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0. Introduction

Let be a real stationary gaussian process such that, for each t,

X. is an N(0,1) distributed random variable; suppose moreover that

has continuous paths and let r(t) be its covariance function.

Under these assumptions, MARCUS [1] has shown that

(0.1) lim sup |Xt| 2 log t ~ 1 a.s.

Moreover, by a result of PICKANDS ([2], Th. 5.2), assuming in addition
that

(0.2) lim r(t) log t = 0,
t~~

and putting

Z = supX,,
0~s~t

one has

lim inf [Zt - 2 log t] ~ 0 a.s.

Now this relation yields

(0.3) lim inf Zt 2 log t ~ 1 a.s.

(*) This paper is partially supported by GNAFA, CNR.
(§) Dipartimento di Matematica University di Pisa

Via F. Buonarroti 2,56100 PISA (ITALY)
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Using (0.1) and (0.3) one can easily show the following

(0.4) THEOREM Under Pickands’ assumptions, one has

lim sup Xt 2 log t = lim sup |Xt| 2 log t - 1 a.s.,

so that a. s. the limit set (as t ~~) of the process

Yt = Xt log t
is the interval

S = {y~R: 1 2y2 ~ 1}.

The preceding remarks are due to G. LETTA.

In this paper we consider the process defined by

Yt = Xt 03C6(t),

where (p is a function verifying suitable assumptions; under a condition
on r(t) weaker than (0.2), we show that a. s. the limit set of (Yt) as t~~
is the interval

and we characterize the number M in terms of (p. .
We point out that our result can be easily extended to the
multidimensional case, as is sketched in section 4.
We are indebted to the referee for having simplified and improved the
proofs: in particular we owe to him the use of theorem (2.3).
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1. Assumptions and main theorem

Let real stationary gaussian process such that, for every t, X~
is N(0,1) distributed. Let r be the covariance function; we assume that

(1.1) ~X~~o has continuous sample paths with probability one;

(1.2) r(n) = 0 oo N) (mixing condition).

Let now 03C6:(0,+~) ~ R+ be a non decreasing function, such that

lim 03C6(t) = + oo.
t~~

Consider the process defined by

Yt = Xt 03C6(t).
’ p(t)’ 

°

The main result of this paper is the following

(1.3) THEOREM. Let

M = l im sup log(03A3I 03C6(k) 03C62(n) 
.

Obviously we have 0~M~~.
Let now

.

where we interpret SM as {0} (resp. R) f/’ M = 0 (resp. 00).
Then a. s. the limit set of (Yt) as t - ~ is SM.
The two cases M=0 and M = oo will be discussed in section 3.



38

In the case 0M~, the proof will be carried out in the following two
steps:

( 1.4) PROPOSITION. The limit set of (Yt) is a, s. contained in SM.

( 1.5) PROPOSITION. Each point of SM is a limit point of (Yt).
As to proposition (1.4), it is enough to notice that

log °-
M z lim sup 03C6(n) 03C62(n) = lim sup log n 03C62(n) = lim sup log (n + 1) Z

z limsup 1~ ,
t--» ~(t)

because

log t 03C62(t) ~ log ([t] + 1) 03C62( (tl)

Hence, it follows from result (0.1) of Marcus that

lim sup 
I Xtl 

s 2 M a.s.

t~~

Proposition (1.5) is proved in section 2.

2. The proof of (1.5~.

It is easy to prove the following result, which implies (1.5):

(2.1) PROPOSITION. Under the mixing condition (1.2), almost surely
each point of [-2M, 2M] is a limit point of (Yn)n (and thus of
(Yt)t>0).
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PROOF.

lim su Xn 201420142014 .

As a first step, we show that lim sup _2014 
= 2M, a. s.This amounts to

n--~oo ~n)

saying that

P(Xn > 203BB 03C6(n) i. o.) = 0 or 1

according as ;... is greater or smaller than M. Now, recalling the properties
of Dirichlet series (see appendix) this is immediate from the following

(2.2) THEOREM. Let gaussian stationary sequence, with

zero mean and unit variance. Assume that the covariance function r(n)
satisfies the mixing condition ( 1.2). Let ~~(n)~~l be a non decreasing
sequence of positive numbers, with lim = +~. Then

n~~

~(n) i.o. = 0 or 1

according as the sum 
_

00

~(n}exp (- 2
n=no

is finite or infinite.

This theorem has been proved by P. K. PATHAK and C. QUALLS ( [3],
Th. B, pag. 190).
Now the statement of Proposition (2.1) follows from a general result on
real centered gaussian sequences:

(2.3) THEOREM. Let (Zn)n be a real centered gaussian sequence
satisfying the condition lim E(|Zn|2) = o. T’hen there exists c in [0,+~]
such that lim sup Zn = c a. s., and almost surely the limit set of (Zn)n is

n~~

equal to [- c, c ] . .

Indeed, in our setting, we have c = 2 M .
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This result can be found for example in M. TALAGRAND [4], where the
fact that the limit set is not random is proved at the beginning of section
III, and the rest in Lemma 7.

3. The cases M==$ and M=~.

(3.1) M=0.

In this case we have

lim sup log t 03C62(t) =o,

and the desired result follows from (0.1).

(3.2) M=~.

That every yER is a limit point is a straightforward consequence of (2.3).

4. Extension to the multidimensional case.

Let now d-dimensional stationary gaussian process such

that, for each t, Xt is an N(0,I)-distributed random vector.

Let r(t) = fr ’ (t) )h,k=1,...,d be its covariance function, where

r ,X )B s s+t /

(obviously r(0) = I).

Suppose that the following assumptions are verified

(4.1) X. has continuous sample paths with probability one;

(4.2) for every (h,k)(n) = 0 (1 log n) as n ~ oo.
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Put as above 

Yt = Xt 03C6(t)

and

Then as in the real case, a. s. S~ is the limit set of (Yt) as t -~ + oo.
Indeed, proposition (1.4) may be immediately extended by standard
arguments.
As to Proposition (1.5), we already know that the limit set is not random
and. a. s. contained in ~. Moreover it is closed and balanced a. s. by
Lemma 7 of [4] (which holds in Rd); so it is enough to prove that, for
every unit vector z = (z~...,Zd). we have

d

a.s.

~ I 

By condition (4.2), this follows from (2.2).

Appendix: a particular kind of Dirichlet series.

Let (p be a non decreasing function defined on (1,+~), with

lim (p(x) = +00
X~+~

and consider the Dirichlet series

+00

n=l

with (an) C ~.+. 

Put

A = ’im 
sup log( ak) 03C62(n) akj 

a 0;
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A is not always equal to A’ . However, it is well known (see [5] for

example) that A = A’ if 03A3 an = oo.
n=l

Consider now the Dirichlet series

+00

= ( ) 
n=t 1 

~n~ p( ~ ( ))

+00

In this case we d o ha v e A = A’ (indeed, if . -y"  co then A =0 and

S(03BB) diverges for every 03BB  0).
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