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Abstract

The aim of this work is to enumerate the standard subalgebras
of a semisimple Lie algebra. The computations are based on the ap-
proach developed by Yu. Khakimdjanov in 1974. In this paper, we
give a general formula for the number of standard subalgebras not
necessarly nilpotent of a semisimple Lie algebra of type Ap and the
exceptional semisimple Lie algebras. With computer aided, we enu-
merate this number for the other types of small rank. Therefore, We
deduce the number in the nilpotent case and describe a family of com-
plete nilpotent standard subalgebras, these algebras are the nilradical
of their normalizer.

1 Introduction

The motivation for this study can be found in the theory of complex homo-
geneous spaces : Let M be a compact homogeneous space M = G/H, G
being a complex Lie group and H a closed subgroup. Tits has established
the following result : if g and t are the Lie algebras corresponding to G and
H, the normalizer of t in g is parabolic, such a Lie algebra t is called stan-
dard . Then, one may translate the study of homogeneous complex spaces
into study of standard subalgebras. The computations of standard Lie alge-
bra, in the nilpotent case, were done by different authors (G. Favre and L.
Santharoubane [2], P. Cellini and P. Papi [1], L. Orsina [5]).

This paper is organized as follows. In section 2, we summarize the basic
facts about semisimple Lie algebras and standard subalgebras. In section 3,
we characterize the complete nilpotent standard subalgebras and prove that
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if the semisimple Lie algebra has rank p then their number is 2p. The section
4 is devoted to the semisimple Lie algebras Ap, we give a recursive formula
of the number of standard subalgebras (not necessarily nilpotent). We prove
that for Ap this number is

ST (p) = 1
p

(
2p− 2
p− 1

)
+ 1

p+2

(
2p + 2
p + 1

)
+

∑
1≤j≤p−1

2
j

(
2j − 2
j − 1

)
+

∑
1≤j≤p−2

1
j

(
2j − 2
j − 1

)
.

( ∑
1≤i≤p−j−1

ST (i)

)
In the last section, we enumerate for the exceptional semisimple Lie alge-

bras and for Ap, Bp, Cp, Dp of small rank the number of nilpotent standard
subalgebras, the sequence of nilpotent standard subalgebras for each value
of nilindex, the number of complete nilpotent standard subalgebras and the
number of standard subalgebras. The computations uses Mathematica pack-
age available in : http://www.math.uha.fr/publi2002.html.

Acknowledgements : The authors would like to thank the referee for his
comments and suggestions.

2 Standard Lie algebras

2.1 Parabolic and Borel subalgebras of semisimple Lie
algebra

Let g be a finite dimensional semisimple complex Lie algebra of rank p. A
Borel subalgebra of g is a maximal solvable subalgebra of g, and a parabolic
subalgebra of g is a subalgebra containing a Borel subalgebra of g.

We fix the following notations : ~ is a Cartan subalgebra of g, ∆ is the
set of roots corresponding to ~, S is a basis of ∆ (the simple roots), ∆+

(respectively, ∆−) is the set of positive (respectively, negative) roots. Let
α ∈ ∆ :

gα = {X ∈ g : [X, H] = α(H)X for all H ∈ ~}

This space gα has dimension one. A Borel subalgebra b of g is conjugate, up
to inner automorphism, to subalgebra of the following type :

b
′
= ~⊕

∑
α∈∆+

gα
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The parabolic subalgebra may be characterized, up to inner automorphism,
by a subset T of S. Let Ω1 be the set of roots whose decomposition on S
contains only elements of S\T . We set Ω2 = ∆\Ω1, Ω+

2 = Ω2 ∩∆+. The Lie
algebra

ρ = ~⊕
∑

α∈Ω+
2 ∪Ω1

gα (2.1)

is a parabolic subalgebra and every parabolic subalgebra is conjugate to this
Lie algebra.

We note that the reductive Levi subalgebra of ρ is

r = ~⊕
∑
α∈Ω1

gα (2.2)

and its nilradical part is
n =

∑
α∈Ω+

2

gα (2.3)

2.2 Standard subalgebras

Definition: A subalgebra of a semisimple Lie algebra is called standard if its
normalizer is a parabolic subalgebra.

In order to simplify terminology, we shall call standard algebra every
standard subalgebra of a semisimple Lie algebra. These algebras have been
studied, in the first time, by G.B. Gurevich [3], in the case where the simple
Lie algebra is of type Ap.

In the following, we give the characterization of these algebras, using the
roots, due to Yu. Khakimdjanov [4].

We consider a partial order relation on the dual ~∗ of the Cartan subal-
gebra ~ : ω1 ≤ ω2 if and only if ω2−ω1 is linear combination of simple roots
with non-negative coefficients.

Proposition 2.1: Let t be a standard algebra such that its normalizer can
be written ρ(t) = ~⊕

∑
α∈Ω1∪Ω+

2

gα. Suppose that γ and β are positive roots with

γ ≤ β. If the subspace gγ is included in t, then gβ is also in t.

This proposition is useful for the study of nilpotent standard algebras.
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2.3 Nilpotent standard algebras
Let R be a subset of ∆+ whose elements are pairwise noncomparable ( for
the previous ordering on ~∗ ). We put :

R1 = {α ∈ ∆+ : β ≤ α for some β ∈ R} (2.4)

The subspace m =
∑

α∈R1

gα is a nilpotent subalgebra of g.

The normalizer of m contains a Borel subalgebra. Thus, m is a nilpo-
tent standard algebra of g. We say that m is the nilpotent standard algebra
associated to R. This process permits to construct more easily such subalge-
bra. The following theorem due to Yu. Khakimdjanov [4] shows that every
nilpotent standard algebra is of this type.

Theorem 2.2: Let m be a nilpotent standard algebra whose normalizer has
the form ρ(m) = ~⊕

∑
α∈Ω1∪Ω+

2

gα. Then, there is a subset R ⊂ ∆+ of pairwise

noncomparable roots such that m is the nilpotent standard algebra associated
to R.

Corollary 2.3: Every nilpotent standard algebra is conjugate to a nilpotent
standard algebra associated to a set R ⊂ ∆+ of pairwise noncomparable roots.

Remark: Let g+ =
∑

α∈∆+

gα be a nilpotent subalgebra of g. If m is nilpotent

standard algebra then the quotient g+/m is also nilpotent. These quotients
contain all nilpotent Lie algebras of maximal rank studied by G. Favre and
L. Santharoubane [2].

Remark: In their paper, P. Cellini and P. Papi [1] called these nilpotent
standard algebras, ad-nilpotent ideals of a Borel subalgebra and gave the
number for each type of semisimple Lie algebra. In another paper, L. Orsina
and P. Papi [5] gave for Ap the number of nilpotent standard algebras for each
nilindex. We compute, in section 5, these numbers for exceptional semisimple
Lie algebras and other type of semisimple Lie algebras of small rank p.

2.4 Structure and construction of standard algebras
In this section, we generalize the study to standard algebra not necessarily
nilpotent.
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Definition: The root α ∈ S is called extremal for β ∈ ∆+ if it satisfies α = β
or β − α ∈ ∆.

In the following proposition, we characterize the normalizer of a nilpotent
standard algebra using the extremal roots [4]. Let R ⊂ ∆+ be a subsystem of
pairwise noncomparable roots, m be the nilpotent standard algebra defined
by this subsystem and Sβ be the set of all extremal roots for β ∈ ∆+.

Proposition 2.4: The normalizer ρ(m) of m is defined by the subsystem
S2 = ∪

β∈R
Sβ ⊂ S.

We construct a standard algebra whose nilpotent part m is given by a
subsystem R ⊂ ∆+.

Consider the subsystems S1 = R ∩ S and S2 = ∪
β∈R

Sβ of the system S.

These subsystems define respectively the parabolic subalgebras ρ1 and ρ2 of
the form (2.1). Let ri denote the reductive Levi subalgebra of the form (2.2)
and ni denote the nilradical of Lie algebra ρi of the form (2.3), i = 1, 2.

Let r0 be an ideal in r1 contained in r2.

Lemma 2.5: The semidirect sum t = r0 + m is a standard algebra.

Theorem 2.6: Given any ideal r0 of the algebra r1 lying in r2, the subalgebra
t = r0 + m is standard algebra, while ρ(t) = ρ(m). Conversely, any standard
algebra is conjugate to subalgebra t for some subsystem R ⊂ ∆+ of pairwise
noncomparable roots and for some ideal r0.

3 Complete nilpotent standard Lie algebras

In this section, we characterize the complete nilpotent standard algebras and
count their number.

Definition: A nilpotent standard algebra m is called complete if it is the
nilradical of its normalizer.

Proposition 3.1: Let m be the nilpotent standard algebra defined by a sub-
system R ⊂ ∆+ of pairwise noncomparable roots.

Then, m is complete if and only if R is formed by simple roots.

The proposition leads to the following result.
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Corollary 3.2: Let g be a semisimple Lie algebra of rank p, then it has
exactly 2p complete nilpotent standard algebras.

Remark: The number 2p is independent from the type of g.

4 The general case for Ap

In this section, we establish a formula which gives the number of standard
algebras (not necessarily nilpotent) of Ap. Let g be a semisimple complex
Lie algebra of type Ap.

Let S = {α1, · · · , αp} be a basis of ∆ (the simple roots), then the set of
positive roots is

∆+ = {
∑

i≤k≤j

αk, 1 ≤ i ≤ j ≤ p}

Let α ∈ ∆ :

gα = {X ∈ g : [X, H] = α(H)X for all H ∈ ~}.

This space gα has dimension one. Let eα be a non-null vector in gα.
Let R ⊂ ∆+ be a subsystem of pairwise noncomparable roots and m be

a nilpotent standard algebra defined by this subsystem. We fix the following
notations : S1 = R ∩ S, S2 = ∪

β∈R
Sβ and Ω1(respectively, Ω2) the set of

roots whose decomposition on S contains only elements of S\S1 (respectively,
S\S2).

From formula 2.2, we have two reductive Levi subalgebras r1 and r2 de-
fined by the subsystems S1 and S2 :

r1 = ~ +
∑
α∈Ω1

gα

and
r2 = ~ +

∑
α∈Ω2

gα

Let r0 be an ideal of r1 contained in r2. Since r2 =
∑

α∈∆+\Ω2

C[eα, e−α] +∑
α∈Ω2

(C[eα, e−α] + gα) where C[eα, e−α] denotes the vector space generated by
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[eα, e−α], then the ideal r0 has the form h0 +
∑

α∈Ω0

(C[eα, e−α] + gα) where

h0 ⊂ ~, and Ω0 ⊂ Ω2.
In the following, we consider an ideal r0 of the form

∑
α∈Ω0

(C[eα, e−α] + gα)

where Ω0 ⊂ Ω2 (the other cases would be obtained by adding a subalgebra
h0 of ~ such that h0 + r0 is an ideal of r1 contained in r2).

Let Π1 be a subsystem of S.

Definition: The subsystem Π1 is called connected if its diagram in the Dynkin
diagram of Ap is connected.

Notation: Let Φ be a subsystem of S. The set of roots expressed only with
elements of Φ is denoted by < Φ >.

Let Π1 be a connected subsystem of S\S1 and S\S2 and Γ1 be a set of
roots expressed only with elements of Π1. We set I1 =

∑
α∈Γ1

(C[eα,e−α] + gα).

Lemma 4.1: The subspace I1 is an ideal of r1 contained in r2.
Proof: Since Π1 ⊂ S\S2 ⊂ S\S1, then Γ1 ⊂ Ω2 ⊂ Ω1 and I1 ⊂ r2 ⊂ r1.

We can write S\S1 = ∪
1≤j≤m

Cj with m ∈ N∗, C1 = Π1 and {Cj}2≤j≤m

is the family of connected subsystems of S\S1 such that Cj are pairwise
disjoint. We have r1 = ~ +

∑
α∈Ω1

gα, then [I1, r1] =
∑

α∈Γ1

gα +
∑

(α,β)∈Γ1×Ω1

[gα, gβ].

Now, let j ∈ J2, mK and β ∈< Cj > ∩∆+. For all α ∈ Γ1 ∩∆+, we have
α− β /∈ ∆ and α + β /∈ ∆. Therefore, for (α, β) ∈ Γ1 × Ω1, we have [gα, gβ]
equal to 0 or C[eα, e−α] or gα+β with α + β ∈ Γ1.

It follows [I1, r1] ⊂ I1.

Let Π = {Πi}1≤i≤k be a family of connected subsystems of S\S1 and
S\S2 such that Πi are pairwise disjoint. Let Ii be the ideal associated to Πi,
1 ≤ i ≤ k. We set I =

∑
1≤i≤k

Ii and it is called ideal associated to family Π.

Lemma 4.2: The semidirect sum I =
∑

1≤i≤k

Ii is an ideal of r1 contained in

r2.
Proof: Let i ∈ J1, kK. We have Ii ⊂ r2 and [Ii, r1] ⊂ Ii. Then I ⊂ r2 and
[I, r1] =

∑
1≤i≤k

[Ii, r1] ⊂
∑

1≤i≤k

Ii = I.

Proposition 4.3: Let r0 =
∑

α∈Ω0

(C[eα, e−α] + gα) be an ideal of r1 contained

in r2, then there exists a family Π = {Πi}1≤i≤k of connected subsystems
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of S\S1 and S\S2 such that Πi are pairwise disjoint, I =
∑

1≤i≤k

Ii the ideal

associated to Π and r0 = I.

Proof: First we show that Ω0∩S 6= ∅. Let β ∈ Ω0, β = β1 +β2 + · · ·+βm

with m ∈ N∗, βi ∈ S, for 1 ≤ i ≤ m. The partial sum β1 + · · ·+ βh is a root,
for 1 ≤ h ≤ m. Since Ω0 ⊂ Ω1, therefore β

′
= β1 + · · · + βm−1 is a root in

Ω1. Then βm = β − β
′ ∈ Ω0 because [r0, r1] ⊂ r0.

Now, we construct the family Π. We set S0 = Ω0 ∩ S, S0 may be written
S0 = ∪

1≤i≤k
Πi where Π = {Πi}1≤i≤k is a family of connected subsystems of S0

such that Πi are pairwise disjoint. It remains to prove that Π is a family of
connected subsystems of S\S1 and S\S2.

Let i ∈ J1, kK and γ ∈ (S\S1)\S0. We suppose that Πi∪{γ} is a connected
subsystem of S\S1. Then, there exists a family {γj}1≤j≤s of simple roots of
Πi where :

1. γ1 + · · ·+ γs + γ is a root and γ
′
= γ1 + · · ·+ γs is a root of Ω0. Since

[r0, r1] ⊂ r0 then [gγ
′
+γ, g−γ

′ ] = gγ ⊂ r0 i.e γ ∈ S0, contradiction.
Or
2. γ + γ1 + · · · + γs is a root. We have [[gγ+γ1+···+γm , g−γs ], · · · , g−γ1 ] =

gγ ⊂ r0 i.e γ ∈ S0, contradiction.
Finally, for each i ∈ J1, kK, Πi is a connected subsystem of S\S1. Since

S\S2 ⊂ S\S1, then Πi is also a connected subsystem of S\S2. Therefore, the
ideal I =

∑
1≤i≤k

∑
α∈<Πi>

(C[eα, e−α] + gα) associated to the family Π is equal to

r0, because
∑

1≤i≤k

< Π >= Ω0.

Let Π = {Πi}1≤i≤k be a family of connected subsystems of S such that Πi

are pairwise disjoint and I =
∑

1≤i≤k

Ii the ideal associated to Π. We introduce

the following property : Let m be a nilpotent standard algebra such that I
is an ideal of r1 contained in r2. Let F denote the set of nilpotent standard
algebras satisfing the above property. Let C(Π) be the cardinal of F. Then,
the number of standard algebras is a sum of the number C(Π) for different
family Π.

Let ST (j) be the number of standard algebras of semisimple Lie algebra
of type Aj, for j = 1, · · · , p.

If k = 1, there is 3 cases :

1. Π = Π1 = ∅ then C(Π) = 1
p+2

(
2p + 2
p + 1

)
(It’s the number of nilpotent

322



Standard subalgebras

standard algebras).

2. Π = Π1 = {αj, αj+1, · · · , αj+t} for t in {p− j − 1, p− j} then C(Π) =

1
j

(
2j − 2
j − 1

)
for j = 1, · · · , p− 1.

3. Π1 = {αp} then C(Π) = 1
p

(
2p− 2
p− 1

)
.

If k > 1, there is one case :

1. Π1 = {αj, αj+1, · · · , αj+t} for t = 0, · · · , p − j − 2 then C(Π) =

1
j

(
2j − 2
j − 1

)
ST (p− j − t− 1) for j = 1, · · · , p− 2.

Then, the number of standard algebras is :

ST (p) = 1
p+2

(
2p + 2
p + 1

)
+

∑
1≤j≤p−1

( ∑
p−j−1≤t≤p−j

1
j

(
2j − 2
j − 1

))
+1

p

(
2p− 2
p− 1

)
+

∑
1≤j≤p−2

( ∑
0≤t≤p−j−2

1
j

(
2j − 2
j − 1

)
ST (p− j − t− 1)

)
.

After developing this formula, we obtain :

Theorem 4.4: The number of standard algebras (not necessarily nilpotent)
of semisimple Lie algebra g of type Ap is given by the following recursive
function :

ST (p) = 1
p

(
2p− 2
p− 1

)
+ 1

p+2

(
2p + 2
p + 1

)
+

∑
1≤j≤p−1

2
j

(
2j − 2
j − 1

)
+

∑
1≤j≤p−2

1
j

(
2j − 2
j − 1

)( ∑
1≤i≤p−j−1

ST (i)

)

5 Computer aided for enumeration of stan-
dard algebras.

In this section, we compute the number of standard algebras and nilpotent
standard algebras of a semisimple Lie algebra. We give also for each value
of the nilindex the number of corresponding standard subalgebras. These
results are obtained using a Mathematica package available in

http://www.math.uha.fr/publi2002.html.
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5.1 Exceptional semisimple Lie algebras

Let NS denotes the number of nilpotent standard algebras and the sequence
INDp denotes the sequence of the number of nilpotent standard algebras for
each value of the nilindex, the number in INDp at position j corresponds to
the number of nilpotent standard algebras of nilindex j. The number CNS
denotes the number of complete nilpotent standard algebras as defined in
section 3 and the number ST denotes the number of standard algebras.

Algebra NS IND CNS ST
E6 833 {1,63,210,217,150,92,51,28,12,6,2,1} 64 1092

E7 4160 {1,127,662,894,766,576,403,279,
175,115,68,44,23,14,7,4,1,1} 128 5048

E8 25080
{1,255,2200,3804,3872,3372,2752,2182,
1656,1277,955,737,536,412,300,227,
157,123,81,61,40,30,18,14,7,5,3,2,0,1}

256 28355

F4 105 {1,15,28,21,14,12,5,4,2,2,0,1} 16 132
G2 8 {1,3,2,1,0,1} 4 11

5.2 Algebras Ap, Bp, Cp, Dp for p ≤ 7

Let NSp be the number of nilpotent standard algebras. The sequence INDp

denotes the sequence of the number of nilpotent standard algebras for each
value of the nilindex. Let CNSp be the number of complete nilpotent stan-
dard algebras and STp be the number of standard algebras.

5.2.1 Algebra Ap

p NSp INDp CNSp STp

2 5 {1,3,1} 4 8
3 14 {1,7,5,1} 8 23
4 42 {1,15,18,7,1} 16 69
5 132 {1,31,57,33,9,1} 32 215
6 429 {1,63,169,132,52,11,1} 64 691
7 1430 {1,127,482,484,247,75,13,1} 128 2278
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5.2.2 Algebras Bp

p NSp INDp CNSp STp

2 6 {1,3,1,1} 4 9
3 20 {1,7,6,4,1,1} 8 29
4 70 {1,15,23,16,7,6,1,1} 16 98
5 252 {1,31,75,62,36,28,9,8,1,1} 32 343
6 924 {1,63,226,229,162,121,54,45,11,10,1,1} 64 1231

7 3432 {1,127,651,811,674,504,
274,220,77,66,13,12,1,1} 128 4499

5.2.3 Algebras Cp

p NSp INDp CNSp STp

2 6 {1,3,1,1} 4 9
3 20 {1,7,5,5,1,1} 8 29
4 70 {1,15,18,20,7,7,1,1} 16 98
5 252 {1,31,57,73,35,35,9,9,1,1} 32 343
6 924 {1,63,169,253,152,154,54,54,11,11,1,1} 64 1231

7 3432 {1,127,482,848,611,635,273,
273,77,77,13,13,1,1} 128 4499

5.2.4 Algebra Dp

p NSp INDp CNSp STp

2 4 {1,3} 4 9
3 14 {1,7,5,1} 8 23
4 50 {1,15,20,10,3,1} 16 77
5 182 {1,31,65,48,23,10,3,1} 32 264
6 672 {1,63,195,190,118,62,27,12,3,1} 64 937
7 2508 {1,127,560,691,516,313,164,85,33,14,3,1} 128 3401

Remark: The values of NSp for any semisimple Lie algebra and the INDp

for Ap correspond to the formula given in [1] and [5]. The values CNSp for
any semisimple Lie algebra and STp in Ap’s case correspond to the formula
given in section 3 and section 4 of this paper.

Remark: In forthcoming paper we will give a formulas for STp for the other
semisimple Lie algebras.
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