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Abstract

The motion of a three-dimensional glacier is considered. Ice is modeled as
an incompressible non-Newtonian fluid. At each time step, given the shape of
the glacier, a nonlinear elliptic system has to be solved in order to obtain the
two components of the horizontal velocity field. Then, the shape of the glacier is
updated by solving a transport equation. Finite element techniques are used to
compute the velocity field and to solve the transport equation. Numerical results
are compared to experiments on Storglaciaren (Sweden) between 1959 and 1990.

1. Introduction

Over the last 150 years, the Swiss Alps lost 50 % of their glaciers. Today,
most of alpine glaciers are retreating, leaving visible marks on the land-
scape. The future evolution of glaciers is not only of concern for the tourist
industry, but also for agriculture and hydro-power production. The past
evolution of glaciers is an archive of climatic changes [2].

Numerical glacier modelling has become an important tool for glaciolo-
gists in order to understand the interactions between glaciers and climate.
Most of the numerical methods use finite differences with fixed cartesian
grids [18].

Recently, finite element techniques have been introduced in this area,
see for instance [20, 15], and several mathematical papers have been pub-
lished in two space dimensions. The well posedness of a shallow ice model
for the computation of the velocity is discussed in [10]. A priori and a
posteriori error estimates are derived for the corresponding finite element

Keywords: glacier, ice, non-Newtonian fluid, finite elements.
Math. classification: 65N30,76M10.
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method in [14, 8]. The question of modelling errors for this model is dis-
cussed in [6]. A finite element method to compute the ice velocity and the
motion of the glacier is presented in [21].

The goal of this paper is to present a three-dimensional finite element
model in order to compute the ice velocity and the motion of the glacier,
thus extending the two-dimensional model presented in [21] to three space
dimensions [23]. The model is presented in the next section. Given precip-
itations estimates, the size and motion of a glacier is computed. Energy
balance is disregarded. The velocity field is modelled as an incompress-
ible Non-Newtonian fluid. Assuming that the horizontal extent of the ice
sheet is much larger than the ice thickness, a first order analysis of the
momentum equations yields to a strongly non-linear elliptic system for
the two horizontal components of the velocity field. Then, mass conser-
vation yields to a transport equation for the glacier height, with a given
right-hand side corresponding to the climatic input due to snow falls or
ice melting. At each time step, given the shape of the glacier, the strongly
non-linear elliptic system studied in [22] has to be solved in order to ob-
tain the two components of the horizontal velocity field. Then, the shape
of the glacier is updated by solving the transport equation for the glacier
height. Finite element techniques are used to compute the velocity field
and to solve the transport equation. The transport equation is discretized
using an Arbitrary Lagrangian Eulerian (ALE) formulation. In section 4,
numerical results are compared to experiments on Storglaciaren (Sweden)
between 1959 and 1990.

When comparing the present paper to the two-dimensional model pre-
sented in [21], the interested reader will note that the overall methodology
is the same. However, the extension from 2D to 3D computations is not
obvious, specially from the point of view of mesh generation and deforma-
tion. This issue is explained in details in Section 3.

2. The model

Our goal is to present a model predicting the evolution of a glacier dur-
ing decades, possibly centuries given the amount of ice accumulating or
disappearing on the top surface of the glacier. At time t, the unknown ice
domain Ω(t) is parametrized as follows :

Ω(t) = {(x, y, z) ∈ R3; (x, y) ∈ Λ(t);B(x, y) ≤ z ≤ S(x, y, t)},
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where Λ(t) is the unknown glacier support, B is the prescribed mountain
bedrock, S = B+H the unknown top surface of the glacier, see Fig. 1 for
the notations. Given the snow falls or ice melting, our goal is to compute
when time t is going on, the horizontal components u and v of the ice
velocity and the shape of the glacier, that is the glacier support Λ and the
glacier height H.

Coupling the size and motion of a glacier with the energy balance would
be a significant accomplishment in the field but is beyond the scope of the
present paper. We refer to [13] for a full description of models involved in
glacier dynamics.

z

Ω(t)

Λ(t)

nx(x, y, t)
ny(x, y, t)
nz(x, y, t)



u(x, y, z, t)v(x, y, z, t)
w(x, y, z, t)



x

y

z = S(x, y, t)

z = B(x, y)

H(x, y, t)

b(x, y, t)

Figure 1. The notations. The ice domain at time t is
Ω(t), its projection onto the xy plane is the glacier support
Λ(t). The mountain bedrock is parametrized by B, the top
surface by S, the glacier height is H. The function b is
a given quantity corresponding to mass accumulation or
ablation (snow falls or ice melting). The velocity field of
ice has components u, v and w. The normal at the top
surface has components nx, ny and nz.
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2.1. The velocity field

For the time scales involved (from several years to a century), glacier
ice is behaving like a fluid, not like a solid. Ice can be modeled as an
incompressible viscous fluid and time-dependent effects can be neglected.
Thus, given the ice domain Ω(t), a stationary problem has to be solved in
order to obtain the ice velocity. Several models are available and the case of
a shallow glacier is considered here. More precisely, it is assumed that the
horizontal extent of the ice sheet is much larger than the ice thickness. In
[3], a scale analysis is performed for such a glacier, the scaling parameter
being the ratio between the ice thickness and the length (or width) of
the glacier. For instance in small valley glaciers this ratio ranges between
0.01 and 0.1 (eventually more in steep regions). Below, we briefly present
the corresponding first order model in three space dimensions, see [3] for
details. A mathematical and numerical analysis of this model is provided
in [22].

It should be noted that this first order model requires only the horizon-
tal components u and v of the velocity field to be computed. Indeed, the
horizontal component w is not contained in the set of equations anymore,
although it can be recovered from the mass conservation equation. The
fact that w is absent from the set of equations is due to the fact that w
occurs only in terms which are of second order magnitude with respect to
the small parameter (the ratio between the ice thickness and the length or
width of the glacier). Thus, the feedback of the horizontal component w
to the horizontal components u and v is small, or negligible in first order
accuracy.

At time t, the equations governing the horizontal components u(t), v(t) :
Ω(t) → R of the velocity field are as follows:
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µ
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Here µ is the ice viscosity, which is implicitly defined by the relation

1
µ

= A
(
Tn−1

0 + (sµ)n−1
)
, (2.3)

where A, T0 and n are positive coefficients and s is given by
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Let ~n = (nx, ny, nz)T denote the outward normal vector on the boundary
of Ω(t). The boundary conditions on the top surface z = S(x, y, t), (x, y) ∈
Λ(t) correspond to zero force condition and are

µ
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nx +

µ

2

(
∂u

∂y
+
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nz = 0, (2.5)
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+
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(
∂u

∂x
+ 2

∂v

∂y

)
ny +

µ

2
∂v

∂z
nz = 0. (2.6)

On the mountain bedrock z = B(x, y), (x, y) ∈ Λ(t), zero Dirichlet condi-
tions are imposed:

u = 0, v = 0. (2.7)

It should be noted that the above no-slip boundary condition is too simple
to reproduce complex phenomena such as glacier surges [12, 13]. Indeed,
in temperate glaciers, due to water flowing between the bedrock and the
ice sheet, ice may slip along the bedrock. In the 2D simulation of Gries
glacier [21], the velocity on the bedrock was tuned so that it was fitting the
measured velocity on the top surface. Here, the measured velocity on the
top surface is available only in a small portion of the glacier (Storglacia-
ren), thus a different strategy is adopted. No-slip boundary conditions are
imposed on the mountain bedrock and the parameter A involved in (2.3)
is tuned so that the computed velocity best fits the measured one.
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2.2. A model for the glacier height

DΛ(t)
νx

νy

0

x

y

z

b(x, y, t)

Figure 2. Mass conservation into a vertical cylinder with
base D in the xy plane. The normal to ∂D has component
νx and νy in the xy plane. The amount of mass due to snow
accumulation or melting on the top surface is b.

In this subsection, the two components u and v of the horizontal velocity
are assumed to be known in the ice domain Ω(t) and an additional equation
governing the evolution of the glacier height H is derived. Consider, as in
Fig. 2, a vertical cylinder with base D. Mass conservation into this cylinder
writes

d

dt

(∫
(x,y)∈D

∫ z=S(x,y,t)

z=B(x,y)
dzdxdy

)

+
∫
(x,y)∈∂D

∫ z=S(x,y,t)

z=B(x,y)
(uνx + vνy)dzds(x, y) =

∫
(x,y)∈D

b(x, y, t)dxdy,
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where b is a given quantity corresponding to mass accumulation or ablation
(snow falls or ice melting) that can be measured by glaciologists. Since
S = B +H, the divergence theorem applied to domain D yields∫

(x,y)∈D

(
∂H

∂t
+

∂

∂x

(∫ S

B
u dz

)
+

∂

∂y

(∫ S

B
v dz

))
dxdy

=
∫
(x,y)∈D

bdxdy. (2.8)

Let ū, v̄ be the vertical average of the horizontal velocities u, v defined by

ū(x, y, t) =
1

H(x, y, t)

∫ S(x,y,t)

B(x,y)
u(x, y, z, t)dz, (2.9)

v̄(x, y, t) =
1

H(x, y, t)

∫ S(x,y,t)

B(x,y)
v(x, y, z, t)dz. (2.10)

Then, since the domain D is an arbitrary subset of the glacier support
Λ(t), (2.8) leads to

∂H

∂t
+

∂

∂x
(ūH) +

∂

∂y
(v̄H) = b in Λ(t). (2.11)

The evolution of the ice domain Ω(t) is known whenever the glacier sup-
port Λ(t) and the glacier thickness H(t) are known. The glacier thickness
is governed by the transport equation (2.11). In order to determine Λ(t)
we need to provide the additional equation

H(x, y, t) = 0 (x, y) ∈ Λ(t), t > 0. (2.12)

2.3. Model recapitulation

Our mathematical model is then the following. Given the glacier bedrock
B, the initial glacier support Λ(0), the initial glacier height H(0), given
positive parameters A, T0, n, given the function b, find the horizontal
velocities u, v satisfying (2.1) (2.2), the glacier heightH(t) satisfying (2.11)
and the glacier support Λ(t) satisfying (2.12).

3. Algorithm

The numerical procedure used to solve the above mathematical problem is
based on our physical understanding of the problem and is the following.
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At each time step, given an approximation of the ice domain Ω(t) we
proceed as follows.

• Compute the horizontal velocity by solving (2.1) (2.2) with the
boundary conditions (2.5)–(2.7) using continuous, piecewise linear
finite elements on a tetrahedral mesh of Ω(t).

• Update the glacier support Λ(t) using (2.12).

• Compute the new glacier height H by solving (2.11) with an Ar-
bitrary Lagrangian Eulerian (ALE) finite element method.

The three steps of this decoupling algorithm are presented in details
hereafter. At initial time Λ(0) and

H(0) : Λ(0) → R
(x, y) → H(x, y, 0)

are known so that the initial ice domain

Ω(0) = {(x, y, z) ∈ R3; (x, y) ∈ Λ(0);B(x, y) ≤ z ≤ B(x, y) +H(x, y, 0)}

is known. Let ∆t be the time step, tm = m∆t, m = 0, 1, 2, . . . . Consider
the time iteration number m and let Λm, Hm : Λm → R and Ωm be
approximations of Λ(tm), H(tm) : Λ(tm) → R and Ω(tm), respectively.
The goal is :

• to compute approximations um, vm : Ωm → R of the horizontal
velocity components u(tm), v(tm) : Ω(tm) → R,

• to compute a new approximation Λm+1 of Λ(tm+1),

• to compute a new approximation Hm+1 : Λm+1 → R of the glacier
height H(tm) : Λ(tm+1) → R,

• to compute an approximation Ωm+1 of the ice domain Ω(tm+1).

8
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3.1. Computation of the velocity field

xm
j

ym
j

z = Bm
j +Hm

j

z = Bm
j

Λm

Figure 3. Notations for the finite element tetrahedral
mesh of Ωm. The glacier support Λm is meshed into tri-
angles with vertices (xm

j , y
m
j ). Then, the vertices of the 3D

mesh are aligned on top of those of the glacier support Λm.

In this subsection, the domain Λm and the function Hm : Λm → R are
known and we want to compute an approximation um, vm of the horizontal
velocity components u(tm), v(tm) : Ω(tm) → R. Let Th(Λm) be a regular
triangulation of Λm into triangles with size less than h. We assume that
Hm : Λm → R is a continuous piecewise linear function on each triangle
of Th(Λm). Let further Bm be a piecewise linear interpolation of B on this
same triangulation and let Sm = Bm +Hm. The ice domain Ωm is then
defined by

Ωm = {(x, y, z) : Bm(x, y) ≤ z ≤ Sm(x, y), (x, y) ∈ Λm}, (3.1)

and is meshed into tetrahedrons. For stability purposes, all the triangula-
tions Th(Λm) and all the tetrahedral meshes Th(Ωm), m = 0, 1, 2, ... have
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the same topology. Moreover, the vertices of Th(Ωm) are aligned along ver-
tical segments with endpoints (xm

j , y
m
j , B

m
j ) and (xm

j , y
m
j , B

m
j +Hm

j ), where
(xm

j , y
m
j ) are the vertices of triangulation Th(Λm) and Bm

j = Bm(xm
j , y

m
j ),

Hm
j = Hm(xm

j , y
m
j ), see Fig. 3 and 4.

Figure 4. An example of finite element meshes. Top :
mesh of the glacier support Λm into triangles. Bottom :
mesh of the ice glacier domain Ωm into tetrahedrons.

Then, equations (2.1) (2.2), with boundary conditions (2.5)-(2.7) are
solved numerically using continuous, piecewise linear finite elements on
the tetrahedral mesh Th(Ωm). The finite element formulation then consists
in finding (um, vm) in the space of continuous, piecewise linear functions
on the tetrahedrons of Th(Ωm), vanishing on the bedrock of the glacier
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and such that∫
Ωm

{
µm

(
2
∂um
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+
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2
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2
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2
∂vm

∂z

∂ψ

∂z

}
dxdydz

= ρg

∫
Ωm

(
∂Sm

∂x
ϕ+

∂Sm

∂y
ψ

)
dxdydz, (3.2)

for all test functions (ϕ,ψ), continuous, piecewise linear on the tetrahe-
drons of Th(Ωm), vanishing on the bedrock of the glacier. Here µm is the
ice viscosity which is implicitly defined from the derivatives of um, vm as
in (2.3) (2.4). It should be noted that existence of a solution to (3.2) and
convergence when the mesh size h goes to zero has been addressed in [22].
The difficulty is due to the fact that (3.2) is a nonlinear problem since
µm depends implicitly on the derivatives of the unknown velocities um,
vm. Picard’s iterative method is used to solve the nonlinear system, no
under-relaxation being necessary to reach convergence, see the proof in
[23].

Since the vertices of Th(Ωm) are vertically aligned, their projection onto
the xy plane coincide with the vertices of Th(Λm), which facilitates the
computation of the vertically averaged horizontal velocity components ū,
v̄ defined by (2.9) (2.10). Using a trapezoidal quadrature formula we can
compute approximations ūm

j and v̄m
j of ū(xm

j , y
m
j , tm) and v̄(xm

j , y
m
j , tm)

as follows:

ūm
j =

1
Nj

(
um(xm

j , y
m
j , B

m
j )

2
+

Nj−1∑
i=1

um(xm
j , y

m
j , B

m
j + i∆zm

j )

+
um(xm

j , y
m
j , B

m
j +Hm

j )
2

)
,

v̄m
j =

1
Nj

(
vm(xm

j , y
m
j , B

m
j )

2
+

Nj−1∑
i=1

vm(xm
j , y

m
j , B

m
j + i∆zm

j )

+
vm(xm

j , y
m
j , B

m
j +Hm

j

2

)
.

(3.3)
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Here Nj is the number of vertices in the mesh Th(Ωm) aligned on top of
a vertex (xm

j , y
m
j ) in the triangulation Th(Λm) (see Fig. 3) and ∆zm

j =
Hm(xm

j , y
m
j )/Nj is the vertical mesh spacing. The functions ūm, v̄m :

Λm → R are then defined as

ūm(x, y) =
N∑

j=1

ūm
j ϕ

m
j (x, y),

v̄m(x, y) =
N∑

j=1

v̄m
j ϕ

m
j (x, y),

where ϕm
j (x, y) are the continuous, piecewise linear shape functions asso-

ciated with the triangulation Th(Λm).

3.2. Computation of the new glacier support Λm+1

In order to determine the new glacier support Λm+1 we proceed in two
steps: first, we move the vertices lying on the boundary of Λm, then we
move the internal vertices of Λm.

3.2.1. Moving the vertices lying on the boundary of Λm.

At time t, let (x(t), y(t)) be a point lying on the boundary of glacier
support Λ(t). We compute an approximation of x(t+ ∆t), y(t+ ∆t) using
the first order expansion

x(t+ ∆t) ≈ x(t) + ∆t ẋ(t), y(t+ ∆t) ≈ y(t) + ∆t ẏ(t). (3.4)

In order to compute the ẋ(t), ẏ(t), we take the derivative of (2.12) with
respect to time and obtain

∂H

∂x
(x(t), y(t), t) ẋ(t) +

∂H

∂y
(x(t), y(t), t) ẏ(t) +

∂H

∂t
(x(t), y(t), t) = 0.

Using equation (2.11) we obtain

∂H

∂x
(x(t), y(t), t) ẋ(t) +

∂H

∂y
(x(t), y(t), t) ẏ(t)

=
∂

∂x
(ūH)(x(t), y(t), t) +

∂

∂y
(v̄H)(x(t), y(t), t)− b(x(t), y(t), t). (3.5)
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Let ~d = (dx, dy)T , d2
x + d2

y = 1, be the direction in which the vertices
located on the boundary of Λ(t) will be moved. We have: ẋ(t) = δdx and
ẏ(t) = δdy, where δ is the velocity at (x(t), y(t)) in direction ~d. From (3.5)
we obtain

δ = δ(x(t), y(t), t) =

(
∂
∂x(ūH) + ∂

∂y (v̄H)− b
)

(x(t), y(t), t)(
∂H
∂x dx + ∂H

∂y dy

)
(x(t), y(t), t)

. (3.6)

Now, let (xm
j , y

m
j ) be a vertex of the triangulation Th(Λm) lying on the

boundary of Λm. We compute the position of this vertex at time tm+1 as
follows:

xm+1
j = xm

j + ∆t δm
j (dx)m

j , ym+1
j = ym

j + ∆t δm
j (dy)m

j , (3.7)

where δm
j is an approximation of δ(xm

j , y
m
j , tm) defined by (3.6). Since ū, v̄

and H are continuous, piecewise linear on each triangle K of Th(Λm), their
space derivatives are piecewise constant, so that a reconstructed gradient
has to be computed at the vertices (xm

j , y
m
j ) in order to compute δm

j .
This reconstructed gradient is obtained by averaging the gradient over all
triangles containing (xm

j , y
m
j ).

It now remains to choose the direction ~dm
j = ((dx)m

j , (dy)m
j )T along

which the boundary vertex (xm
j , y

m
j ) is moved. The most obvious choice

is to move the points towards the direction normal to the boundary, that
is ~dm

j proportional to −∇Hm(xm
j , y

m
j ). In practice, this choice is not the

best one. Indeed, when the boundary of Λm has a strong curvature, then
two neighboring vertices may intersect, which leads to a non conforming
mesh, see Fig. 5. In order to remedy this problem, we modify the direction
in which we move the boundary vertices. If the curvature at a given vertex
(xm

j , y
m
j ) is larger than the curvature at its neighbors, then the direction

~dm
j is expected to be aligned with the normal at (xm

j , y
m
j ). On the other

side, if the curvature at a given vertex (xm
j , y

m
j ) is smaller than the curva-

ture at its neighbors, then the direction ~dm
j is expected to be aligned with

the normal at its neighbors.
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Figure 5. Moving the vertices lying on the boundary of
Λm. Left : moving vertices in the direction normal to the
boundary may result in crossover in the case of large cur-
vature. Right : changing the direction prevents crossover.

The following algorithm is used to obtain the direction ~dm
j at each vertex

(xm
j , y

m
j ) lying on the boundary of Λm. We start with a direction normal

to the boundary.

(~dm
j )0 = −

~∇Hm
j

|~∇Hm
j |

where ~∇Hm
j is the reconstructed gradient of Hm at vertex (xm

j , y
m
j ). Then,

the new direction is computed as a linear combination of its own direction
vector ~dm

j and the directions of the two neighbors, ~dm
j−1, ~dm

j+1, weighted
by a coefficient cmj depending on the curvature. This first step propagates
the direction of a node with large curvature only to its two immediate
neighbors, which might not be sufficient to avoid crossover. We apply the
above step several times to achieve the desired result :

(~dm
j )k+1 = cmj−1(~d

m
j−1)

k + cmj (~dm
j )k + cmj+1(~d

m
j+1)

k k = 0, 1, 2, ..,
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and then normalize the vector to one. The coefficient cmj depends on the
angle θm

j reported in Fig. 6 and we set cj = π/θm
j .

θm
j

(xm
j−1, y

m
j−1)

(xm
j , y

m
j )

(xm
j+1, y

m
j+1)

Figure 6. Definition of the angle θm
j .

3.2.2. Moving the internal vertices of Λm.

Once we have moved the boundary nodes of Th(Λm), we move the in-
terior nodes without changing mesh topology and obtain the new mesh
Th(Λm+1). To this end, the Laplacian method (see for instance [19, 24]) is
used. The method consists in solving the following system :

∆mX
m+1 = 0, ∆mY

m+1 = 0,

where Xm+1 and Y m+1 are the new mesh coordinates and ∆m is the
Laplacian operator defined on the mesh prior to deformation. We use
Dirichlet boundary conditions in order to impose the coordinates of the
nodes on the new border:

Xm+1
j = xm+1

j , Y m+1
j = ym+1

j ,

for all vertices (xm
j , y

m
j ) lying on the boundary of Th(Λm). An example

of mesh deformation is reported in Fig. 7 for Storglaciären, Sweden, the
mesh deformation being exaggerated.
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Figure 7. Mesh deformation of the support of Stor-
glaciären, Sweden. Top : The mesh Th(Λm) of the glacier
support Λm. Middle : the vertices of the mesh Th(Λm) ly-
ing on the boundary of Λm are moved (the deformation is
exaggerated). Bottom : the internal vertices of Th(Λm) are
moved according to the Laplacian method, which yields
the new mesh Th(Λm+1).
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It should be noted that the Laplacian method for moving the grid points
exhibits poor behavior when non-convex geometries are encountered. More
elaborated strategies are available for avoiding this problem, see [7]. The
use of such techniques has not been necessary in the framework of our
model.

3.3. Computation of the new glacier height Hm+1

Our goal is now to compute an approximation Hm+1 : Λm+1 → R of
H(tm+1), the solution of (2.11), given an approximation Hm : Λm → R.
Since both Hm and Hm+1 are computed on different domains, an Arbi-
trary Lagrangian Eulerian (ALE) formulation (see for instance [4]) will be
used.

Equation (2.11) has to be solved numerically for all (x, y) ∈ Λ(t), tm ≤
t ≤ tm+1. Then we introduce the change of variable :

x̂(x, y, t) =x+
∫ tm+1

t
U(x, y, s) ds,

ŷ(x, y, t) =y +
∫ tm+1

t
V (x, y, s) ds,

(3.8)

where U(t), V (t) is the mesh velocity in Λ(t). This change of variable
maps Λ(t) on Λ̂ = Λ(tm+1). Further we define the functions Ĥ, b̂, Û , V̂ ,
ˆ̄u, ˆ̄v by

Ĥ(x̂, ŷ, t) =H(x, y, t), b̂(x̂, ŷ, t) = b(x, y, t),

Û(x̂, ŷ, t) =U(x, y, t), V̂ (x̂, ŷ, t) = V (x, y, t),
ˆ̄u(x̂, ŷ, t) =ū(x, y, t), ˆ̄v(x̂, ŷ, t) = v̄(x, y, t).

(3.9)

Equation (2.11) then writes

∂Ĥ

∂t
− Û

∂Ĥ

∂x̂
− V̂

∂Ĥ

∂ŷ

+
(
∂x̂

∂x
+
∂x̂

∂y

)
∂

∂x̂
(ˆ̄uĤ) +

(
∂ŷ

∂x
+
∂ŷ

∂y

)
∂

∂ŷ
(ˆ̄vĤ) = b̂, (3.10)

in the cylinder Λ(tm+1)× [tm, tm+1]. The above equation is discretized in
time using the following order one, implicit time discretization of (3.10).
Given Ĥm : Λ̂ = Λ(tm+1) → R, the goal is to find Ĥm+1 : Λ̂ = Λ(tm+1) →

17
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R such that Ĥm+1 = 0 on the boundary of Λ(tm+1) and such that

Ĥm+1 − Ĥm

∆t
− Û(tm+1)

∂Ĥm+1

∂x
− V̂ (tm+1)

∂Ĥm+1

∂y

+
∂

∂x

(
ˆ̄u(tm)Ĥm+1

)
+

∂

∂y

(
ˆ̄v(tm)Ĥm+1

)
= b̂(tm+1), (3.11)

in Λ(tm+1). Here we used the fact that
∂x̂

∂x
(x, y, tm+1) =

∂ŷ

∂y
(x, y, tm+1) = 1,

∂x̂

∂y
(x, y, tm+1) =

∂ŷ

∂x
(x, y, tm+1) = 0.

Given an approximation Λ̂ = Λm+1 of the glacier support Λ(tm+1), equa-
tion (3.11) is now solved using continuous, piecewise linear finite elements
on the mesh Th(Λm+1), together with an artificial diffusion method. Let
(xm

j , y
m
j ) and (xm+1

j , ym+1
j ) be the vertices of Th(Λm) and Th(Λm+1), re-

spectively. Then, the mesh velocities Ûm+1, V̂ m+1 : Λ̂ = Λm+1 → R are
defined by

Ûm+1(x̂, ŷ) =
N∑

j=1

xm+1
j − xm

j

∆t
ϕ̂j(x̂, ŷ),

V̂ m+1(x̂, ŷ) =
N∑

j=1

ym+1
j − ym

j

∆t
ϕ̂j(x̂, ŷ),

where ϕ̂j , j = 1, ..., N , are the usual hat functions on the vertices of
Th(Λ̂) = Th(Λm+1). Therefore, the change of variable (3.8) becomes

x̂ =x+ ∆tÛm+1(x̂, ŷ),

ŷ =y + ∆tV̂ m+1(x̂, ŷ),
(3.12)

where (x̂, ŷ) ∈ Λ̂ = Λm+1 and (x, y) ∈ Λm. Let Hm : Λm → R be the
computed glacier height at time tm. We have

Hm(x, y) =
N∑

i=1

Hm
j ϕj(x, y) (x, y) ∈ Λm,

where ϕj , j = 1, ..., N , are the usual hat functions on the vertices of
Th(Λm). Since the transformation Λm → Λ̂ = Λm+1 is piecewise linear, we
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also have

Ĥm(x̂, ŷ) = Hm(x, y) =
N∑

i=1

Hm
j ϕj(x, y) =

N∑
i=1

Hm
j ϕ̂j(x̂, ŷ).

Our finite element discretization of (3.11) then consists in finding Ĥm+1 :
Λ̂ = Λm+1 → R, continuous, piecewise linear, that is

Ĥm+1(x̂, ŷ) =
N∑

i=1

Ĥm+1
j ϕ̂j(x̂, ŷ),

such that Ĥm+1 = 0 on the boundary of Λ̂ = Λm+1 and such that∫
Λ̂

Ĥm+1 − Ĥm

∆t
ϕ̂ dx̂dŷ +

∫
Λ̂
ε~∇Ĥm+1 · ~∇ϕ̂ dx̂dŷ

−
∫
Λ̂

(
Ûm+1∂Ĥ

m+1

∂x̂
+ V̂ m+1∂Ĥ

m+1

∂ŷ

)
ϕ̂ dx̂dŷ

−
∫
Λ̂

(
ˆ̄umĤm+1∂ϕ̂

∂x̂
+ ˆ̄vmĤm+1∂ϕ̂

∂ŷ

)
dx̂dŷ =

∫
Λ̂
b̂m+1ϕ̂ dx̂dŷ, (3.13)

for all continuous, piecewise linear functions ϕ̂ vanishing on the boundary
of Λ̂ = Λm+1. The additional diffusion term has been added here for
stability purposes, the classical SUPG or GLS method being not diffusive
enough in our context. Following [11], the parameter ε is equal to the
local mesh size times the mean local velocity. Also, the vertically averaged
velocities ˆ̄um, ˆ̄vm : Λ̂ = Λm+1 → R are defined by

ˆ̄um(x̂, ŷ) =
N∑

i=1

ūm
j ϕ̂j(x̂, ŷ), ˆ̄vm(x̂, ŷ) =

N∑
i=1

v̄m
j ϕ̂j(x̂, ŷ),

where ūm
j and v̄m

j are defined in (3.3).

3.4. Computation of the new ice domain Ωm+1

Given the new glacier support Λm+1, given the new glacier height Hm+1 :
Λm+1 → R, the new ice domain Ωm+1 is defined by

Ωm+1 = {(x, y, z) ∈ R3; (x, y) ∈ Λm+1;

Bm+1(x, y) ≤ z ≤ Bm+1(x, y) +Hm+1(x, y)},
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where Bm+1 is a piecewise linear interpolation of the glacier bedrock B
on the triangulation Th(Λm+1). For stability purposes, the tetrahedral
mesh Th(Ωm+1) has the same topology than the previous one, Th(Ωm).
Moreover, the vertices of the tetrahedral mesh Th(Ωm+1) are aligned on
top of those of the triangulation Th(Λm+1), as in Fig. 3 and 4.

4. Numerical results

4.1. Validation of implementation

Figure 8. Validation of implementation for a simple test
case. L2 error for the glacier height H with respect to the
mesh size h when setting ∆t = h. Diamonds : the glacier
height is computed using eq. (25); crosses : the glacier
height is computed using using SUPG; dots : slope pro-
portional to h.
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The analysis and simulation of the horizontal velocities u, v has already
been validated in [22]. Our goal is to validate the coupling between the
velocity and the shape of the glacier. The numerical procedure is tested
with an exact solution. We choose the horizontal velocity components
u(x, y, z) = yz and v(x, y, z) = xz and the glacier height

H(x, y, t) = 1− x2

(1 + t)2
− y2.

The glacier support Λ(t) is then the elliptic domain centered at the origin
and with large and small axis equal to 1 + t and 1, respectively. Then we
set the corresponding right-hand sides in (2.1) (2.2) and (2.11). We run
the simulation from time t = 0 to t = tM = 0.5. Let e be the L2 error for
the glacier height H at final time :

e =
(∫

ΛM
(H(tM )−HM )2dxdy

)1/2

.

In Figure 8 we have reported the error e with respect to the mesh size h
when setting the time step ∆t = h. Numerical results show that the L2

error for the glacier height H at final time is of order h. Also, we have
compared the formulation (3.13) to the classical SUPG formulation of [5].
The SUPG scheme is more accurate but both methods seem to display the
same convergence order. However, the SUPG method has not been used
for the numerical simulation of Storglaciaren hereafter since it produces
oscillations of the free surface which prevents robust simulations to be
performed.
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4.2. Numerical simulation of Storglaciaren between 1959 and
1990

Figure 9. Top : Picture of Storglaciären (Tarfala, Swe-
den) http://www.natvet.su.se/aktuellt/tarfala.html. Bot-
tom : initial shape of the glacier in 1959.
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We test our numerical procedure for a three dimensional glacier corre-
sponding to Storglaciären (Sweden), see Fig. 9. Experimental data is avail-
able for the surface velocity in a small patch located at the middle of the
glacier [16, 17]. We set n = 3 and T0 =

√
0.1 as in [21] and tune the rate

factor A so that the computed velocity best fits the measured one. We
obtain A = 0.08, which is close to the value found in [1].

Figure 10. Numerical simulation of the retreat of Stor-
glaciären. From left to right, top to bottom : shape of the
glacier at year 1970, 1980, 1990, 2000.

We have available summer and winter mass balance b for each year,
from winter 1960/61 to summer 1994. In order to obtain a constant mass
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balance for each year, the summer value (negative) is simply removed to
the winter value (positive). The glacier geometry was measured for the
years 1959, 1969, 1980 and 1990 [16, 17]. We run our simulation starting
with the glacier geometry of 1959, see Fig. 9, the mesh having 1200 ver-
tices. For the missing mass balance b of 1959 and 1960 we use the ones
of 1961. The time step is half a year, we stop the simulation in 1990 (the
CPU time is less than one hour on a Pentium M processor 2.13GHz) and
compare the obtained glacier shape to the measured one. The shape of
the glacier during the simulation is shown in Fig. 10, the projection of the
meshes onto the xy plane are reported in Fig. 11. The difference between
computed and measured glacier thicknesses of years 1969, 1980 and 1990
are reported in Fig. 12 and is less than 10 meters (less than 5%), except
for a small region located close to the highest point of the glacier. These
results are very similar those obtained in [1], where a finite difference
method based on the algorithm due to [9] was used.

Figure 11. Meshes of Storglaciären, Sweden, view from above.
The triangulation Th(Λm) of the glacier support Λm is reported.
Top left : year 1960, top right : 1970, bottom left : 1980, bottom
right 1990.
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Figure 12. Differences between measured and computed
ice thickness. for years 1969 (top left), 1980 (top right)
and 1990 (bottom left). Positive values indicate that the
measured ice thickness is larger that the computed one.
The caption is in meters and %.
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