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Properties of subgroups not containing their
centralizers

Lemnouar Noui

Abstract

In this paper, we give a generalization of Baer Theorem on the injective prop-
erty of divisible abelian groups. As consequences of the obtained result we find a
sufficient condition for a group G to express as semi-direct product of a divisible
subgroup D and some subgroup H. We also apply the main Theorem to the p-
groups with center of index p2, for some prime p. For these groups we compute
Nc(G) the number of conjugacy classes and Na the number of abelian maximal
subgroups and Nna the number of nonabelian maximal subgroups.

1. Introduction

We shall recall some definitions:
If H is a subgroup of a group G, a subgroupK is called a complement of
H in G if G = HK and H ∩K = {1}. Therefore if HCG and KCG, then
G is said to be the direct product of H and K, in symbols, G = H �K.

If H CG, then G is said to be the semi-direct product of H and K, in
symbols, G = H oK.

An abelian group D is called divisible if for every x ∈ D and every
positive integer n there is a y ∈ D so that x = ny, i.e., each element of
D is divisible by every positive integer. The main property of divisible
groups is that they satisfy the following “injectivity" condition:
Theorem 1.1 (Baer Theorem [3]). If D is a divisible group, then any
homomorphism f : A→ D = from any abelian group A into D extends to
any abelian group G which contains A i.e., there exists a homomorphism
f : G→ D so that f |A = f .

The purpose of this paper is to generalize this result to the nonabelian
groups. To this end, we introduce the property “N” in subgroups: Let H
be a subgroup of an arbitrary group G.

Keywords: Maximal subgroup, divisible groups, p-groups, center, conjugacy classes.
Math. classification: 14L05, 20D25, 20K27, 20E28.
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H satisfies the condition “N" if and only if ∃g ∈ G−H [g, H] = 1.

This is equivalent to saying that CG(H) * H where CG(H) is the cen-
tralizer of H in G which is defined to be the set of all g in G such that
hg = gh for all h in H, it is clearly a subgroup of G.

By the definition of the condition “N” we deduce that
1) If G is abelian, then every proper subgroup H satisfies the condition

"N".
2) If G is a nonabelian nilpotent group, then every maximal normal

abelian subgroup H of G does not satisfy the condition “N” because
CG(H) = H, [3].

3) There exist a nonabelian groups G whose a subgroup H satisfies
the condition“N”, for example let G = Q8 × Z/2Z where H = Q8 is the
quaternion group of order 8, [2].

2. Main results and proofs

Theorem 2.1. Let G be a group and let H be a subgroup of G such that
each proper subgroup H ′ of G which contains H, satisfies the condition
“N”. Then any homomorphism f : H → D from H into divisible group D
extends to the group G.
Proof. Let us consider the set S of all pairs (Hi, fi ) whereHi is a subgroup
of G containing H and fi : Hi → D is an extension of f , i.e., f|Hi = fi. Let
(Hi, fi) ≤ (Hj , fj) ifHi ⊂ Hj and fj|Hi = fi. The set S is partially ordered
by the relation ≤. We aim to apply Zorn’s Lemma to S and to this end we
consider a chain (Hi, fi)i∈I . It has an upper bound

(
∪i ∈IHi, f

′
)

where
f
′ : ∪i ∈IHi → D is defined by f ′(xi) = fi(xi) for every xi ∈ Hi. This

is unambiguous since xi ∈ Hi ⊂ Hm ⇒ fm (xi) = fi (xi). Consequently,
by Zorn’s Lemma, S has a maximal element, say (H, f ). We claim that
H = G and f is the desired extension of f to G. To see this suppose
H 6= G. By hypotheses H satisfies the condition “N”, consequently, there
is an g ∈ G−H such that

[
g, H

]
= 1, therefore

〈
H, g
〉

= H · 〈 g 〉. There
are two cases:
Case 1.
H ∩ 〈 g 〉 6= {0}. Let n the smallest positive integer so that gn = u ∈ H.
Since D is divisible there is a x ∈ D so that f(u) = nx. Let f∗ : H ·〈 g 〉 →
D be defined by f ∗(agt) = f(a) + tx where a ∈ H and 0 ≤ t ≺ n, if
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agt = a′gt′ then a′−1a = gt′−t ∈ H, so t′ − t = 0 and a = a′. Hence f ∗ is
well-defined mapping. Let z1 = a1gt1 , z2 = a2gt2 be two elements of the
group H ·〈 g 〉, then f∗(z1 )+f ∗(z2 ) = f (a1a2)+( t1+t2 )x and t1+t2 =
kn+ t0 where 0 ≤ t0 ≺ n. In the other hand f ∗(z1z2 ) = f ∗(a1gt1a2gt2),
since

[
g, H

]
= 1, f ∗(z1z2 ) = f ∗(a1a2gt1+t2 ) = f ∗(a1a2ukgt0 ), so

f
∗(z1z2 ) = f (a1a2) + ( kn + t0 )x. Finally f ∗(z1z2 ) = f ∗(z1 ) +
f
∗(z2 ), so f ∗ is a homomorphism so that f ∗|H = f . This contradicts the

maximality of (H, f).
Case 2.
H ∩ 〈 g 〉 = {0}. Then H · 〈 g 〉 = H � 〈 g 〉. Let x0 be an element of
D, in this case we can define f ∗ : H � 〈 g 〉 → D by writing f ∗(agt) =
f(a)+kx0, it is easy to verify that f∗ is a homomorphism so that f ∗|H = f
contradicting the maximality of (H, f). Thus H = G and f is the desired
extension of f to G. �

Since every subgroup of an abelian group satisfies the condition“N”,
we can apply Theorem 2.1 to abelian groups, also we deduce the known
result, [3]:

Corollary 2.2. Any divisible subgroup D of an abelian group G splits,
i.e., D has a complement H so that G = H ⊕D.

If G is a group (not necessarily abelian), we write:

Corollary 2.3. Let G be a group and let D be a divisible subgroup of G
such that every subgroup H of G which contains D, satisfies the condition
“N”. Then D has a complement H so that G = H oD.

Proof. We consider the identity map: idD : D → D, by Theorem 2.1, idD
extends to the group G, i.e., there exists a homomorphism f : G → D
so that f |D = idD. Let i : D → G be the inclusion map, then f ◦ i =
idD implies that f(G) = D. Let H = Kerf , if x ∈ G, then x = xf
(x−1)f (x). Since f

[
xf (x−1)

]
= f (x).f ◦ f (x−1) and f |D = idD,

we have f
[
xf (x−1)

]
= 1, so G = H.D. If x belongs to H ∩ D, then

x = f (x′) and f (x) = 1, thus f (x) = f ◦ f (x′) = f (x′), that is,
H ∩D = {1}. Hence G = H oD. �
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Corollary 2.4. Let G be a finite p-group with center of index p2. If H is
a nonabelian maximal subgroup of G then any homomorphism f : H → D
from H into divisible group D extends to the group G.

To prove Corollary 2.4, we need the following.

Lemma 2.5. Let G be a finite p-group such that its center Z(G) has
index p2. If H is a maximal subgroup of G, then the following properties
are equivalent.

i)H is abelian
ii) Z(G) ⊂ H
iii) H does not satisfy the condition “N”.

Proof of Lemma 2.5. “i) ⇒ ii)”. Let us assume that H is abelian. If
Z(G) * H, there exists g ∈ Z(G) − H and G = H · 〈 g 〉. Then G is
abelian, this contradicts |G : Z(G)| = p2.

“ii) ⇒ iii)”. Assume that Z(G) ⊂ H. Then Z(G) ⊂ Z(H) ⊂ H ⊂ G.
By hypothesis |G : Z(G)| = p2. Since the center does not have a prime
index and |G : H| = p, Z(H) = H, consequently H is abelian. Hence
H is a maximal normal abelian subgroup of the nilpotent group G, so
CG(H) = H, [3], and H does not satisfy the condition “N”.

“iii)⇒ i)”. If CG(H) ⊂ H, then Z(G) ⊂ Z(H) ⊂ H. By the same way
we deduce that H is abelian. �

Proof of Corollary 2.4. Let H be a subgroup of G so that H ⊂ H ′, since
H is nonabelian, by Lemma 2.5, there is g ∈ G −H so that [g, H] = 1.
Then [g, H ′] = 1 by maximality of H. Thus the conditions of Theorem 2.1
are satisfied, so we obtain Corollary 2.4. �

3. Subgroups satisfying the condition “N”

If A is finitely generated abelian group, the rank of A is defined by rk(A)
the minimum number of generators of A.

We denote us by xG the conjugacy class of x in an arbitrary groupG and
CG(x) the centralizer of x in G and Nc(G) the number of the conjugacy
classes.

If G is a finite p-group of class c, then from [4], we know that

Nc(G) ≥ c |G |1/c − c+ 1.
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Let G be a finite p-group of order pn such that its center has index
p2. In this section, we compute the number Nc(G) and N0 the number of
maximal subgroups in G satisfying the condition “N”.

Theorem 3.1. Let G be a finite p-group of order pn such that its center
has index p2, then

1) G has precisely p+ 1 abelian maximal subgroups.
2) The number of maximal subgroups satisfying the condition “N” equals
N0 = (pr−p2)/(p−1) where r is the rank of G/G′ = Z/pn1Z×· · ·×Z/pnrZ.

3) Nc(G) = pn−1 +pn−2−pn−3 and each nontrivial conjugacy class has
p elements.

The proof of Theorem 3.1 results from the following Lemmas.

Lemma 3.2. Let G be an abelian finite p− group, then the number of
subgroups of order p equals (pr − 1)/(p− 1) where r is the rank of G.

Proof of Lemma 3.2. Since rk(G) = r, G is isomorphic with the group
Z/pn1Z×· · ·×Z/pnrZ. If g is an element of order p inG, then g = g1g2 . . . gr
such that gi has order p or 1 and g 6= 1. The number of such elements g
equals

(p− 1) · C1
r + (p− 1)2C2

r + · · ·+ (p− 1)rCrr = pr − 1.
Since a group of order p has p − 1 elements of order p, the number of
subgroups of order p is (pr − 1)(p− 1). �

Lemma 3.3. Let G be a p−group satisfying |G : Z(G)| = pm, then |G′| ≤
pm(m−1)/2.

Proof. By induction on m. �

Proof of Theorem 3.1. 1) Let H be an abelian maximal subgroup of G,
then H does not satisfy the condition “N”, so Z(G) ⊂ H. Consequently
H/Z(G) is a subgroup of order p of the elementary p− group G/Z(G) '
Z/pZ×Z/pZ by Lemma 3.2, there is (p2−1)(p−1) = p+1 such subgroups.
2) By Lemma 3.3, |G : Z(G)| = p2 implies that |G′| = p. Let H be a
maximal subgroup of G, then G′ ⊂ H ⊂ G implies that H/G′ is a maximal
subgroup of G/G′. By using the known result of Steinitz [5]: The number
of subgroups of order pk equals the number of subgroups of order pn−k
in a finite abelian group of order pn, we conclude that the number of the
maximal subgroups H is equal to the number of subgroups of order p of
G/G′. If rk(G/G′) = r, then the number of maximal subgroups satisfying
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the condition “N” is (pr − 1)(p − 1) − (p + 1) = (pr − p2)(p − 1) by
lemma 3.2.
3) If x ∈ Z(G), the conjugacy class of x is trivial, i.e, xG = {x}. If
x /∈ Z(G), then Z(G)  CG(x)  G therefore

∣∣∣xG∣∣∣ = |G : CG(x)| = p. Let
k the number of nontrivial conjugacy classes, then |G| = pn = pn−2 + kp.
Consequently k = pn−1 − pn−3 and Nc(G) = pn−1 + pn−2 − pn−3, so the
proof is complete. �

Corollary 3.4. Let G be a p−group of order pn such that |G : Z(G)| = p2.
If G/G′ is elementary p−group, then G has exactly (pn−1 − 1)(p − 1)
maximal subgroups.

Proof. This follows easily from Theorem 3.1. �

4. Examples

The following examples illustrate some applications of the previous results.

Example 4.1. Let G be a p−group of order p3, then
1) The number N of maximal subgroups is given in the following table

G Z

p3Z

Z

pZ
× Z

p2Z

Z

pZ
× Z

pZ
× Z

pZ
G is nonabelian

N 1 1 + p 1 + p+ p2 1 + p

2) The number of conjugacy classes is Nc(G) = p2 + p − 1 (if G is
nonabelian).

To prove the result 1) we consider the two cases
a) If G is abelian, we apply Lemma 2.5.
b) If G is nonabelian, |G : Z(G)| = p2 because the index of center does
not equal to a prime, so G′ = Z(G) and G is extra-special, [3]. Now
G′ ⊂ Frat(G) ⊂ G implies that |Frat(G)| = p2 or p, the first case
is impossible because, by Burnside Basis Theorem, [3], |G : Frat(G)| = p
implies that G is generated by one element, that is, G is cyclic. Hence G′ =
Z(G) = Frat(G). IfG/G′ is not elementary p−group, then by Theorem 3.1
G has one maximal subgroup, so |Frat(G)| = p2, a contradiction. Thus
G/G′ is elementary p−group and the result is an immediate consequence
of Corollary 3.4.
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2) Since |G : Z(G)| = p2, to calculate Nc(G) it is enough to apply
Theorem 3.1 for n = 3.

Example 4.2. Let G be a p−group of order p4 such that |G : Z(G)| = p2.
1) If G/G′ is an elementary p−group, then G has exactly p+ 1 abelian

maximal subgroups and p2 nonabelian maximal subgroups.
2) If G/G′ is not an elementary p− group, G has p + 1 maximal sub-

groups, all abelian.

In order to prove this, we consider two cases.
1) In the first place, if G/G′ is an elementary p− group, then G has
p3−1
p−1 = p2 + p + 1 maximal subgroups by Corollary 3.4. To calculate

the number of nonabelian maximal subgroups we can apply the second
assertion of Theorem 3.1.

2) Now assume that G/G′ is not an elementary p−group, then the rank
rk(G/G′) = 1 or 2, the first case implies that |G : Frat(G)| = p1 and G
is cyclic. Hence rk(G/G′) = 2, by Theorem 3.1, G has not a nonabelian
maximal subgroup and it has exactly p+1 maximal subgroups, all abelian,
as required.

Example 4.3. Let G be a p−group of order p4 such that |G : Z(G)| = p3.
Then

1) G has one maximal abelian subgroup and p nonabelian maximal
subgroups.

2) G has exactly 2p2 − 1 conjugacy classes.

In order to prove this result, we first note that every element x of G
belongs to a maximal subgroup. Second, we establish two Lemmas.

Lemma 4.4. Let G be a p−group of order p4 such that |G : Z(G)| = p3.
Then ∣∣∣xG∣∣∣ = p⇐⇒ x ∈M − Z(G),
where M is an abelian maximal subgroup of G.

Proof of Lemma 4.4. If
∣∣∣xG∣∣∣ = p, then |CG(x)| = p3, let M = CG(x).

Since G is a finite nilpotent group, M C G and G/M is abelian, conse-
quently G′ ⊂M . If G/Z(G) is abelian, then G′ ⊂ Z(G)⇒ G′ = Z(G), so
G is extra-special and |G| = p2k+1, [3], a contradiction. Hence G/Z(G) is
not abelian, since G is nilpotent, G′ ∩ Z(G) 6= {1}, so Z(G)  G′  M
and |G′| = p2. Assume that M is not abelian, then Z(G) ⊂ Z(M) ⊂ M .
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Since the index of center does not equal to a prime, Z(G) = Z(M). If
y ∈ M , yx = xy so x ∈ Z(M) and we reach the contradiction x ∈ Z(G).
HenceM is abelian. Conversely, letM be an abelian maximal subgroup of
G and x ∈M−Z(G). If

∣∣∣xG∣∣∣ = p2, then |CG(x)| = p2. SinceM is abelian,
M ⊂ CG(x)  G, so M = CG(x) and |CG(x)| = p3, by this contradiction
we obtain

∣∣∣xG∣∣∣ = p. �

Lemma 4.5. Let G be a p−group of order p4 such that |G : Z(G)| = p3
and let M be a maximal subgroup of G. Then

1) IfM is abelian,M contains exactly p2−1 nontrivial conjugacy classes
which has p elements.

2) IfM is not abelian,M−G′ contains exactly p−1 nontrivial conjugacy
classes which has p2 elements.

Proof of Lemma 4.5. 1) Assume that M is abelian. Let x ∈ M − Z(G),
since M C G, xG ⊂ M . By Lemma 13,

∣∣∣xG∣∣∣ = p, consequently G has
p3−p
p = p2 − 1 nontrivial conjugacy classes which has p elements.
2) If M is not abelian, let x ∈M −G′. From Lemma 13 it follows that∣∣∣xG∣∣∣ = p2, soM−G′ has exactly p

3−p2
p2 = p−1 nontrivial conjugacy classes

which has p2 elements. �

We will prove the last result as following. IfM1 andM2 are two maximal
subgroups in G, it is clear that M1 ∩M2 = G′. We denote by ka ( respec-
tively kna ) the number of abelian (respectively nonabelian) maximal sub-
groups in G. If x ∈ G′−Z(G), xG ⊂ G′, so

∣∣∣xG∣∣∣ = p and |CG(x)| = p3, we
have shown in the proof of Lemma 4.4 that CG(x) is abelian, consequently
ka 6= 0.

LetM1,M2 be two abelian maximal subgroups of G. Let x ∈ G′−Z(G),
then G′ ⊂M1  G and by Lemma 4.4,

∣∣∣xG∣∣∣ = p.
Let x ∈ M1. Since M1 is abelian, M1 ⊂ CG(x)  G, so M1 = CG(x).

By the same way we obtain M2 = CG(x). Hence M1 = M2 and ka = 1.
Each maximal subgroup M satisfy G′ ⊂ M ⊂ G, so MG′ is a subgroup of
order p of the group G/G′ ' Z/pZ × Z/pZ. By Lemma 3.2, G has p + 1
maximal subgroups, so kna = p.

2) By using Lemma 4.4 and Lemma 4.5 and the first assertion of Ex-
ample 4.2, we obtain Nc(G) = p+ (p2 − 1) + p(p− 1) = 2p2 − 1.
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Remark 4.6. In [1], M. Reid proved that if G is a finite group whose order
is not divisible by 3, and G has m conjugacy classes, then the congruence
|G| ≡ m mod 3 holds. With the hypotheses of Theorem 3.1, we have the
congruence |G| ≡ Nc(G) mod 6 because

|G| −Nc(G) = pn − pn−1 − pn−2 + pn−3 = pn−3(p− 1)2(p+ 1).

Acknowledgements. I would like to thank the referee for his comments
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