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The Lamé family of connections
on the projective line(∗)

F. Loray(1), M. van der Put(2), F. Ulmer(1)

ABSTRACT. — This paper deals with rank two connections on the pro-
jective line having four simple poles with prescribed local exponents 1/4
and −1/4. This Lamé family of connections has been extensively studied
in the literature. The differential Galois group of a Lamé connection is
never maximal : it is either dihedral (finite or infinite) or reducible. We
provide an explicit moduli space of those connections having a free un-
derlying vector bundle and compute the algebraic locus of those reducible
connections. The irreducible Lamé connections are derived from the rank
1 regular connections on the elliptic curve w2 = z(z−1)(z− t); those con-
nections having a finite Galois group are known to be related to points of
finite order on the elliptic curve. In the paper, we provide a very efficient
algorithm to compute the locus of those Lamé connections having a finite
Galois group of a given order. We also give an efficient algorithm to com-
pute the minimal polynomial for the corresponding field extension. We
do this computation for low order and recover this way known algebraic
solutions of the Painlevé VI equation and of the classical Lamé equation.
In the final section we compare our moduli space with the classical one
due to Okamoto.

RÉSUMÉ. — Dans cet article, nous étudions les connexions de rang deux
sur la droite projective ayant quatre pôles simples avec exposants lo-
caux prescrits 1/4 et −1/4 que nous appelons connexions de Lamé. Cette
famille a été maintes fois étudiée dans la littérature. Le groupe de Ga-
lois d’une telle connexion n’est jamais maximal : il est ou bien dihédral
(fini ou infini), ou bien réductible. Nous produisons un espace de mod-
ules explicite pour les connexions de Lamé définies sur le fibré trivial et
calculons le lieu algébrique des connexions réductibles. Les connexions de
Lamé irréductibles sont obtenues comme images directes sur la droite des
connexions régulières de rang 1 définies sur le revêtement double elliptique
w2 = z(z−1)(z− t) ; les connexions dont le groupe de Galois est fini sont
connues pour être reliées aux points d’ordre fini sur la courbe elliptique.

(∗) Reçu le 28/03/2006, accepté le 28/05/2008.
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Au cours de l’article, nous produisons un algorithme performant pour
calculer le lieu des connexions de Lamé dont le groupe de Galois est fini,
d’ordre donné. Nous donnons un autre algorithme calculant de manière
efficace le polynôme minimal de l’extension de corps correspondante. Le
calcul est effectué pour les ordres petits et nous retrouvons ainsi quelques
solutions connues de l’équation de Painlevé VI et de l’équation classique
de Lamé. Dans la dernière section, nous comparons l’espace des modules
construit avec l’analogue classique dû à Okamoto.

Introduction

A Lamé connection is a rank two connection (M,∇) on the projective
line having simple poles at 0, 1, t and ∞, with local exponents 1/4 and
−1/4 at each of those singular points. This family of connections naturally
arises from several points of view.

First of all, the Galois group of such a connection is very special : it is
either dihedral, or reducible. This is due to the fact that, all irreducible Lamé
connections are derived by pushing forward a regular rank 1 connection on
the Legendre elliptic curve Et : w2 = z(z − 1)(z − t) via the 2-fold cover
(z, w) �→ z. In particular, the monodromy representation can be explicitely
computed by means of elliptic functions. These facts were observed by N.
Hitchin in [7]; another proof has been communicated to us by F. Beukers
([3]).

Beside being dihedral, the Galois group of an irreducible Lamé connec-
tion may be finite dihedral DSL2

N or infinite dihedral DSL2
∞ (these groups are

the unique liftings of the classical projective dihedral groups DN and D∞
under the map SL2 → PSL2, i.e. the order 2 central extensions). It turns
out that all DSL2

N actually occur inside the family. The goal of our paper
is mainly to produce an efficient algorithm computing the locus of those
connections having finite Galois group DSL2

N . Each DSL2
N corresponds to a

closed, codimension 2, subset of the Lamé family, showing that the locus of
DSL2

∞ is non constructible. This fact was already observed by M.F. Singer in
[22] (see also [2]) and the Lamé family is the simplest family of connections
for which this phenomenon occurs.

The underlying vector bundle of a Lamé connection can be of two types :
either it is free, the trivial vector bundle, or it is O(1)⊕O(−1). We provide
in Section 5 an algebraic construction of the moduli space for those Lamé
connections having free underlying vector bundle, that is for Lamé Fuchsian
systems :

d

dz
+

A1

z
+

A2

z − 1
+

A3

z − t
with Aj =

(
aj bj
cj −aj

)
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satisfying

• Aj has eigenvalues ± 1
4 , i.e. det(Aj) = −1/16,

• A∞ = −A1 −A2 −A3 =
(

− 1
4 0

0 1
4

)
.

The latter normalization is obtained under SL2-action and the categorical
quotient of those systems under the remaining diagonal conjugacy is the
affine threefold P defined by those (t, a1, a2, H) ∈ C4, H = b2c1, satisfying

H2 + 2H(a1 − 1/4)(a2 − 1/4) + (a2
1 − 1/16)(a2

2 − 1/16) = 0

and t �= 0, 1. This is our parameter space. The special family of connections
on O(1)⊕O(−1) is computed in Section 6, and in Section 9 we compare it
with the classical Okamoto moduli space.

In order to understand the monodromy representation of an irreducible
Lamé connection, one observes that it can be lifted as a representation of
the fundamental group of the elliptic curve Et : w2 = z(z − 1)(z − t), via
the projection

Et → P1 : (z, w) �→ z,

into SL2 : the monodromy or Galois group has an index 2 abelian subgroup
and is therefore either reducible or dihedral. In fact, any irreducible Lamé
connection ∇ can be derived by pushing forward a regular rank 1 connec-
tion ∇̃ on Et. An analytic proof of those facts was given by N.J. Hitchin
in [7]. We provide in Sections 1 and 2 a more algebraic proof. Now, the
monodromy representation of ∇̃ may be viewed as an element of C∗ × C∗,
once generators for π1(Et) are fixed. The Riemann-Hilbert correspondence
for rank 1 connections on the elliptic curve Et is very classical and is stud-
ied in Section 3 : in this case it is an analytic homomorphism of groups,
where the group law for rank 1 connections is the tensor product ([22], pp.
384-385). Now, the Galois group of ∇ is finite iff the Galois group of ∇̃ is.
It is a remarkable fact (see Proposition 3.2) that a Lamé connection ∇ has
non trivial underlying vector bundle iff the corresponding rank 1 connection
∇̃ on Et is defined on the trivial line bundle. As a consequence, the vector
bundle of a Lamé connection with Galois group DSL2

N is free and the locus
of DSL2

N is entirely contained in our parameter space P .

There are several ways to compute the locus for DSL2
N . First of all, one

can compute factors of the N th symmetric power of ∇ and look for a rational
solution. This is discussed at the end of Section 1 but this approach leads
to heavy computations and, despite the help of J.-C. Faugère, we were not
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able to go beyond N = 3. However, this approach turns out to be useful
for the computation of the minimal polynomial of the corresponding field
extension.

A more efficient approach is to compute the push forward ∇̃ and decide
when its N th tensor product is trivial. Let ∇̃ be given by the formula

∇̃f =
(
c +

w + w0

z − z0

)
dz

2w
⊗ f

where (z0, w0) ∈ Et is the point defining the underlying line bundle and
c ∈ C a constant. A necessary condition is that the N th tensor product of
the line bundle is itself trivial, i.e., (z0, w0) is an N -order point of Et. Next
it remains to find the unique value of c for which there exists a rational
function f such that dff = N

(
c + w+w0

z−z0

)
dz
2w . In Section 7, we give simple

formulae which permit to express those conditions in the initial parameters
(a1, a2, H) of Lamé systems. However, this determination of c still leads to
tedious computations as N increases.

In [6], N.J. Hitchin uses this later approach to construct algebraic solu-
tions of the Painlevé VI equation. Inspired by [13], we use the other direction
here. Using a special solution of Painlevé VI, we obtain that if (z0(t), w0(t))
is a point of finite order on Et, with varying t, then the differential Galois
group is finite if and only if

c =
z0(z0 − 1) − t(t− 1)dz0dt

w0
.

We use the above ideas to provide explicit parametrizations for DSL2
2 ,

DSL2
3 and DSL2

4 . For instance, DSL2
2 is given by points of order 4 on Et,

that is those points (z0, w0) of Et satisfying

(z2
0 − t)(z2

0 − 2z0 + t)(z2
0 − 2tz0 + t) = 0.

For each t �= 0, 1,∞ we will find 6 systems with Galois group DSL2
2 , but there

are in fact 3 irreducible families of them for varying t. The one corresponding
to the first factor can be parametrized by λ =

√
t and the resulting Lamé

connection is for instance given by

d

dz
+


(z − λ)(2z − λ2 − 1)
8z(z − 1)(z − λ2)

(1 − λ2)(z + λ)
8z(z − 1)(z − λ2)

(1 − λ2)(3z − λ)
8z(z − 1)(z − λ2)

− (z − λ)(2z − λ2 − 1)
8z(z − 1)(z − λ2)

 .
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In our moduli space Pt, this family is parametrized by

t = λ2, a1 =
λ2 + 1

8λ
, a2 =

1 − λ

8
and H =

(λ + 1)(λ2 − 1)
64λ

or equivalently defined by the equations

1 + 32a1a2 − 4a1 + 32a2
2 − 8a2 = 0 and 32H + 4a1 − 32a2

2 + 16a2 − 1 = 0.

Our approach also allows to find the irreducible polynomials for the corre-
sponding Picard-Vessiot extension :

Y 8 − 2
k1

(
−z2 +

(
2 − 2λ + 2λ2

)
z − λ2

)
Y 4

(z − 1) z (−z + λ2)
+

k1 (z − λ)4

z2 (z − 1)2 (z − λ2)2

producing a polynomial over C(z), depending on two parameters, whose
galois group is the quaternion group DSL2

2 of order 8 for all non confluent
parameter values.

For all n ∈ Z, the classical Lamé equation

Ln,B :
d2y

dz2
+

1
2
f ′

f

dy

dz
− n(n + 1)z + B

f
y, B ∈ C

with f = 4(z − e1)(z − e2)(z − e3) and e1 + e2 + e3 = 0 is gauge equivalent
to a two parameter subfamily of P where t = e3−e1

e2−e1 . Therefore, once we de-
termine the locus of those Lamé connections having Galois group DSL2

N , we
deduce by restriction all classical Lamé equations having this Galois group.
This provides a new approach for a very classical subject (see [4], [5] and
references therein). For instance, the sub-family of Lamé systems defined by
L2,B intersects twice the irreducible component of DSL2

2 presented above,
namely for t = −1 and b2 = 72

7 , where B = (e2 − e1)b.

1. Imprimitive differential modules of rank 2

Let K denote a differential field. The field of constants C of K is sup-
posed to have characteristic 0 and to be different from K. Let M be a
differential module over K of dimension 2 and let B1, B2 be a basis of M
over K. Any element m1 ⊗m2 of the second symmetric power sym2

KM will
be written as m1m2. In particular B2

1 , B1B2, B
2
2 is a basis of sym2M . Let

L ⊃ K be an extension of degree 2 and let N denote a 1-dimensional differ-
ential module over L. We write ResL/K(N) for N viewed as 2-dimensional
differential module over K.
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Lemma 1.1. — Let F = α1B
2
1 + α2B1B2 + α3B

2
2 �= 0 generate a differ-

ential submodule of sym2
KM . One regards F as element of the polynomial

ring K[B1, B2]. Put ∆ = α2
2 − 4α1α3. Then :

(1) If F is a K∗-multiple of a square (or equivalently ∆ = 0), then we
may suppose that F = B2

1 . Now KB1 is a differential submodule of M .

(2) If F is a product of two distinct linear factors (or equivalently ∆ �= 0 is
a square in K), then we may suppose that F = B1B2. Now KB1 and KB2

are differential submodules of M .

(3) Suppose that F is irreducible. We may assume F = B2
2 − ∆B2

1 . Put
L = K(δ) with δ2 = ∆. There exists a 1-dimensional module N = Le over
L with M ∼= ResL/K(N) and such that the kernel of the surjective (obvious)
morphism of differential modules sym2

KM → ResL/K(sym2
LN) equals KF .

The differential module N = Le with ∂e = ue, with the above properties, is
unique up to conjugation, i.e., u ∈ L is replaced by its conjugate u.
Moreover sym2

KM is the direct sum of K(B2
2 − ∆B2

1) and the differential
submodule K(B2

2 + ∆B2
1) + K(B1B2).

(4) Suppose that C is algebraically closed and that M is irreducible and (for
convenience) that the determinant of M (i.e., the exterior product Λ2M) is
trivial. Then sym2

KM contains more than one 1-dimensional submodule, if
and only if the differential Galois group of M is DSL2

2 . Moreover, in this
case there are precisely three 1-dimensional submodules of sym2

KM and each
one defines a different quadratic extension of K.

Proof. — (1) and (2) follow by straightforward computation. In case (3)
we give M the structure of a vector space over L by prescribing δB1 = B2

and δB2 = ∆B1. Thus we obtain a vector space N = LB1 over L. Let ∂
on M satisfy ∂B1 = aB1 + bB2 with a, b ∈ K. Then ∂ on N is defined
by ∂B1 = (a + bδ)B1. From the assumption that ∂(B2

2 − ∆B2
1) is a mul-

tiple of (B2
2 − ∆B2

1), it follows that ResL/KN is isomorphic to M . The
obvious morphism sym2

KM → ResL/K(N) is given by B2
1 , B1B2, B

2
2 have

images B2
1 , δB

2
1 , δ

2B2
1 . The map is surjective and its kernel is generated by

B2
2 −∆B2

1 . The only freedom one has in giving M a structure of differential
module over L is by prescribing ∂B1 = (a−bδ)B1. The rest of the statement
(3) follows by easy computation.
The first statement of (4) is well known and follows in fact from the classi-
fication of the algebraic subgroups of Sl2(C). Suppose that the differential
Galois group of M is DSl2

2 . Then the differential Galois group of sym2M is
the group D2 (of order 4) and sym2M is the direct sum L1 ⊕ L2 ⊕ L3 of
submodules. Each Lj corresponds to a different surjective homomorphism
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χj : D2 → {±1}. The quadratic extension of K corresponding to Lj is the
fixed field of the Picard-Vessiot field under the kernel of χj .

In case (3) of Lemma 1.1, the differential module will be called imprim-
itive.

Remark. — In case (4) of Lemma 1.1, the condition that C is algebraically
closed cannot be omitted.

Corollary 1.2. — Let M be an irreducible differential module of di-
mension 2 over K. Then M is imprimitive if and only if there exists a
quadratic extension L ⊃ K such that L⊗KM has a 1-dimensional submod-
ule.

Proof. — Suppose that M is imprimitive. Then M = ResL/K(N) for
suitable L and N . The kernel of the canonical map L ⊗K ResL/K(N) →
L⊗L N = N is a 1-dimensional submodule of L⊗K M .

On the other hand, suppose that L ⊗K M has a 1-dimensional sub-
module T1. Using the conjugation of L/K one finds another 1-dimensional
submodule T2. The 1-dimensional submodule T1 ⊗L T2 of L⊗K sym2

KM is
invariant under the conjugation of L/K and thus provides a 1-dimensional
submodule of sym2M .

Suppose that M is an imprimitive differential module over K of di-
mension 2. For every integer n � 2, the differential module symnKM has
an explicit 2-dimensional factor (direct summand) ResL/K(symnLN). We
use the notation of Lemma 1.1, i.e., L = K(δ), δ2 = ∆, N = LB1 and
∂B1 = (a+bδ)B1. Then symnLN has generator e = Bn1 and ∂e = n(a+bδ)e.
Then ResL/K(symnLN) has basis e, δe and the matrix of ∂ with respect to
this basis reads (

na nb∆
nb na + ∆′

2∆

)
.

The above method to find a factor of the nth symmetric power can also
be given explicitly for scalar equations. Consider a scalar equation y′′ +
a1y

′ + a0y = 0 over K with C algebraically closed, such that its differential
Galois is an irreducible subgroup of DSL2

∞ . The (abstract) solution space has
a basis y1, y2 such that the differential Galois group permutes the two lines
Cy1, Cy2 (cf. Lemma 1.1 (3)). Then S = y1y2 is a solution of the second
symmetric power and S2 ∈ K. This second symmetric power reads

y′′′ + 3a1y
′′ + (4a0 + 2a2

1 + a′1)y
′ + (2a′0 + 4a0a1)y = 0 .
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The term S′

S can be computed explicitly using Kovacic’s algorithm. As a
consequence the expression S′′

S = (S
′

S )′ + (S
′

S )2 is known as element of K.

Further y
′
1
y1

and y′2
y2

satisfy the polynomial equation

U2 − S′

S
U + (a0 + a1

S′

2S
+

S′′

2S
) = 0 over K.

From this, using elimination, one derives a differential equation Ln for yn1
and yn2 .

Ln(y) = y′′ + (a1 + (1 − n)
S′

S
)y′ + (n2a0 + (n2 − n)a1

S′

2S
+ (n2 − n)

S′′

2S
)y.

The differential Galois group is finite if and only if Ln(y) = 0 has a rational
solution for some integer n > 1. In this case the group has two polynomial
invariants, one given by (y1y2)2 and one given by y2n

1 + (−1)ny2n
2 whose

value is a rational solution of Ln(y) = 0. Since the stabiliser of a vector
under a finite subgroup of SL2 must be trivial, the length of the orbit of a
vector is always the group order. Therefore the minimal polynomial of y1

must be∏
σ∈G

(Y − σ(y1))) = Y 4n − (y2n
1 + (−1)ny2n

2 )Y 2n + (−1)n((y1y2)2)n.

Once a connection with finite differential Galois group is known, the compu-
tation of a rational solution g ∈ C(z) of the second order equation Ln(y) = 0
gives a very efficient way to compute the minimal polynomial of a primitive
element of the corresponding field extension. The value of y2n

1 + (−1)ny2n
2

and of g may differ by a constant that can be determined using series com-
putations at a regular point.

2. Connections with 4 special singular points

Consider an irreducible connection of rank 2 on P1
C having 4 singular

points 0, 1, t,∞ and local exponents 1/4,−1/4 for each singular point. The
generic fibre of this connection is a differential module M of dimension 2
over C(z), the field of rational functions of P1

C .

Proposition 2.1. — The module M is imprimitive and there is a 1-
dimensional submodule of sym2M such that the corresponding quadratic
extension of C(z) has the form C(z)(w) with w2 = cz(z − 1)(z − t) and
c ∈ C∗.
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A direct proof by computation will be given later on. First we consider
the case where C is the field of complex numbers C and we present an an-
alytic proof. We start by investigating the monodromy of M . One chooses
a base point in P1

C \ {0, 1, t,∞} and generators λ1, . . . , λ4 of the fundamen-
tal group π1 of this space, consisting of loops around the points 0, 1, t,∞
such that λ1 · · ·λ4 = 1. The monodromy is a homomorphism π1 → Sl2(C),
sending each λj to an element Bj of order 4. The monodromy is therefore
described by elements B1, . . . , B4 ∈ Sl2(C) of order 4 with B1 · · ·B4 = 1.

Lemma 2.2. — Let B1, . . . , B4 ∈ Sl2(C) satisfy B1 · · ·B4 = 1 and
B4
j = 1 for every j. Let G be the group generated by the Bj. There are

two possibilities :

(i) G is reducible and contained in a Borel subgroup of Sl2(C).

(ii) G is irreducible and contained in DSl2
∞ .

Proof. — In an appropriated basis the matrix Bi is diagonal and thus
(Bi)2 = ±1. Therefore (Bi)2 is in the center of Sl2(C). From ϕ: Sl2(C) →
PSl2(C) we get that ϕ(G) is a group generated by the elements ϕ(Bj) with
the property that ϕ(Bj)2 = 1 and ϕ(B1) · · ·ϕ(B4) = 1. From [4] proof of
Theorem 3.3 we get that G is projectively equivalent to a Dihedral group
or a Borel group, showing the result.

Second proof. — Let E denote the elliptic curve given by the affine equa-
tion w2 = z(z − 1)(z − t). Let p1, . . . , p4 ∈ E denote the points of E with
images 0, 1, t,∞. Then E− := E \ {p1, . . . , p4} → P1

− := P1 \ {0, 1, t,∞} is
a covering of degree 2 and the homomorphism I : π1(E−) → π1(P1

−) is in-
jective and its image is a subgroup of index 2. Write, as before, π1(P1

−) =<
λ1, . . . , λ4|λ1 · · ·λ4 = 1 >. Then the image of I is the kernel of the homo-
morphism π1(P1

−) → {±1} that sends each λj to −1. One can give π1(E−)
generators a, b, µ1, . . . , µ4 such that :

(i) Each µj is a loop around pj and I maps µj to a conjugate of λ2
j .

(ii) There is only one relation, namely µ1µ2µ3µ4aba
−1b−1 = 1.

(iii) The images of a, b in π1(E) under the canonical map π1(E−) → π1(E)
are generators of π1(E).

(iv) Conjugation with an (or any) element α ∈ π1(P1
−), not contained in

π1(E−), acts as −1 on the abelianized group (π1(E−))ab.

We use the map I to identify π1(E−) with a subgroup of π1(P1
−).
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Consider a homomorphism h : π1(P1
−) → SL2(C) which sends each λj

to Bj . Then h(µj) = −1 for all j and h(a) commutes with h(b). In par-
ticular, h(π1(E−)) is an abelian subgroup of SL2(C). Further, h induces a
homomorphism π1(E) → SL2(C) which will also be called h. There are the
following possibilities :

(a) This abelian subgroup has precisely one invariant line Ce in C2. Then
Ce is also invariant under h(π1(P1

−)) and the representation h is reducible.

(b) This abelian subgroup has precisely two invariant lines Ce1, Ce2. Then
h : π1(E) → SL2(C) has the form h(c)e1 = χ(c)e1 and h(c)e2 = χ(c)−1e2,
for some character χ of π1(E) ∼= Z2 such that χ2 �= 1. For any α ∈ π1(P1

−),
not contained in π1(E−), h(α) interchanges the two lines Ce1 and Ce2. This
follows from (iv). In particular, the representation h is irreducible and its
image is an irreducible subgroup of DSl2

∞ .

(c) This abelian subgroup has more than two invariant lines. Then h maps
every element of π1(E−) to ±1. Then h(π1(P1

−)) is abelian (actually cyclic
of order 4) and the representation is reducible.

Observations 2.3. — We supplement the information of Lemma 2.2 with
a well known description of the monodromy. The monodromy tuple
(B1, . . . , B4), associated to a differential module as above, is only determined
up to simultaneous conjugation. The collection T of all tuples (B1, . . . , B4) ∈
Sl42 satisfying B4

j = 1 for every j and B1 · · ·B4 = 1 is a closed subset of Sl42.
The group PSL2 acts on T by conjugation. There is a categorical quotient,
namely Q = Spec[t1, t2, t3]/(t21 + t22 + t23 + t1t2t3 − 4), where the relation is
a special case of the Fricke Klein formula. The affine cubic surface can be
identified with the classical Cayley cubic surface. The morphism q : T → Q
is given by

(B1, . . . , B4) �→ (t1 = tr(B1B2), t2 = tr(B2B3), t3 = tr(B1B3)).

S = {(−2, 2, 2), (2,−2, 2), (2, 2,−2), (−2,−2,−2)} is the set of the singular
points of Q. The preimage of S is the locus in T describing the reducible
groups (this follows easily from the proof of Lemma 2.2). Let Tirred denote
the open subset corresponding to the irreducible groups. Then q : Tirred →
Q\ S is a geometric quotient for the action of the group PSL2 (this follows
easily from the second proof of Lemma 2.2). In particular, Tirred is reduced,
irreducible, smooth and dim Tirred = 5.

The second proof of Lemma 2.2 leads to a connection between the
monodromy of the elliptic curve E and the special monodromy for P1

−.
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Let a homomorphism χ : π1(E) → C∗, with χ2 �= 1 be given. Define
h : π1(E−) → SL2(C) by h(µj) = −1 for every j and h(x) is the diago-
nal matrix with entries χ(x), χ(x)−1, for x = a, b. This homomorphism can
be extended to a homomorphism ψ : π1(P1

−) → SL2(C) as follows : for any
x ∈ π1(E−) one defines ψ(x) = h(x) (of course) and ψ(xλ4) = h(x) ·

(
0 1

−1 0

)
.

Using (iv), one easily verifies that ψ is indeed a homomorphism.

We note that two characters χ1, χ2 : π1(E) → C∗ with χ2
1 �= 1 �= χ2

2

induce isomorphic irreducible representations ρ1, ρ2 : π1(P1
−) → Sl2(C) if

and only if χ2 ∈ {χ1, χ
−1
1 }. We see TE := Hom(π1(E),C∗) as an algebraic

torus with group of characters π1(E). Let TE [2] denote the subgroup of the
points of order dividing 2. Consider (TE \ TE [2])/ ∼, where χ1 ∼ χ2 if and
only if χ2 ∈ {χ1, χ

−1
1 }. The above construction induces an isomorphism of

algebraic varieties
(TE \ TE [2])/ ∼−→ Q \ S.

This isomorphism extends to an isomorphism TE/ ∼−→ Q.
The isomorphism can be made explicit as follows. One considers an ele-
ment (B1, . . . , B4) ∈ T . Suppose that this tuple generates an irreducible
subgroup, then the tuple is an example for case (b) in the second proof of
Lemma 2.2. In the conjugacy class of the tuple there is an element of the
form ((

0 r
−1/r 0

)
,

(
0 s

−1/s 0

)
,

(
0 t

−1/t 0

)
,

(
0 1
−1 0

))
,

with s = rt because B1 · · ·B4 = 1. Moreover, (r, t) �= (±1,±1). The

above element is unique up to conjugation with
(

0 1
−1 0

)
. This oper-

ation changes (r, t) into (1/r, 1/t). Thus we find an isomorphism between
{(C∗)2 \ {(±1,±1)}}/ ∼ and Q \ S, which is essentially the same as the
above isomorphism.

Proof of Proposition 2.1. — We first consider the case where C is the field
of complex numbers C. According to Lemma 2.2, the monodromy group of
M , generated by B1, . . . , B4, is an irreducible subgroup of DSl2

∞ and the
same holds for its Zariski closure which is the differential Galois group. It
follows that sym2M contains a 1-dimensional submodule.

In case the differential Galois group G is DSl2
∞ or DSl2

n with n > 2, there
is only one 1-dimensional submodule. The corresponding field extension
L ⊃ C(z) corresponds to the unique surjective homomorphism h : G →
{±1}. The elements Bj ∈ G have order 4 and it follows that h(Bj) = −1
for every j. Indeed, the kernel of h is the intersection of G ⊂ DSl2

∞ with
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the diagonal subgroup; one easily check that if one of the generatorsBj is
diagonal, then G ⊂ DSl2

2 . This implies that L ⊃ C(z) is ramified above each
of the points 0, 1, t,∞. The extension L is therefore given by L = C(z)(w)
with w2 = z(z − 1)(z − t).

If the differential Galois group G is DSl2
2 , then there are precisely three

1-dimensional submodules of sym2M and there are also precisely three sur-
jective homomorphisms h : G → {±1}. As above, it suffices to verify that
there exists a homomorphism with h(Bj) = −1 for all j. The commuta-
tor subgroup of G is identical with the center of G. Consider the images
b1, . . . , b4 ∈ PSl2 of B1, . . . , B4.

Now, {b1, b2, b3, b4} generates a group H ∼= {±1} × {±1}, each element
bj is different from 1 and b1b2b3b4 = 1. We will show that there exists a
unique homomorphism h0 : H → {±1} such that h0(bj) = −1 for all j.

According to Lemma 1.1 part (4), h0 yields the required quadratic ex-
tension of C(z) ramified at {0, 1, t,∞}. The other two non trivial homomor-
phism hi : H → {±1}, i = 1, 2 yield quadratic extensions ramified at two
of the points {0, 1, t,∞} since hi(bj) = −1 for only two values of j.

Three cases can occur. — In the algorithmic part of this paper we will
verify that each of these cases (i)–(iii) are present in our family.
Suppose that b1 �= b2. Then b1, b2 generate H and for the pair (b3, b4) there
are only two possibilities, namely :
Case (i) (b3, b4) = (b1, b2) and Case (ii) (b3, b4) = (b2, b1).
Thus h0 given by h0(b1) = h0(b2) = −1 has the required property. For
case (i), the homomorphisms h1, h2 yield quadratic extensions ramified at
{0, t} and {1,∞}. For case (ii), the homomorphisms h1, h2 yield quadratic
extensions ramified at {0,∞} and {1, t}.
Case (iii). Suppose that b1 = b2. Then b3 �= b1 and b4 must be equal to
b3. Then H is generated by b1, b3 and h0 defined by h0(b1) = h0(b3) = −1
has the required property. The other homomorphisms h1, h2 yield quadratic
extensions ramified at {0, 1} and {t,∞}.

Now we consider a general case. We may suppose that the algebraic
closure C of C is a subfield of C. Let M+ denote the differential module
C(z)⊗C(z) M . For this differential module the statement of the proposition
follows easily from the statement for the case C. Further sym2M+ has
one or three 1-dimensional submodules. They produce one or three distinct
quadratic extensions of C(z).

– 382 –
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Precisely one extension is ramified at {0, 1, t,∞}. The other two exten-
sions (in the case DSL2

2 ) are ramified at two points, which are specified above.
It follows that the Galois group of C/C preserves all possible quadratic ex-
tensions since the points {0, 1,∞} cannot move under an element of the Ga-
lois group. Thus the 1-dimensional submodule of sym2M+,corresponding to
a quadratic field extension, is invariant under the Galois group. Therefore
sym2M has one or three 1-dimensional submodules. For precisely one of
them the field extension is over C(z) given by w2 = z(z − 1)(z − t). Thus
over the field C(z) this equation reads w2 = cz(z − 1)(z − t) for some
c ∈ C∗.

3. Regular connections on an elliptic curve

In this section the base field will be C, the field of complex numbers. Let
M denote a differential module over C(z) with four singular points 0, 1, t,∞
and local exponents 1/4,−1/4 for each of them. According to Proposition
2.1, M is the restriction to C(z) of a differential module of rank one over the
field C(z, w) with w2 = z(z−1)(z−t). After tensoring M with the differential
module (C(z)e, ∂), where ∂(e) = ( 1/4

z + 1/4
z−1 + 1/4

z−t )e, the new differential
module has local exponents 1/2, 0 at each singular point. The corresponding
rank one differential module over C(z, w) = C(E) has no singularities. Here
E denotes the elliptic curve given by the equation w2 = z(z− 1)(z− t). We
start by describing the regular connections on E.

A regular connection is a pair (L,∇) of a line bundle on E and a con-
nection ∇ : L → Ω ⊗ L, where Ω denotes the sheaf of the holomorphic
differentials. Its generic stalk is a vector space C(E)e together with a con-
nection ∇ given by ∇e = ω⊗ e where ω of a meromorphic differential on E.
The condition that the connection has no singularities translates into ω has
only simple poles and all its residues are in Z. Further ω is unique up to the
addition of a term df

f , with f ∈ C(E)∗. For any meromorphic differential
form ω with at most simple poles, we define Res(ω) :=

∑
p∈E resp(ω)[p].

This is a divisor of degree 0 on E if all the residues of ω are integers. Let ω
define a regular connection and let the line bundle L correspond to Res(ω).
Then ω corresponds to a global regular connection ∇ : L → Ω ⊗ L on E.

If L is trivial (i.e., isomorphic to OE), then ω has the form c dz2w for some
c ∈ C.

If L is not trivial then this line bundle corresponds to a divisor [q]− [1E ],
where 1E is the neutral element of E (as usual taken to be the point z =
∞) and q = (z0, w0) is some point (�= 1E) on the affine curve given by
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w2 = z(z − 1)(z − t). In this case ω can be written in normalized form as
(c + w+w0

z−z0 ) dz2w with c ∈ C.

Now we make a complex analytic study of the regular connections on E.
Consider the exact sequence of sheaves on E

0 → C∗ → O∗
E → Ω → 0,

where C∗ is the constant sheaf, O∗
E is the sheaf of invertible holomorphic

functions and Ω is the sheaf of holomorphic differential forms. The morphism
O∗
E → Ω is given by f �→ df

f . This induces an exact sequence for cohomology
groups

0 → C
dz

2w
→ H1(E,C∗) → H1(E,O∗

E) → H1(E,Ω) · · · .

H1(E,O∗
E) is the group of the equivalence classes of line bundles Pic(E).

Its subgroup Pic0(E) of equivalence classes of line bundles of degree 0 is
identified with E. Let π1(E) denotes the fundamental group of E, then
H1(E,C∗) is equal to Hom(π1(E),C∗). One easily derives from the above
that the following sequence is exact

0 → C
dz

2w
→ Hom(π1(E),C∗) → E → 0.

Lemma 3.1. — There is a natural isomorphism of groups

Hom(π1(E),C∗) → {(L,∇)}/ ∼,

where the last group is the group of the equivalence classes of the regular
connections on E of rank 1.

Proof. — Let U : Cu → E denote the uniformization of E. Here u de-
notes the global parameter of C. The kernel Λ of U is identified with π1(E).
Suppose that a homomorphism ρ : Λ → C∗ is given. Let Cu×Cv denote the
trivial (geometric) line bundle on Cu provided with the trivial connection.
Here v denotes the global parameter on the linear space C. Let Λ act on
Cu × Cv by λ(u, v) = (u + λ, ρ(λ)v). The quotient by the action of Λ is a
(geometric) line bundle (Cu×Cv)/Λ → Cu/Λ = E with induced connection.
The sheaf of sections of this geometric line bundle is a line bundle L on E
(of degree 0) and is provided with a regular connection.

Let, on the other hand, a regular connection (L,∇) on E be given.
Then U∗(L,∇) is a trivial connection on Cu. The group Λ acts on the 1-
dimensional solution space of this trivial connection and this produces a
homomorphism ρ : Λ → C∗.
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A slightly different way to find the isomorphism of Lemma 3.1 is the
following. Consider the exact sequence of sheaves on E :

0 → C∗ → M∗ → Ωsp → 0,

where M∗ denotes the sheaf of the invertible meromorphic functions on E
and Ωsp denotes the sheaf of the special meromorphic differentials having
at most simple poles and having residues in Z. The morphism M∗ → Ωsp
is given by f �→ df

f . The cohomology sequence reads

0 → C∗ → C(E)∗ → H0(E,Ωsp) → H1(E,C∗) → 0.

Indeed, H1(E,M∗) = 0 is known. The cokernel of C(E)∗ → H0(E,Ωsp)
has already been identified with the isomorphism classes of the regular con-
nections on E.

Proposition 3.2. — Let π : E → P1 denote the morphism, induced
by the map (z, w) �→ z. Let (L,∇) denote a regular connection (of rank
one) on E. Then π∗(L,∇) is a rank 2 connection on P1 having 4 regular
singular points, namely 0, 1, t,∞. At each singular point the local exponents
are 0, 1/2. Further π∗OE is isomorphic to the vector bundle O(0)⊕O(−2) on
P1 and π∗L, with L �= OE, is isomorphic to the vector bundle O(−1)⊕O(−1)
on P1.

Proof. — Let U : Cu → E denote again the universal covering. Let Λ̃
denote the group of the automorphisms of Cu generated by the translations
over the elements of Λ and the map u �→ −u. Then Cu/Λ̃ is identified
with P1. The trivial connection on Cu (provided with a homomorphism
ρ : Λ → C∗) yields a connection on P1 which is clearly regular outside the
ramification points. For a point of ramification, say the image in P1 of the
neutral element of E, one easily verifies that the local exponents are 0, 1/2.
Indeed, one knows that the local exponents at a ramification point give,
multiplied with the ramification index (in this case 2), the local exponents
above. The latter are {0, 1}.

A line bundle L on E and its direct image π∗L have cohomology groups
of the same dimension. This proves the second statement.

Remarks 3.3. — From rank one connections on E to Lamé connections.
Now π∗(L,∇) is tensorized with the rank one connection T := (T,∇) on
P1 with singularities in 0, 1, t,∞, given by T = O([∞])e (i.e., the sheaf of
meromorphic functions having at most a simple pole at ∞) and

∇e = (
−1/4
z

+
−1/4
z − 1

+
−1/4
z − t

)dz ⊗ e =
−dw

2w
⊗ e.
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Then π∗(L,∇) ⊗ T has local exponents 1/4,−1/4 at each singular point.
Moreover this rank 2 bundle is free if L �= OE and has the form O(1)⊕O(−1)
in case L = OE . According to Proposition 2.1 we obtain in this way all the
irreducible connections on P1

C with 4 singular points 0, 1, t,∞ and all local
exponents 1/4,−1/4 as push forward of a connection ∇e = ω⊗e on E, where
ω is given in standard form by (c + w+w0

z−z0 ) dz2w − dw
2w or c dz2w − dw

2w , with c a
constant and (z0, w0) ∈ E (distinct from 1E). We note that the term −dw2w
takes care of the required shift of the local exponents. The second standard
form for ω can be seen as a limit case for the first one where (z0, w0) tends
to 1E . This construction produces also four reducible connections on P1

C,
namely for the ω such that 2ω = dF

F for some rational function F on E.
The four cases are

ω =
w

z

dz

2w
− dw

2w
,

w

z − 1
dz

2w
− dw

2w
,

w

z − t

dz

2w
− dw

2w
, −dw

2w
.

Moreover every irreducible connection on P1
C is obtained precisely twice

since ω and −ω produce the same connection. These statements easily follow
from Observations 2.3. Indeed, the above construction (L,∇) �→ π∗(L,∇)⊗
T translates into the construction, explained in Observations 2.3, which
associates to χ ∈ Hom(π1(E),C∗) a tuple (B1, . . . , B4) (with the properties
stated above) modulo the action by conjugation of the group PSL2(C).

4. The analytic universal family

The Legendre family Legendre of elliptic curves w2 = z(z − 1)(z − t)
over C can be written as algebraic variety

Proj(C[t,
1

t(t− 1)
][z, w, s]/(sw2 − z(z − s)(z − st))) → P1 \ {0, 1,∞}.

If one allows the values 0, 1,∞ for t, then one obtains an elliptic surface
E → P1 having singular fibres above 0, 1,∞. The uniformization of the
Legendre family is equal to H×Cu, where H is the upper half plane and Cu
means C where we use u as variable. The group acting upon this space is
Z2�Γ(2)∗, where : Γ(2)∗ is the subgroup of Sl2(Z) consisting of the matrices(
a b
c d

)
such that a, d ≡ 1 mod 4 and b, c ≡ 0 mod 2. This group is free on two

generators and Γ(2)∗\H is isomorphic to P1 \ {0, 1,∞}.
The action (by conjugation) of Γ(2)∗ on Z2 is given by γ

(
n
m

)
γ−1 =t γ−1

(
n
m

)
.

The action of γ =
(
a b
c d

)
on H × Cu is given by γ(τ, u) = (aτ+bcτ+d ,

u
cτ+d ). The

action of Z2 is given by
(
n
m

)
(τ, u) = (τ, u + nτ + m).

Above the Legendre family we want to construct the universal line bun-
dle with a regular connection. Put T = Hom(Z2,C∗); this is an algebraic
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torus. Consider the product T × H × Cu × Cv, where the last term means
C with parameter v. This is seen as a geometric line bundle with trivial
connection above T × H × Cu. The group Z2 � Γ(2)∗ act as follows :
For γ =

(
a b
c d

)
∈ Γ(2)∗, one defines γ(ρ, τ, u, v) = (γ(ρ), aτ+bcτ+d ,

u
cτ+d , v), where

the action of Γ(2)∗ on T is induced by its action on Z2. Further, for
(
n
m

)
∈ Z2

one defines
(
n
m

)
(ρ, τ, u, v) = (ρ, τ, u + nτ + m, ρ(

(
n
m

)
)v).

The quotient L := Z2 � Γ(2)∗\(T×H×Cu×Cv) is a geometric line bundle
with a regular connection above the family of elliptic curves
Z2 � Γ(2)∗\(T × H × Cu) parametrized by Par := Γ(2)∗\(T × H). Let
L be the sheaf of sections of L. It has an induced connection and thus
we find a universal regular connection (L,∇) above the family of elliptic
curves. The parameter space Par := Γ(2)∗\T × H is a T-bundle above
Γ(2)∗\H = P1 \ {0, 1,∞}. The family of elliptic curves can be written as
Par ×P1\{0,1,∞} Legendre

Fix t ∈ P1 \ {0, 1,∞} and τ ∈ H with image t and a ρ ∈ Hom(Z2,C∗).
The ‘evaluation’ of (L,∇) at the point (ρ, t) is a connection on the curve
Et = Eu/(Zτ + Z) (with equation w2 = z(z − 1)(z − t)) corresponding to
the homomorphism π1(Et) = Zτ + Z → C∗ given by nτ + m �→ ρ(

(
n
m

)
).

One considers the subset {(ρ, τ)|∃c ∈ C such that ρ(
(
n
m

)
) = ec(nτ+m)}

of T × H. This subset is given by the equation
log ρ(1

0)−τ log ρ(0
1)

2πi ∈ Zτ + Z.
(Note that this equation does not depend on the choice of the logarithms).
Hence this subset is an analytic divisor on T×H. The map C×H → T×H,
given by (c, τ) �→ (ρ, τ) with ρ

(
n
m

)
= ec(nτ+m), induces an isomorphism of

C × H with this divisor. The divisor is invariant under the action of Γ(2)∗

and yields a divisor Θ in the parameter space Par. The subset of the points
in the parameter space where the ‘evaluation’ of L is trivial, i.e., isomorphic
to OEt

, is precisely Θ. This ends the description of the universal connection
of rank one (L,∇) above the space Par ×P1\{0,1,∞} Legendre.

The next step is to push this universal connection down to the projective
line. One considers the obvious morphism Legendre → (P1−{0, 1,∞})×P1.
This induces a morphism π : Par ×P1\{0,1,∞} Legendre → Par × P1. One
obtains a connection π∗(L,∇) of rank 2 on Par × P1. This connection is
tensorized by the rank 1 connection (O([∞])e,∇) given by ∇e = −dw2w ⊗ e.
The result is a connection of rank two on the space Par × P1 with regular
singular sections Par×{0}, . . . , Par×{∞} and local exponents 1/4,−1/4 for
each singular section. We delete from Par the closed subset Γ(2)∗\T[2]×H.
On the result Par∗ there is a free action of an automorphism of order
2, induced by the map T × H → T × H given by (ρ, τ) �→ (ρ−1, τ). The
resulting space will de denoted by Par∗∗. This automorphism also acts
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upon the connection π∗(L,∇) ⊗ (O([∞])e,∇) restricted to Par∗ × P1. As
a consequence we find a connection (M,∇) on Par∗∗ × P1. This is finally
the universal family of rank two irreducible connections on P1 with regular
singularities at 0, 1, t,∞ and local exponents 1/4,−1/4 at each singular
point, that we wanted to construct.

The image Θ∗∗ of Θ in Par∗∗ is the locus where the vector bundle M is
not free (and actually is isomorphic to O(1)⊕O(−1)). On the complement
of the divisor Θ∗∗ in Par∗∗, the vector bundle M is free.

The analytic T-bundle Par → P1 \{0, 1,∞} is probably not trivial. The
same holds for the bundle Par∗∗ → P1 \ {0, 1,∞}. Each fibre is equal to
T \ T [2]/ ∼. This space has been identified with Q \ S.

The morphism Γ(2)∗\(C×H) → P1 \{0, 1,∞} is an analytic line bundle
and therefore free. It follows that the divisor Θ∗∗ on Par∗∗ is, as a variety,
isomorphic to the space C∗ × (P1 \ {0, 1,∞}). The restriction of the con-
nection (M,∇) to Θ∗∗ will be called the special family. In Section 6 we will
make this special family explicit. The restriction of (M∗∗,∇) to Par∗∗\Θ∗∗

has the property that the ‘evaluation’ of M∗∗ at every point of this space
is free. The connection (M∗∗,∇) will be studied from an algebraic point of
view in Section 5.

5. Algebraic construction of a moduli family

The aim is to construct a ‘universal’ family of irreducible connections
(M,∇) on the projective line with M free, regular singularities at 0, 1, t,∞
and local exponents 1/4,−1/4 at each singular point.

The parameter t is seen as a point in P1 \ {0, 1,∞}. Thus we will work
with the projective line over Q[t, 1

t(t−1) ]. After fixing a basis of H0(M)
and replacing ∇ by ∇ d

dz
we obtain a differential operator of the form

d
dz +

∑3
j=1

Aj

z−sj with s1 = 0, s2 = 1, s3 = t and where the matrices

Aj =
(

aj bj
cj −aj

)
for j = 1, 2, 3 satisfy the conditions :

a2
j + bjcj = 1/16 for j = 1, 2, 3 and (

3∑
j=1

aj)2 + (
3∑
j=1

bj)(
3∑
j=1

cj) = 1/16.
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We still have to find the conditions which express that the equation is
irreducible and moreover we want to divide by the action (by conjugation)
of the group PGl2.

The structure of the parameter space. — One considers tuples (A1,. . .,A4)
of 2×2-matrices such that

∑
Aj = 0 and each Aj has eigenvalues 1/4,−1/4.

The tuples form an affine algebraic variety V ar of dimension 5, having an
action of PGl2, by conjugation. The stabilizer of a tuple (A1, . . . , A4) is not
trivial if and only if there are two distinct lines invariant under all Aj . This
condition is equivalent to “all Aj commute”. In this case the stabilizer is
the multiplicative group Gm. The subset V ar1 of V ar, consisting of these
tuples, is closed; it has dimension 2 and consists of three PGl2-orbits.

The subset V ar2 of V ar, consisting of the tuples such that the A1, . . . , A4

have a common eigenvector, is also closed. Let e be the common eigenvector
for all Aj . Then Aje = ±1/4e for all j and the sum of the eigenvalues is
0. This implies that V ar2 has six irreducible components, say V ar2(i) with
i = 1, . . . , 6, each of dimension 4. Each V ar2(i) is invariant under the action
of PGl2. Further the quotient of V ar2(i) \ (V ar2(i) ∩ V ar1) by the action
of PGl2 is seen to be a projective line.

We are interested in the structure of the quotient PGl2\V ar. There is
no geometric quotient. However we will compute the ring Rinv of PGl2-
invariant regular functions of V ar. First of all, A4 is normalized to

(−1/4 0
0 1/4

)
.

This defines a closed subspace V ar′ of V ar. The stabilizer of A4, under the
action of PGL2 is its maximal torus, isomorphic to the multiplicative group
Gm. Thus Rinv can be identified with the ring of the regular functions
on V ar′, invariant under Gm. The ring of regular functions on V ar′ is
Q[a1, a2, b1, b2, c1, c2] with generating relations : bjcj = 1/16−a2

j for j = 1, 2
and b1c2 + b2c1 = −2(a1 − 1/4)(a2 − 1/4). Using these relations one finds
a free basis of the above ring over Q[a1, a2] consisting of the monomials
b>0
1 b�0

2 , b>0
2 c�0

1 , c�0
1 c�0

2 . From this it follows easily that the ring Rinv has
the form Q[a1, a2, H] with H = b2c1. There is only one equation, namely

H2 + 2H(a1 − 1/4)(a2 − 1/4) + (a2
1 − 1/16)(a2

2 − 1/16) = 0 .

We note that also b1c2 satisfies this equation. We could have chosen b1c2 for
H, however we prefer H = b2c1 in view of later computations. The singular
locus of Rinv is equal to

(a1, a2, H) = (1/4, 1/4, 0), (1/4,−1/4, 0), (−1/4, 1/4, 0) .

This singular locus is precisely the collection of points where the 4 ma-
trices A1, . . . , A4 have a common eigenvector. Hence the regular locus of
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Spec(Rinv) coincides with the variety PGl2\(V ar−V ar2). This space is not
affine and for further calculations we consider the open affine subset given
by (a2

1−1/16)(a2
2−1/16)(a2

3−1/16) �= 0 (note that a3 = 1/4−a1−a2). For
the missing points, given by aj = ±1/4 with j = 1, 2, 3, we make separate
calculations.

The open affine part U of the parameter space P . — The complete pa-
rameter space P is given by

P := Spec(Q[t,
1

t(1 − t)
]) × (PGL2\(V ar − V ar2)).

As before we normalize A4 and identify the right hand side with the regular
locus of Spec(Rinv). Further we consider the open affine subset U given
by s �= 0 where s = (a2

1 − 1/16)(a2
2 − 1/16)(a2

3 − 1/16). Then H �= 0
and thus b2c1 �= 0. We normalize further by c1 = 1. The corresponding
ring is now RU := Q[t, 1

t(1−t) ][a1, a2,
1
s , b2]/(Rel) with Rel = b22 + 2b2(a1 −

1/4)(a2 − 1/4) + (a2
1 − 1/16)(a2

2 − 1/16). The other variables are expressed
in a1, a2, b2, 1/s by the formulas

b1 = 1/16 − a2
1; c2 = b−1

2 (1/16 − a2
2); a3 = 1/4 − a1 − a2

b−1
2 = −b2

a2
3 − 1/16

s
− 2

(a1 − 1/4)(a2 − 1/4)(a2
3 − 1/16)

s

b3 = −b2 − 1/16 + a2
1; c3 = −1 − b−1

2 (1/16 − a2
2)

The locus of the reducible equations. — We search the locus Preducible ⊂
P , consisting of the points in P (Q), where the corresponding differential op-
erator D := d

dz +
∑3
j=1

Aj

z−sj is reducible. A point corresponds to prescribed

values in Q for a1, a2, . . . , t. Reducibility is equivalent to the existence of a
non zero vector v ∈ Q[z] ⊗ Q2 such that D(v) = fv for some f ∈ Q(z).
The vector v can be normalized such that the g.c.d. in the ring Q[z] of all
its coefficients is 1. Thus one considers v := v0 + v1z + · · · + vdz

d, with
all vi ∈ Q

2
, vd �= 0 and v0 + v1s + · · · + vds

d �= 0 for all s ∈ Q, and
satisfying the equation D(v) = fv for some f ∈ Q(z). One easily veri-
fies that f = (

∑3
j=1

λj

z−sj ) where the λj are eigenvalues of Aj . Expanding

the equation D(v) = fv at z = ∞ yields that d =
∑4
j=1 λj , where λ4

is some eigenvalue of A4 = −
∑3
j=1 Aj . In this special case there are only

two possibilities, namely d = 0 and d = 1. In first case all Aj have a common
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eigenvector. This case is excluded by the definition of the parameter space
P . The case d = 1 is equivalent to the equation

(
d

dz
+

3∑
j=1

Aj − 1/4
z − sj

)(v0 + v1z) = 0 .

The normalization of A4 implies v1 = e2 =
(
0
1

)
, where e1, e2 is the stan-

dard basis of Q2. The above equation is equivalent to the system of matrix
equations

(A1 − 1/4)v0 = 0, (A2 − 1/4)(v0 + e2) = 0, (A3 − 1/4)(v0 + te2) = 0.

The existence of a solution v0 leads to certain relations between the coeffi-
cients of the matrices A1, A2, A3, describing in fact Preducible.

The direct approach. — Let T denote the affine ring of V ar′. Recall that
T := Q[a1, a2, b1, b2, c1, c2] with generating relations bjcj = 1/16 − a2

j for
j = 1, 2 and b1c2 +b2c1 = −2(a1−1/4)(a2−1/4). Consider T [x1, x2], where
v0 =

(
x1
x2

)
. The system of matrix equations defines an ideal I ⊂ T [x1, x2].

Using Gröbner basis one calculates J = I ∩ T . This ideal is invariant under
the action by conjugation of Gm. Therefore J is induced by an ideal J0

of TGm = Rinv = Q[t, 1
t(t−1) ][a1, a2, H] (with generating relation Rel =

H2 +2H(a1−1/4)(a2−1/4)+(a2
1−1/16)(a2

2−1/16) = 0) in the sense that
J = J0T . The ideal J0 turns out to be generated by the two elements

f(t) = (a1 + a2 − 1/2)2t(t− 1) + (a1 + 1/4)2t + (a2 + 1/4)2(1 − t) and

2H + (a1 + a2 − 1/2)2t + (a2 + 1/4)(a1 − a2) .

One computes that the ideal I also contains the elements

x1 + 2b1t + 2b2t− 2b2 and x2 + 1/2t− a1t− a2t + a2 + 1/4.

Thus T [x1, x2]/I = T/J and (T/J)Gm = Rinv/J0. The last algebra equals
Q[t, 1

t(t−1) ][a1, a2]/(f(t)). One easily verifies that f(t) is irreducible. There-
fore Q[t, 1

t(t−1) ][a1, a2]/(f(t)) is a domain of dimension 2. Thus J0 ⊂ Rinv is
a prime ideal of height 1 and defines a closed irreducible subset of Spec(Rinv)
of codimension 1. The intersection of this closed subset with P is Pirreducible
and the latter is therefore closed and irreducible of dimension 2. Moreover
Pirreducible has the following rational parametrization by t, λ

a1 =
t− 2λ2

4t
, a2 =

t + 1 + 2λ2 + 4λ
4(t− 1)

, H =
(λ + 1)λ(λ2 − t)

4t(t− 1)
,

with λ = ta1 + ta2 − t/2 − a2 − 1/4.
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6. The special family and the Lamé equation

The ‘special family’ that we compute here is the family of irreducible
connections (M,∇) on P1 with (as before) 4 regular singular points at
0, 1, t,∞, local exponents 1/4,−1/4 at each singular point and such that
M is not free. We note that for a suitable shift of the local exponents over
integers the connection can be presented with a free vector bundle.

The second exterior power Λ2(M,∇) is a rank one connection without
singularities on P1. Hence Λ2M is the trivial line bundle and the connection
on it is also trivial. The irreducibility of (M,∇) implies that M is isomor-
phic to the sheaf O(1)⊕O(−1). Using this information one can calculate the
a matrix form for the connection. Instead of producing the results of this
calculation, we will describe an easier method to obtain the special family.

Proposition 3.2. — provides another way to obtain this family. On the
elliptic curve E, given by w2 = z(z−1)(z− t), one considers the connection
∇ : OEf0 → Ω ⊗ OEf0 given by ∇(f0) = c dz2w ⊗ f0 with c �= 0. The direct
image, under the morphism E → P1 has w.r.t. the basis f0, f1 = wf0 the
matrix form

d

dz
+

(
0 c/2
c

2w2
w′

w

)
.

One has to shift over − w′

2w in order to obtain the local exponents 1/4,−1/4.

After a conjugation with the constant matrix
(

2c−1 0
0 1

)
one obtains the

required form (with d = c2/4)

d

dz
+

(
− w′

2w d
1
w2

w′

2w

)
.

The above is in fact a family over the base ring Q[t, 1
t(t−1) , d, d

−1].

The classical Lamé equation is Ln := y′′ + f ′

2f y
′ − n(n+1)z+B

f y, with
f = 4(z3 + az + b). The transformation z �→ z − 1+t

3 , with suitable t,
transforms f into 4z(z − 1)(z − t) and the equation into

y′′ +
g′

2g
y′ − n(n + 1)(z − (1 + t)/3) + B

4g
y with g = z(z − 1)(z − t).

The local exponents are 0, 1/2 for 0, 1, t and −n/2, (n + 1)/2 at ∞.
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For n = 0 one writes w2 = g. The companion matrix equation for the

second scalar equation is d
dz +

[
0 −1

−B
4w2

w′

w

]
. The shift yields the system

d
dz +

[
− w′

2w −1
−B
4w2

w′

2w

]
.

If B �= 0, then conjugation with a constant matrix yields the equation

d
dz +

[
− w′

2w
4
B

1
w2

w′

2w

]
. This is the special family.

7. Explicit formulas and Painlevé VI

7.1. An inverse approach

The family {(M,∇)} can be computed directly from the normalized
differential form ω = (c + w+w0

z−z0 ) dz2w of Section 3. The differential module
above the elliptic curve reads ∂f0 = (c + w+w0

z−z0 ) 1
2wf0. With respect to the

basis f0, f1 = wf0 over the field of rational functions on P1 one finds the
operator

d

dz
+

[
1

2(z−z0) (c + w0
(z−z0) )/2

1
2w2 (c + w0

(z−z0) )
w′

w + 1
2(z−z0)

]
. The shift over − w′

2w
yields

L0 :=
d

dz
+

[
1

2(z−z0) −
w′

2w (c + w0
(z−z0) )/2

1
2w2 (c + w0

(z−z0) )
w′

2w + 1
2(z−z0)

]
. This is replaced by

L1 :=
(

1 −cz
0 1

)
L0

(
1 cz
0 1

)
in order to remove the apparent pole of

order 2 at ∞.

The formulas for w0 �= 0 (equivalently z0 �= 0, 1, t).
z0 is an apparent singularity of L1 which can be removed as follows. First
calculate the conjugate

L2 :=
( 1

2w0
−1/2

1
2w0

1/2

)
L1

(
w0 w0

−1 1

)
. Then again a conjugate

L3 :=
(

1 0
0 z − z0

)
L2

(
1 0
0 (z − z0)−1

)
.
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Then L3 is conjugated by
(
0 1
1 0

)
in order to normalize the matrix at infinity

to
(

−1/4 0
0 1/4

)
. Finally, a conjugation with a constant matrix of the

form
(
1 0
0 s

)
is needed to obtain c1 = 1. The final operator d

dz +U belongs to
our family, normalized with c1 = 1.

U =
1
∆

 N
(cz − cz0 + w0)F

t

4t− 4zt
2w0 − 3 cz0 + c + ct + c3

F
−N


where

∆ = 4z(z − 1)(z − t),

N = z2 + (2 c2 − 2 z0)z + 2 z0t− t− 2 c2z0 − 2 z0
2 + 2 z0

F = 3 cz0
2 − 3 cz0t− 3 cz0 − w0z0 + c3z0 + 2 ct− 3 c2w0 + w0t + w0

Remarks 7.1. —

(1) This formula for U is derived under the assumption that w0 �= 0. The
normalization c1 = 1 introduces the denominator F in the (2, 1) entry of
U . Thus the formula for U is valid under the assumptions that w0 �= 0 and
F �= 0. The involution of the elliptic curve maps (c, w0) to (−c,−w0). One
observes that the formula for U is, as it should be, invariant under this map.

(2) Suppose again that w0 �= 0 and F �= 0. Conjugation of U with the
constant matrix

(
t 0
0 F

)
yields

U∗ =
1
∆

[
N cz − cz0 + w0

−4z(−3 cz0 + 2w0 + c + ct + c3) + 4F −N

]
Thus d

dz +U is equivalent to d
dz +U∗. The latter expression is also valid for

F = 0. We will show that the formula d
dz + U∗ remains valid for w0 = 0.

Another advantage of U∗ is that its (1, 2) entry has a zero if c �= 0. We note
that U∗ is not invariant under the involution of the elliptic curve.

The formulas for w0 = 0 (equivalently z0 ∈ {0, 1, t}).

As before L0 := d
dz +

[
1

2(z−z0) −
w′

2w c/2
c

2w2
w′

2w + 1
2(z−z0)

]
and L1 is obtained

by conjugating L0 with
(

1 c(z − z0)
0 1

)
. Further L2 is obtained from L1

by conjugation with

(
1 0

0 (z − z0)
−1

)
. Finally L3 is obtained from L2

– 394 –
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by conjugation with
(
0 1
1 0

)
. We will not further normalize L3. One finds the

following formulas.

(1) For z0 = 0, L3 = d
dz + U0 with

U0 =
1
∆

[
z2 − t + 2 c2z cz

4 c
((
−1 − t− c2

)
z + 2 t

)
−z2 + t− 2 c2z

]

(2) For z0 = 1, L3 = d
dz + U1 with

U1 =
1
∆

[
z2 + 2(c2 − 1)z − 2 c2 + t c(z − 1)

4c3 − 4ct− 4z(ct− 2c + c3) 2 c2 − t− 2(c2 − 1)z − z2

]

(3) For z0 = t, L3 = d
dz + Ut where Ut equals

1
∆

[
z2 +

(
2 c2 − 2 t

)
z − t

(
2 c2 − 1

)
c(z − t)

−4z(c− 2ct + c3) + 4c3t− 4ct t(2c2 − 1) + (2t− 2c2)z − z2

]

These formulas are specializations of U∗ for w0 = 0 and z0 = 0, 1, t.

7.2. A direct approach

On the space P \ Preducible, the matrix U (or U∗) expresses a1, a2, b2, t
in terms of z0, w0, c. The aim is to express the rational functions z0,

w0
c , c2

on this space in terms of a1, a2, b2. One can view the data of U and U∗ as
polynomials a1, a2, b2, z0, w0, c, t, generating an ideal in Q[a1, a2, b2, t,

1
t(t−1) ,

z0, w0, c] (b2 stands for H and there are known relations for a1, a2, b2 and
z0, w0, c). Elimination for a suitable order produces two elements in this
ideal, namely
(16t2a2

1 − 32a2
2t + 32a1a2t

2 − 32a1a2t

−16t2a1 + 24a1t + 16a2
2 + 16a2

2t
2 + 8a2 − 16a2t

2 + 8a2t + 1 + 4t2 − 4t)z0

−t(−3+48a1a2t+20a1−20a2t+20a2−12a1t−48a2a1+4t+16ta1
2+32tb2−32b2)

and

((−32 + 32 t) b2 − (1 + 4 a1) (4 a1t− 4 a2t + 1 + 4 a2)) z0 + t (1 + 4 a1)
2

.

We recall that the locus Preducible was given by an ideal (Eq1, Eq2), given by

Eq1 = (a1 + a2 − 1/2)2 t (t− 1) + (a1 + 1/4)2 t + (a2 + 1/4)2 (−t + 1)

Eq2 = 2 b2 + (a1 + a2 − 1/2)2 t + (a2 + 1/4) (a1 − a2)
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The coefficients P1, P2 of z0 in the above equations satisfy P1 = 16 ·Eq1
and P2 = 16(t− 1) · Eq2 − 16 · Eq1. Thus (P1, P2) = (Eq1, Eq2). The locus
P \Preducible is the union of the two open subsets of P given by P1 �= 0 and
P2 �= 0. On each one of them, z0 is a regular expression in a1, a2, b2, t. For
P2 �= 0 this expression is

z0 = − t (1 + 4 a1)
2

32 (t− 1) b2 − (1 + 4 a1) (4 a1t− 4 a2(t− 1) + 1)
.

Once z0 is known, we may choose a solution w0 of w2
0 = z0(z0 − 1)(z0 − t).

For the zero q of the (1, 2) coefficient of U we have two expression, namely

q = z0 − w0
c and q = − t(16 a12−1)

16 (t−1)b2−t(16 a12−1) . This yields a formula for c.
We recall that the pair (w0, c) is unique up to a sign.

7.3. Intermezzo on Painlevé VI

We consider a family of connections, more general than the Lamé con-
nection,

d

dz
+A =

d

dz
+

A1

z
+

A2

z − 1
+

A3

z − t
with Aj =

(
aj bj
cj −aj

)
for j = 1, 2, 3.

Put A∞ = −A1 −A2 −A3. The assumptions are :

Aj has eigenvalues ± θj2 (equivalently a2
j + bjcj = θ2j

4 for j = 1, 2, 3),

A∞ =
(

− θ∞2 0
0 θ∞

2

)
(equivalently

∑
aj = θ∞

2 ,
∑

bj = 0,
∑

cj = 0).

The (1, 2) entry of A has a single zero, namely q := b1t
b1t+b2(t−1) (if

b1t + b2(t − 1) = 0 then we write q = ∞). One considers in this space
of connections a family d

dz +A(t) (i.e., all aj , bj , q, . . . are analytic functions
of t). Fuchs theorem can be formulated as follows (compare [10]).

Theorem 7.2 (Fuchs). — Suppose that θj �∈ Z for j = 1, 2, 3,∞. Con-
sider family d

dz + A(t), holomorphic in t and defined in a neighbourhood
of t0. Suppose that not all Aj(t0) commute and that q(t0) �= ∞. Then the
family is isomonodromic if and only if q = q(t) satisfies

q′ = 2a1
q − 1
t− 1

+ 2a2
q

t
+ (1 − θ∞)

q(q − 1)
t(t− 1)
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and the Painlevé VI equation

q′′ = 1/2(
1
q

+
1

q − 1
+

1
q − t

)(q′)2 − (
1
t

+
1

t− 1
+

1
q − t

)q′+

q(q − 1)(q − t)
t2(t− 1)2

(
α + β

t

q2
+ γ

t− 1
(q − 1)2

− δ
t(t− 1)
(q − t)2

)
.

with special parameters (α, β, γ, δ) = ( (θ∞−1)2

2 ,− θ
2
1
2 ,
θ22
2 ,
θ23−1

2 ).

If q is known, then one recovers all aj , bj , cj (up to the action of Gm on the
bj and cj) from the equality q := b1t

b1t+b2(t−1) and the equation for q′. The
choice θj = 1/2 for j = 1, 2, 3,∞ defines the Lamé connection.

A point of order m on the elliptic curve w2 = z(z − 1)(z − t) can be
seen as a pair (z0(t), w0(t)) of algebraic functions in t. It has been shown
by É. Picard, [17], that the coordinate z0(t) is a solution of PVI (0, 0, 0, 1

2 )
(compare [13]).

We will use the transformation w1w2w1 of Okamoto to obtain solutions
for PVI (1

8 ,−
1
8 ,

1
8 ,

3
8 ) corresponding to Lamé parameters. This transforma-

tion is described as follows (see [16], p. 356).
Suppose that q is a solution of PVI for the parameters (θ1, θ2, θ3, θ∞). Then
q + 1

2p with

p =
t(t− 1)q′

2q(q − 1)(q − t)
+

θ1

2q
+

θ2

2(q − 1)
+

θ3 − 1
2(q − t)

is a solution of PVI for the parameters

θ∗1 = 1/2(θ1 − θ2 + θ3 + θ∞) − 1, θ∗2 = 1/2(−θ1 + θ2 + θ3 + θ∞) − 1,

θ∗3 = 1/2(θ1 + θ2 + θ3 − θ∞) + 1, θ∗∞ = 1/2(θ1 + θ2 − θ3 + θ∞) + 1.

In particular, a solution q of PVI (0, 0, 0, 1
2 ) yields a solution q + 1

2p , with

p = t(t−1)q′

2q(q−1)(q−t) −
1

2(q−t) with q′ = dq
dt is a solution of PVI (1

8 ,−
1
8 ,

1
8 ,

3
8 ).

In particular, a point (z0(t), w0(t)) of order m on the elliptic curve yields
the algebraic solution z0 − z0(z0−1)(z0−t)

z0(z0−1)−t(t−1)z′0
(with z0 = z0(t) and z′0 = dz0

dt )

for PVI (1
8 ,−

1
8 ,

1
8 ,

3
8 ).
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7.4. Points of finite order on the elliptic curve

Each member ∇∗ of the Lamé family is induced by a regular equation of
rank one on the elliptic curve E, given by w2 = z(z − 1)(z − t). Taking the
shift into account, ∇∗ is the push forward of ∇e = {(c+ w+w0

z−z0 ) dz2w − dw
2w}⊗e

or of ∇e = {c dz2w − dw
2w} ⊗ e, where c a constant and (z0, w0) ∈ E.

For the moment we fix a complex value for t (different from 0, 1,∞) and
take (z0, w0) ∈ E(C). The differential Galois group of ∇∗ is equal to DSL2

n if
and only if the corresponding rank one equation on E has a cyclic differential
Galois group of order 2n. The latter is equivalent to the statement that the
equation ∇e = (c + w+w0

z−z0 ) dz2w ⊗ e or ∇e = c dz2w ⊗ e, has a cyclic differential
Galois of order m such that l.c.m.(m, 2) = 2n. Thus m = n or m = 2n if
n is odd and m = 2n if n is even. We note that ∇e = c dz2w ⊗ e has infinite
differential Galois group if c �= 0. Thus we may omit this case.

If ∇e = (c+ w+w0
z−z0 ) dz2w ⊗ e has a cyclic differential Galois group of order

m, then (z0, w0) is a point of exact order m. Moreover, for a point (z0, w0)
of exact order m, there is precisely one value of c such that the differential
Galois group is cyclic of order m.

We continue the discussion in Section 3 and analyze the exact sequence

0 → C → Hom(π1(E),C∗) → E → 0 .

As before, E = C/(Z + Cτ) and we choose as generators a, b of π1(E) the
circles R/Z and R/Zτ . This identifies Hom(π1(E),C∗) with C∗ × C∗, by
h �→ (h(a), h(b)). The first map of the exact sequence is d �→ (ed, edτ ). Put
S1 = {z ∈ C∗| |z| = 1}. Every element of C∗ × C∗ can be written uniquely
as (ed, edτ ) ·(s1, s2) with d ∈ C and s1, s2 ∈ S1. In particular, the restriction
of the second map of the exact sequence to S1 × S1 is a bijection. Thus for
a given point (z0, w0) ∈ E of exact order m, there is precisely one value of
c such that ∇e = (c+ w+w0

z−z0 ) dz2w ⊗ e has a cyclic differential Galois group of
order m. We note that it is, a priori, difficult to produce a formula for this
c. However, F. Beukers has proposed a formula (see [3]).

Now we consider t as a variable and investigate a family of Lamé connec-
tions ∇(t) with fixed differential Galois group DSL2

n . The corresponding rank
one connection ∇e = (c(t)+ w+w0(t)

z−z0(t) ) dz2w has the property that (z0(t), w0(t))
is a point of order m. This point is defined over a suitable algebraic exten-
sion of C(t). The monodromy of this family depends in a continuous way
on t and lies in Hom(π1(E), {ζ ∈ C∗| ζm = 1}). Since this group is finite,
the family has constant monodromy.
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The corresponding algebraic solution for PVI (1
8 ,−

1
8 ,

1
8 ,

3
8 ) is z0 − w0

c
according to Theorem 7.1 and the formula for the (1, 2) entry of U . A
combination of Picard’s result and Okamoto’s transformation yield the ex-
pression z0− z0(z0−1)(z0−t)

z0(z0−1)−t(t−1)z′0
for this solution. For the uniquely determined

c(t) we find therefore the following formula

w0(t) c(t) = z0(t)(z0(t) − 1) − t(t− 1)z0(t)′ .

8. The locus for DSL2
N with N = 2, 3, 4

8.1. Division polynomials

In this subsection we recall some facts on torsion points on elliptic curves
directly related to the locus for DSL2

n . First we follow [24] (or [21], p. 105)
in the description of the division polynomials ψm with m � 1. Suppose that
the elliptic curve E is given in the Weierstrass form w2 = z3 + Az + B.

The points �= 1E of order dividing m lie on this affine part of the curve
E. Their number is m2 − 1 (over an algebraically closed field of charac-
teristic 0). The z-coordinates of these points are the zeros of a polynomial
ψm ∈ Z[A,B][z, w] (with defining relation w2 = z3 + Az + B). For odd m,
ψm ∈ Z[A,B][z] and for m even, ψm ∈ w Z[A,B][z]. In the latter case one
may replace ψm by ψ2

m in order to have a polynomial in Z[A,B][z]. These
polynomials are given by the following recurrence relations

ψ0 = 0, ψ1 = 1, ψ2 = 2w, ψ3 = 3z4 + 6Az2 + 12Bz −A2 ,

ψ4 = 4w (z6 + 5Az4 + 20Bz3 − 5A2z2 − 4ABz − 8B2 −A3),

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m � 2 ,

ψ2m = (2w)−1 · ψm · (ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1) .

The zero set of ψ2
m (or its square free part ψ∗

m) is precisely the set of the
z-coordinates of the of points with order �= 1 and dividing m.

We specialize this by replacing Z[A,B] by the function field F := C(j)
of the j-line. Then E is the ‘universal curve’ above the j-line. The split-
ting field of F defined by ψ∗

m is the function field of the modular curve
X(m). The ramified Galois covering j : X(m) → P1 is known to have group
PSL2(Z/mZ). It follows that the Galois group GalF of F/F acts transi-
tively on the points of precise order m. Thus the minimal polynomial for
the z-coordinate of a point of precise order m is given by

∏
d|m(ψ∗

d)
µ(m/d).
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Here we are interested in the division polynomials over the field C(t)
which is a Galois extension of C(j) with Galois group S3. The substitution
z → z + t+1

3 brings z(z − 1)(z − t) into the Weierstrass form z3 + A(t)z +
B(t). Put φm = ψm(A(t), B(t), z − t+1

3 ). This is the division polynomial
for the Legendre family. Let φ∗

m denote the square free part of φm. The z-
coordinates of the points of precise order m are the zeros of the polynomial∏
d|m(φ∗

d)
µ(m/d).

For odd m this polynomial is irreducible. For even m this polynomial
has three irreducible factors, which are permuted by the Galois group S3

of C(t)/C(j). These statements can be deduced from the Galois action of
GalC(t) on the group (Z/mZ)2 of all points of order dividing m.

We note that σ ∈ S3 permutes in fact the three points of ramification
and permutes the three finite singular points of the Lamé connections.

8.2. Points of order 2

The points of precise order two on the elliptic curve yield reducible Lamé
connections with cyclic differential Galois groups of order 4. The formulas
for these connections are obtained from the formula d

dz + U∗ of subsection
7.1, specialized with w0 = 0, c = 0 and z0 = 0, 1, t. Put ∆ = 4z(z−1)(z−t).
One finds

(1) For z0 = 0, ddz + 1
∆

[
z2 − t 0

0 −z2 + t

]
.

(2) For z0 = 1, ddz + 1
∆

[
z2 − 2z + t 0

0 −z2 + 2z − t

]
.

(3) For z0 = t, ddz + 1
∆

[
z2 − 2tz + t 0

0 −z2 + 2tz − t

]
.

These equations do not correspond to points of the parameter space P .
They correspond in fact to the three singular points of Spec(Rinv).

8.3. The locus for DSL2
2 and points of order 4

The equation for the z-coordinates of the points of precise order 4 is

φ4(z)
φ2(z)

= (z2 − t)(z2 − 2 z + t)(z2 − 2 t z + t) ∈ C(t)[z] .
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The three irreducible factors produce the components for DSL2
2 . Let z0 de-

note a zero of the polynomial. The formulas w2
0 = z0(z0 − 1)(z0 − t) and

w0 c = z0(z0−1)−t(t−1)dz0dt and the universal family of subsection 7.1 yield
explicit formulas for the connection above the three components for DSL2

2 .
Each component is an open subset of the projective line, parametrized by
λ := z0. This open subset is determined by the condition t �= 0, 1,∞.

1. The first factor is parametrized by z0 = λ, t = λ2. One has further
2w0 c = 2 t − z0 − z0t. Put ∆ = 8

(
z − λ2

)
(z − 1) z. After conjugation of

the system by

(
1 0

0 8λ

)
, one obtains

1
∆

[
2 z2 − (λ + 1)2 z + λ

(
λ2 + 1

)
(λ− 1)2 (λ + 1)2 (−λ− z)

λ− 3 z −2 z2 + (λ + 1)2 z − λ
(
λ2 + 1

)
]

Using the remarks at the end of Section 1 we get that the corresponding
Picard-Vessiot extension is given by :

Y 8 − 2
k1

(
−z2 +

(
2 − 2λ + 2λ2

)
z − λ2

)
Y 4

(z − 1) z (−z + λ2)
+

k1 (z − λ)4

z2 (z − 1)2 (z − λ2)2
.

For all non confluent values of λ and all non zero values of k1 the galois
group of this polynomial over C(z) is the quaternion group Q8 = DSL2

2 of
order 8. The polynomial is not regular and if we specialize the variable z we
obtain the group Q8 : 2 of order 16 for almost all rational values of z as galois
group over Q. 2. The second factor is parametrized by z0 = λ, t = −λ2+2λ.
One has 2w0c = −t− z0t + 2 z0. Put ∆ = 8

(
z + λ2 − 2λ

)
(z − 1) z. After

conjugation of the system by

(
λ + 2 0

0 8

)
, one obtains

1
∆

[
2 z2 + λ (λ− 4) z − λ2 (λ− 2) λ (λ− 2) (λ− 2 + z)

(λ− 2) (−λ− 2 + 3 z)λ λ2(λ− 2) − λ(λ− 4)z − 2 z2

]
.

Using the remarks at the end of Section 1 we get that the corresponding
Picard-Vessiot extension is given by :

Y 8 + 2
k1

(
z2 +

(
2λ2 − 2λ

)
z − λ2

)
Y 4

(z − 1) z (z + λ2 − 2λ)
+

k1 (z − λ)4

z2 (z − 1)2 (z + λ2 − 2λ)2
.
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3. The third factor is parametrized by z0 = λ, t = λ2

2λ−1 . One has 2w0c =

2 tz0 − t− z0. Put ∆ = 8 (2λ− 1) z (z − 1)
(
z − λ2

2λ−1

)
. One finds

1
∆

 (2λ− 1)
(
2 z2 − (2λ + 1) z + λ

)
1/8 (4λ−1)((−2λ+1)z+λ)

λ

8 λ ((−6λ+3)z+λ (4λ−1))
4λ−1 (1 − 2λ)(2z2 − (2λ + 1)z + λ)

 .

After conjugation with

(
4λ− 1 0

0 8λ

)
one obtains the system

1
∆

[
(2λ− 1)

(
2 z2 − (2λ + 1) z + λ

)
(−2λ + 1) z + λ

(−6λ + 3) z + λ (4λ− 1) (1 − 2λ)(2z2 − (2λ + 1)z + λ)

]

Using the remarks at the end of Section 1 we get that the corresponding
Picard-Vessiot extension is given by :

Y 8 − 2
k1

(
−z2 + (−2λ + 2) z + λ2

)
Y 4

(z − 1) z ((1 − 2λ) z + λ2)
+

k1 (z − λ)4

z2 (z − 1)2 (2λ z − z − λ2)2
.

8.4. The locus for DSL2
3 and points of order 3 and 6

The locus P3 is derived from the points of order 3 and 6. The z-coordinates
of the points of precise order 3 are given by the irreducible polynomial

φ3(z) = −3 z4 + 4 z3t + 4 z3 − 6 z2t + t2

For the points of precise order 6 this is the polynomial F6 := φ6(z)
φ3(z)φ2(z)

. The
latter has three irreducible factors

F6,a = −z4 + 4 z3 − 6 z2t + 4 zt2 − t2 ,

F6,b = z4 − 4 z3t + 6 z2t− 4 zt + t2 ,

F6,c = z4 − 6 z2t + 4 zt2 + 4 zt− 3 t2 .

These define the four connected components of P3. Each one has a rational
parametrization. For a zero z0 of φ6 one has w2

0 = z0(z0 − 1)(z0 − t) and
w0c = z0(z0−1)−t(t−1)dz0dt . We note that the solutions q of PVI attached to
these examples happen to have poles that do not correspond to t ∈ {0, 1,∞},
but still the system is well defined. Using Section 7.1, one derives a formula
for the connection above each of these components.
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The Lamé family of connections on the projective line

1. φ3(z0, t) = 0 is parametrized by z0 = λ2

2λ−1 , t = − (λ−2)λ3

2λ−1 . Moreover

6w0c = t−2 z0t−2 z0 +3 z0
2. After conjugation by

(
1 0

0 24λ

)
the system

is 
G1

(2λ − 1)∆

25(λ−2)(λ+1)2((λ2−λ+1)z+λ2(λ−2))
∆

9(λ−2)((2λ−1)z−λ2)
(2λ−1)∆

−G1

(2λ − 1)∆


where

∆ = 63 z (z − 1)

(
z +

(λ − 2) λ3

2 λ − 1

)
G1 = (−54 + 108 λ) z2 +12

(
λ2 − 4 λ + 1

)
(λ + 1)2 z−6 λ2 (λ − 2)

(
4 λ2 − λ + 4

)
Using the remarks at the end of Section 1 we get that the corresponding

Picard-Vessiot extension is given by :

Y 12 − 4
k1

3/2
((

2λ3 − 3λ2 + 3λ− 1
)
z − λ3

)
Y 6

(−1 + 2λ)2 (z − 1) z ((−1 + 2λ) z − 2λ3 + λ4)

−
k1

(
λ2 − 2 zλ + z

)6

(−1 + 2λ)6 (z − 1)3 z3 (−z + 2 zλ− 2λ3 + λ4)3
.

2. The parametrization of F6,a(z0, t) = 0 given by z0 = λ2, t = − (λ−2)λ3

2λ−1 .

Conjugation with

(
λ3 + 6λ− 2 0

0 18λ

)
yields the system

[
H1
∆

Q
∆

H2
∆

−H1
∆

]
,

where ∆ = 36 (2λ− 1) z (z − 1)
(
z + (λ−2)λ3

2λ−1

)
,

Q = (2λ− 4) (λ + 1)2
(
(2λ− 1) z + λ2 (λ− 2)

)
,

H1 = (18λ− 9)z2 + 2(2λ− 1)(2λ3 − 6λ2 − 1)z − λ2(λ− 2)(2λ3 + 3λ− 4),

H2 = (2λ− 4)((2λ− 1)
(
5λ2 − 2λ + 2

)
z − λ2

(
λ3 + 6λ− 2

)
) .

Using the remarks at the end of Section 1 we get that the corresponding
Picard-Vessiot extension is given by :

Y 12 − 4
k1

3/2 (λ + 1)
(
λ3 − 1 + z

)
Y 6

(z − 2) (λ4 − 2λ3 + 2λ z − 2λ− z + 1) (z − 1)

−
k1

(
−z + λ2 + 1

)6

(z − 2)3 (λ4 − 2λ3 + 2λ z − 2λ− z + 1)3 (z − 1)3
.
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3. The parametrization of F6,b(z0, t) = 0 is z0 = −λ (λ−2)
2λ−1 , t = − (λ−2)λ3

2λ−1 .

After conjugation by

(
2λ3 − 6λ2 − 1 0

0 λ2

)
one obtains the system


H1
∆

1/9 (2λ− 1) (λ− 2) (λ + 1)2 (λ− z)
∆

H2

∆
−H1
∆


where

∆ = 36 (2λ− 1) z (z − 1)
(
z +

(λ− 2)λ3

2λ− 1

)
,

H1 = (18 λ − 9) z2 + 2 (λ − 2)
(
λ3 + 6 λ − 2

)
z + λ (λ − 2)

(
4 λ3 − 3 λ2 − 2

)
,

H2 = (36 λ − 72)(− (2 λ − 1)
(
2 λ2 − 2 λ + 5

)
z − λ

(
2 λ3 − 6 λ2 − 1

)
) .

Using the remarks at the end of Section 1 we get that the corresponding
Picard-Vessiot extension is given by :

Y 12 − 4
k1

3/2 (λ− 2) (λ + 1) ((2λ− 1) z − λ + 2)Y 6

(2λ− 1)2 ((2λ− 1) z + λ4 − 2λ3) (z − 1) z

−
k1

(
2λ z − z + λ2 − 2λ

)6

(2λ− 1)6 z3 (λ4 − 2λ3 + 2λ z − z)3 (z − 1)3
.

4. The parametrization of F6,c(z0, t) = 0 is z0 = −λ (λ− 2) , t = − (λ−2)λ3

2λ−1 .

After conjugation by

( (
λ2 − 4λ + 1

) (
λ2 − λ + 1

)
0

0 18λ2

)
one obtains

the system
H1

∆
2 (λ + 1)2 (λ− 2)

(
(−2λ + 1) z + λ

(
λ2 − λ + 1

))
∆

H2

∆
−H1

∆


where ∆ = 36 (2λ− 1) (z − 1)

(
z + (λ−2)λ3

2λ−1

)
z,

Q = (2λ− 4) (λ + 1)2
(
(−2λ + 1) z + λ

(
λ2 − λ + 1

))
,
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H1 = (−9 + 18λ) z2 + 4 (2λ− 1) (λ− 2) (λ + 1)2 z
+λ (λ− 2)

(
2λ4 − 4λ3 − 3λ2 − 4λ + 2

)
,

H2 = −(2λ− 4)((2λ− 1)(5λ2 − 8λ + 5)z + λ(λ2 − 4λ + 1)(λ2 − λ + 1)).

Using the remarks at the end of Section 1 we get that the corresponding
Picard-Vessiot extension is given by :

Y 12 − 4
k1

3/2 (λ− 2)
(
λ3 − 3λ2 + 3λ− 2 + z

)
Y 6

z (z − 1) (λ4 − 2λ3 + 2λ (z + 1) − 2λ− z)

−
k1

(
z + λ2 − 2λ

)6

(λ4 − 2λ3 + 2λ (z + 1) − 2λ− z)3 z3 (z − 1)3
.

8.5. The locus for DSL2
4 and points of order 8

The polynomial φ8(z)
φ4(z)

has three irreducible factors. One of them is F8(z) =

z8−20tz6 +32(t+ t2)z5−(16t+58t2 +16t3)z4 +(2t2 +32t3)z3−20t3z2 + t4.

This factor describes one of the three connected components for DSL2
4 . A

rational parametrization of F8(z0, t) = 0 is given by

z0 = −4
(λ− 1)3 λ
(2λ− 1)3

, t = 16
λ4 (λ− 1)4

(2λ− 1)4

After conjugation with[ (
36λ4 − 32λ3 + 4λ2 + 1

) (
6λ2 − 4λ + 1

)
0

0 32 (λ− 1)λ3 (2λ− 1)3

]
one obtains the system [

H1
∆

Q
∆

H2
∆

−H1
∆

]
where

∆ = 32 (2 λ − 1)7 z (z − 1)

(
z − 16

λ4 (λ − 1)4

(2 λ − 1)4

)

Q = 1/4
(
2 λ2 − 1

)2 (
2 λ2 − 4 λ + 1

)2(
−4 λ

(
6 λ2 − 4 λ + 1

)
(λ − 1)3 +

(
2 λ2 − 4 λ + 3

)
(2 λ − 1)3 z

)
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H1 = −(9 − 16λ + 4λ2 + 4λ4)(2λ2 − 4λ + 1)2(2 λ − 1)3z + 8(2 λ − 1)7z2

−4λ(144λ8 − 448λ7 + 608λ6 − 416λ5 + 152λ4 − 48λ3 + 24λ2 − 8λ + 1)(λ − 1)3

H2 = 16 λ
(
36 λ4 − 32 λ3 + 4 λ2 + 1

) (
6 λ2 − 4 λ + 1

)
(λ − 1)3

+12
(
40 λ6 − 80 λ5 + 100 λ4 − 112 λ3 + 86 λ2 − 36 λ + 7

)
(2 λ − 1)3 z

8.6. Decidable

Let a differential operator d
dz +

∑3
j=1

Ai

z−sj be given where the Aj satisfy
the conditions of Section 5. We suppose that the equation is irreducible and
that the field K, generated by all entries (including t), is a finite extension of
Q(t). We claim that there is an algorithm deciding whether the differential
Galois group is DSl2

n for some integer n � 2 or equals DSl2
∞ . This claim is

equivalent to the assertion that there is an algorithm deciding whether a
point on the elliptic curve w2 = cz(z−1)(z− t) has finite order or not. This
problem has been studied by B. Dwork, F. Baldassarri and B.M. Trager et
al.(see [23]).

If K is a number field, then according to a theorem of L. Merel [14], there
is an effective function N of [K : Q] such that any elliptic curve, defined
over K, has, over K, no point of order > N . Hence there is an algorithm in
this situation.

Suppose that t is transcendent. Then there is also an effective bound on
the order n of points on E with values in K. This bound comes from the
fact that the genera of the modular curves X1(n) tend to infinity. If the
genus of X1(n) is larger than the genus of K (viewed as a curve) then the
elliptic curve has no points of order n with values in K. Again there is an
algorithm in this case.

8.7. Back to Lamé equation

The classical Lamé equation with n = 1 is gauge equivalent to the sub-
family of Lamé systems defined by a1 = 1/4 and H = 0; the parameter
B = (e2 − e1)b is therefore given by b = 2(1 − t)a2 + t+1

6 . It is known that
DSL2

2 does not occur as a Galois group Lamé equation for n = 1 (see [4]) and
one can verify that the previous family does not intersect the DSL2

2 -locus
described in section 8.3 for t �= 0, 1,∞. It is also known that DSL2

3 occurs
once as a Galois group for n = 1 (see [5]) : if we intersect the previous
family with the DSL2

3 -locus described in section 8.4, we find B = 0 and
t2 − t + 1 = 0 which gives one solution up to Mœbius transformation of z.
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The classical Lamé equation with n = 2 is gauge equivalent to the sub-
family of Lamé systems defined by

16(t− 1)2(4a1 + 7)a2
2 + 8(t− 1)(4a1 − 1)(4ta1 + 4t− 3)a2

+(64t2a3
1 − 16t(t− 2)a2

1 − 4(8t2 − 14t + 7)a1 − 1) = 0,

H =
(a1 − 1

4 )(ta1 + (1 − t)a2 + 2t−1
4 )

2(t− 1)
,

and b =
4(t− 2)a1 + 12(t− 1)a2 − 2t + 1

4a1 + 1
.

Here, DSL2
2 occurs twice as Galois group exactly through the irreducible

component of the DSL2
2 given by the order 4 point z0 =

√
t : we find t = −1

and b2 = 72
7 . There are many equivalent occurencies of DSL2

3 as Galois
group, most of them arising from points of order 6 on Et; the contribution
of the component given by the points of order 3 on Et is :

t + 1 = 0 and 359b4 − 7128b2 + 34992 = 0

and

125t2 − 234t + 125 = 0 and b = −7(t + 1)
11

.

Finally, it follows from [6] that the smooth compactification over t = 0, 1,∞
of the DSL2

N -locus identify with the modular curve X00(N, 2) studied in [1] :
this curve is irreducible for N odd and has three irreducible components for
N even ; the genus of the curve is 1

4 (p−3)2 for any prime number N = p > 2.

9. Okamoto moduli space

We supplement our construction of moduli spaces with the description
of Okamoto’s one in the special case of Lamé connections, that is the space
of initial conditions of Painlevé VI equation with parameters θi = 1

2 , i.e.
(α, β, γ, δ) = (1

8 ,−
1
8 ,

1
8 ,

3
8 ), following [15] (see also [20] or [9]). We consider

the Zariski open subset of Lamé systems

d

dz
+

A1

z
+

A2

z − 1
+

A3

z − t
with A1 + A2 + A3 =

(
1
4 0
0 − 1

4

)
.

As in Section 5 we exclude those for which the vector
(

0
1

)
is invariant

(i.e., some bi �= 0). We define new variables

p =
1
4 − a1

q
+

1
4 − a2

q − 1
+

a1 + a2

q − t
and q = −t

a2
1 − 1

16

(t− 1)H − t(a2
1 − 1

16 )
.
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Now, consider the 3-dimensional variety M := (P1 − {0, 1,∞}) × O(−2)
where O(−2) denotes the total space of the degree −2 line bundle on P1 :
M is defined by charts (t, x, y) ∈ (P1 − {0, 1,∞}) × C2 and (t̃, x̃, ỹ) ∈
(P1 − {0, 1,∞}) × C2 with transition map

(t, x, y) �→ (t̃, x̃, ỹ) = (t,
1
x
,
y

x2
).

Consider in M the following 8 disjoint lines

l0 : {x = 0, y = 0} l′0 : {x = 0, y =
t

2
} l1 : {x = 1, y = 0}

l′1 : {x = 1, y =
1 − t

2
} lt : {x = t, y = 0} l′t : {x = t, y =

t(t − 1)

2
}

l∞ : {x̃ = 0, ỹ = 0} l′∞ : {x̃ = 0, ỹ =
1

2
}

Consider also the divisor Z ⊂ M which is the union of

Z0 = {x = 0}, Z1 = {x = 1}, Zt = {x = t}, Z∞ = {x̃ = 0}.

Denote by M̃ the blowing-up of M with centers the 8 lines above and Z̃ ⊂ M̃
the strict transform of Z. Then, Okamoto moduli space is M := M̃ \ Z̃. In
fact, if Θ denotes the restriction to M of the exceptional divisor over l∞,
then M− Θ is the moduli space of the family of systems described above
under diagonal conjugacies. The map from our moduli space P computed
in Section 5 to Okamoto’s one is given by

P - - → M\ Θ ; (t, a1, a2, H) �→ (x, y) = (t, q, q(q − 1)(q − t)p).

In fact, the upper triangular families are defined in the first chart by

{y =
1
2
(x− 1)(x− t)}, {y =

1
2
x(x− 1)} and {y =

1
2
x(x− t)}

(or we should say their strict transform in M). The smooth part of P is
sent isomorphically to the complement of those 3 rational surfaces in M\Θ
by the above map. Now, one can check that Θ is our special family. By the
way, the total space M is the moduli space of all Lamé connections (with
varying vector bundle) after omitting a very reducible part.
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