2
)
, F−1(1 − λ

2
))
, with 0 < λ ≤ 1 − µ and

1/2 ≤ µ < 1 (Domain 3),

• Ωc
c =

(
−∞ , F−1(λ

2
))⋃ (

F−1(1−µ+ λ
2
)
, +∞

)
, with 1−µ < λ ≤ µ

and 1/2 ≤ µ < 1 (Domain 4).

3. Stability of isoperimetric sets

In general the quantitative estimate of Theorem 2.10 is not a stability
result, since one can have δµ = 0 and λ > 0 for suitable choices of µ.
Indeed, consider the exponential case where µ = f · L1 with

f(t) = 1
2 exp(− |t|), ∀t ∈ R.

It holds that
Jexp (t) = t 11[0,1/2] + (1− t) 11[1/2,1].

It yields that Kexp = 0 on 0 ≤ y ≤ x ≤ 1/2. Hence, there exists
sets with a positive asymmetry and an isoperimetric deficit null. In the
case of the exponential-like distributions (defined later on), the intervals
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(−∞, F−1(r)) and (F−1(1 − r),+∞) are not the only sets with minimal
perimeter (up to a set of measure equals to 0) given measure r.

We specify this thought defining a natural hypothesis (H). Furthermore,
we prove that the asymmetry goes to zero as the isoperimetric deficit goes
to zero under (H).

3.1. The hypothesis H

We can get a better estimate on the asymmetry making another hypoth-
esis. From now, suppose that the measure µ is such that

∃ ε > 0 s.t. t 7→ Jµ(t)/t is decreasing on (0, ε). (H)
This hypothesis means that Jµ is non-linear in a neighborhood of the
origin. We can be more specific introducing the property:

∃ ε > 0 and c > 0 s.t. Jµ(t) = c t, ∀ t ∈ [0, ε]. (H)

Since t 7→ Jµ(t)/t is non-increasing, it is not difficult to check that (H) is
the alternative hypothesis of (H). Furthermore, exponential-like mea-
sure can be defined by the following property:

∃ τ > 0 and c, c′ > 0 s.t. f(t) = c′ exp(ct), ∀ t ∈ (−∞, τ). (Exp)

Proposition 3.1. The property (H) is equivalent to the property (Exp).

Proof. The proof is derived from the equality (F−1)′(t) = 1/Jµ(t), for all
t ∈ (0, 1) (see [2]). Suppose that the measure satisfies (H). Using the above
equality for sufficiently small values of r, one can check that F−1(r) =
1
c log(r) + c′′, where c′′ is a constant. Hence F (x) = exp(c(x − c′′)) =
c′

c exp(cx), which gives the property (Exp). Conversely, suppose that the
measure satisfies (Exp). A simple computation gives the property (H). �

Suppose that µ satisfies (H). It is not difficult to check that the sets (and
their symmetric) (−∞, F−1(r − s)) ∪ (F−1(1− s),+∞), for all s ∈ (0, r),
have minimal perimeter among all sets of given measure r such that r ≤ ε.
It would be natural to define the asymmetry with these sets.

3.2. The continuity theorem
In the following, we give a more convenient bound on the asymmetry.
Define the function Lµ as follows.
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• On 0 < y ≤ x ≤ 1/2, set
Lµ(x, y) = Jµ (y/2)− y/(2x) Jµ (x) .

• On 0 < x ≤ 1/2 and x < y ≤ min(2x, 1− x), set
Lµ(x, y) = Jµ (y/2)− y/(2(1− x)) Jµ (x) .

We have the following lemma:

Lemma 3.2. Let Ω be a measurable set and λ(Ω) be the asymmetry of
Ω. Let m(Ω) = min {µ(Ω) , 1− µ(Ω)} and δµ(Ω) = Pµ(Ω)− Jµ(µ(Ω)). It
holds,

δµ(Ω) ≥ Lµ(m(Ω), λ(Ω)) ≥ 0 . (3.1)

Proof. Since the asymmetry, the perimeter, the isoperimetric deficit, and
m(Ω) are complement invariant, suppose that m(Ω) = µ(Ω) ≤ 1/2. Set
x = m(Ω) and y = λ(Ω).

On 0 < y ≤ x: Set t = y/(2x − y) then x − y/2 = t y/2 + (1 − t)x.
Since Jµ is concave, it holds

Kµ(x, y) = Jµ

(
x− y

2

)
− Jµ (x) + Jµ

(
y

2

)
,

≥ (1 + t)Jµ
(
y

2

)
− tJµ (x) ,

= 1
1− y/2x

(
Jµ

(
y

2

)
− y

2x Jµ (x)
)
,

≥ Jµ

(
y

2

)
− y

2x Jµ (x) .

As Jµ is concave, the function t 7→ Jµ(t)/t is non-increasing and
thus (2/y)Jµ(y/2)− (1/x)Jµ (x) ≥ 0.

On x < y ≤ min(2x, 1− x): Using symmetry with respect to 1/2,
remark that

Kµ(x, y) = Jµ

(
x+ y

2

)
− Jµ (x) + Jµ

(
y

2

)
= Jµ

(
(1− x)− y

2

)
− Jµ (1− x) + Jµ

(
y

2

)
Substituting x with 1−x, the same calculus as above can be done.
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This ends the proof. �

The lower bound given in Lemma 3.2 is the key tool of the proof of the con-
tinuity theorem. The hypothesis (H) ensures that the distribution is non-
exponential. It is the right framework dealing with continuity as shown in
the next theorem.

Theorem 3.3 (Continuity for non-exponential distributions). Assume
that the measure µ satisfies the assumption H, then the asymmetry goes
to zero as the isoperimetric deficit goes to zero.

Proof. The proof is based on Lemma 3.2 and Theorem 2.10. Let u, v ∈
(0, 1), define ρ(u, v) = Jµ(u)/u − Jµ(v)/v. Suppose u < v. Since Jµ is
concave, it is easy to check that if ρ(u, v) = 0, then ∀u′ ≤ u, ρ(u′, v) = 0.
In particular H implies that ∀u < v , ρ(u, v) > 0, for sufficiently small
values of v. Remark that Lµ(x, y) = (y/2)ρ(y/2, x) if 0 < y ≤ x, and
Lµ(x, y) = (y/2)ρ(y/2, 1− x) if x < y ≤ min(2x, 1− x). Hence H implies
that Lµ > 0. Using Lemma 3.2, it yields that Kµ > 0.

Finally, it is easy to check that if Kµ > 0 then there exists a neighbor-
hood of 0 such that Kµ is increasing. Taking a sufficiently small neighbor-
hood if necessary, one can suppose thatKµ is continuous (the only point of
discontinuity of Kµ is y = x). On this neighborhood, K−1

µ, x is a continuous
increasing function. Using (2.8), this gives the expected result. �

Roughly, a set of given measure and almost minimal boundary measure
is necessarily close to be a half-line. Moreover we recover the following
well-known result.

Corollary 3.4. Assume that the measure µ satisfies the assumption H,
then the half-lines are the unique sets of given measure and minimal
perimeter (up to a set of µ-measure null).

This last results ensure that the asymmetry (1.6) is the relevant notion
speaking of the isoperimetric deficit under (H).

As already said, the main argument of our result (Lemma 2.3) is peculiar
of dimension 1. Nevertheless, it would be interesting to know whether one
can extend the results of [4] to non-exponential log-concave measures also
in higher dimensions or not.
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Appendix A. Proof of Lemma 2.5

As mentioned in Lemma 2.4, assume that Ω =
⋃
n∈I(an, bn) where I is an

at most countable set and (2.1) holds. Suppose that

• an isoperimetric projection of Ω is (−∞, σ−) (using a symmetry
with respect to the origin if necessary),

• and that the measure of Ω is at most 1/2 (and we will see at the
end of this section how to extend our result to larger measures).

Then the real number σ− = F−1(µ(Ω)) is non-positive. Denote σ = −σ−.
Since 11′Ω is locally finite, there exists a finite number of sets (an, bn) in-
cluded in (−σ, σ), it follows that

Ω =
( ⋃
h∈Λ−

Ah
)
∪ I ∪

( N−⋃
h=1

A′h

)
∪
( N+⋃
h=1

B′h

)
∪ J ∪

( ⋃
h∈Λ+

Bh
)
,

where

• Λ− and Λ+ are at most countable sets;

• Ah = (αAh
, βAh

) with βAh
≤ −σ (αAh

can be infinite);

• I is either empty or of the form I = (αI , βI) with αI ≤ −σ < βI ;

• A′h is either empty or of the form A′h = (αA′
h
, βA′

h
) with −σ < αA′

h

and αA′
h

+ βA′
h
< 0;

• B′h is either empty or of the form B′h = (αB′
h
, βB′

h
) with βB′

h
< σ

and αB′
h

+ βB′
h
≥ 0;

• J is either empty or of the form J = (αJ , βJ) with αJ < σ ≤ βJ ;

• and Bh is either empty or of the form Bh = (αBh
, βBh

) with αBh
≥

σ (βBh
can be infinite).

268



Quantitative Isoperimetric Inequalities

From Ω we build Ω0 with same measure, same asymmetry, same isoperi-
metric projection, and lower or equal perimeter. Denote L =

⋃
h∈Λ− Ah

and A0 = (−∞, βA0) where βA0 = F−1(µ(L)). Since µ(L) ≤ µ(Ω), then
βA0 ≤ −σ. Using the isoperimetric inequality (1.5) with L, it follows that
Pµ(A0) ≤ Pµ(L). The same reason gives that there exist a real number
αB0 ≥ σ and a set B0 = (αB0 ,+∞) with lower or equal perimeter than
∪h∈Λ+Bh (if non-empty). Shift to the left the intervals A′h until they reach
I or −σ. Shift to the right the intervals B′h until they reach J or σ. The
above operation did not change the amount of mass on left of −σ and
on the right of σ. We build a set Ω0 with same asymmetry and same
isoperimetric projection as Ω and lower or equal perimeter,

Ω0 = A0 ∪ I0 ∪ J0 ∪B0,

where

• A0 = (−∞, β0) with βA0 ≤ −σ;

• I0 is either empty or of the form I0 = (αI0 , βI0) with αI0 ≤ −σ <
βI0 ;

• J0 is either empty or of the form J0 = (αJ0 , βJ0) with αJ0 < σ ≤
βJ0 ;

• and B0 is either empty or of the form B0 = (αB0 ,+∞) with αB0 >
σ.

Figure A.1. The set Ω0

A case analysis on the non-emptiness of sets I0 and J0 is required to ob-
tain the claimed result. Every step described below lowers the perimeter
(thanks to the shifting lemma, Lemma 2.3) and preserves the asymme-
try. Before exposing this, we recall that the set Ω0 is supposed to have
(−∞,−σ) as an isoperimetric projection. Thus we pay attention to the fact
that it is totally equivalent to ask either the asymmetry to be preserved
or the quantity λ(Ω0)/2 = µ(Ω0 ∩ (−∞,−σ)) to be preserved trough all
steps described below.
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If I0 and J0 are both nonempty: Applying a symmetry with re-
spect to the origin if necessary, assume that the center of mass
of the hole between I0 and J0 is not less than 0. We can shift
this hole to the right until it touches σ. Using the isoperimetric
inequality (1.5), assume that there exist only one interval of the
form (α′B0

,+∞) on the right of σ. We get the case where I0 is
nonempty and J0 is empty.

If I0 is nonempty and J0 is empty: Then shift the hole between
A0 and I0 to the left until −∞ (there exists one and only one hole
between A0 and I0 since Ω0 is not a full measure set of (−∞,−σ)).
We shift the hole between I0 and B0 to the right until +∞ (one
readily checks that its center of mass is greater than 0). We get
the only interval with same asymmetry and same isoperimetric
projection as the set Ω0. This interval is of the form (the letter c
stands for connected),

Ωc :=
(
F−1 (λ(Ω0)/2) , F−1 (µ(Ω0) + λ(Ω0)/2)

)
. (A.1)

If J0 is nonempty and I0 is empty: Shift to the right the hole
between J0 and B0 to +∞ (there exists one hole between J0 and
B0 since Ω0 is not a full measure set of (σ,+∞)). We obtain a set
A0 ∪ J ′ where J ′ is a neighborhood of σ.

• If µ(J ′) > µ(A0), then shift J ′ to the right (which has center
of mass greater than 0) till J ′ ∩ (σ,+∞) has weight equal to
µ(A0) (in order to preserve asymmetry). Using a reflection in
respect to the origin, we find ourselves in the case where I0 is
nonempty and J0 is empty.
• If µ(J ′) ≤ µ(A0), then shift J ′ (which has center of mass
greater than 0) to the right until +∞ and get the case where
I0 and J0 are both empty.

If I0 and J0 are both empty: Then the set Ω0 is of the form (d
stands for disconnected),

Ωd =
(
−∞, F−1 (µ(Ω0)− λ(Ω0)/2)

)
∪
(
F−1 (1− λ(Ω0)/2) ,+∞

)
.

This concludes the proof.
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