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Abstract

We consider variational problems of P. D. E. depending on a small parameter
ε when the limit process ε ↓ 0 implies vanishing of the higher order terms. The
perturbation problem is said to be sensitive when the energy space of the limit
problem is out of the distribution space, so that the limit problem is out of classical
theory of P. D. E. We present here a review of the subject, including abstract
convergence theorems and two very different model problems (the second one is
presented for the first time). For each one we prove the sensitive character and we
give a formal asymptotics for the behavior ε ↓ 0.

1. Introduction

This paper is devoted to a review and some new results on a class of
singular perturbations for variational problems of P. D. E. arising in thin
shell theory (but the asymptotic behavior is highly pathological, so that
examples only involve simplified model problems). We consider variational
problems depending on ε ↓ 0 of the form (2.4) hereafter, in an energy
space V such that, for ε > 0 the bilinear form is continuous and coercive
on V , whereas the loading is in the dual, f ∈ V ′. At the limit ε = 0 the
bilinear form changes drastically, and it is continuous and coercive on a
larger space Va. Sensitivity is concerned with the case when that space
is so large that it is not contained in the distribution space (see [8] and
[14]). Obviously, the limit problem is out of classical theory of P. D. E.;
moreover, the variational problem only makes sense for loadings f in the
dual V ′

a which is “very small”, not containing the space D of test functions
of distributions.

Section 2 is devoted to abstract theory of singular perturbations. Clas-
sical results (for loading f ∈ V ′

a see [11] and [13]) are given in section 2.2.
Moreover, Section 2.3 contains a result of D. Caillerie [3] which proves that
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there exist a space (denoted by VA) where convergence of the solutions
takes place for any f ∈ V ′.

Section 3 contains comments, developments and examples to prepare
the sequel. This includes consequences of sensitivity on finite element ap-
proximation (sect. 3.1), comments on the case when the limit form has
a non - trivial kernel (and then the construction of Va is not possible
(sect. 3.2)) which is used later on to inspire the heuristics of the formal
asymptotics in sect. 4.3. Moreover, sect. 3.3 recalls elements of Fourier
transform of (non tempered) distributions, which sends to spaces of ana-
lytical functionals (out of the distribution space, see [10] and [12]) which
are used later in sect. 4. Sequences of functions converging in the sense of
analytical functionals (but not converging in the distribution sense) imply
complexification (i.e. in some sense, “the graphs become infinitely com-
plex”); examples of such situation, including cases which appear later in
sensitive singular perturbations, are displayed in sect. 3.4.

Sect. 4 is based on [21], [20], [22] and [15]. It is devoted to an example
of sensitive singular perturbation where the pathological character of the
limit problem comes from the fact that there is a boundary condition
not satisfying the Shapiro - Lopatinskii condition see [8], [14] and [17]. It
constitutes a simplified model of thin shells in the case when a part of the
boundary is free and the middle surface is elliptic. Convergence theorems
and a formal asymptotics exhibiting complexification are given in sections
4.2 and 4.3, respectively.

Sect. 5 contains a new class of examples inspired by certain shell prob-
lems with edges. They are published by the first time. The sensitive char-
acter is proved in sect. 5.1. A formal asymptotics is given in sect. 5.2,
showing that the solutions “explode to infinity” and are only holden by
narrow boundary layers where the energy concentrates.

Notations are standard. We denote

∂k =
∂

∂xk
, k = 1, 2. (1.1)

It should be noted that if u is a function that only depends on x2, ∂2 will
also denote the derivative u′(x2). Moreover, ‖.‖1 will denote the H1 norm
and C will be a constant taking various irrelevant values.
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2. Abstract theory of singular perturbations

Let us denote by V a Hilbert space, by a and b two bilinear continuous
and symmetric forms satisfying:{

a(v, v) ≥ 0,
a(v, v) = 0 ⇒ v = 0, (2.1)

b(v, v) ≥ 0. (2.2)
The norm of V is defined by:

‖v‖2
V = a(v, v) + b(v, v). (2.3)

We then consider, for a given f ∈ V ′, the variational problem:{
Find uε ∈ V such that
a(uε, v) + ε2b(uε, v) = 〈f, v〉V ′V ∀v ∈ V. (2.4)

From the obvious a priori estimates

cε2‖v‖2
V ≤ a(v, v) + ε2b(v, v) ≤ C‖v‖2

V

we see that, for each ε > 0, a+ ε2b is a continuous and coercive form on
V and, consequently, there exists a unique solution uε ∈ V of (2.4) .

For fixed v ∈ V , a(v, w) is a functional continuous on V so that it may
be expressed as the duality product of an element Av ∈ V ′ by w:

a(v, w) = 〈Av,w〉V ′V . (2.5)

Analogously
b(v, w) = 〈Bv,w〉V ′V . (2.6)

Let us show that A is bounded (i.e. A ∈ L(V, V ′)). Let us consider a
sequence vn such that ‖vn‖ = 1. We have

|〈Avn, w〉| = |a(vn, w)| ≤ C‖w‖V ,
so that Avn is bounded in V ′. It then follows from the principle of uniform
boundedness that Avn is bounded in V ′ (see [16], corollary 1.12, p. 74 if
necessary) so that A is bounded.

Lemma 2.1. The operator A ∈ L(V, V ′) is injective.

Proof. Let Av=0, then

0 = 〈Av, v〉V ′V = a(v, v) ⇒ v = 0.

�
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Now, let us define the following norms:

‖v‖a = a(v, v)
1
2 , (2.7)

‖v‖A = ‖Av‖V ′ . (2.8)
From (2.1) and Lemma 2.1 we see that they are effectively norms. We
shall denote by {

Va the completion of V with ‖.‖a,
VA the completion of V with ‖.‖A.

(2.9)

Lemma 2.2. The operator A is a bĳection from V on its range R(A) in
V ′.

Proof. From the definition of R(A), A is surjective and, from Lemma 2.1
it is also injective. �

Lemma 2.3. The range R(A) is dense in V ′.

Proof. If it is not dense, then there exists f ∈ V ′ such that

(f,Av)V ′ = 0 ∀v ∈ V ′. (2.10)

The scalar product in V ′ is a continuous functional on V ′ which may be
expressed as the duality product of an element vf ∈ V with Av ∈ V ′, i.e.
we have

(f,Av)V ′ = 〈vf , Av〉V V ′ . (2.11)
Then, by taking v = vf in (2.10) and recalling (2.5) and (2.11), we have

0 = 〈vf , Avf 〉V V ′ = a(vf , vf ) ⇒ vf = 0 ⇒ f = 0.

�

Lemma 2.4. The operator A ∈ L(V, V ′) extends as a bĳection Ã from VA
on V ′. Moreover, as VA and V ′ are Hilbert spaces, Ã is an isomorphism
from VA on V ′.

Proof. As R(A) is dense in V ′, V ′ is the completion of R(A) equipped
with its norm. The Cauchy sequences in V ′ are of the form Avn where vn
are Cauchy sequences in VA hence the conclusion. �

Remark 2.5. It should be noticed that A ∈ L(V, V ′) or its extension Ã ∈
L(VA, V ′) should not be confused with A ∈ L(Va, V ′

a) defined by

〈Av, w〉V ′
aVa = a(v, w) for v, w ∈ Va (2.12)

which is the operator in the limit problem.
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Let us recall that
V ⊂ Va ⇔ V ′

a ⊂ V ′ (2.13)
and

V ⊂ VA. (2.14)

2.1. Limit problems

Let f ∈ V ′
a be given. The variational formulation of the limit problem

writes: {
Find u0 ∈ Va such that ,
a(u0, v) = 〈f, v〉V ′

a,Va ∀v ∈ Va.
(2.15)

This problem is automatically in the framework of the Lax-Milgram the-
orem, consequently, it has a unique solution in Va and it is equivalent
to {

Find u0 ∈ Va such that,
Au0 = f in V ′

a.
(2.16)

Let be f ∈ V ′. We consider the problem:

Ãu0 = f in V ′. (2.17)

As Ã is a bĳection from VA on V ′, this problem has a unique solution in
VA.

Remark 2.6. It is important to note the abstract character of the previous
consideration. Indeed, it is possible that either (2.16) or (2.17) does not
make sense in terms of equation (in the distributional sense or other one).
Sensitivity exhibits such cases.

2.2. Limit process. Variational theory

Theorem 2.7. Let be f in V ′
a. Then,

uε → u0 strongly in Va (2.18)

where uε and u0 are the solutions of (2.4) and (2.15), respectively.

Proof. Taking v = uε in (2.4), we then have

a(uε, uε) + ε2b(uε, uε) = 〈f, uε〉V ′
aVa . (2.19)

From (2.1) and (2.2) we have

a(uε, uε) ≤ 〈f, uε〉V ′
aVa (2.20)
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and
ε2b(uε, uε) ≤ 〈f, uε〉V ′

aVa . (2.21)
From (2.20) we get

‖uε‖Va ≤ ‖f‖V ′
a

so that uε remains bounded in Va. From the weak compactness of bounded
sequences it follows that for a certain u∗ ∈ Va and a subsequence (in fact
we shall see that u∗ is uniquely defined, so that the subsequence is the
whole sequence)

uε → u∗ weakly in Va. (2.22)
Then, from (2.20), (2.21) and (2.22) we see that

ε2a(uε, uε) + ε2b(uε, uε) ≤ ‖f‖V ′
a
‖uε‖Va ≤ C‖f‖2

V ′
A

(2.23)

from which
ε2‖uε‖2

V ≤ C. (2.24)
Now, let us fix v and take ε→ 0 in (2.4). We obtain, by using (2.22),

a(uε, v) → a(u∗, v). (2.25)

As we have
|ε2b(uε, v)| ≤ ε2b(uε, uε)

1
2 b(v, v)

1
2

and
b(uε, uε)

1
2 ≤ C‖uε‖V ≤

C

ε
we finally obtain

|ε2b(uε, v)| ≤ ε2
C ′

ε
−−−→
ε→0

0, (2.26)

so that, passing to the limit in (2.4), we have

a(u∗, v) = 〈f, v〉 ∀v ∈ V ⇔ ∀v ∈ Va.
Then, from the uniqueness of the solution of the limit problem, u∗ = u0,
and we have

uε → u0 weakly in Va. (2.27)
Let us show that uε → u0 strongly in Va. We have:

a(uε − u0, uε − u0) + ε2b(uε, uε) =
a(uε, uε) + ε2b(uε, uε) + a(u0, u0)− 2a(u0, uε) =
〈f, uε〉+ 〈f, u0〉 − 2a(u0, uε) = −〈f, uε〉+ 〈f, u0〉 =
〈f, u0 − uε〉 −−−→

ε→0
0. (2.28)
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consequently, a(uε−u0, uε−u0) −−−→
ε→0

0, i.e. uε −−−→
ε→0

u0 strongly in Va. �

Theorem 2.8. When f ∈ V ′ then there exists uε solution of (2.4). Let
us now define the energy Eε by

2Eε = a(uε, uε) + ε2b(uε, uε).

Then the necessary and sufficient condition for Eε to be bounded is that
f ∈ V ′

a.

Proof. Let us show that the condition is sufficient. Let f ∈ V ′
a then, from

(2.22)
2Eε = 〈f, uε〉V ′

aVa ≤ C‖uε‖a ≤ C

which shows that Eε is bounded. The condition is necessary: let us assume
that Eε is bounded i.e., that

a(uε, uε) + ε2b(uε, uε) ≤ C

then we have
a(uε, uε) ≤ C

and
ε2b(uε, uε) ≤ Cε2‖uε‖2

V ≤ C.

Then, for fixed v in (2.4) and ε → 0, by reasoning as in the proof of
theorem 2.7, we see that there exists u∗ ∈ Va such that

a(u∗, v) = 〈f, v〉V ′V ∀v ∈ V.

We then see that the left hand side is a functional of v which is continuous
in the Va topology, so that the right-hand side is too, and this amounts to
f ∈ V ′

a. �

2.3. Limit process. Non variational theory

Theorem 2.9. Let f ∈ V ′, uε and u0 the solutions of (2.4) and (2.17),
respectively. Then, uε → u0 strongly in VA.

Proof. Taking v = uε in (2.1), we obtain

a(uε, uε) + ε2b(uε, uε) = 〈f, uε〉V ′V

which may be written under the form

(1− ε2)a(uε, uε) + ε2a(uε, uε) + ε2b(uε, uε) = 〈f, uε〉V ′V
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and we see that

ε2a(uε, uε) + ε2b(uε, uε) ≤ 〈f, uε〉V ′V

from which we get
ε2‖uε‖V ≤ C

and
ε2uε → u∗ weakly in V, (2.29)

in the sense of subsequences, for a certain u∗ ∈ V . Let us show that u∗ = 0
and that the convergence is strong. Let us write (2.4) under the form

Auε + ε2Buε = f in V ′. (2.30)

After multiplying by ε2, we have

Aε2uε + ε2Bε2uε = ε2f in V ′,

where as ε→ 0:
Aε2uε → Au∗ weakly in V ′

and
Bε2uε → Bu∗.

We then have
Au∗ = 0 in V ′

from which
0 = 〈Au∗, u∗〉V ′V = a(u∗, u∗) ⇒ u∗ = 0.

And (2.29) becomes
ε2uε → 0 weakly in V.

Let us show that the convergence is strong. Writing (2.4) with v = ε2uε,
we have

ε2a(uε, uε) + b(ε2uε, ε2uε) = 〈f, ε2uε〉V ′V

and, as 〈f, ε2uε〉V ′V −−−→
ε→0

0,

ε2a(uε, uε) + b(ε2uε, ε2uε) −−−→
ε→0

0,

or equivalently

(ε2 − ε4)a(uε, uε) + a(ε2uε, ε2uε) + b(ε2uε, ε2uε) −−−→
ε→0

0

which implies
ε2uε → 0 strongly in V.

Then,
Bε2uε → 0 strongly in V ′,
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and passing to the limit in (2.30) we obtain

Auε → f strongly in V ′

which may be written

Ãuε → f strongly in V ′.

As Ã is an isomorphism from VA on V ′ (Lemma 2.4)

uε → Ã−1f strongly in VA.

But Ã−1f = u0 where u0 is the solution of (2.17) and consequently uε →
u0 strongly in VA. �

3. General comments on sensitivity, analytic functionals and
complexificating sequences.

3.1. Sensitivity

The above theory of singular perturbations is obviously abstract. Even in
that framework, it appears that the limit process is “actually satisfying”
only in the case f ∈ V ′

a, where the limit problem (2.15) is variational
i.e. of the same kind as the initial problem (2.4). When f 6∈ V ′

a the limit
problem (2.16) is no longer variational so that something essential is lost in
the limit process. This property is obviously associated with the property
that the energy of the solution uε does not remain bounded as ε → 0
(Theorem (2.8)), as the variational formulation is classically associated
with minimization of energy. Moreover, in boundary value problems for
partial differential equations, the variational theory is obviously associated
with finite element approximation. It then appears that the limit process
is only “well-behaved” in the case f ∈ Va. In certain cases, this is an
important drawback, as V ′

a is “very small” and the pathologies associated
with f 6∈ V ′

a are present for “almost any” f . In certain cases at the origin
of the definition of sensitivity [14], V ′

a is so small that it does not contain
the space D(Ω) of the test functions of distributions. Accordingly, Va 6⊂ D′,
i.e. it is so large that it has elements which are not distributions. In fact,
it is worthwhile to define different levels of sensitivity:

Definition 3.1. Let E be a subspace of V ′. The limit variational problem
(2.15) and the singular perturbation (2.4) are said to be E - sensitive when

E 6⊂ V ′
a. (3.1)
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According to this definition, classical sensitivity defined in [14] is D -
sensitivity.

Remark 3.2. In applications to boundary value problems, the loadings
f ∈ V ′ are not necessarily functions or distributions on a domain Ω. For
instance, in Neumann problems loadings may be applied on the boundary
and we may take as E a space of functions defined on the boundary; the
corresponding sensitivity is then understood with respect to the boundary
loadings.

In order to exhibit the practical consequences of E - sensitivity on
numerical finite element approximation, let us consider Vh a discretization
of V , i.e. a sequence h→ 0 of finite - dimensional subspaces of V satisfying{

v ∈ V ⇒ ∃vh ∈ Vh such that
vh → v strongly in V as h→ 0. (3.2)

It is then classical that the problem (2.4) with fixed ε may be approxi-
mated by the discretization, i.e. there exists uεh defined by{

uεh ∈ Vh and
a(uεh, v) + ε2b(uεh, v) =< f, v > ∀v ∈ Vh

(3.3)

which enjoys the property

uεh → uε strongly in V as h→ 0. (3.4)

We then have

Theorem 3.3. Let the singular perturbation problem (2.4) be E - sensi-
tive. Then, there exists f ∈ E such that the convergence (3.4) in Va is not
uniform with respect to ε.

This obviously means that, in order to have an error less than a given
value in the finite element approximation (3.3), h must be taken smaller
and smaller as ε→ 0. This (unpleasant!) property in finite element approx-
imation is known as “numerical locking” (see [2]). It obviously amounts
to saying that the discretization (3.2) is not adapted to the asymptotic
process ε→ 0: accurate computation is more and more difficult as ε→ 0.
In classical sensitive problems this locking occurs even for f ∈ D(Ω). The
proof of Theorem 3.3 is based on non - commutativity of the limit pro-
cesses h→ 0 and ε→ 0 for f ∈ E and may be seen in [8].
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3.2. Recalling the case when a(u, v) has a non-trivial kernel

Obviously, the hypothesis in the second line of (2.1) implies that a(v, v)
1
2

is a norm on V , which allows to construct, by completion, the various
spaces involved in the abstract theory. As we shall see later, in order to
make comparisons and heuristic reasonings, it will prove useful recalling
the asymptotics in the case when that hypothesis is not fulfilled i.e. when
a(v, v) has a non-trivial kernel. In other words, when (2.1) is replaced by

a(v, v) ≥ 0 (3.5)

G = {v; v ∈ V, a(v, v) = 0} 6= {0} (3.6)

we note that a(v, v)
1
2 is no longer a norm, but a semi-norm. Moreover, the

Cauchy inequality for semi-norms allows to give the equivalent definition
of G:

G = {v; v ∈ V, a(v, w) = 0 ∀w ∈ V } 6= {0} (3.7)
it then follows that G is a closed subspace of V , and so a Hilbert space
with the topology induced by V . Moreover, on G the forms b and a + b
are the same. We note that making the change of unknowns

vε 7→ ε2uε (3.8)

the variational problem (2.4) becomes Find vε ∈ V such that
1
ε2
a(vε, w) + b(vε, w) = 〈f, w〉 ∀w ∈ V (3.9)

which is a penalty problem. The solution uε converges to the solution of
an analogous problem in the kernel G, of the form a. The asymptotics of
the problem (2.4) is

Theorem 3.4. For a fixed f ∈ V ′, let uε be the solution of (2.4) under
the hypotheses (2.3), (3.5) and (3.6). Then,

ε2uε → v0 strongly in V

where v0 is the unique solution of{
Find v0 ∈ G such that
b(v0, w) = 〈f, w〉 ∀w ∈ G.

The proof is somewhat classical, in particular it may be found in [19]
along with examples in the context of shell theory.
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3.3. Comments on distributions and analytical functionals

Let us consider, to fix ideas, functions (or distributions, or any other kind
of generalized functions) on R of the variable x, as well as the corre-
sponding Fourier transforms of the variable ξ. We shall mainly focus on
singularities in the vicinity of x = 0.

There are many ways to define higher or lower degrees of singularity.
The classical distributions

δ(x), δ′(x), δ′′(x), . . . (3.10)
belong to the Sobolev spaces of negative order H−s(R) for s > 1/2, >
3/2, > 5/2, . . ., respectively, which enjoy the inclusion property

H−s ⊂ H−r for s < r (s and r in R). (3.11)
We may define a function (or distribution) f(x) to be more singular

than another one g(x) if g belongs to some H−s which does not contain
f . All that spaces are included in the space D′ of distributions on R.

Distributions enjoy the very important property (see [23]) that they are
locally of finite order. This means that when a distribution is considered on
a finite interval, it is the derivative of some order of a continuous function.

As a consequence, an expression of the form

u(x) =
+∞∑
k=0

ckδ
(k)(x) (3.12)

is not a distribution as obviously it is not of finite order in the vicinity
of x = 0 (unless when the ck vanish for sufficiently large values!). In
other words, (3.10) are distributions more and more singular, but a linear
combination of an infinity of them is too much singular and it is no longer
a distribution. It should be noted that the expression

v(x) =
+∞∑
k=0

δ(k)(x− k)

(where the successive δ(k) are located at points tending to infinity) is a
distribution. This is easily checked, and obviously v(x) is of finite order on
any finite interval.

Another way of defining higher and lower degrees of singularity is via
the Fourier transforms. It is classical that the rapid decreasing of f̂(ξ),
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when ξ → +∞, measures the smoothness of f(x). In the same way, the
growing of f̂(ξ) at infinity measures the singularity of f(x). As an example,
the Fourier transforms of (3.10) are

1ξ, iξ, (iξ)2, . . .

It should be noticed that the formal Fourier transform of u(x) in (3.12)
is

û(ξ) =
+∞∑
k=0

ck(iξ)k

which is a distribution (and even a function) provided that the sequence
ck decreases sufficiently fast as k ↗∞. For instance, the function cosh(ξ)
is entire, so that it may be represented by the series

cosh(ξ) =
+∞∑
k=0

ξ2k

(2k)!
ξ ∈ R

Formally, it is the Fourier transform of the expression

u(x) =
+∞∑
k=0

1
(2k)!

(−i)2kδ(2k)(x) (3.13)

which, as we know, is not a distribution. In fact, this is a way to con-
struct entities more general than the distributions. They are the (inverse)
Fourier transforms of distributions, and constitute the spaces Z′(Rx). The
elements of Z′(Rx) are analytic functionals. Let us explain this a little (the
corresponding theory may be seen in [10]).

The space of test functions of distributions on Rξ is D(Rξ), i.e. the
space of indefinitely differentiable functions with compact support. It is a
remarkable fact that if θ̂ ∈ D(Rξ), then θ̂(ξ) is not an analytic function
(unless in the case θ̂ ≡ 0). Indeed, if θ̂(ξ) was analytic, as it vanishes for
sufficiently large |ξ|, by analytic continuation, it should vanish everywhere.
But, it is easily checked that the (inverse) Fourier transforms of θ̂ ∈ D(Rξ)
is a function θ(x) which is analytic (on R(x) and moreover on the complex
plane of the variable x). Then, the (inverse) Fourier transform ofD(Rξ) is a
space of analytic functions named Z(Rx). By duality, the (inverse) Fourier
transform of the distributions of D′(Rξ) constitute the space Z′(Rx), the
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elements of which are analytic functionals (i.e. functionals on the space
Z(Rx) of analytic functions).

Then, expressions as u(x) in (3.13) are analytic functionals of Z′(Rx).
In fact, an expression as u(x) in (3.13) is not a distribution because it
cannot act upon any test function θ(x) ∈ D(R(x)). Indeed, there are in
D(R(x)) functions such that the derivatives of order k at x = 0 are such
that the sum

+∞∑
k=0

1
(2k)!

(−i)2kθ(2k)(0)

diverge. As a consequence, u(x) in (3.13) may only act on analytic test
functions, which have derivatives at the origin θ(k)(0) converging very
quickly as k ↗ ∞. In this way, entities as u(x) in (3.13) may be defined
in the context of analytic functionals, which generalize distributions.

But there is a drastic drawback when passing from distributions to an-
alytic functionals of Z′(Rx). The success of distributions relies on the fact
that they inherit very many properties of functions. In particular, distri-
butions enjoy localization properties: the value of a distribution at a point
does not make sense, but its action on any neighbourhood of that point
does (as the distribution may be tested with test function with support in
that neighbourhood). Oppositely, in general, analytic functionals do not
enjoy localization properties, as they may only act upon analytic functions
(with support equal to the whole Rx). We send to [5] for these properties
and to [21] sect. 3 for an example showing that expressions analogous to
(3.12) with singularities at different points may correspond to the same
analytic functional.

3.4. Examples of sequences of functions converging to ana-
lytic functionals

In the context of singular perturbations, analytic functionals usually ap-
pear as limits of sequences of functions. In this subsection we shall display
several examples of such sequences, exhibiting various interesting features.

Let us first consider the analytic functional f(x) defined by its Fourier
transform

f̂(ξ) = cosh ξ =
∞∑
n=0

1
(2n)!

ξ2n
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which is in D′(Rξ) so that f ∈ Z′(Rx). Formally, it is given by

f(x) = δ(x)− δ′′(x)
4!

+
δ(4)(x)

8!
+ · · · (3.14)

Let us consider the approximation obtained by truncation of the Fourier
transform. Specifically, we define

f̂λ(ξ) =

{
f̂(ξ) for |ξ| < λ
0 for |ξ| > λ

which, obviously, are tempered distributions such that

f̂λ(ξ) → f̂(ξ) in D′(Rξ) as λ→ +∞
so that the corresponding inverse Fourier transforms satisfy

fλ(x) → f(x) in Z′(Rx) as λ→ +∞
and we easily obtain

fλ(x) =
1
2π

∫ +λ

−λ
cosh(ξ) cos(ξx)dξ (3.15)

=
1

2π(x2 + 1)

{
eλ [cos(λx) + x sin(λx)]

−e−λ [cos(λx)− x sin(λx)]
}
.

As we are interested in λ ↗ +∞, we shall discard the term in e−λ, so
that

fλ(x) ≈ eλ

2π
ψλ(x)

with
ψλ(x) =

1
x2 + 1

(cos(λx) + x sin(λx)) . (3.16)

Obviously, the expression (3.16) may be considered as the sum of two
terms

1
x2 + 1

cos(λx) and
x

x2 + 1
sin(λx)

each one of them is the product of an “envelop” independent of λ by either
cos(λx) or sin(λx), i.e. a sinusoidal function with wave length tending to
zero as λ tends to infinity. This structure is clearly seen on figure 1. Clearly,
as λ increases, the graph of that function becomes more and more dense
and, at the limit, it occupies the whole region of the plane inside the
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Figure 1. graphs of (3.16) with λ = 2 on the left and
λ = 5 on the right

envelops. Moreover, on account of the factor eλ/2π in (3.16) the graph of
fλ(x) occupies at the limit the whole plane.

Such is our first example of a sequence of functions fλ tending to the
non-zero analytic functional f(x) defined in (3.14). Several features should
be emphasized. First, the functional f(x) defined by (3.14) is apparently
a singularity at the origin; in fact, as we pointed out above, it has no sup-
port, and the sequence fλ(x) does not constitutes a layer in the vicinity
of the origin, as the “envelop” is independent of λ. Another interesting
property of the sequence fλ(x) is that it is clearly described by the two
variables x (= macro-scale) and λx (= micro-scale). This situation is clas-
sical in homogenization theory, but there is a drastic difference between
the two cases. In homogenization, after multiplying by a certain gauge
function of λ, the sequence has a non-zero limit (in the weak topology
of L2 for instance), which is the (non-zero) limit of the homogenization.
Oppositely, in the present situation, the sequence fλ(x) must be multi-
plied by the gauge function e−λ to remain bounded in L2(Rx); and then
it tends to zero either in the weak topology of L2(Rx) or in D′(R§). This
is apparent in Figure 1, as after multiplying by test functions, λ → +∞
implies cancellation of the positive and negative parts of the integral. In
other words, the sequence fλ(x) converges to the analytic functional f(x)
in the unusual topology of Z′(Rx), but usual topologies such as D′(Rx)
are unable to describe the convergence to a non-zero limit. According to

214



Various kinds of sensitive singular perturbations

-20 -16 -12 -8 -4 0 4 8 12 16 20
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-20 -16 -12 -8 -4 0 4 8 12 16 20
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. graphs of the normalized inverse Fourier trans-
form of (3.17) in the exponential case, x2 + c = 1.5, with
λ = 2 on the left and λ = 5 on the right

the gauge function, the sequence remains unbounded or tends to zero.
We shall say that a sequence of functions is complexifying when it has a
non-zero limit in the Z′ topology.

In order to display other examples of sequences more or less analogous
to those appearing in the singular perturbation problem (see section 4), we
first consider sequences f̂λ(ξ) with support in the “outer region” |ξ| > λ to
be added to the previously truncated expressions (or analogous) in order
to handle a “less drastic” truncation.

We carried out a few numerical experiments on the approximated f̂λ(ξ)
and fλ(x1) using the free scientific computing package scilab (http://www.
scilab.org).

We specifically consider

f̂λ(ξ) =

{
0 for |ξ| < λ
e(x2+c−2)|ξ|

|ξ|5 for |ξ| ≥ λ,
(3.17)

where x2 and c are parameters (we shall see their meanings in section
4). It should be pointed out that as the supports are sent to infinity for
λ→ +∞, these sequences tend to zero in D′(Rξ) and the inverse Fourier
transforms converge to zero in Z ′(Rx1) whatever gauge or normalization
factors.
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Figure 3. graphs of the normalized inverse Fourier trans-
form of (3.17) in the algebraic case, x2 + c = 2, with λ = 2
on the left and λ = 5 on the right

We shall consider the two values x2 + c = 1.5 and x2 + c = 2. We
then note that the right hand side term of (3.17) are merely e−0.5|ξ|

|ξ|5 and
1
|ξ|5 , so that they are exponentially or algebraically decreasing functions,
respectively. We shall denote the two cases “exponential” and “algebraic”,
respectively.

The corresponding inverse Fourier transforms (normalized to take the
value 1 at the origin) fλ(x1) for λ = 2 and λ = 5 are displayed in Figure
2 in the exponential case and in Figure 3 in the algebraic case.

We observe that all of these inverse Fourier transforms exhibit “com-
plexification” properties in the sense that as λ increases more and more
“waves” are present between the “envelops”. On the other hand, in the
series of Figure 2 (i.e. in the exponential case), the envelops are almost
the same for λ = 2, 5 whereas in the algebraic case (Figure 3) they are
not. Defining the “significant support” as the region where the values of
the envelops are more than a given fraction of its maximum value (1 here,
because of the normalization), we see that in the algebraic case (Figure
3) the significant support shrinks as λ increases. The explanation of this
property comes from the fact that the sequence (3.17) in the algebraic
case is self-similar, while it is not in the exponential case. Specifically, for
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x2 + c = 2, the sequence (3.17) writes

f̂λ(ξ) = λ−5ϕ̂(
|ξ|
λ

), (3.18)

where

ϕ̂(y) =

{
0 for |y| < 1
1
|y|5 for |y| ≥ 1. (3.19)

Consequently, the inverse Fourier transforms are

fλ(x1) =
ϕ(λ|x1|)
λ4

, (3.20)

where the shrinking character of the significant support is obvious.
As another example of a sequence converging in Z ′ to a non-zero limit,

we now consider:

f̂λ(ξ) =


e(x2+c)

8 for |ξ| ≤ 1
e(x2+c)|ξ|

8|ξ|3 for 1 ≤ |ξ| ≤ λ
e(x2+c−2)|ξ|

ε2|ξ|5 for λ ≤ |ξ|,
(3.21)

where the small parameter ε is linked to λ by the relation:

ε2λ5e2λ = 8λ3, (3.22)

and x2, c are, as before, parameters, which we shall consider in the “ex-
ponential case” x2 + c = 1.5 and the “algebraic case” x2 + c = 2. Let us
explain a little the expression (3.21). The definition for |ξ| < 1 is merely
a technical change to avoid the singularity in |ξ|−3 at the origin. Roughly
speaking, we may consider

f̂λ(ξ) =
e(x2+c)|ξ|

8|ξ|3
for |ξ| ≤ λ, (3.23)

so that the limit as λ tends to infinity is the function e(x2+c)|ξ|

8|ξ|3 , which
increases exponentially for |ξ| → +∞. Then, this function is truncated in
(3.21) replacing their values for |ξ| > λ by those of an expression of the
type (3.17) which takes the same values for |ξ| = λ (as it is expressed by
(3.22)).

The normalized inverse Fourier transforms for λ = 2 and λ = 5 in the
exponential and algebraic cases are displayed in Figure 4 and Figure 5,
respectively. The general trends of these series of graphs are analogous to
those of the previous series (Figures 2 and 3).
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Figure 4. graphs of the normalized inverse Fourier trans-
form of (3.21) in the exponential case, x2 + c = 1.5, with
λ = 2 on the left and λ = 5 on the right
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Figure 5. graphs of the normalized inverse Fourier trans-
form of (3.21) in the algebraic case, x2 + c = 2, with λ = 2
on the left and λ = 5 on the right

In all of the cases there is a complexification. In addition, the algebraic
case (Figure 5) exhibits a phenomenon of contraction of the essential sup-
port. The phenomenon of complexification is not surprising as in our case
the limits are elements of Z ′(Rx1) which are not in D′(Rx1) (as the limit
Fourier transform grows exponentially for |ξ| → +∞). Oppositely, the
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phenomenon of contraction of the significant support deserves of an ex-
planation, as it is analogous to that of the self-similar layer (3.17) with
x2 + c = 2.

In order to get such an explanation, we shall quantify the influence
of the various parts of a function. We shall use the L2 norm, which is
preserved by Fourier transform. Then, referring to (3.21) with x2 + c = 2,
it is easily seen that (on account of the relation (3.22) relating ε to λ):∫

|ξ|<λ
|f̂λ(ξ)|2dξ = O(e4λλ−6) (3.24)∫

|ξ|>λ
|f̂λ(ξ)|2dξ = O(ε−4λ−9) = O(e4λλ−5). (3.25)

It then follows that in the algebraic case x2 + c = 2, the L2 norm of
the region |ξ| > λ of the function f̂λ(ξ) in (3.21) is asymptotically large
as λ tends to infinity with respect to the region |ξ| < λ. Accordingly, the
inverse Fourier transforms are “almost the same” for (3.21) and (3.17).

Our last series of numerical experiments are related to those appearing
in the singular perturbation (see section 4). They are concerned with the
Fourier transforms

f̂λ(ξ) =


e(x2+c)|ξ|

8+ε2e2
if |ξ| ≤ 1

e(x2+c)|ξ|

8|ξ|3+ε2|ξ|5e2|ξ| if |ξ| > 1.
(3.26)

Once more, the special definition for |ξ| < 1 is merely a device to avoid
the singularity at ξ = 0.

We observe that this function with small ε exhibits roughly two regions:
for fixed ξ and small ε, it is approximately described by (3.26) with ε = 0.
It is exponentially growing for |ξ| → +∞. Obviously the convergence to
that limit as ε → 0 is not uniform for ξ ∈ R. For large |ξ|, the first term
in the denominator is negligibly small with respect to the terms in ε2,
which may be considered to give a good approximation for large |ξ|. The
transition between the two regions is clearly |ξ| = O(λ) with λ = λ(ε)
satisfying (3.22), which indicates that the two terms in the denominator
of (3.26) are of the same order.

Then, we may expect that the numerical experiments with (3.26) should
be similar to those of (3.21) with λ = λ(ε) satisfying (3.22). There is, nev-
ertheless an important difference. The transition between the two regions
is sharper in (3.21), involving a jump of the first order derivative, whereas
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Figure 6. graphs of the normalized inverse Fourier trans-
form of (3.26) in the exponential case, x2 + c = 1.5, with
λ = 2 on the left and λ = 5 on the right
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Figure 7. graphs of the normalized inverse Fourier trans-
form of (3.26) in the algebraic case, x2 + c = 2, with λ = 2
on the left and λ = 5 on the right

in (3.26) the transition is smooth. Accordingly, the asymptotic behaviour
for |x1| → +∞ of the inverse Fourier transforms is smoother in the case
(3.26) than in the case (3.21). Specifically, it is classical (see [7] section 2.3
if necessary) that the jumps of the first order derivative of f̂λ yields to a
term in |x1|−2 at infinity which is present in the inverse Fourier transform
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of (3.21) but disapears in (3.26). Accordingly, we modified the abscisse’s
axe in Figure 6 and 7 with respect to the previous ones. We observe that
the complexification still holds whereas the properties of the effective sup-
port are much less apparent than in the previous case.

4. First kind sensitivity

This section is concerned with an example where the sensitivity follows
from “unadaptated boundary conditions” (that is to say not satisfying the
Shapiro-Lopatinskii condition) in the limit problem.

4.1. An elliptic problem with non-classical boundary condi-
tions

Let Ω = R × (0, 1) be the infinite strip in the R2 plane of the variable
x = (x1, x2) and let a be the bilinear form given by:

a(u, v) =
∫
Ω
4u4vdx. (4.1)

We consider the following variational problem{
Find u ∈ Va such that, ∀v ∈ Va
a(u, v) = 〈f, v〉, (4.2)

where the space Va is the “energy space” with the essential boundary
conditions

v(x1, 0) = ∂2v(x1, 0) = 0, (4.3)
which is defined as the completion with the norm ‖v‖a = a(v, v)1/2 of the
set of H2(Ω) functions satisfying (4.3), while f is an element of the dual
V ′
a.
This problem exhibits several special features which we give as remarks.

Remark 4.1. We note that the energy space Va is not a classical space.
In fact, ‖v‖a is a norm on H2(Ω) (or any other space of sufficiently regu-
lar functions) with the essential boundary conditions (4.3). Indeed, when
it vanishes, we have ∆v = 0 with (4.3). This amounts to the Cauchy
problem for the laplacian, which classically enjoys uniqueness (from the
Holmgren local uniqueness theorem together with analytic continuation,
see for instance [4]). Then, Va is well defined in a somewhat abstract way.
But obviously the Cauchy elliptic problems are ill - posed (so that “very
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large” v may correspond to “very small” ∆v, see for instance [4] or [9]).
In fact, Va is a “very large space” not contained in the distribution space
D′(Ω) (see [14] and [8]). This point will not be explicitly addressed here,
but it will be (more or less) apparent from the forthcoming developments.

Moreover, after a formal integration by parts, we easily deduce that the
classical formulation of problem (4.2) is:

42u = f on Ω,
u(x1, 0) = ∂2u(x1, 0) = 0, ∀x1 ∈ R,
4u(x1, 1) = ∂24u(x1, 1) = 0, ∀x1 ∈ R.

(4.4)

Remark 4.2. We note that under this “classical” ( = non variational)
form, the problem makes sense for more general loadings f , not necessarily
contained in V ′

a. We shall take it in the form

f(x1, x2) = δ(x1)F (x2), (4.5)

with (for instance) F ∈ L2(0, 1), or

f(x1, x2) = δ(x1)δ(x2 − c), (4.6)

with 0 < c < 1 (or even c = 1 but in that case the “loading” is on
the boundary and should be considered as a non-homogeneous boundary
condition). Obviously, convolutions in x1 or in x2 allow considering very
general loadings.

Remark 4.3. The boundary value problem (4.4) is not classical. It involves
the new natural boundary conditions on x2 = 1, but they do not satisfy
the Shapiro - Lopatinskii condition (see for instance [1] or [6]). Indeed,
considering the upper half plane (x1, x2), x2 ≥ 0, and the equation

42u(x1, x2) = (∂4
1 + 2∂2

1∂
2
2 + ∂4

2)u(x1, x2) = 0,

with the boundary conditions

4u(x1, 0) = ∂24u(x1, 0) = 0,

and, taking the Fourier transform in the x1 direction, we get:

(ξ4 − 2ξ2∂2
2 + ∂4

2)û(ξ, x2) = 0,

with the boundary conditions

(ξ2 − ∂2
2)û(ξ, 1) = ∂2(ξ2 − ∂2

2)û(ξ, 1) = 0.

It then appears that this problem has non zero-solutions in half plane, such
as û = Ae−|ξ|x2 . This means that the Shapiro - Lopatinskii condition is
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not satisfied. Therefore, it is not a classical problem and it has no solution
in general.

In order to avoid problems explained in Remark 4.3, we will first con-
sider the x1 Fourier transform of the previous boundary value problem
(4.4) with a loading given by (4.6). The new problem is an ODE, which
depends on a parameter ξ and which has solutions for any value of the
parameter. Next, taking the inverse Fourier transform, we shall obtain
solutions of (4.4) in the space of analytical functionals Z′.

In that case, using the Fourier transform of (4.4) with respect to x1

and denoting the Fourier transform of u(x1, x2) by û(ξ, x2), we obtain the
following boundary value problem for x2 ∈ (0, 1), which depends on the
parameter ξ ∈ R

(∂2
2 − ξ2)(∂2

2 − ξ2)û(ξ, x2) = δ(x2 − c), ∀x2 ∈ (0, 1)
û(ξ, 0) = ∂2û(ξ, 0) = 0,
(∂2

2 − ξ2)û(ξ, 1) = ∂2(∂2
2 − ξ2)û(ξ, 1) = 0.

(4.7)

Since the solutions of (∂2
2 − ξ2)(∂2

2 − ξ2)û(ξ, x2) = 0, are linear combi-
nations of

e|ξ|x2 , e−|ξ|x2 , x2e
|ξ|x2 , x2e

−|ξ|x2 , (4.8)

then, it is easily seen (see [15] for details) that the solutions of (4.7) are

û(ξ, x2) =
{
û−(ξ, x2) if x2 ∈ (0, c),
û+(ξ, x2) if x2 ∈ (c, 1), (4.9)

where

û−(ξ, x2) =
1

2|ξ|3
cosh (|ξ|c) sinh (|ξ|x2)

− x2

2ξ2
cosh (|ξ|(x2 − c)), (4.10)

û+(ξ, x2) = û−(ξ, x2) +
(x2 − c)

2ξ2
cosh(|ξ|(x2 − c)) (4.11)

− 1
2|ξ|3

sinh(|ξ|(x2 − c)).

We note that for all x2 ∈]0, 1[, with x2 6= c, and for |ξ| → +∞, we have

û(ξ, x2) ≈
1

8|ξ|3
e(c+x2)|ξ|. (4.12)
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Obviously, this expression was obtained for the loading (4.6), but in
rather general cases, the asymptotic behavior for |ξ| → ∞ is exponential,
see [15].

4.2. Singular perturbation with non-classical boundary con-
ditions in the limit problem

Let us now consider the variational problem depending on the parameter
ε > 0 given by {

Find uε ∈ V such that, ∀v ∈ V
a(uε, v) + ε2b(uε, v) = 〈f, v〉, (4.13)

where a is still given by (4.1) and b is such that

b(u, v) =
∫
Ω
(∂3

1u∂
3
1v + ∂3

2u∂
3
2v)dx. (4.14)

In this case, the energy space V is the completion of theH3(Ω) functions
v satisfying the essential boundary conditions

v(x1, 0) = ∂2v(x1, 0) = ∂2
2v(x1, 0) = 0, (4.15)

with the norm ‖v‖2
V = a(v, v) + b(v, v).

Let H3
Γ0

(0, 1) and H2
Γ0

(0, 1) be defined as follows

H3
Γ0

(0, 1) = {v ∈ H3(0, 1), s.t. v(0) = ∂2v(0) = ∂2
2v(0) = 0}(4.16)

H2
Γ0

(0, 1) = {v ∈ H2(0, 1), s.t. v(0) = ∂2v(0) = 0}. (4.17)

We then are in the framework described in section 2.
In order to solve (4.13) by Fourier transform in x1, we first obtain

its classical formulation by an integration by parts in (x1, x2). Taking
the x1 Fourier transform, we obtain an ordinary differential equation for
x2 ∈ (0, 1) which depends on the parameter ξ. Then, the corresponding
variational formulation, which follows from standard inegration by parts
in x2, is:{

Find ûε(ξ) ∈ H3
Γ0

(0, 1) such that, ∀v ∈ H3
Γ0

(0, 1)
â(ûε, v) + ε2b̂(ûε, v) = 〈F, v〉, (4.18)

where for u, v in H2(0, 1), â is defined by:

â(u, v) = 〈(∂2
2 − ξ2)u, (∂2

2 − ξ2)v〉, (4.19)
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and similarly, for u, v in H3(0, 1), b̂ is the form defined by

b̂(u, v) = |ξ|6〈u, v〉+ 〈∂3
2u, ∂

3
2v〉, (4.20)

where 〈, 〉 denotes the usual scalar product in L2(0, 1).
The following result expresses the convergence of the Fourier transforms

with fixed ξ (its proof can be found in [15]):

Lemma 4.4. Let ξ be fixed and let ûε(ξ), û(ξ) be the solutions of (4.18)
and (4.7), respectively, then we have:

ûε(ξ) → û(ξ) strongly in H2
Γ0

(0, 1), as ε goes to zero. (4.21)

The following theorem gives the convergence of ûε in the distribution
sense with respect to ξ (4.22). The inverse Fourier transform then gives
the convergence of uε, (4.24).

Theorem 4.5. Let ûε and û be the solutions of (4.18) and (4.7), respec-
tively. The following convergence holds, as ε goes to zero:

ûε → û in D′(Rξ;H2
Γ0

(0, 1)). (4.22)

Moreover, for fixed x2, we have:

ûε(., x2) → û(., x2) in D′(Rξ), (4.23)
uε(., x2) → u(., x2) in Z′(Rx1). (4.24)

where u and uε are the solutions of (4.2) and (4.13), respectively.

4.3. Emergence of a new small parameter in the previous
problem and formal asymptotics

This section has a formal character. Its goal is to get an easily understand-
able description of ûε(ξ) and uε(x1) with small ε.

For obvious reasons, the limit properties of uε when ε → 0 are more
clear when considered in terms of the Fourier transform ûε(ξ). Moreover,
it follows from (4.18)-(4.20) with (4.5) (see [15] for details) that ûε(ξ, x2)
with fixed small ε behaves when |ξ| → ∞ in the form:

ûε(ξ) ≈ ε−2ξ−6F, (4.25)

whereas for moderately large values of |ξ|, we have, as in (4.12):

ûε(ξ, x2) ≈ Ke(c+x2)|ξ|, (4.26)
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or other exponential functions, in general. In order to define a transition
region between the two previous patterns, where we can neglect none of
these two expressions with respect to the other, we must have

e(c+x2)|ξ| = O(ε−2). (4.27)

Consequently, the characteristic frequency is of order:

|ξ| = O(|logε|). (4.28)

We are now giving a heuristic approximate analysis of ûε(ξ) for small
ε and “moderately large” |ξ|. According to the previous considerations, it
will be a good quantitative approximation of uε.

Let us consider again the problem (4.18) when ε and ξ are considered
as parameters, with ε → 0 and |ξ| = O(|logε|). In order to allow explicit
computations, we shall take a loading given by (4.6).

As it appears from section 3.2, the natural trend of the solution of the
minimization problem is to avoid the term â(v, v) which is “expensive”
in energy, with respect to the other, which bears the small factor ε2.
According to (4.19), the vanishing of the form â amounts to (∂2

2−|ξ|2)v =
0, i.e. v is in the two - dimensional space

v = αe|ξ|x2 + βe−|ξ|x2 (4.29)

on the whole interval x2 ∈ (0, 1). It then appears that, when imposing the
three (essential) boundary conditions on x2 = 0, see (4.16), the subspace
reduces to the 0 vector, so that this first idea is too coarse for describing
the asymptotics.

This (negative) result is natural, as the kernel of a(v, v) reduces to {0}.
Nevertheless, we shall see that it is possible to enlarge that subspace and
to obtain special functions satisfying the essential boundary conditions
and containing a very small amount of a-energy. The formal asymptotics
consists in minimizing the energy in the space of that special functions.

We are then enlarging the previous subspace. To this end, we know that
the (exact) solution satisfies the homogeneous equation(

(∂2
2 − ξ2)(∂2

2 − ξ2)− ε2(ξ6 + ∂6
2)

)
ûε(ξ, x2) = 0 (4.30)

on each of the intervals (0, c) and (c, 1). Then, on each one of these inter-
vals, it is a linear combination of the six functions eλix2 where λi are the
roots of the equation:

(λ2 − ξ2)2 − ε2(ξ6 + λ6) = 0. (4.31)
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We are now solving approximatively this equation recalling that ε is small
and |ξ| moderately large. It immediately appears that there are two roots
close to |ξ|, two roots close to −|ξ|, and two roots with very large modulus,
approximatively equal to 1/ε and −1/ε. The two first assertions follow
directly from (4.31) with ε = 0, whereas the last follows from the change
of unknown λ = µ/ε, which gives

(µ2 − ε2ξ2)2 − ε6ξ6 + µ6 = 0, (4.32)

and then taking ε = 0. Going on with our approximation, we may consider
(see for instance [22] for details) that the two roots close to |ξ| are in fact a
double root, as well as the two close to −|ξ|. It means that, on each of the
intervals (0, c) and (c, 1) we may consider, in addition to (4.29), functions
of the form:

γx2e
|ξ|x2 + δx2e

−|ξ|x2 + ζe
−1
ε
x2 + θe

1
ε
x2 . (4.33)

Moreover, in the framework of our approximation, we observe that, as |ξ|
is large and ε small, the functions with coefficients γ and θ bear a large
amount of energy associated with the form â, and should be disregarded.
As a result, at the present state, on each of the intervals (0, c) and (c, 1)
we may consider, in addition to (4.29), functions of the form:

δx2e
−|ξ|x2 + ζe

−1
ε
x2 . (4.34)

But, as the functions must be in the space H3
Γ0

(0, 1), the traces of the
functions and of the first and second order derivatives must be the same on
both sides of x2 = c which are not concerned by the space of minimization).
As these three conditions are automatically satisfied by (4.29), which is
valid on the whole interval, we only must prescribe them on (4.34). This
evidently shows that δ and θ should take the same value on both intervals.
This gives, on the whole interval, (0, 1), functions of the form

v = αe|ξ|x2 + βe−|ξ|x2 + δx2e
−|ξ|x2 + ζe

−1
ε
x2 . (4.35)

We now have at our disposal a four - dimensional space (instead of the
two-dimensional one (4.29)) and prescribing the three (essential) boundary
conditions on x2 = 0, see (4.16) we get:

δ = 1
2|ξ|(

1
ε2
− ξ2)ζ,

β = 1
4ξ2

(1
ε − 3|ξ|)(1

ε + |ξ|)ζ,
α = − 1

4ξ2
(1
ε − |ξ|)

2ζ.

(4.36)
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and the space of minimization becomes the one - dimensional space

v(ξ, x2) = A(ξ, ε)wε(ξ, x2), (4.37)

with

wε(ξ, x2) =
(
(1− εξ)2

sinh (|ξ|x2)
|ξ|

− (1− ε2ξ2)x2e
−|ξ|x2

− 2ε2|ξ|(e−
1
ε
x2 − e−|ξ|x2)

)
. (4.38)

We note that, within our approximation, as ε is small, as well as ε|ξ|, we
may also consider

wεapp(ξ, x2) =
( sinh (|ξ|x2)

|ξ|
− x2e

−|ξ|x2 − 2ε2|ξ|e−
1
ε
x2

)
(4.39)

where it should be noted that the last term is small with respect to the
others, so that it should also be discarded; we only keep it in order to show
that the boundary conditions at x2 = 0 are (approximatively) satisfied;
in fact, that term is a narrow boundary layer near x2 = 0, but it will not
play any role in the sequel.

The approximate solution of the minimization problem is now immedi-
ate as it is reduced to the one - dimensional space (4.37). Writing

ûε(ξ, x2) = A(ξ, ε)wε(ξ, x2), (4.40)

and recalling that ûε(ξ, x2) is the solution of the variational problem given
by (4.18), we deduce that

â(ûε(ξ), ûε(ξ)) + ε2b̂(ûε(ξ), ûε(ξ)) = 〈ûε(ξ), δ(x2 − c)〉,
so that

A(ξ, ε)2(â(wε(ξ), wε(ξ)) + ε2b̂(wε(ξ), wε(ξ))) = A(ξ, ε)〈wε(ξ), δ(x2 − c)〉,
(4.41)

and then

A(ξ, ε) =
wε(ξ, c)

â(wε(ξ), wε(ξ)) + ε2b̂(wε(ξ), wε(ξ))
. (4.42)

Furthermore, thanks to the fact that ε|ξ| << 1, the approximate ex-
pressions of wε(ξ), â(wε(ξ), wε(ξ)) and b̂(wε(ξ), wε(ξ)) are (recall (4.39)
and the comments after it):

wε(ξ, x2) ≈ wapp(ξ, x2) =
sinh (|ξ|x2)

|ξ|
− x2e

−|ξ|x2 , (4.43)

228



Various kinds of sensitive singular perturbations

â(wε(ξ), wε(ξ)) ≈ 2|ξ|, (4.44)

b̂(wε(ξ), wε(ξ)) ≈ |ξ|3

4
e2|ξ|, (4.45)

hence,

â(wε(ξ), wε(ξ)) + ε2b̂(wε(ξ), wε(ξ)) ≈ 2|ξ|+ ε2
|ξ|3

4
e2|ξ|. (4.46)

Then (4.42) becomes

A(ξ, ε) =
wε(ξ, c)

2|ξ|+ ε2 |ξ|
3

4 e2|ξ|
(4.47)

and the final expression of the approximate solution is

ûε(ξ, x2) =
wε(ξ, c)wε(ξ, x2)

2|ξ|+ ε2 |ξ|
3

4 e2|ξ|
, (4.48)

where wε is given by (4.38) or even by its approximate expression (4.43).

Remark 4.6. It should be noticed that the previous result on the one-
dimensional space (4.40) (which is the main one of our formal asymp-
totics) is independent of the point c of application of the point loading.
Accordingly, it may be used for general loadings, which may be obtained
by integration of elementary loadings with variable c ∈ (0, 1).

Remark 4.7. When computing

â(wε(ξ), wε(ξ)) =
∫ 1

0

∣∣(∂2
2 − ξ2)wε(ξ)(x2)

∣∣2dx2,

with (4.39), it is easily seen that the previous energy localizes in the vicin-
ity of x2 = 0 when |ξ| tends to infinity. This result is evident form the fact
that the leading part of the â(wε(ξ), wε(ξ)) energy depends on the second
term in the expression (4.39).

Oppositely, the b̂ energy depends mainly on the first term of the ex-
pression (4.39) and the b̂ energy localizes in the vicinity of x2 = 1.

This is the phenomenon of “migration of energies” in the sense that as
|ξ| tends to infinity, the â and b̂ energies migrate towards Γ0 and Γ1, re-
spectively, whereas the open interval (0, 1) tends to become free of energy.
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Remark 4.8. Let us denote in this remark ûεc and ûεc′ the solutions asso-
ciated with δ loads located in c and c′. From our formal asymptotics, we
deduce the reciprocity property

ûεc(ξ, c
′) = ûεc′(ξ, c).

Remark 4.9. According to Remark 4.6, in the case when the loading is
f(x1, x2) = δ(x1)F (x2) with F ∈ L2(0, 1), equations (4.41) and (4.42)
become

A(ξ, ε)2(â(wε(ξ), wε(ξ)) + ε2b̂(wε(ξ), wε(ξ))) = A(ξ, ε)〈F, ŵε(ξ)〉 (4.49)

and

A(ξ, ε) =
∫ 1
0 F (x2)wε(ξ, x2)dx2

2|ξ|+ ε2 |ξ|
3

4 e2|ξ|
. (4.50)

respectively

We carried out a few numerical experiments on the approximated ûε(ξ, 1)
and uε(x1, 1). We observe that the principal term of (4.48), as |ξ| → ∞,
is precisely the last example of section 3, especifically (3.26). In fact, the
example (3.26) was chosen for this reason. It appears that the graphs of
the normalized inverse Fourier transforms of (3.26) and (4.48) are close
when λ = 2 (see Figure 8 on the left) and practically identical when λ = 5
(see Figure 8 on the right). Therefore, the comments concerning complex-
ification and behavior of the supports are analogous to those of (3.26).

On Figure 9 we represent ûε(ξ, 1) (where û is given by (4.48) on the left
and uε(x1, 1) on the right for three values of ε (we recall that ε and λ are
related by (3.22)): ε = 10−3, ε = 10−4 and ε = 10−5. In the left graphics,
the abscisse-axis is ξ ∈ [0, 32] while in the right one, it is x1 ∈ [0, 0.8]. We
observe that both |ûε(ξ, 1)| and |uε(x1, 1)| (indeed we can not see u10−3

since it is too small in comparison with the two others) increase drastically
as ε decreases. This is in good agreement with the fact that neither the
limit of ûε(ξ, 1) nor the limit of uε(x1, 1), as ε tends to zero, belong to the
space S′.

In Figure 10 we displayed uε(x1, 0.75) and uε(x1, 0.95) for ε = 10−3 and
the loading f(x1, x2) = δ(x1)δ(x2 − 0.75). The abscise-axis is ξ ∈ [0, 8].
The maximum of |uε(x1, 0.75)| and |uε(x1, 0.95)| are around 0.03 and 0.11,
respectively. It is then apparent that the solution is much more singular
in the vicinity of the boundary Γ1 than on x1 = 0.75 where the loading is
applied. In fact, in the present situation, the singular behavior is somewhat
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Figure 8. Normalized Inverse Fourier transforms of (3.26)
and (4.48), with x2 + c = 1.5 and λ = 2 on the left and
λ = 5 on the right
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Figure 9. ûε(ξ, 1) on the left and uε(x1, 1) on the right,
for ε = 10−3, 10−4 and 10−5

“non local” as it is mainly localized in the vicinity of the boundary bearing
the pathological boundary conditions rather than on the support of the
loading.
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Figure 10. uε(x1, 0.95) and uε(x1, 0.75) for ε = 10−3

5. Second kind sensitivity

This section is concerned with an example where the sensitivity follows
from boundary conditions which lose their sense at the limit.

5.1. An example of model problem exhibiting second kind
sensitivity

Let us consider the domain Ω = (0, 1) × (0, 1). We shall denote by Γ0,
Γ1 and Γ2 the boundaries {x1 = 0}, {x1 = 1} and {x2 = 0} ∪ {x2 = 1}
respectively. Let now define the forms a and b as follows:

a(u, v) =
∫
Ω
∂1u1∂1v1dx+

∫
Ω
(∂2u1 − u2)(∂2v1 − v2)dx, (5.1)

b(u, v) =
∫
Ω
∂αu2∂αv2dx. (5.2)

Let V be the space

V = {v = (v1, v2) ∈ H1(Ω)×H1(Ω); v2 = 0 on Γ1, v1 + v2 = 0 on Γ0}
(5.3)

Let us then consider the problem:{
Find u ∈ V satisfying ∀v ∈ V
a(uε, v) + ε2b(uε, v) = 〈f, v〉 =

∫
Ω(f1v1 + f2v2)dx.

(5.4)

We have:
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Lemma 5.1. The form a+ b is continuous and coercive on V .

Proof. The continuity is obvious. As for the coerciveness, we have

(a+ b)(v, v) = ‖∂1v1‖2
0 + ‖∇v2‖2

0 + ‖∂2v1 − v2‖2
0

where, from the Poincaré inequality with v2|Γ1 = 0,

‖∇v2‖2
0 ≥ C‖v2‖2

1

Consequently, we have

(a+ b)(v, v) ≥ C1[‖∂1v1‖2
0 + ‖v2‖2

1 + ‖∂2v1 − v2‖2
0] (5.5)

in particular,

(a+ b)(v, v) ≥ C2[‖∂2v1 − v2‖2
0 + ‖v2‖2

0] (5.6)

Then, on account of the inequalities

‖∂2v1‖0 ≤ ‖∂2v1 − v2‖0 + ‖v2‖0 ⇒ ‖∂2v1‖2
0 ≤ 2[‖∂2v1 − v2‖2

0 + ‖v2‖2
0],

from (5.6) we see that

(a+ b)(u, v) ≥ C3‖∂2v1‖2
0. (5.7)

At last, by combination of (5.5) and (5.7) we have

(a+ b)(u, v) ≥ C[‖v2‖2
1 + ‖∇v1‖2

0]. (5.8)

It is classical that the norm H1 is equivalent to the semi norm defined by
the norm of the gradient in L2 plus any semi norm controlling additive
constants which are disregarded by the first semi norm. In particular the
equivalence of ‖∇v1‖2

0 + ‖v1|Γ0‖2
0 and ‖v1‖2

1 is proved in [24], page 342.
Consequently

‖v1‖2
1 ≤ C4[|∇v1‖2

0 + ‖v1|Γ0‖2
0], (5.9)

where, as v1 = −v2 on Γ0, we have

‖v1|Γ0‖2
0 = ‖v2|Γ0‖2

0 ≤ C5‖v2‖2
1. (5.10)

From (5.9) and (5.10) we then have

‖v1‖2
1 ≤ C6[|∇v1‖2

0 + ‖v2‖2
1] (5.11)

and finally
(a+ b)(u, v) ≥ C ′[‖v2‖2

1 + ‖v2‖2
1], (5.12)

hence the conclusion. �

Lemma 5.2. The problem (5.4) is inhibited, in other words, a(v, v) =
0 ⇒ v = 0.
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Proof. Assume that a(v, v) = 0, then{
∂1v1 = 0 ⇒ v1 = ϕ(x2) ∈ H1(0, 1)
v2 = ∂2v1 ⇒ v2 = ϕ′(x2)

With the boundary condition v2 = 0 on Γ1, we have ϕ′(x2) = 0 ⇒ ϕ(x2) =
Const. and, as v1 + v2 = 0 on Γ0 with v1 = 0, we have ϕ = 0, QED. �

We are then in the hypotheses of section 2.
Let us show that the problem (5.4) is a sensitive one. Specifically,

D(Ω)2 6⊂ V ′
a.

Lemma 5.3. The problem (5.4) is sensitive (and more precisely D(Ω)2-
sensitive).

Proof. Let us take f ∈ V ′
a∩D(Ω)2. We shall see that f must satisfy certain

compatibility conditions, so that it is not any element of D(Ω)2, proving
that D(Ω)2 6⊂ V ′

a. Then, for that f , the limit problem (2.15) has a unique
solution in Va. Let us define{

γ1(v) = ∂1v1
γ2(v) = ∂2v1 − v2.

We see that for (v1, v2) ∈ Va, even when it is not a distribution, according
to the construction of Va, γ1(u0) and γ2(u0) are well determined elements
of L2(Ω) and consequently, from (2.15), we have∫

Ω
γ1(u0)∂1v1dx+

∫
Ω
γ2(u0)(∂2v1 − v2)dx =∫

Ω
fαvαdx ∀v ∈ Va, in particular ∀v ∈ V. (5.13)

Taking, in particular, v ∈ D(Ω)2 we have{
−∂1γ1 − ∂2γ2 = f1

−γ2 = f2.

We then have
− ∂1γ1 = f1 − ∂2f2. (5.14)

Moreover, provided that γ1, γ2 ∈ L2, f1, f2 ∈ L2, it is classical that the
traces of n1γ1 + n2γ2 makes sense and vanishes as an element of the dual
H− 1

2 (∂Ω) allowing integration by parts, see [16], p. 119-120 for analogous
proof if necessary. Then, from (5.13), we have∫

∂Ω
(n1γ1 + n2γ2)v1dσ = 0 (5.15)
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which implies, as v1 is arbitrary on ∂Ω,

γ1 = 0 on Γ0 ∪ Γ1 (5.16)

γ2 = 0 on Γ2. (5.17)
From (5.14) and (5.16) we see that γ1 satisfies the two boundary conditions
only when the compatibility condition∫ 1

0
(f1(x1, x2)− ∂2f2(x1, x2))dx1 = 0

is satisfied. This proves that D(Ω)2 6⊂ V ′
a and that the problem is sensitive.

�

Remark 5.4. We emphasize that we proved that the second condition of
(2.1) is satisfied. This implies that in Va, a(v, v)1/2 is a norm so that

v ∈ Va, a(v, v) = 0 ⇒ v = 0. (5.18)

But Va is not a space of distributions. We are now considering formally
the limit problem in terms of equations and boundary conditions using
the classical distribution theory (from which the expression “formall”).
The problem is {

Find u ∈ Va such that
a(u, v) = 〈f, v〉 ∀v ∈ Va

(5.19)

We observe that the equivalent to (5.18) does not hold true in this formal
framework. Indeed,

a(v, v) = 0 ⇒
{
γ1(v) = 0 ⇒ ∂1v1 = 0
γ2(v) = 0 ⇒ ∂2v1 − v2 = 0 (5.20)

with the principal boundary conditions of this limit problem. But, in the
present distributional framework, the principal boundary conditions do
not make sense. Indeed, such boundary conditions are those inherited
from those of V in the completion process which uses the norm a(v, v)

1
2 .

In that process, v2 cannot have traces so that no principal boundary con-
ditions appear in the limit problem (in the distributional framework).
Consequently, in this context, there is a kernel formed by the solutions of
(5.20) namely

v1 = ϕ(x2), v2 = ϕ′(x2) (5.21)
We shall say that the functions (5.21) form the pseudo-kernel of the prob-
lem. This definition follows from the fact that the kernel is reduced to
0 in the non classical space Va whereas in the distributional theory the
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kernel is defined by (5.21). This pseudo-kernel will be used in the formal
asymptotics.

5.2. Heuristic asymptotics of uε

In this subsection, we shall modify the elements of the pseudo-kernel with
boundary layers in order to obtain elements of V . Then, we shall mini-
mize on the elements of the modified pseudo-kernel the energy 1

2(a(v, v)+
ε2b(v, v))− 〈f, v〉.

The formal procedure of construction of boundary layers follows usual
trends. Nevertheless, there are special features associated with different
orders of differentiation of the unknowns u1 and u2 (note for instance the
different powers of ε in u1 and u2 in (5.26) and (5.27) hereafter). More
explanations on these procedures may be seen in [18].

In order to obtain the equations of the boundary layers, in the vicinity of
x1 = 0 and x1 = 1 respectively, as usual, we define the dilated coordinate
y1 as follows:

y1 =
x1

ε
, (resp. y1 =

1− x1

ε
). (5.22)

We then have for the boundary layer at x1 = 0

∂1 ≡
∂

∂x1
=

∂

ε∂y1

definition
≡ D1 (5.23)

and for the boundary layer at x1 = 1

∂1 ≡
∂

∂x1
= − ∂

ε∂y1

definition
≡ D1. (5.24)

Boundary layer in the vicinity of x1 = 0.
According to (5.21), the kernel is constituted by the elements

uϕ =
{
uϕ1 = ϕ(x2)
uϕ2 = ϕ′(x2).

(5.25)

We define uϕε as follows:

uϕε =
{
uϕε1 = uϕ1 (x2) + εU1(y1, x2) + · · ·
uϕε2 = uϕ2 (x2) + U2(y1, x2) + · · · (5.26)

which must satisfy the boundary condition at y1 = 0, i.e. on Γ0. As it is
classical in asymptotic expansions, we take test functions under the form

vε =
{
vε1 = εV1(y1, x2)
vε2 = V2(y1, x2)

(5.27)
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i.e., with a structure analogous to that of the perturbations in (5.26).
Here the Vα have bounded support in y1 and x2. In terms of y1 and x2

the expression a(uϕε,vε) + ε2b(uϕε,vε)− 〈f, v〉 writes∫
B
[(D1U1 + · · · )D1V1 + (U2 + · · · )V2]εdy1dx2+

ε2
∫
B

[
[
1
ε
D1U2 + · · · ]1

ε
D1V2 + (ϕ′′ + ∂2U2 + · · · )∂2V2

]
εdy1dx2

=
∫
B
(f2V2 + · · · )εdy1dx2 (5.28)

where B is the infinite region [0,+∞]× [0, 1] and the · · · denotes terms of
smaller order. At the leading order we then have∫
B
[D1U1D1V1 + U2V2 +D1U2D1V2]dy1dx2 =

∫
B
f2(0, x2)V2(0, x2)dy1dx2.

(5.29)
In the sequel we shall consider the case f2(0, x2) ≡ 0, i.e. the case when
the boundary Γ0 is free of loading (but it will be evident later that this
hypothesis is unuseful as a consequence of the rescaling (5.41)).

From (5.29) we have{
−D2

1U1 = 0 ⇒ U1 = α(x2)y1 + β(x2)
U2 −D2

1U2 = 0 ⇒ U2 = γ(x2)e−y1 + δ(x2)ey1
(5.30)

where uϕεα must satisfy the boundary condition on Γ0 and the matching
condition as y1 → +∞, i.e.

uϕε1 (0, x2) + uϕε2 (0, x2) = 0 on Γ0 ⇒
β(x2) + γ(x2) + δ(x2) + ϕ(x2) + ϕ′(x2) = 0 (5.31)

and when y1 → +∞

uϕε → uϕ ⇒
{
U1 → 0 ⇒ α(x2) = 0, β(x2) = 0
U2 → 0 ⇒ δ(x2) = 0. (5.32)

Then, from (5.31) we have

γ(x2) = −(ϕ(x2) + ϕ′(x2)). (5.33)

Finally, we get {
U1 = 0
U2 = −(ϕ(x2) + ϕ′(x2))e−y1 ,

(5.34)
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and then {
uϕε1 = ϕ(x2)
uϕε2 = ϕ′(x2)− [ϕ(x2) + ϕ′(x2)]e−y1 .

(5.35)

Boundary layer in the vicinity of x1 = 1
In the vicinity of Γ1 with the boundary condition uε2 = 0 on Γ1, analo-

gous computations give: {
U1 = 0
U2 = −ϕ′(x2)e−y1 ,

(5.36)

and {
uϕε1 = ϕ(x2)
uϕε2 = ϕ′(x2)[1− e−y1 ]. (5.37)

Minimization
Let us search the solution uε in the space of the vϕε. Within our ap-

proximation, this amounts to (5.35) and (5.37) in the layers adjacent to
Γ0 and Γ1 respectively, and merely (5.25) in Ω out of the layers. Searching
for the solution amounts to minimizing the expression

E = a(uϕε, uϕε)︸ ︷︷ ︸
nul out of the layers

+ε2 b(uϕε, uϕε)︸ ︷︷ ︸
of order ε2out of the layers

−2〈f, uϕε〉 (5.38)

From (5.35) and (5.37), the leading orders give:∫ 1

0
dx2

∫ +∞

0

[
(ϕ+ ϕ′)e−y1

]2
εdy1 +

∫ 1

0
dx2

∫ +∞

0

[
ϕ′ exp(−y1)

]2
εdy1

+ε2
∫ 1

0
dx2

∫ +∞

0

[
(ϕ+ ϕ′)

e−y1

ε

]2

εdy1

+ε2
∫ 1

0
dx2

∫ +∞

0

[
ϕ′
e−y1

ε

]2

εdy1 =∫ 1

0

∫ 1

0
[f1ϕ(x2) + f2ϕ

′(x2)]dx1dx2 (5.39)

so that

ε

∫ 1

0

[
(ϕ+ ϕ′)2 + ϕ′2

]
dx2 =

∫ 1

0

∫ 1

0
(f1ϕ+ f2ϕ

′)dx1dx2 (5.40)

Let us define
ψ = εϕ (5.41)
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then (5.40) becomes∫ 1

0

[
(ψ + ψ′)2 + ψ′2

]
dx2 =

∫ 1

0

∫ 1

0
(f1ψ + f2ψ

′)dx1dx2 (5.42)

Let us show that the left hand side of (5.42) is coercive on H1(0, 1). Indeed,
from

2ψψ′ ≤ ψ2

λ
+ λψ′2

we have

ψ2 + 2ψ′2 + 2ψψ′ ≥ ψ2(1− 1
λ

) + ψ′2(2− λ)

and there exists λ such that∫ 1

0

[
(ψ + ψ′)2 + ψ′2

]
dx2 ≥ C

∫ 1

0

[
ψ2 + ψ′2

]
dx2.

hence the conclusion. In fact, (5.42) amounts to a continuous and coercive
variational problem for the unknown ψ ∈ H1(0, 1). Indeed, let us show
that the right hand member is a linear continuous functional on H1(0, 1).
We have ∫ 1

0
dx2

∫ 1

0
[f1(x1, x2)ϕ(x2) + f1(x1, x2)ϕ′(x2)]dx1 ≡∫ 1

0
ϕ(x2)dx2

∫ 1

0
f1(x1, x2)dx1︸ ︷︷ ︸
F1(x2)

+
∫ 1

0
ϕ′(x2)dx2

∫ 1

0
f2(x1, x2)dx1︸ ︷︷ ︸
F2(x2)

(5.43)

and the continuity follows when F1, F2 are in (H1(0, 1))′ and consequently,
for instance, with f1 and f2) are in L2((0, 1)x1 ; (H

1(0, 1))′).
The result of this formal asymptotics is that:

uε =
1
ε
uψε + ... (5.44)

(where ... denotes asymptotically smaller terms), where uψε is defined by
(5.35) and (5.37) with ψ instead of ϕ and ψ ∈ H1(0, 1) is the solution of
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the variational problem:{
Find ψ ∈ H1(0, 1) such that ∀θ ∈ H1(0, 1) :∫ 1
0 [(ψ + ψ′)(θ + θ′) + ψ′θ′]dx2 =

∫ 1
0

∫ 1
0 (f1θ1 + f2θ2)dx1dx2.

(5.45)
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