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A degenerate parabolic system for three-phase
flows in porous media

Vladimir Shelukhin

Abstract

A classical model for three-phase capillary immiscible flows in a porous medium
is considered. Capillarity pressure functions are found, with a corresponding diffusion-
capillarity tensor being triangular. The model is reduced to a degenerate quasilin-
ear parabolic system. A global existence theorem is proved under some hypotheses
on the model data.

1. Introduction

We study the question of global solvability for the 2× 2 quasi-linear par-
abolic system

ut + f(u)x = (B(u)ux)x, x ∈ Ω = {x ∈ R : |x| < 1}, 0 < t < T, (1.1)

motivated by three-phase capillary flows in a petroleum reservoir. Here

u =
(
u1

u2

)
, f =

(
f1

f2

)
, B =

(
B11 B12

B21 B22

)
,

and (1.1) is a short version of

∂ui

∂t
+
∂fi(u)
∂x

=
∂

∂x
(Bij(u)

∂uj

∂x
).

To help readers gain intuition about the work, we explain how the reservoir
flow equations can be reduced to (1.1).

We consider one-dimensional horizontal flows of three incompressible
immiscible fluids formed in phases, say, oil, gas, and water [1]. The balance
of masses is governed by the mass conservation equations

(Φuiρi)t + (ρivi)x = 0, ρi = const, (1.2)
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where Φ denotes porosity of the porous medium, ui, ρi, and vi are the
saturation, density, and seepage velocity of the i–th phase. Since ui denotes
the portion of the unite pore volume filled with the i–th phase, one has

u1 + u2 + u3 = 1. (1.3)

The momentum equations are given in the form of Darcy’s law

vi = −kλipix, λi = λi(u1, u2), (1.4)

where k stands for the absolute permeability, λi is the mobility of the i–th
phase, and pi is the pressure of the i–th phase.

The functions pij(u1, u2), which define the pressure differences

p1 − p3 = p13, p2 − p3 = p23, (1.5)

are called capillary pressures.
Positive constants Φ, ρi, and k and the functions λi(u1, u2), (i = 1, 2, 3),

and p13(u1, u2), p23(u1, u2) constitute the model data. Assume for simplic-
ity that k = Φ = 1.

Let us denote

λ =
3∑
1

λi, v =
3∑
1

vi, fi =
λi

λ
, i = 1, 2, 3. (1.6)

4 := {u : u ∈ R2, 0 ≤ ui ≤ 1, u1 + u2 ≤ 1}, (1.7)
It follows from (1.2) and (1.3) that vx = 0, so v depends on t only. Setting
v ≡ 1 and eliminating the third phase, we obtain system (1.1) for the
vector u = (u1, u2)T , where f(u) := (f1, f2)T and the matrix B is given
by

B11 =
λ1(λ2 + λ3)

λ

∂p13

∂u1
− λ1λ2

λ

∂p23

∂u1
, (1.8)

B12 = −λ1λ2

λ

∂p23

∂u2
+
λ1(λ2 + λ3)

λ

∂p13

∂u2
, (1.9)

B21 =
λ2(λ1 + λ3)

λ

∂p23

∂u1
− λ1λ2

λ

∂p13

∂u1
, (1.10)

B22 = −λ1λ2

λ

∂p13

∂u2
+
λ2(λ1 + λ3)

λ

∂p2

∂u2
. (1.11)

Up to now very little is known about the functions pij(u) both theoreti-
cally and experimentally [3, 6]. The same is true for the mobility functions
λi(u), i = 1, 2, 3 [11]. The following properties are conventional [1]:
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(i) The functions λi(u), pij(u) and the corresponding matrix B, calcu-
lated by the formulas (1.6) and (1.8)-(1.11), should be such that system
(1.1) is parabolic in a sense.

(ii) The functions λi satisfy the conditions

λi ≥ 0, λi|ui=0 = 0, i ∈ {1, 2, 3}. (1.12)

Due to (1.12), system (1.1) is not parabolic on the boundary of the
triangle 4. Since B is degenerate and not diagonal, the well-known theory
of parabolic equations cannot be applied to system (1.1). For example, in
the theory of Ladyzenskaya, Solonnikov and Ural’tseva [7], the matrix
B is nondegenerate and it is a scalar multiple of the identity matrix.
Nevertheless, system (1.1) can be analyzed in the case of special equations
of state. In [3], a numerical study of system (1.1) was performed in the
case of an existing potential pc(u):

∂pc

∂ui
= f1

∂p13

∂ui
+ f2

∂p23

∂ui
, i = 1, 2.

In [4] and [5], three-phase flows were considered with a triangular capillary
diffusion tensor B, i.e., with the conditions

B21 ≡
λ2(λ1 + λ3)

λ

∂p23

∂u1
− λ1λ2

λ

∂p13

∂u1
= 0,

∂B22

∂u1
= 0, (1.13)

which mean that the first and third phases do not influence the diffusion
of the second phase.

As is well known by reservoir engineers, mobilities and capillary pres-
sures can be plotted as functions of the saturations only in the case of
flows where just two phases are present [9, 6], that is, when u ∈ ∂4.
While there are some widely accepted models which artificially prescribe
the mobility functions in the interior of 4, such as the one proposed by
H. Stone [10], the same is no longer true for the functions representing
the capillary pressures. Now, the constraints (1.13) amount to a linear hy-
perbolic system of partial differential equations for the capillary pressures
p13 and p23, whose coefficients involve the mobility functions, for which
we set the boundary conditions

p13|u2=0 = ϕ13(u1), p23|u1=0 = ϕ23(u2), (1.14)

enforcing compatibility with the two-phase flow case, where the functions
ϕij can be obtained from two-phase flows experiments, as already men-
tioned. The result is a consistent recipe for defining the capillary pressures
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in the interior of the triangle of saturations 4. Here, we study in detail the
case when the mobilities are linear functions of the corresponding phase
saturation

λi = kiui, ki = const > 0. (1.15)
Below we establish by the group analysis methods that conditions (1.13)
are a tool for interpolating two-phase systems to three-phase ones in the
following sense. Equalities (1.14) imply that the capillary pressure p13

is prescribed for the two-phase system phase 1–phase 3 and the capillary
pressure p23 is prescribed for the two-phase system phase 2–phase 3. Equa-
tions (1.13) can be used to recover the capillary pressures pij in the entire
phase triangle ∆ by the formulas

p13(u1, u2) = ϕ13(ξ)−
u2∫
0

k0k2k3u2ϕ
′
23(u2)

k2u2 + k3(1− u2)
du2 + const, (1.16)

p23(u1, u2) =
ξ∫

0

A(ξ)ϕ
′
13(ξ) dξ + ϕ23(u2) + const, (1.17)

where
k0 =

k3 − k1

k1k3
, ξ =

u1

1− u2
, A(ξ) =

λ1

λ1 + λ3
.

When the mobilities and the capillary pressures are given by (1.15)-
(1.17), the vector f and the matrix B become

f =

(
k1u1

εu1+k2u2+k3(1−u2)
k2u2

εu1+k2u2+k3(1−u2)

)
, (1.18)

B =

 k1ξ(1−ξ)ϕ′
13(ξ)

k1ξ+k3(1−ξ) ξ(B11 −B22)

0 k3k2u2(1−u2)ϕ′
23(u2)

k2u2+k3(1−u2)

 . (1.19)

The volume balance equation (1.3) reduces to the condition

u(x, t) ∈ 4, ∀ (x, t) ∈ Q := Ω× (0, T ). (1.20)

In short, the condition (1.20) reads

0 ≤ ui(x, t) ≤ 1, 0 ≤ u1(x, t) ≤ 1− u2(x, t), ∀ (x, t) ∈ Q.
We study system (1.1) under the restriction (1.20), with f and B given

by (1.18) and (1.19). Observe that the existence theorems of H. Amann [2]
are also obtained for system (1.1) (without the restriction (1.20)) under
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the condition B21 = 0 but they are valid only for nondegenerate matrix B
in the case when ∂f2

∂u1
≡ 0 and under the assumption that some solution’s

norms are finite a priori.

2. Global existence

We consider system (1.1), (1.18), (1.19), (1.20) with the following initial
and boundary conditions:

σun + u = d for |x| = 1, u|t=0 = u0(x), (2.1)

where σ = const > 0 and

un = ±ux, d = d± for x = ±1.

Observe that system (1.1) decouples when k1 = k3 because f2(u) is then
independent of u1 and the equation for u2 takes the form

u2t + f0
2 (u2)x = (B22(u2)u2x)x, f0

2 ≡
k2u2

k2u2 + k3(1− u2)
. (2.2)

However, condition (1.20) written for u2 in the form

0 ≤ u2(x, t) ≤ 1− u1(x, t), (2.3)

prevents us from solving equation (2.2) for u2 independently.
The solvability of the degenerate problem (1.1), (1.20), (2.1) with k1 =

k3 was established in [5]. Here, we consider the general case when (possi-
bly) k1 6= k3, but the parameter

ε = k1 − k3

is assumed to be small.
It is also assumed that the vector functions u0(x) and d(t) take values

strictly inside a triangle ∆δ ⊂ ∆; i.e., for x ∈ Ω, 0 ≤ t ≤ T,

dist{u0(x), ∂∆} ≥ δ, dist{d+(t), ∂∆} ≥ δ, dist{d−(t), ∂∆} ≥ δ, (2.4)

for some δ > 0. Specifically, the first of these inequalities means that all
the three phases are initially present at each point of the porous sample;
i.e., the physical system is not degenerate.

Concerning smoothness, we assume that

u0 ∈ H2+α(Ω), d± ∈ H(1+α)/2([0, T ]) (2.5)

for some α ∈ (0, 1).
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Under the conditions

ϕ
′
i3(s) > 0 for 0 < s < 1, ϕi3 ∈ C3([0, T ]), (2.6)

imposed on the elements of B, system (1.1) is parabolic. Below is the main
result.

Theorem 2.1. Let conditions (2.3)-(2.6) be satisfied and the compatibility
conditions

±σu′0(±1) + u0(±1) = d±(0)
hold. Then problem (1.1), (1.20), (2.1) has a solution in the class

u ∈ H2+α,1+α/2(Q), Q = Ω× (0, T ),

if |ε| ≤ ε∗ < 1, where ε∗ is a constant depending on δ, T , an the number
M bounding the norms of the initial and boundary data:

‖u0‖H2+α(Ω) ≤M, ‖d±‖H(1+α)/2([0,T ]) ≤M. (2.7)

Proof. Step 1. We perform the change of variables (u1, u2) → (ξ, u2). Note
that ξ is the relative phase saturation, since ξ = u1/(u1 + u3). Written in
terms of the new variables, the original problem becomes

ξt +A11(ξ, u2)ξx + εA12(ξ, u2)u2x = (2.8)

= (B11(ξ)ξx)x − ξxu2x(B11 +B22)/(1− u2),

ξ|t=0 = ξ0(x) ≡
u10(x)

1− u20(x)
,
(σξn(1− u2)

1− d2
+ ξ − ξ±

)
||x|=1 = 0, (2.9)

u2t + εA21(ξ, u2)ξx +A22(ξ, u2)u2x = (B22(u)u2x)x, (2.10)
u2|t=0 = u20(x), (σu2n + u2 − d2)||x|=1 = 0, (2.11)

where

λ2A11 = k1((k2 − k3)u2 + k3)− εk2ξu2, λ2A12 = −ξ(1− ξ)/(1− u2),

λ2A21 = −k2u2(1− u2), λ2A22 = k2k3 + εk2ξ,

and

ξ± ≡ d±1
1− d±2

.

The advantage of system (2.8)-(2.11) over (1.1) is that the former decou-
ples with respect to the higher derivatives: the equation for ξ does not
contain u2xx, and the equation for u2 does not contain ξxx. It should be
stressed that A12 vanishes at ξ = 0 and ξ = 1, and A21 vanishes at u2 = 0
and u2 = 1.
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Step 2. The indicated structural properties of system (2.8)-(2.11) guar-
antee that none of the three phases disappears. This fact in underlain by
the following statement.

Lemma 2.2. Let u(x, t) be a smooth solution to the degenerate parabolic
equation

ut + aj(x, t, u,∇u)uxj + u(1− u)F (x, t) = (Bij(u)uxi)xj (2.12)

in a bounded domain Ω ⊂ Rn with the initial and boundary conditions

u|t=0 = u0(x), (σun + u− d(x, t))|x∈∂Ω = 0.

Given δ ∈ (0, 1), let

δ ≤ u0(x) ≤ 1− δ, δ ≤ d(x, t) ≤ 1− δ.

Then there is a constant δ1 ∈ (0, 1) depending on δ, T , and supQ |F (x, t)|,
such that

δ1 ≤ u(x, t) ≤ 1− δ1, ∀(x, t) ∈ Q, Q = Ω× (0, T ). (2.13)

The Lemma is proved by proceeding to v = 1
2 lnu/(1− u) and consid-

ering the equivalent parabolic problem

vt + ãj(x, t, v,∇v)vxj +F = (B̃ij(v)vxi)xj − B̃ij(v)vxivxj

1− e−2v

1 + e2v
, (2.14)

(
σvn −

ψ(d1)− ψ(v)
u′(v)

)
|x∈∂Ω = 0, v|t=0 =

1
2

ln
u0

1− u0
,

where
ψ(s) =

s

1 + s
, d1 =

1
2

ln
d

1− d
.

The coefficients ãj and B̃ij are calculated in terms of aj and Bij as a result
of the substitution u→ v.

Obviously, estimates (2.13) are equivalent to the boundedness estimate
for |v|. This estimate can be easily obtained by applying the maximum
principle.

Applying Lemma 1 to equation (2.10) and, then, to equation (2.8) gives
the estimates

δ1 ≤ ξ ≤ 1− δ1, δ2 ≤ u2 ≤ 1− δ2, (2.15)

where δi depends on δ, T and Ji:

J1 = sup
Q
|u2x|, J2 = sup

Q
|ξx|.
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Moreover, δ1 depends on δ2. Note that δi does not decrease with Ji.
Although inequalities (2.15) are not a priori estimates, they nevertheless

suggest that system (2.8)-(2.11) is nondegenerate on smooth solutions.
Thus, the well-known theory of [7] can be applied to it.

Step 3. Now we reduce the problem to one of finding a fixed point of
a certain operator. Let ε be fixed. We choose an arbitrary number r > 0
and consider an arbitrary function ζ ∈ H1+α,(1+α)/2(Q) such that

‖ζ‖(1+α) ≤ r, (2.16)

where ‖ · ‖(k+α) is the norm in Hk+α,(k+α)/2(Q).
Substituting ζ for ξ in equation (2.10), we consider equation (2.10),

treating it as quasilinear for u2. In view of (2.15), we have

δ2 ≤ u2 ≤ 1− δ2, (2.17)

where δ2 depends on δ, T , and εr. Therefor, under the condition (2.16),
equation (2.10) is nondegenerate and we can apply the results of [7]; i.e.,
for a given function ζ with the condition (2.16), there exists a unique
solution u2 ∈ H2+α,(2+α)/2(Q) that satisfies (2.17) and the estimate

‖u2‖(2+α) ≤ b1(εr, δ, T,M). (2.18)

Now we turn to the problem (2.8), (2.9), assuming that u2(x, t) is the
function found above by solving the problem (2.10), (2.11). The solution ξ
to the problem (2.8), (2.9) satisfies the estimate (2.15). Therefore, equation
(2.8) can be viewed as a quasilinear nondegenerate parabolic equation for
ξ. Consequently, ξ ∈ H2+α,(2+α)/2(Q) and

‖ξ‖(2+α) ≤ b2(b1, εr, δ, T,M). (2.19)

Thus, the operator ζ → ξ, where ξ = Aε(ζ), is defined in the space
H1+α,(1+α)/2(Q). The estimate (2.19) means that Aε is completely con-
tinuous. Note that the constants in the estimates (2.17) – (2.19) do not
vary with r and ε if the product εr remains a constant. Obviously, the
fixed points of Aε are the solutions to the original problem.

Step 4. We apply the Schauder fixed-point theorem. Proceeding as at
Step 3, we set r = 1 in the inequality (2.16). Then it follows from (2.17)
– (2.19) that, for any ε ∈ [0, 1] we have the estimates

δ∗2 ≤ u2 ≤ 1− δ∗2 , ‖u2‖(2+α) ≤ b∗1, ‖ξ‖(1+α) ≤ c∗1. (2.20)
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In particular, they mean that, for any ε ∈ [0, 1], the operator Aε maps the
ball ‖ζ‖(1+α) ≤ 1 into ‖ζ‖(1+α) ≤ c∗1.

Now we consider the operator Aε on the ball ‖ζ‖(1+α) ≤ c∗1+1 ≡ r1. Let
ε1 be chosen so that ε1r1 ≤ 1. Then, for any ε ∈ [0, ε1], the inequalities
(2.20) hold true. Thus, for any ε ∈ [0, ε1], the operator Aε is completely
continuous and maps the ball ‖ζ‖(1+α) ≤ r1 into itself. Therefore, Theorem
1 is valid by the Schauder fixed-point argument. �

3. Capillary pressure functions

Here we perform derivation of the capillary pressure functions (1.16) and
(1.17) which agree with the hypotheses (1.13) on the diffusion capillarity
tensor B.

First, we apply the group symmetry analysis to the homogeneous sys-
tem for pij(u1, u2)

B12 = 0, B22 = 0,
which writes

A
∂p13

∂u1
=
∂p23

∂u1
,

∂p23

∂u2
= A

∂p13

∂u2
, A = A(ξ), ξ =

u1

1− u2
. (3.1)

Application of the algorithm of group calculation [8] shows that any one-
parameter group admitted by (3.1) is defined with the infinitesimal oper-
ator

X = ζ1(u1, u2, p13, p23)
∂

∂u1
+ ζ2(· · · ) ∂

∂u2
+ η1(· · · ) ∂

∂p13
+ η2(· · · ) ∂

∂p23
,

where the functions ζi and ηi are subject to the restrictions

ζ1 ∂A

∂u1
+ ζ2 ∂A

∂u2
+A(

∂η1

∂p13
+A

∂η1

∂p23
) =

∂η2

∂p13
+A

∂η2

∂p23
,

∂η2

∂u2
= A

∂η1

∂u2
,

∂η2

∂u1
= A

∂η1

∂u1

Observe, that
∂A

∂u1
= A

′
(ξ)

1
1− u2

,
∂A

∂u2
= A

′
(ξ)

u1

(1− u2)2
.

Hence, there is a one-parameter group with the operator

X = −ξ ∂

∂u1
+

∂

∂u2
, ξ =

u1

1− u2
.
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The meaning of this group is that system (3.1) is invariant under the
change of variables (u1, u2) → (u

′
1, u

′
2) :

u
′
1 = u1 −

au1

1− u2
, u

′
2 = u2 + a, a ∈ R.

One can verify easily that system (3.1) has a solution depending only on
the variable ξ. Indeed, given a function q1(ξ), the functions

p13 = q1(ξ), p23 =
∫
A(ξ)q

′
1(ξ)dξ

solve system (3.1).
Now we address the nonhomogeneous system (1.13) which writes

A
∂p13

∂u1
=
∂p23

∂u1
,

∂p2

∂u2
= A

∂p13

∂u2
+

λB22(u2)
λ2(λ1 + λ3)

, A =
λ1

λ1 + λ3
. (3.2)

We study these equations for pi3(u1, u2) in the case when the mobilities
λi are linear functions:

λi = kiui, ki = const.

The above analysis of the homogeneous system suggests to look for solu-
tions in the form

pi3 = qi(ξ) +Qi(u2), ξ =
u1

1− u2
≡ u1

u1 + u3
. (3.3)

It follows from (3.2) that the functions qi and Qi solve the system

q
′
2(ξ) = q

′
1(ξ)A(ξ), A =

k1ξ

(k1 − k3)ξ + k3
, Q

′
1(u2) = −k0B22(u2)

1− u2
,

Q
′
2(u2) = B22(u2)(

1
k3(1− u2)

+
1

k2u2
), k0 =

k3 − k1

k1k3
. (3.4)

Assume that the capillary pressure p13(u) is a given function of u1 at the
part of the boundary of the triangle ∆ where u2 = 0:

p13|u2=0 = ϕ13(u1).

Assume also that the capillary pressure p23(u) is a given function of u2 at
the edge where u1 = 0 of the triangle ∆:

p23|u1=0 = ϕ23(u2).

It follows from (3.3) that

ϕ13(u1) = q1(u1) +Q1(0), ϕ23(u2) = q2(0) +Q2(u2).
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It is naturally to set

q1(ξ) = ϕ13(ξ), Q2(u2) = ϕ23(u2).

Then the other functions Q1(u2) and q2(ξ) are defined from (3.4) as fol-
lows:

q2(ξ) =
ξ∫

0

A(ξ)ϕ
′
13(ξ)dξ, B22(u2) =

k2k3u2(1− u2)ϕ
′
23(u2)

k2u2 + k3(1− u2)
,

Q
′
1(u2) = − k0

1− u2
B22(u2).

Thus, we arrive at formulas (1.16) and (1.17) for the capillary pressures.
We call the procedure yielding formulas (1.16) and (1.17) the method of

physical interpolation since these formulas define the capillary pressures
p13 and p23 in ∆ from their values when u2 = 0 and u1 = 0, respectively.
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