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stationary Gaussian processes and moving

average processes

Guangfei Li
Yu Miao

Huiming Peng
Liming Wu

Abstract
For stationary Gaussian processes, we obtain the necessary and

sufficient conditions for Poincaré inequality and log-Sobolev inequality
of process-level and provide the sharp constants. The extension to
moving average processes is also presented, as well as several concrete
examples.

1 Introduction and Main Results
Let X := (Xn)n∈Z be a real valued stationary Gaussian process with

EX2
0 = σ2 > 0, EX0Xn = σ2ρ(n), ∀n ∈ Z. (1.1)

It is a very important class of stochastic processes both in theory and appli-
cations. The limit theorems about stationary Gaussian processes are abun-
dant, see Avram [1] for the central limit theorem, Donsker and Varadhan [3]
and L. Wu [9] for the large deviations, H.Djellout and al. [2] for moderate
deviations, and the references therein.

In this note we are mainly interested in Poincaré inequality and Logarith-
mic Sobolev inequality on the product space RZ for the law of the process
X. As developed by Ledoux [5] and many other authors, the Poincaré or log-
Sobolev yield sharp concentration inequalities, which are much more robust
than the limit theorems quoted above.

We begin by describing those two inequalities on E := RZ. Regarding

l2(Z) := {h := (hn)n∈Z|hn ∈ R, |h| :=
√∑

n∈Z

|hn|2 < +∞}
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as a tangent space of E = RZ, let ∇ be the corresponding gradient, i.e., for
a function F on E, derivable at each coordinate xi, i.e., ∂xi

F exists, let

∇F (x) = (∂xi
F (x))i∈Z.

If F : E → R and ∇F : E → l2(Z) are continuous, we say that F ∈ C1(E).

Definition 1.1: We say that a R-valued stochastic process X = (Xn)n∈Z
satisfies the Poincaré inequality, if there is some best constant cP (X) ∈ R+

such that

V arP(F (X)) ≤ cP (X)E
∑
i∈Z

|∂xi
F |2(X), ∀F ∈ C1(E)

⋂
Cb(E), (1.2)

and X satisfies the log-Sobolev inequality (LSI in short) if there is some best
constant cLS(X) ∈ R+ such that

EntP(F
2(X)) ≤ 2cLS(X)E

∑
i∈Z

|∂xi
F |2(X), ∀F ∈ C1(E)

⋂
Cb(E). (1.3)

Here EntP(F (X)) := EPF (X) log F (X)
EPF (X)

for P-integrable nonnegative F (X),
is the Kullback entropy.

The same definition and notation apply also to the random vector in Rn.
It is well known that cP (X) ≤ cLS(X) (cf. [5]).

For the stationary Gaussian process given in (1.1), if ρ(m) = 0,∀m 6= 0,
it becomes an i.i.d. sequence for which it is now well known (due to Gross
[6], see [5])

cP (X) = cLS(X) = σ2. (1.4)

To state our main result, let us introduce the (nonnegative and bounded)
spectral measure µ on the torus T identified as [−π, π], which is determined
by (Bochner’s theorem)

σ2ρ(n) =
1

2π

∫ π

−π

e−intdµ(t), ∀n ∈ Z (1.5)

The main result of this note is:

Theorem 1.2: For the stationary Gaussian process in (1.1), we have

cP (X) = cLS(X) =

{
‖f‖∞, if µ � dt, f := dµ/dt;

+∞, otherwise
(1.6)
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where ‖f‖∞ = esssuptf(t). In particular, X satisfies the Poincaré or log-
Sobolev inequality iff µ � dt and the density f := dµ/dt is bounded.

When ρ(·) ∈ l2(Z), the spectral density f = dµ/dt exists and belongs to
L2([−π, π]) := L2([−π, π], dt) and

f(t) = σ2
∑
k∈Z

ρ(k)eikt = σ2

(
1 + 2

∑
k≥1

ρ(k) cos(kt)

)
. (1.7)

From the result above we have immediately

Corollary 1.3: If ρ(n) ≥ 0 for all n or if (−1)nρ(n) ≥ 0 for all n, then

cP (X) = cLS(X) = σ2

(
1 + 2

∑
n≥1

|ρ(n)|

)
.

In particular, X satisfies the Poincaré or log-Sobolev inequality iff∑
n≥1 |ρ(n)| < +∞.

In the literature,
∑

n≥1 |ρ(n)| < +∞ is often called short range depen-
dence, cf. Taqqu [8].

Remark 1.4: For stationary Gaussian process X = (Xk)k∈Z with law P (on
RZ), one can consider the abstract Wiener space (RZ, H, P ), where H ⊂ RZ is
the Cameron-Martin space associated with P . It is not difficult (but already
more difficult than the proof of Theorem 1.2) to check that for any smooth
F : RZ → R depending only on a finite number of variables,

‖∇HF‖2
H = 〈∇F, Γ∇F 〉l2(Z)

where∇H is the Malliavin gradient, and Γ = (σ2ρ(k−l))k,l∈Z is the covariance
matrix of X. By the Gross theorem,

EntP(F
2(X)) = EntP (F 2) ≤ 2

∫
‖∇HF‖2

HdP = 2E〈∇F, Γ∇F 〉l2(Z)(X)

(1.8)
(an easy derivation of it is given in the proof of Lemma 2.1). This log-Sobolev
inequality, though involving the covariance structure of X, is however less
convenient (than Theorem 1.2) for the derivation of concentration inequali-
ties. When Γ : l2(Z) → l2(Z) is bounded, the right hand side (r.h.s. in short)
of (1.8) is bounded by

λmax(Γ)E|∇F |2l2(Z)(X).
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By (2.2) below, λmax(Γ) = ‖f‖∞.

This note is organized as follows. The next section is devoted to the proof
of Theorem 1.2 and its counterpart for continuous time Gaussian processes.
In §3, we present an extension to the moving average processes and provide
several examples.

2 Proof of Theorem 1.2 and the continuous
time counterpart

2.1 Proof of Theorem 1.2
It is based on the following (known) observation:

Lemma 2.1: For a d-dimensional random vector X of law N(0, Γ), where
Γ is the covariance matrix, then

cP (X) = cLS(X) = λmax(Γ)

where λmax(Γ) denotes the maximal eigenvalue of Γ, i.e.,

λmax(Γ) = sup
x∈Rd

< x, Γx >

< x, x >
.

We give its proof for the convenience of the reader and especially for its
simplicity.
Proof: Let ξ be a random vector of law N (0, I) on Rd. Then X and

√
Γξ

have the same law. Therefore by (1.4), we have for any bounded C1 function
F on Rd,

Ent(F 2(X)) = Ent(F 2(
√

Γξ)) ≤ 2E|∇ξF (
√

Γξ)|2

= 2E|
√

Γ(∇F )(
√

Γξ)|2 = 2E〈Γ(∇F )(X), (∇F )(X)〉
≤ 2λmax(Γ)E|∇F (X)|2

where it follows that cP (X) ≤ cLS(X) ≤ λmax(Γ). Furthermore, letting x0

be an unit eigenvector of Γ associated with λmax(Γ) and F (x) := 〈x, x0〉, we
see that |∇F (x)| = |x0| = 1 and F (X) is centered, Gaussian with variance

V ar(F (X)) = 〈x0, Γx0〉 = λmax(Γ) = λmax(Γ)E|∇F (x)|2
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where it follows that cP (X) ≥ λmax(Γ). The lemma is proved.

Proof: (Proof of Theorem 1.2) Considering (Xk/σ) if necessary, we may
assume that σ = 1 without loss of generality. Let X(n) := (Xk)−n≤k≤n, which
is centered, Gaussian with the covariance matrix given by the Toplitz matrix

Γn = (ρ(k − l))−n≤k,l≤n.

In the definition 1.1, one can take only bounded C1-function F depending
on a finite number of variables (by approximation, the detail is left to the
reader). In other words we always have

cP (X) = sup
n

cP (X(n)), cLS(X) = sup
n

cLS(X(n)). (2.1)

Then in the present situation we get by Lemma 2.1,

cP (X) = sup
n

cP (X(n)) = sup
n

cLS(X(n)) = sup
n

λmax(Γn) = cLS(X).

We divide the proof into two cases.
Case 1. ρ(·) /∈ l2(Z). In this case, we have

λmax(Γn) ≥ sup
x∈R2n+1;|x|=1

|(Γnx)0| = sup
x∈R2n+1;|x|=1

n∑
k=−n

xkρ(k) =

√√√√ n∑
k=−n

ρ(k)2

and thus cLS(X) = cP (X) = +∞.
Case 2. ρ(·) ∈ l2(Z). In this case µ � dt and the spectral density

f = dµ/dt is in L2([−π, π]). It remains to show that

sup
n

λmax(Γn) = ‖f‖∞. (2.2)

The following simple proof is due to the referee. By Rayleigh’s principle, and
noting that ρ(k − l) = 1

2π

∫
e−i(k−l)tf(t)dt, we have for any n ≥ 1,

λmax(Γn) ≤ sup
|x|≤1

〈x, Γnx〉 = sup
|x|≤1

1

2π

∫ π

−π

∣∣∣∣∣
n∑

k=−n

xke
ikt

∣∣∣∣∣
2

f(t)dt,

which is obviously bounded from above by ‖f‖∞ by Parseval’s equality. Con-
versely, using the equality above and the denseness of trigonometric polyno-
mials in the Banach space CbT of complex valued continuous and bounded
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functions on T, we have furthermore

sup
n

λmax(Γn) = sup
g

1

2π

∫ π

−π

|g(t)|2 f(t)dt

where the supremum runs over all complex-valued g ∈ CbT such that

1

2π

∫ π

−π

|g|2(t)dt ≤ 1.

This supremum equals to ‖f‖∞.

2.2 Continuous time stationary Gaussian processes
Let now X = (Xt)t∈R be a real-valued stationary centered Gaussian pro-
cess, defined on the probability space (Ω,F , P), with continuous covariance
function on R,

γ(t) := EX0Xt, ∀t ∈ R.

Let µ be the spectral measure of X on R, determined by

γ(t) =
1

2π

∫
R

e−itsdµ(s), ∀t ∈ R

(Bochner’s theorem). It is nonnegative and bounded (indeed µ(R) = γ(0)).
We can and will assume that for each T > 0, the sample paths of X[−T,T ] =
(Xt)t∈[−T,T ] are a.s. in L2[−T, T ] := L2([−T, T ], dt) (such version exists for
its covariance operator is of trace class, see the proof of Theorem 2.2).

Let E = L2
loc(R), the space of all real-valued locally (dt−) square inte-

grable functions on R, equipped with the project limit topology of L2[−T, T ]
as T → +∞. Regarding L2(R) := L2(R, dt) as the tangent space of E, for
any Gateaux-differentiable function F on E and x ∈ E such that |DhF (x)| ≤
Cx‖h‖2 for all h ∈ L2(R), where ‖h‖2 := ‖h‖L2(R,dt) and

DhF (x) := lim
ε→0

1

ε
(F (x + εh)− F (x)),

we can define the gradient ∇F (x) = (∇tF (x))t∈R ∈ L2(R) by∫
R
∇tF (x)h(t)dt = DhF (x), ∀h ∈ L2(R).
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In the variational calculus, we have formally ∇tF (x) = δ
δx(t)

F (x).
When F : E → R and ∇F : E → L2(R) are continuous and bounded, we

say that F ∈ C1
b (E). Similarly as in Definition 1.1, let cP (X) ∈ [0, +∞] be

the best constant for the following Poincaré inequality

V arP(F (X)) ≤ cp(X)E
∫

R
|∇tF |2(X)dt, ∀F ∈ C1

b (E),

and cLS(X) ∈ [0, +∞] be the best constant for the following log-Sobolev
inequality

EntP(F
2(X)) ≤ 2cLS(X)E

∫
R
|∇tF |2(X)dt, ∀F ∈ C1

b (E).

These functional inequalities with respect to the L2-metric (instead of the
Cameron-Martin metric) have been investigated by M. Gourcy and the fourth
author [4] for diffusions. We have the following counterpart of Theorem 1.2.

Theorem 2.2: We have

cP (X) = cLS(X) =

{
‖f‖∞, if µ � dt, f := dµ/dt;

+∞, otherwise.

Proof: 1) We begin with an extension of Lemma 2.1: let X be a cen-
tered Gaussian random variable valued in a separable Hilbert space H of
law N (0, Γ), where the self-adjoint nonnegative definite covariance operator
Γ : H → H, determined by

E〈h1, X〉〈h2, X〉 = 〈h1, Γh2〉.

It is well known that Γ is of trace class (and conversely if Γ is of trace class,
then N (0, Γ) is a probability measure on H). Then using the usual pre-
Dirichlet form E|∇F |2H(X) and letting cP (X), cLS(X) be the best constants
for the corresponding Poincaré and log-Sobolev inequalities, respectively, we
have

cP (X) = cLS(X) = λmax(Γ). (2.3)

Indeed, let (en)n∈N be an orthonormal basis of H such that Γen = λnen

where the sequence of eigenvalues (λn)n∈N is ranged as non-increasing. As
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{〈X, en〉; n ∈ N} are independent with laws {N (0, λn); n ∈ N}, we have by
the independent tensorization ([5]),

cP (X) = sup
n

cP (〈X, en〉), cLS(X) = sup
n

cLS(〈X, en〉),

cP (〈X, en〉) = cLS(〈X, en〉) = λn

where (2.3) follows.

2) By approximation, it is easy to check that

cP (X) = sup
T>0

cP (X[−T,T ]), cLS(X) = sup
T>0

cLS(X[−T,T ])

where cP (X[−T,T ]), cLS(X[−T,T ]) are the best constants defined in Step 1) with
H = L2[−T, T ]. The covariance operator of X[−T,T ] are given by

(ΓT h)(t) =

∫
[−T,T ]

γ(t− s)h(s)ds, ∀h ∈ L2[−T, T ].

By Step 1), we have only to prove that

sup
T>0

λmax(ΓT ) =

{
‖f‖∞, if µ � dt, f := dµ/dt;

+∞, otherwise.

Let L2
C[−T, T ], L2

C(R) be the spaces of complex-valued L2-integrable func-
tions on [−T, T ] and R, respectively. For any h ∈ L2

C(R), let

ĥ(t) =
1√
2π

∫
R

eitsh(s)ds

be the Fourier transform of h. It is well known that h → ĥ is unitary on
L2

C(R). Regarding h ∈ L2[−T, T ] as an element of L2(R) by putting h = 0
out of L2[−T, T ], we have

λmax(ΓT ) = sup
h∈L2

C[−T,T ],‖h‖2≤1

〈h, ΓT h〉

= sup
h∈L2

C[−T,T ],‖h‖2≤1

1

2π

∫
R

∣∣∣∣∫
R

eitsh(s)ds

∣∣∣∣2 dµ(t)

= sup
h∈L2

C[−T,T ],‖h‖2≤1

∫
R
|ĥ(t)|2dµ(t).
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Since any h ∈ L2
C(R)

⋂
L1

C(R), ĥ1[−T,T ] → ĥ in L2
C(R) and also uniformly on

R, we have

sup
T>0

λmax(ΓT ) = sup
h∈L2

C(R)
T

L1
C(R),‖h‖2≤1

∫
R
|ĥ(t)|2dµ(t).

Since the family A of all ĥ with h ∈ L2
C(R)

⋂
L1

C(R) constitutes an algebra
separating the points of R, then by monotone class theorem, for any complex-
valued measurable and bounded function g on R, say g ∈ bCB(R), we can
find a sequence (gn = ĥn ∈ A) such that gn → g in L2(R, dt + µ). Thus

sup
T>0

λmax(ΓT ) = sup
g∈bCB(R),‖g‖2≤1

∫
R
|g|2(t)dµ(t).

This implies easily the desired result.

3 Extension and several examples
In this section we extend Theorem 1.2 to general moving average processes
and provide some concrete examples.

3.1 Extension to moving average processes
Let (ξk)k∈Z be a sequence of i.i.d. real-valued random variables such that
Eξ0 = 0 and Eξ2

0 = 1, and (ak)k∈Z ∈ l2(Z). Consider the moving average
process

Xn :=
+∞∑

k=−∞

akξn+k, n ∈ Z. (3.1)

It is a well defined stationary process with covariance function

γ(n) = EX0Xn =
+∞∑

k=−∞

akak−n, ∀n ∈ Z.

Its spectral density function is given by

f(θ) =
+∞∑

n=−∞

γ(n)einθ =

∣∣∣∣∣
+∞∑

n=−∞

ane
inθ

∣∣∣∣∣
2

.
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A stationary Gaussian process with spectral density f ∈ L2([−π, π]) can be
always written as a moving average process with driven noises (ξk) being
i.i.d. with law N (0, 1). So the following result partially generalizes Theorem
1.2.
Theorem 3.1: Let X = (Xn) be the moving average process given above
with the spectral density f . Then

cP (X) ≤ ‖f‖∞cP (ξ0), cLS(X) ≤ ‖f‖∞cLS(ξ0). (3.2)

Remark 3.2: Bobkov and Götze [7] have found necessary and sufficient
conditions for both characterizing cP (ξ0) < +∞ and cLS(ξ0) < +∞.
Proof: By (2.1), it is enough to prove that for any n ≥ 1 and for any
smooth and bounded function F : RIn → R where In = [−n, n]

⋂
Z,

V ar(F (XIn)) ≤ ‖f‖∞cP (ξ0)E|∇F (XIn)|2;
Ent(F 2(XIn)) ≤ ‖f‖∞cLS(ξ0)E|∇F (XIn)|2.

We prove here only the first Poincaré inequality (the proof of the LSI is
completely similar). Let An = (ak−l)k∈In,l∈Z : l2(Z) → RIn and ξ = (ξl)l∈Z
as a column vector. We have XIn = Aξ. Now for each N ≥ 1, let P̄Nξ =
(1k∈IN

ξk)k∈Z as before. Since F (AnP̄Nξ) is a bounded and smooth function
of ξIN

, by using cP (ξ) = cP (ξ0) we have

V ar(F (AnP̄Nξ)) ≤ cP (ξ0)E|∇ξF (AnP̄Nξ)|2

= cP (ξ0)E|(AnP̄N)∗(∇F )(AnP̄Nξ)|2

≤ cP (ξ0)λmax((AnP̄N)(AnP̄N)∗)E|(∇F )(AnP̄Nξ)|2

where A∗ denotes the adjoint matrix or operator. Letting N go to infinity,
as AnP̄Nξ → Anξ = XIn , a.s., so we get by dominated convergence

V ar(F (XIn)) ≤ cP (ξ0) sup
N≥1

λmax((AnP̄N)(AnP̄N)∗)E|(∇F )(XIn)|2.

Furthermore, since

〈(AnP̄N)(AnP̄N)∗x, x〉 = |P ∗
NA∗

nx|2 ≤ |A∗
nx|2 = 〈AnA

∗
nx, x〉, ∀x ∈ RIn ,

we have λmax((AnP̄N)(AnP̄N)∗) ≤ λmax(AnA
∗
n) for all N . But AnA

∗
n coincides

with the covariance matrix Γn = (ρ(k − l))k,l∈In of XIn , hence we obtain

V ar(F (XIn)) ≤ cP (ξ0)λmax(Γn)E|(∇F )(XIn)|2.
Now the desired Poincaré inequality follows by (2.2).
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3.2 Several examples

Example 3.3: (Fractional Brownian Motion) Let (BH(t))t≥0 be the real
fractional Brownian Motion with Hurst index H ∈ (0, 1), i.e., a centered
Gaussian process with

EBH(s)BH(t) =
1

2

(
s2H + t2H − |t− s|2H

)
, ∀s, t ≥ 0.

Let Xn = BH(n + 1) − BH(n), n ∈ N, which is stationary with covariance
function

ρ(n) = Cov(X0, Xn) =
1

2

(
(n + 1)2H + (n− 1)2H − 2n2H

)
, n ≥ 0

and ρ(n) = ρ(−n), n ≤ 0. Note that ρ(n) ∼ 2H(2H−1)n2(H−1), as n → +∞.

1) If H > 1/2, thenρ(n) > 0 for all n and
∑

n≥0 ρ(n) = +∞. Thus by
Corollary 1.3, X does not satisfy the Poincaré inequality, neither the
log-Sobolev inequality.

2) If H = 1/2 (the trivial case), then cP (X) = cLS(X) = 1.

3) If H < 1/2, then ρ(n) < 0 for all n and
∑

n≥1 |ρ(n)| = 1/2. Thus the
spectral density f exists and it is continuous on the torus T. Conse-
quently cP (X) = cLS(X) = ‖f‖∞ ≤ 2.

Example 3.4: (ARMA model) Consider the autoregressive process

Xn+1 = θXn + σξn+1, n ≥ 0

where θ ∈ (−1, 1), (ξk)k∈Z is a sequence of i.i.d. r.v. with Eξ0 = 0 and Eξ2
0 =

1, σ2 > 0 is the strength of noise, and X0 is independent of (ξn)n≥1. Its unique
invariant measure is the law of

∑+∞
k=0 θkξ−k. Below we take X0 =

∑+∞
k=0 θkξ−k.

In that case, (Xn)n≥0 is a moving average process with an = 1n≤0θ
|n| and with

covariance function γ(n) = σ2(1 − θ2)−1θ|n|. Its spectral density function is
given by

f(t) =
σ2

1− θ2

∑
n∈Z

θ|n|eint =
σ2

1 + θ2 − 2θ cos t
, ∀t ∈ T.

241



G. Li, Y. Miao, H. Peng & L. Wu

Then ‖f‖∞ = σ2(1− |θ|)−2. Consequently by Theorem 3.1,

cP (X) ≤ σ2

(1− |θ|)2
cP (ξ0), cLS(X) ≤ σ2

(1− |θ|)2
cLS(ξ0).

In practice the following noises are the most often used:

1) ξ0 is Gaussian N (0, 1). We have cP (ξ0) = cLS(ξ0) = 1 and then by
Theorem 1.2, cP (X) = cLS(X) = σ2(1− |θ|)−2.

2) ξ0 is of law uniform on [−a, a] where a = (3/2)1/3 (so that Eξ2
0 = 1). In

this case it is well known ([5]) that

cP ((π/a)ξ0) = cLS((π/a)ξ0) = 1.

Then cP (ξ0) = cLS(ξ0) = a2π−2. Thus we get

cP (X) ≤ cLS(X) ≤
(

3

2π3

)2/3
σ2

(1− |θ|)2
.

3) ξ0 is of density e−2|x|dx (symmetric exponential law). Again it is well
known that cP (2ξ0) = 1 but cLS(2ξ0) = +∞ ([5]). Hence

cP (X) ≤ σ2

4(1− |θ|)2
.

Since for any λ > 0, by Jensen’s inequality, Eeλ|X0|2 ≥ Eeλ|ξ0|2 = +∞,
we have cLS(X) = +∞ by [5].

References
[1] F. Avram. On bilinear forms in gaussian random variables and toeplitz

matrices. Probab. Th. Rel. Fields, 79:37–45, 1988.

[2] H. Djellout, A. Guillin, and L. Wu. Moderate deviations of moving aver-
age processes. Preprint 2004, submitted.

[3] M.D. Donsker and S.R.S. Varadhan. Large deviations for stationary gaus-
sian processes. Comm. Math. Phys., 97:187–210, 1985.

242



Poincaré and log-Sobolev inequality

[4] M. Gourcy and L. Wu. Log-sobolev inequalities for diffusions with respect
to the l2-metric. Preprint 2004, submitted.

[5] M. Ledoux. Concentration of measure and logarithmic sobolev inequal-
ities. Séminaire de Probabilités XXXIII. Lecture Notes in Mathematics,
1709:120–216, 1999.

[6] L.Grossn. Logarithmic sobolev inequalities and contractivity properties
of semigroups, varenna, 1992. Lecture Notes in Math., 1563:54–88, 1993.

[7] S.G.Bobkov and F.Gotze. Exponential integrability and transportation
cost related to logarithmic sobolev inequalities. J. Funct. Anal., 163,
No.1:1–28, 1999.

[8] M.S. Taqqu. Fractional brownian motion and long-range dependence.
Theory and applications of long-range dependence, pages 5–38, 2003.
Birkhäuser Boston, Boston, MA.

[9] L. Wu. on large deviations for moving average processese. Probability,
Finance and Insurance, pp.15-49, the proceeding of a Workshop at the
University of Hong-Kong (15-17 July 2002 ). Eds: T.L. Lai, H.L. Yang
and S.P. Yung. World Scientific 2004, Singapour.

Guangfei Li
Wuhan University
Dep. of Mathematics
Hubei, MA 430072
CHINA
hawkfeilee@yahoo.com.cn

Liming Wu
Université Blaise Pascal
Lab. de Mathématiques
CNRS-UMR 6620
63177 Aubière
France

Li-Ming.Wu@math.univ-bpclermont.fr

Huiming Peng
Wuhan University
Dep. of Mathematics
Hubei, MA 430072
CHINA
phm821@sina.com.cn

Yu Miao
Wuhan University
Dep. of Mathematics
Hubei, MA 430072
CHINA

and Henan Normal University
College of Mathematics
and Information Science
Henan, MA 453007
CHINA
yumiao728@yahoo.com.cn

243


	Introduction and Main Results
	Proof of Theorem 1.2 and the continuous time counterpart
	Proof of Theorem 1.2
	Continuous time stationary Gaussian processes

	Extension and several examples
	Extension to moving average processes
	Several examples


