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FORTIFIED JOIN HYPERGROUPS

G. G. Massouros, Ch.G. Massouros and I.D. Mittas

Ann. Math. Blaise Pascal, Vol. 3 , N° 2 , 1996, pp. 155-169

ABSTRACT : In this paper appears a study of certain fundamental properties of a new hypergroup
which came into being during to approach of the theory of Language and Automata with the help of
the hypercompositional structures. It is being proved that there exist two kinds of elements in it with

regard to the result of their hypercomposition with zero, while the elements of this hypergroup are also

being separated into two classes, according to whether they are satisfying the equality x-x= -(x-x), or
not. Moreover introductory elements are presented for each one of the three kinds of subhypergroups that

appear in this hypergroup.

AMS-Classification number : 20N20

1 - INTRODUCTION.
It is known that the Join Spaces were introduced and studied by W. Prenowitz, though

in connection with Geometry (Join Geometries) [15, 16, 17,18 19, 20]. Moreover Ch. G.
Massouros in his thesis [7], has sudied these spaces in detail as an abstract algebraic
hypercompositional structure, which he named Join Hypergroup, since the join spaces are
hypergroups. Nlore precisely they are commutative hypergroups (H, .) satisfying the so
called join axiom [15 , 20] :
(J) (a/b) ~ (c/d) ~ 0 ~ (ad) ~ (bc) ~ 0
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for every a, b, c, d E H, where x/y is the induced hypercomposition (division) in H, that

It can be proved that a join hypergroup having a scalar neutral element, i.e. an

element e such that xe = ex = x for every x E H, is a Canonical Hypergroup [7 , 1,
2]. The canonical hypergroup was introduced by M. Krasner as the additive part of a

multiplicative-hyperadditive structure, the Hyperfield [3, 5J which was used as the proper
algebraic tool in order to define a certain approximation of a complete valued field by
sequences of such fileds. The canonical hypergroup has been studied in depth by J. Mittas

(who has also named it canonical [12, 13]).
Apart from its strong connection to Geometry, there appeared an equally direct conec-

tion with the join hypergroup to the Theory of Languages [10, 9,11]. Indeed the consider-

ation in this theory of the "sums" x + y resulting in the biset {x, y} led to the introduction
of the hypercomposition x +y = {x, y} in the set of the words A* over an alphabet A as for

which A* has been proved to be a join hypergroup (B-hypergroup) [10,9]. Moreover the

necessity of the introduction of the "null word" in the theory of langages, an element bilat-

erally absorbing as for the multiplication (concatenation of the words), (i.e. Ox = r0 = 0)
has led to the introduction of a non scalar neutral element in the join hypergroup (since
0 + x = {0, x } with regard to which every element has a unique opposite. Thus the For-

tified Join Hypergroup came into being. This hypergroup also appears in the attached

to an automaton hypergroups and during the procedure of the minimization of a given

automaton [10,9].

DEFINITION 1.1. A Fortified Join Hypergroup (FJH) is a join hypergroup (H, +),

satisfying the axioms :

Fji. There exists one and only one element in H, denoted by 0 (the zero element of H),
such that :

x E 0 + x and 0+0=0 for every x E H.
and

Fj2. For every x {0} there exists one and only one x’ E H ~ {0} such that

The element x’, denoted by -x is the opposite or symmetrical of x.

Also --0 = 0.

For the sake of simplicity and when there is no danger of confusion we write the

element x instead of the singleton {x}. So we write 0 + 0 = 0, instead of 0 + 0 = {0}. We

also denote by ":" the induced hypercomposition in H.
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EXAMPLE 1.1. Every canonical hypergroup, and hence every abelian group, is a FJH.
A FJH which is not canonical, is called proper. In the folowing we consider proper FJHs.

EXAMPLE 1.2. Every set E with cardE ~ 2, becomes a FJH if one of its elements is

arbitrarily chosen to be the neutral element e and the hypercomposition is defined in the

following way :
x + y = {x, y} if x ~ y and x + x = ~x, e}.

EXAMPLE 1.3. If in an abelain group (G, +) the hypercomposition x t y = ~x, y, x + y}
is defined, the resulting hypercompositional structure (G, f) is a FJH having the same zero
with (G, +) and maintaining for every element the same opposite.

2. CANONICAL AND ATTRACTIVE ELEMENTS

For the following let (H, +) be a FJH. In the beginning we have the fundamental
theorem for the FJHs : :

THEOREM 2.1. For every x E H the following inclusion hold3 : 0 + x C {o, x}.

Proof. It is obvious for x = 0. Let x ~ 0 and y E 0 + x. First we remark that in a

proper FJH there can possibly exist an element x E H B ~0} such that 0 E 0 + x, as it can
be seen in the examples. So let y E 0 + x and y ~ 0. Then, on the one hand x E y : 0 and
on the orther x E 0 (-x), since 0 E x - x. Hence (y : 0) n [0 : (-x)~ ~ 0, from which,
according to the join axiom, (y - x) n (0 + 0) ~ 0, that is 0 E y - x, thus, y = x. Therefore
if 0 ~ 0 + x, then 0 + x = x and if this last equality holds for every x E H, then 0 is a scalar
element of H and the FJH is canonical [1,2,7]. So there exist x E H, such that 0 E 0 + x
and therefore x + 0 = {x, 0}.

Consequently there exist two kinds of elements in every FJH, according to the defini-
tion : .

DEFINITION 2.1. An element x E H is called canonical or c-element if 0 + x is the

singleton {.r}, while it is called attractive or a-element if 0 + x is the biset ~0, x}.

Obviously the 0 is a c-element and in the above Examples 1.2 and 1.3, 0 is the only c-
element. Nevertheless there exist FJHs with c-elements different from 0 as in the example:



158

EXAMPLE 2.1. Let (E, +) be a FJH and w ~ E. Then the set H = E U {w} with
hypercomposition :
x t y = x + y, for every x, y E E

= = w for every x E E
wtw = H
is a FJH with w being a c-element.

Next let us denote the sets of the canonical and the attractive elements of the FJH (H, +)
with C and A respectively. These two sets are obviously forming a partition in H. For the
canonical and the attractive elements we have the properties 

’

PROPOSITION 2.1.

i) If x E A then -x E A.

ii) If x, y E A, then x, y E x + y.

iii) If x, yEA, then x + y C A U {o},
Proof.

i) If x E A then 0 E 0+x whence x ~ 0 : 0. Yet x ~ 0 : (-x), thus (0 : 0)n [0 : (-x)] ~ 0,
from where 0 E 0 + (-x), and so -x E A.

ii) Obviously (x + y) + 0 = (x + y) U {0}. But

(x+y)+0 = x+(y+0) = _- 

So (x + y) U {0} = (x + y) U {x, o}. Thus x ~ x + y. Similary y E x + y.
iii) Let us assume that z E x + y and z ~ A U {0}. Then x E z : y. Yet x ~ 0 : (--x).

Thus (z : y) n [0 : (-a:)] ~ 0 therefore (0 + y) n (z - x) ~ 0, so {o, y} ~ (z - x) ~ 0.
Also z ~ x, which implies 0 ~ z - x and so y E z - x, in which case 0 + y C (0 + z) - x
or equivalently {o, y} C x -- x, that is 0 E z - x, from where z = x, which is absurd.
Hence x + y C A U {0}.

PROPOSITION 2.2.

i) If x E C then -x E C. ’

ii) I f x E C ‘ {0}, , then 

iii) 1 f x, y E C, with y ~ --x, then x + y C C.

iv) If C, and if .r t y = (x + y) n C, then (C, t) is a canonical hypergroup.

Proof. 
’

i) It derives directly from (I) of the previous Proposition.
ii) Let z be an arbitrary element of A. Then from the reproductive axiom of the hyper-

group [14], + H = H, it derives that there exits y E H such that z E x + y, from
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where 0 + z C ( 0 + x ) + y and so { o, z } ç x + y. Thus 0 E x + y, and since 0

(otherwise x = 0, which is absurd) it derives that y = -x and therefore z E x - x.

iii) Let z E x + y and let us assume that C. Then 0 + z C (0 + z) -~ y implies
that {o, x} C x + y. Thus 0 E x + y and therefore y = -x, which contradicts the

supposition. So x + y C C.

PROPOSITION 2.3.

i) If y E C 1 {o} and x ~ A, then . 

’

ii) If x e A U {0}, , then x : x = A U {0}.

Proof.

I) y = y + 0 thus 0 E y : y. Moreover 0 E x + 0, so o E o : x. Consequently

(y : y) n (0 : x) ~ ~ implies that (y + x) n (0 + y) ~ ~ whence (x + y) n {y} ~ 0,
and therefore y E x + y. Next it will be proved that apart from y no other c-element

belongs to x + y. Indeed, let y’ E C and y’ E x + y. Then x e y’ : y. Moreover

x ~ 0 : 0 so (y’ : y) n (0 : 0) ~  from where (y’ + 0) n (y + 0) ~ 0, and therefore

y’ = y. Finally it will be proved that none of the a-elements belongs to x + y. Indeed,
let x’ E A and x’ E x + y. Then from ~ + 0 C (z + y) + 0 we get {0, .r’} C ~ + (t/ + 0)
whence {o, x’} C x + y. Therefore 0 E x + y, that is y = -x, absurd. Consequently,
y = x + y.

ii) According to Proposition 2.1 (ii) x E x + t, for every t E A U {o}. So t E x : x and

therefore A U t0} ~ x : x. Also, because of (i) holds s ~ x : z for every s E C B {0},
since s = x + s. Therefore x : x = A U {0}. .

COROLLARY 2.1.

i) If x,yEA, then 

ii) If z ~ C, then ACz:z.

Having proved the above we can give the following construction which extends a
canonical hypergroup by a FJH in which non zero element is attractive : :

CONSTRUCTION Let (K, +) be a canonical hypergroup and let (E, +) be a FJH in

which all the non zero elements are attractive and such that K ~ E = {0}. Define, on

H = h’ U E a hypercomposition ~ by ;
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Then (H, f ) is a FJH.

Using this construction we get the following result : :

THEOREM 2.2. Every FJH can be obtained by the previous construction.

As it is know [12,13] the reversibility, that is the implication :
z ~ x -~ y ===~ ~ E z - x, for every x, y, z E H

is one of the axioms of the canonical hypergroup. In the FJH though, it can not be

generally valid, since, if it were, for every x E A, it would be : 0 E 0 + x ===~ ~ E 0 - 0,
so x = 0, that is A would be an empty set and the FJH would be a canonical hypergroup.
For the FJHs, we conclude with : :

PROPOSITION 2.4. For every x, y, z E H with z E x + y, the reversibility generally
holds, except for the cases :

i) ~==t/==0, .cA and
with x, y E A,

for which respectively holds :
0 E x + 0 implies that 0 E 0 - x, , while x ~ 0 - 0
x E x + y implies that x E x - y, while, generally, y ( x - x.

Before proceeding with the proof, we prove the Lemma : :

LEMMA 2.1. . Ifx,y,z E H andz ~ x+y then ~ 0 and ~ .

Proof. If z E x + y then x E z : y and y E z : x. Also x ~ 0 : (-x) and y ~ 0 : (-y).
So (z : : y) n [0 : (-~)] 5~ 0 and (z : x) n [0 : (-y)] # 0, and, because of the join axiom, the
Lemma is proved.

Proof of the PROPOSITION 2.4. We distinguish the three different cases. Let

a) x, y E C. From the Lemma, and since 0 + x = x, 0 + y = y, derives y E z - x and

x E z - y.

/?) x E A, y E C. If y ~ 0, then, because of Proposition 2.3, z E x + y implies that = = y
and therefore, from the same Proposition, it derives that y = y - x, while, because of
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Proposition 2.2. (ii), x E y - y. If y = 0, then z E x + 0 implies that either z = 0 or
z = x.

From 0 E x + 0 follows that 0 E 0 - x, while x ~ 0 - 0 [since x E A implies that -x E A

(Prop. 2.1.) and x 7~ 0] and from x E x + 0 results that 0 E x - x and x E x - 0.

y) x, y E A. From the Lemma we have :

(z - x) ~ ~~a y} ~ 0 and {z - y} ~ ~Q~ x} ~ ~
and for 0 ~ z ~ x ~ 0 holds y ~ z - x, while for 0 ~ z ~ y ~ 0 is x ~ z - y.
Now, if z = 0, then from 0 E x + y derives y = -x, and since x E ~ 0 + x and

- x E 0 - x, the reversibility holds again. Next if z = x, then (x - x) n ~0, y} ~ 0 and

(x - y) n ~0, x} ~ ~ and therefore, if x, then from the second relation it derives

that x E z - y, while the first one does not imply that y E x - x.Thus in the Example
1.2, where all the non zero elements of the hypergroup are attractive, we have that
the implication x E x + y ===~ x E x - y holds, since x - y = x + y = ~x, y}, while

y ~ x - x = x + x = t0, x}, for every x. Also, in Example 1.3, we generally
have the implication x E x f y ===~ x E x - y, since x - y = {x, --y, x -- y}, while,
on the contrary, y E x - x = ~x, --x, o} only for y = -x, and y = x. Finally,
if z = x = y, then, according to Proposition 2.1. (ii), we have the implication :
xEx-x 

Consequently we can talk about "partial" reversibility and so put forward the Propo-
sition : :

PROPOSITION 2.5. Every FJH (H, +) is partially reversible, that is, for every x, y,
z E H, if z E x + y, then either y E z - x or x E z - y (without the one always rulling
out the other)..

COROLLARY 2.2. If z E x + y then y E z - x, for every x, y E C.

As it is know [12,13], in a canonical hypergroup (K, +) the reversibility is equivalent
to each one of the properties :

i) 2014(.y -}- ~/) == 2014:p 2014 ~ for every 

ii) (.r + ~/) n (~ + u~) ~ 0 ====~ (a* 2014 ~) n (t~ 2014 ~/) ~ 0 for every x, y, z, w E K.
Similar properties appear in the FJH as well. More precisely : :

PROPOSITION 2.6. The partial reversibility in the FJH is equivalent to the property : :
- (x + y) = -x - y, for every x, y E H with y ~ ~-x.
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Proof. It is obvious for x = 0 (or y = 0). Let x, y ~ 0 and z E x + y. Then, because of
the partial reversibility, it will be for instance, y E z - x from where y - y C x + (-x - y).
So it is 0 E z + (-x - y), and since y ~ -x, then 0 ~ -x - y and therefore -z E -x - y.
Thus -(x + y) ~ -x - y. Now if z E -x - y, then, because again of the partial reversibility,
it will be for instance -y E z + x, and following the same steps as above it derives that
z E -(x + y) and so -(x + y) = -a- - y.

Conversely now, this property, for y ~ -x, gives the partial reversibility.
Indeed, for z E x + y we get -z E -(x + y) = -x = y and so z - z C (z - x) - y =

(z - y) - x. Thus 0 ~ (z - x) - y and 0 ~ (z - y) - x. So for z ~ x or z ~ y it will be
respectively. Yet, if z = x = y, then again x E x + x implies that

xEx-x

REMARK 2.1. The property -(x + y) = -x - y is not generally valid for y = -x. For

instance, it holds in the FJH of the Examples 1.1-1.3, as it is also generally valid in FJHs
with selfopposite elements. Yet, there exist FJHs in which this property is not valid.

EXAMPLE 2.2. Let H be a set totally ordered, dense as for the order and symmetrical
around a center denoted by 0 E H, as for which a partition H = ~fi U {0} U HZ =

H - U {0 } U H+ can be defined, such that :

~  0  t/ for every .c E R" and y E ~~,
x ~ y implies that -y  -x for every x, y E H (where --x is the symmetrical of x
with regard to 0.
We introduce in H the hypercomposition :

x+y = y ~ -x
and x + (-x) - [0, |x|] ~ {-|x| }.
The deriving structure is a FJH in which x - x ~ -(x - x), for every x ~ 0, since
- (x - x) = 0] The proof, which is achieved by the verification of the axioms,
is quite complicated and it can be found in [10].
Relatively we also have : 

,

PROPOSITION 2.7. If x is a c- element of a FJH, then -(x - x) = x-x.

Proof. Let x E C. Since all the a-elements belong to x - x [Prop. 2.2 (ii)] and since

- A = A [Prop. 2.1 (i)] we have A C x - x, which implies that -A C x - x and so

A C -(x - x). Next let z be a c-element such that z E x - x. Then (Corol. 2.2) x E z ~ x,
so x-x C ~+(.r-.r), thus 0 E z+(x-x), hence - z E x-x and therefore z E -(x-x). So
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C --(x-x). Furthermore x-x C -(x--x) implies that -(x-x) C -(-(x-x)j = x-x
and so the Proposition.

COROLLARY 2.3. For every, x, y E C, the equality -(x + y) = -x - y holds.

PROPOSITION 2.8. In a FJH the non empty result of the intersection 

implies that (z - x) n (y - w) ~ 0 for every x, y, z, w E H with x ~ z and y ~ --x, w. .

Proof. If any of the x, y, z, w is 0, then the Proposition derives from the partial re-

versibility. If none of them is 0, then consider an element t E (x + y) fl (z + w). Thus

(Prop.2.6) :
t--t C (z’1’w)--(x+y) - (z-x)+(w-y) = (z-x)-(y-w).
So 0 E ( z - x ) - ( y - w ) and since z ~ x and w ~ y, the 0 does not belong to z - x and to

y-w. Consequently there exists an element v E (x-x)fl (y-w), and so ~ ~.

COROLLARY 2.4. (x + y) n (z -i- w) ~ ~ always implies that (z - x) n (y - w) ~ ~, for
every E C.

REMARK 2.2. In the canonical hypergoups the reversibility-or the equivalent property
of Prop.2.8- as an axiom is equivalent to the join axiom, that is axiom (J). It is not the
same though in FJHs, where the join axiom is always valid for the entire hypergroup by
default, while the reversibility is generally valid in its partial form.

Now regarding the induced hypercomposition (division), which is of a great significance in
the theory of the join hypergroups, we initially remark that in the canonical hypergroups,
as it is known [7, = x - y for every x, y E H. This is not valid though in
the (proper) FJHs, because, for example, in those hypergroups 0 : 0 = A U {0} while

0 - 0 == {0}. For the FJHs we have :

PROPOSITION 2.9. If one of the x, y is a c-element, different than 0, then

x : y = (-y) : (-x) = x - y,

Proof. x : y --. {z ~ x E z+y} which, due to the partial reversibility and the supposition,
is equal to {z z E x - y~ that is to x - y. Similarly ( -y) : : (-x) = x - y.
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PROPOSITION 2.10. For every E H:

i) x - y = (x : y) ~ [(-y) : (-x)] if x ~ y
= (2014~) : : (-x)

Proof.

i) Let z E x - y. Then, according to Proposition 2.5, we have that either x E z + y, from
where derives that z Ex: y or -y E z - x, from where derives that z E (-y) : (-x)
and so x - y C ( x : y ) U ~( - y ) : ( -x )~ . Conversely now, z Ex: y implies x E z + y,
whence z E x - y and z E (-y) : (-x) implies - y E z - x, whence z E x - y. Thus
(x y) U [( -y) : ~ ("x)~ ~ x - y and so (i).

ii) If x E C B {0}, then ii) is valid because of Proposition 2.9. Moreover, if x E A U {0},
then, because of Proposition 2.3. x : x = (--x) : (-x) = A U {0} and x - x C A U {0}.

3. SUBHYPERGROUPS OF A FJH

From Proposition 2.6., Remark 2.1. and Example 2.2., there derives a new distinction
of the elements of a FJH ( H,+), according to the definition:

DEFINITION 3.1. An element x E H such that -(x - x) = x - x is called normal.
Otherwise it is called abnormal. A FJH having only normal elements is called normal FJH
while if it contains at least one abnormal element it is called obnormal FJH.

It derives that every c-element of H is normal. Moreover the hypergroup of the Example
1.2 and the FJH of the Example 1.3 are normal FJHs. As an example of an abnormal FJH
we mention Example 2.2 in which every element 0 is abnormal. From the Definition

and the Proposition 2.6 we come to the conclusion that : :

PROPOSITION 3.1. In a normal FJH (H,+) :
- (x ’~’ y) = 

for every x, y E H and, by induction :

- (x1 + ... + xn) = -x1--.... - xn
for every xl, ... , xn E H.

The notion of the normal elements of a FJH becomes very useful in the study of its

subhypergroups. Let, for instance , X be a set of normal elements of a FJH (H, +) and
let us denote by 03A9(X) the union of all the sums (xz - + ... + (xn - xn), where rc is an

arbitrary non negative integer and .x-i,..., Xn are chosen independently from X. Then :
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LEMMA 3.1. If w E (x1-xi)+..,+(xn-x"), then -w E (xl-xx)+...+(xn-xn),
for every xl, x2, ... , xn ~ X.

Proof. This Lemma will be proved by induction. So, for n = 1, w E x1 - x1 implies that

- w E = since x 1 is normal. Now suppose that it is true for n = k and let

w E Then there exists s E 

such that w E s + xk+1) = (s + xk+1) - xk+1. Therefore there exists t E s + xk+1
such that w ~ t - xk+1. So -w E -(t - x k+1 ). Now if t = xk+1, then it is a normal element

and so -(t - = -t + The last equality is always valid if t ~ (Prop. 2.6).
Thus -w E -t + C -(s + -s + according to the same

reasoning as above, which due to the induction gives :
- w E (~i - .ri) + . - 

PROPOSITION 3.2. H(X) is a 3ubhypergroup of H.

Proof. Apparently 0 E H(X) and because of the Lemma, -x E 03A9(X) for every
x E S~(X ). next for every x E O(X) :

x + C (x1 - x1) +... + (xn - + C 03A9(X)
Yet for y 6 H(X) it will be :

y-x C -y~)-~-...-~-Cym -ym)~ -((x1-xi)+...+(xn-xn)~ C ~(X)
so y - x C implies (y - x) + x C x + H(X) whence y + (x - x) C 3? + S~(X). Therefore

y + 0 C x + thus y E x + O(X) and consequently ç X + Q(X). Thus for every
x E O(X) we have x + 03A9(X) = 03A9(X) and so H(X) is a subhypergroup of H.

The subhypergroup Q(X) is not always a FJH, because even though it satisfies the
axioms FJI and FJ2 of the Definition 1.1., it is not generaly closed (stable) under the
induced hypercomposition [that is x : y C is not valid for every x, y E ~(X)~,
which is a necessary prerequisite for the validity of the join axiom inside the set O(X).
This is the case in Example 1.2., where for an arbitrary non void subset X of E we have

03A9(X) = X U {0}. Obviously in this FJH x : y = x for x ~ y and x : x = E, thus 03A9(X)
is not closed under the induced hypercomposition, when X is a proper subset of E. So
there exist subhypergroups h of any FJH (H, +), with the property -x E h for every
x E h. Such subhypergroups will be called symmetrical subhypergroups. Generally the

symmetrical subhypergroups are not FJH themselves. Yet a FJH is a join hypergroup and
so there also exist join subhypergroups in it, i.e. subhypergroups that are join hypergroups
themselves. Thus in a FJH there are :

a) Join subhypergroups,



166

b) symmetrical subhypergoups and .

c) subhypergroups that are neither join nor symmetrical.

The following Propositions are relevant to these subhypergroups for the proof of which
it is necessary to give the Lemma : :

LEMMA 3.2. A subhypergroup of a join hypergroup (H,+) (not necessarily fortified)
is join if and only if it is clos ed.

Proof. As it is known, a subhypergroup h of a hypergroup (H,.) is called closed when,
for every [right closed] and ha n h = 0[left closed] [4,6, 12, 13].
Moreover it is known [7] that a subhypergroup of H is closed if and only if it closed under
the induced hypercomposition. So for a join subhypergroup h and for every x, y, z, w E h,
if (x y) n (z : w) ~ 0, then this non void intersection is contained in h, which is also valid
for the intersection (x : y) n (x : y). Thus it will be x : y C h and so h is closed. Conversely
now, if h is closed, then z : y C h, z : w C h and apparently, the join axiom is satisfied
inside h as well. Hence h is join.

PROPOSITION 3.3. Every join subhypergroup h of a FJH (H, f ~ as a FJH itself with
the same zero.

Proof. As it is known [6,12,13], every closed subhypergoup of any hypergroup contains
all its neutral elements. Therefore h contains 0 and so it satisfies the axiom F J 1 of the
Definition 1.1. . Moreover, for every x E h it will be 0 : x C h and since -x it derives

that --x E h. Thus FJ2 is satisfied as well. 
’

COROLLARY 3.1. . Every join subhypergroup of a FJH is symmetrical as well.

PROPOSITION 3.4. The set A U {0} = A is the minimun (in the sense of inclusion)
join subhypergroup of H. .

Proof. A is a subhypergroup of H. Indeed for every x E A , and according to
Proposition 2.1.,-x E A and x + A C . Next if y is an arbitrary element of A , then
- .r +1/ C A’ and implies {0, ~/} C .r + (2014~ + ~/), thus y 6 ~ + (-~ + ~). .

Therefore there exists z E -x + y such that y E x + z C x + A . So A C x + A’ and

consequently x + A = A . Hence A is a subhypergroup of H and a symmetrical one too.
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A is closed and so join (Lemma 3.2). Indeed, let z be an element of H B A . Then z

is a non zero canonical element and so (Prop. 2.3) (z + A ) n A = ~z} n A = 0.

Since every join subhypergroup of a FJH contains the 0 element and since 0:0=

A U ~0} [Prop 2.3 (ii)], A does not contain a join subhypergroup of H. Moreover a

join subhypergroup h of If, different from A must contain a c-element. Let a: be this

c-element. Then, because of Proposition 2.2 (ii), A ç x - x, so A C h and therefore

the Proposition.

COROLLARY 3.2. The FJHs that contain (apart from 0) only a-element have no

proper join subhypergroups.

PROPOSITION 3.5. If a symmetrical subhypergroup h of H contains a c-element other
than zero, then it is a join one.

Proof. Let z be a c-element belonging to h. Then A C z - x and therefore x : y C h,

for every x, yEA. . Moreover if at least one of the x, y E h is a c-element, then according
to Proposition 2.9 x : y = x - y C h. Hence , as h is closed (8j, it is also join ( Lemma

3.2).

COROLLARY 3.3. The symmetrical subhypergroups that are not join consist only of
a-elemnts.

Finaly, as mentioned above, apart from the symmetrical and the join subhypergroups
there exists FJH having subhypergroups that are not symmetrical, and much less join.
This case appears in Example 2.2, where every subset h of H with the property 
for every x E h, is such a subhypergroup.

The thorough study of the subhypergroups of a FJH and more generally of the join
hypergroups, is very extensive and constitutes the sub ject of other, forthcoming papers of
ours.

ACKNOWLEDGEMENT : ‘Ve wish to extend our sincere thanks to the editors of "An-

nales Mathematiques Blaise Pascal", and to the anonymous referee of our paper, for their

cooperation and polite attitude.



168

BIBLIOGRAPHY

[1] P. CORSINI : Recenti risultati in teoria degli ipergruppi, Bollettino U.M.I (6) 2-A,
pp. 133-138, (1983).

[2] P. CORSINI : Prolegomena of Hypergroup Theory, Aviani Editore, (1993).
[3] M. KRASNER : A class of hyperrings and hyperfields, International Journal of Math.

and Math. Sci. Vol 6, N° 2, pp. 307-312, (1983).
[4] M. KRASNER : Cours d’Algèbre supérieure (Théories des valuations et de Galois),

Cours à la faculté des Sciences de l’Université de Paris, (1967-68).
[5] M. KRASNER : Approximation des corps valués complets de caractéristique p ~ 0 par

ceux de caractéristique 0, Colloque d’Algèbre Supérieure (Bruxelles, décembre 1956),
CBRM, Bruxelles, (1957).

[6] M. KRASNER : Une nouvelle présentation de la théorie des groupes de permutations
et ses applications à la théorie de Galois et de produit d’entrelacement ("Wreath Pro-

duct") de groupes, Math. Balk. 3, pp. 229-280, (1973).
[7] C.G. MASSOUROS : Hypergroups and their applications, Doctoral Thesis, Depart. of

Sc. of the National Technical University of Athens, (1988).
[8] C.G. MASSOUROS : Hypergroups and convexity, Riv. di Mat. pura ed applicata 4,

pp. 7-26, (1989).
[9] G.G. MASSOUROS and J. MITTAS : Languages-Automata and hypercompositional

structures, Proceedings of the 4th Internat. Cong. in Algebraic Hyperstructures and

Applications. pp. 137-147, Xanthi (1990). World Scientific.

[10] G.G. MASSOUROS : Automata-Languages and hypercompositional structures, Doctoral
Thesis, Depart. of Electrical Engineering and Computer Engineering of the National
Technical University of Athens, (1993).

[11] G.G. MASSOUROS : Automata and Hypermoduloids, Proceedings of the 5th Internat.

Cong. in Algebraic Hyperstructures and Applications, Iasi (1993). Hadronic Press.

[12] J. MITTAS : Sur une classe d’hypergroupes commutatifs, C.R. Acad. Sci. (Paris) 269,
Série A, pp. 485-488 (1969).



169

[13] J. MITTAS : Hypergroupes canoniques, Mathematica Balkanica, 2,pp. 165-179, (1972).
[14] J. MITTAS : Sur les structures hypercompositionnelles, Proceedings of the 4th Internat.

Cong. in Algebraic Hyperstructures and Applications. pp. 9-31, Xanthi (1990).
World Scientific.

[15] W. PRENOWITZ : Projective Geometries as multigroups, Amer. J. Math. 65, pp.
235-256, (1943).

[16] W. PRENOWITZ : Descriptive Geometries as multigroups, Trans. Amer. Math. Soc.
59, pp. 333-380, (1946).

[17] W. PRENOWITZ : Spherical Geometries and multigroups, Canad. J. Math. 2, pp.

100-119, (1950).
[18] W. PRENOWITZ : Contemporary Approach to Classical Geometry, Amer. Math. 68,

N° 1, part II, pp. 1-67, (1961).
[19] W. PRENOWITZ & J. JANTOSCIAK : Geometries and Join Spaces, Reine Angew. Math.

257, pp. 100-128, (1972).
[20] W. PRENOWITZ & J. JANTOSCIAK : Join Geometries. A theory of convex Sets and

Linear Geometry, Springer-Verlag, (1969).

Gerasimos G. MASSOUROS
54, Klious st.,
155 61 Cholargos,
Athens, GREECE.

Christos G. MASSOUROS
29, Miltiadou & 1, Tinou st.,
155 62 Cholargos,
Athens, GREECE.

Ioannis D. MITTAS
Aristotle University of Thessaloniki,

5, Edmond Abbot st.,
546 43 Thessaloniki,
GREECE.


