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Random real trees(∗)

Jean-François Le Gall (1)

ABSTRACT. — We survey recent developments about random real trees,
whose prototype is the Continuum Random Tree (CRT) introduced by
Aldous in 1991. We briefly explain the formalism of real trees, which
yields a neat presentation of the theory and in particular of the relations
between discrete Galton-Watson trees and continuous random trees. We
then discuss the particular class of self-similar random real trees called
stable trees, which generalize the CRT. We review several important re-
sults concerning stable trees, including their branching property, which is
analogous to the well-known property of Galton-Watson trees, and the cal-
culation of their fractal dimension. We then consider spatial trees, which
combine the genealogical structure of a real tree with spatial displace-
ments, and we explain their connections with superprocesses. In the last
section, we deal with a particular conditioning problem for spatial trees,
which is closely related to asymptotics for random planar quadrangula-
tions.

RÉSUMÉ. — Nous discutons certains développements récents de la théorie
des arbres réels aléatoires, dont le prototype est le CRT introduit par
Aldous en 1991. Nous introduisons le formalisme d’arbre réel, qui four-
nit une présentation élégante de la théorie, et en particulier des rela-
tions entre les arbres de Galton-Watson discrets et les arbres continus
aléatoires. Nous discutons ensuite la classe des arbres auto-similaires ap-
pelés arbres stables, qui généralisent le CRT. Nous présentons plusieurs
résultats importants au sujet des arbres stables, notamment leur pro-
priété de branchement, analogue continu d’une propriété bien connue pour
les arbres de Galton-Watson, et le calcul de leurs dimensions fractales.
Nous considérons ensuite les arbres spatiaux, qui combinent la structure
généalogique d’un arbre réel avec des déplacements dans l’espace, et nous
expliquons leurs liens avec les superprocessus. Dans la dernière partie,
nous traitons un conditionnement particulier des arbres spatiaux, qui est
étroitement lié à certains résultats asymptotiques pour les quadrangula-
tions planes aléatoires.
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0. Introduction

The purpose of this paper is to give an overview of recent work about con-
tinuous genealogical structures and their applications. The interest for these
continuous branching structures first arose from their connections with the
measure-valued branching processes called superprocesses, which have been
studied extensively since the end of the eighties. Since superprocesses are ob-
tained as weak limits of branching particle systems, it is not surprising that
their evolution should be coded by a kind of continuous genealogical struc-
ture, and Perkins used non-standard analysis to give a precise definition of
this structure (see in particular [56]). A little later, the Brownian snake con-
struction of (finite variance) superprocesses [42],[43] provided another way
of describing the underlying genealogy. This construction made it clear that
the genealogy of superprocesses, or equivalently of Feller’s branching diffu-
sion process (which corresponds to the total mass of a superprocess), could
be coded by the structure of excursions of linear Brownian motion above
positive levels. The Brownian snake approach had significant applications
to sample path properties of superprocesses [49] or to their connections with
partial differential equations [44], [45].

In a series of papers [1], [2], [3] at the beginning of the nineties, Aldous
developed the theory of the Continuum Random Tree, and showed that
this object is the limit as n → ∞, in a suitable sense, of rescaled critical
Galton-Watson trees conditioned to have n vertices (see Theorem 3.3 be-
low). Although the CRT was first defined as a particular random subset
of the space �1, it was identified in [3] as the tree coded by a normalized
Brownian excursion, in a way very similar to the Brownian snake approach
to superprocesses (note however that the CRT is related to a Brownian
excursion normalized to have duration 1, whereas in the Brownian snake
approach it is more natural to deal with unnormalized excursions).

In a subsequent paper, Aldous [4] suggested the definition of the so-called
integrated super-Brownian excursion (ISE), which combines the genealog-
ical structure of the CRT with spatial Brownian displacements. A simple
way of looking at ISE is to view it as the uniform measure on the range
of a Brownian snake driven by a normalized Brownian excursion (see Sec-
tion IV.6 in [45], and also Definition 6.1 below). ISE turned out to appear
in asymptotics for several models of statistical mechanics: See in particular
[17] and [34]. In certain cases however, the continuous branching structure of
ISE (or equivalently of the CRT) is not appropriate to describe the asymp-
totics of the model: For instance, the results of [35] for oriented percolation
involve the canonical measure of super-Brownian motion, whose genealogi-
cal struture is described by a Brownian excursion with height greater than
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1, rather than a normalized excursion. This suggests that rather than con-
centrating on the normalized excursion it is worthwile to deal with various
types of Brownian excursions which correspond to different conditionings of
the fundamental object which is the Itô measure.

Both the Brownian snake approach to superprocesses and Aldous’ repre-
sentation of the CRT correspond to the fact that the genealogical structure
of Feller’s branching diffusion process can be coded by positive Brownian
excursions, in a sense that can be made very precise via the considera-
tions developed in Section 2 below. It was then natural to ask for a similar
coding of the genealogy of more general continuous-state branching pro-
cesses. Recall that continuous-state branching processes are Markov pro-
cesses with values in R+, which are the possible limits of rescaled Galton-
Watson branching processes (Lamperti [40]). Such processes are character-
ized by a branching mechanism function ψ, with ψ(u) = c u2 in the case of
Feller’s diffusion. The problem of coding the genealogy of general (critical or
subcritical) continuous-state branching processes was treated in two papers
of Le Gall and Le Jan [47], [48] (see also the monograph [21]). The role
of the Brownian excursion in the case of Feller’s diffusion is played by the
so-called height process, which is a (non-Markovian) function of the Lévy
process with no negative jumps and Laplace exponent ψ. The construction
of the height process and its relations with the genealogy of continuous-
state branching processes made it possible to investigate the asymptotics
of critical Galton-Watson trees when the offspring distribution has infinite
variance (see Chapter 2 of [21], and [20]). See Section 4 below for a brief
presentation in the stable case where ψ(u) = uα for some 1 < α � 2.

In the present work, we give a survey of the preceding results, and of some
recent applications, using the language and the formalism of real trees (cf.
Section 1). Although real trees have been studied for a long time for algebraic
or geometric purposes (see e.g. [18] and [55]), their use in probability theory
seems to be quite recent. The CRT is naturally viewed as a random real
tree (see Section 3 below), but this interpretation was not made explicit in
Aldous’ work. The recent paper [27] of Evans, Pitman and Winter starts
with a general study of real trees from the point of view of measure theory,
and establishes in particular that the space T of equivalent classes of (rooted)
compact real trees, endowed with the Gromov-Hausdorff metric, is a Polish
space. This makes it very natural to consider random variables or even
random processes taking values in the space T ([27] gives a particularly nice
example of such a process, which combines root growth and regrafting and
converges in distribution to the CRT, see also [28] for further developments
along these lines).
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Our presentation owes a lot to the recent paper [22], which uses the
formalism of real trees to define the so-called Lévy trees that were implicit
in [47] or [21], and to study various probabilistic and fractal properties of
these objects. In particular, the coding of a real tree by a (deterministic)
excursion is made precise in Section 2 below, which is taken from Section 2
of [22]. Aldous’ theorem relating the CRT to discrete Galton-Watson trees,
and other analogous results involving the more general stable trees can be
restated elegantly in the framework of real trees (see Sections 3 and 4 be-
low). Stable trees have a number of remarkable properties, some of which
are briefly presented in Sections 4 and 5. In particular, they possess a nice
self-similarity property (Proposition 4.3) and they also verify a branching
property (Theorem 5.1) that is analogous to the well-known branching prop-
erty of Galton-Watson trees: Conditionally given the tree below level a > 0,
the subtrees originating from that level are distributed as the atoms of a
Poisson point measure whose intensity involves a local time measure sup-
ported on the vertices at distance a from the root. These local times make
it possible to define the uniform measure on the tree in an intrinsic way.
Section 6 shows that the Lévy snake construction of superprocesses, which
generalizes the Brownian snake approach, takes a neat form in the formal-
ism of real trees (Theorem 6.1). Finally, in Section 7, we give a very recent
application of these concepts to asymptotics for random quadrangulations,
which involves a particular conditioning of our random real trees.

1. Real trees

We start with a basic definition (see e.g. [18]).

Definition 1.1. — A metric space (T , d) is a real tree if the following
two properties hold for every σ1, σ2 ∈ T .

(i) There is a unique isometric map fσ1,σ2 from [0, d(σ1, σ2)] into T such
that fσ1,σ2(0) = σ1 and fσ1,σ2(d(σ1, σ2)) = σ2.

(ii) If q is a continuous injective map from [0, 1] into T , such that q(0) = σ1

and q(1) = σ2, we have

q([0, 1]) = fσ1,σ2([0, d(σ1, σ2)]).

A rooted real tree is a real tree (T , d) with a distinguished vertex ρ = ρ(T )
called the root.
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Remark. — We use the terminology real tree rather than R-tree as in
[18] or [55].

In what follows, real trees will always be rooted and compact, even if
this is not mentioned explicitly.

Let us consider a rooted real tree (T , d). The range of the mapping fσ1,σ2

in (i) is denoted by [[σ1, σ2]] (this is the line segment between σ1 and σ2 in
the tree). In particular, for every σ ∈ T , [[ρ, σ]] is the path going from the
root to σ, which we will interpret as the ancestral line of vertex σ. More
precisely we can define a partial order on the tree by setting σ � σ′ (σ is
an ancestor of σ′) if and only if σ ∈ [[ρ, σ′]]. If σ, σ′ ∈ T , there is a unique
η ∈ T such that [[ρ, σ]]∩ [[ρ, σ′]] = [[ρ, η]]. We write η = σ ∧ σ′ and call η the
most recent common ancestor to σ and σ′.

By definition, the multiplicity k(σ) of a vertex σ ∈ T is the number of
connected components of T \{σ}. Vertices of T \{ρ} which have multiplicity
1 are called leaves.

Let us now discuss convergence of real trees. Two rooted real trees T(1)
and T(2) are called equivalent if there is a root-preserving isometry that
maps T(1) onto T(2). We denote by T the set of all equivalence classes of
rooted compact real trees. The set T can be equipped with the (pointed)
Gromov-Hausdorff distance, which is defined as follows.

If (E, δ) is a metric space, we use the notation δHaus(K, K ′) for the
usual Hausdorff metric between compact subsets of E. Then, if T and T ′

are two rooted compact real trees with respective roots ρ and ρ′, we define
the distance dGH(T , T ′) as

dGH(T , T ′) = inf
(
δHaus(ϕ(T ), ϕ′(T ′)) ∨ δ(ϕ(ρ), ϕ′(ρ′))

)
,

where the infimum is over all isometric embeddings ϕ : T −→ E and
ϕ′ : T ′ −→ E of T and T ′ into a common metric space (E, δ). Obvi-
ously dGH(T , T ′) only depends on the equivalence classes of T and T ′.
Furthermore dGH defines a metric on T (cf. [32] and [27]).

Theorem 1.2 ([27]). — The metric space (T, dGH) is complete and sep-
arable.

Furthermore, the distance dGH can often be evaluated in the following
way. First recall that if (E1, d1) and (E2, d2) are two compact metric spaces,
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a correspondence between E1 and E2 is a subset R of E1 × E2 such that
for every x1 ∈ E1 there exists at least one x2 ∈ E2 such that (x1, x2) ∈ R
and conversely for every y2 ∈ E2 there exists at least one y1 ∈ E1 such that
(y1, y2) ∈ R. The distorsion of the correspondence R is defined by

dis(R) = sup{|d1(x1, y1)− d2(x2, y2)| : (x1, x2), (y1, y2) ∈ R}.

Then, if T and T ′ are two rooted R-trees with respective roots ρ and ρ′, we
have

dGH(T , T ′) =
1
2

inf
R∈C(T ,T ′), (ρ,ρ′)∈R

dis(R), (1.1)

where C(T , T ′) denotes the set of all correspondences between T and T ′

(see Lemma 2.3 in [27]).

2. Coding compact real trees

Our main goal in this section is to describe a method for construct-
ing real trees, which is particularly well-suited to our forthcoming applica-
tions to random trees. We consider a (deterministic) continuous function
g : [0,∞) −→ [0,∞) with compact support and such that g(0) = 0. To
avoid trivialities, we will also assume that g is not identically zero. For
every s, t � 0, we set

mg(s, t) = inf
r∈[s∧t,s∨t]

g(r),

and
dg(s, t) = g(s) + g(t)− 2mg(s, t).

Clearly dg(s, t) = dg(t, s) and it is also easy to verify the triangle inequality

dg(s, u) � dg(s, t) + dg(t, u)

for every s, t, u � 0. We then introduce the equivalence relation s ∼ t iff
dg(s, t) = 0 (or equivalently iff g(s) = g(t) = mg(s, t)). Let Tg be the
quotient space

Tg = [0,∞)/ ∼ .

Obviously the function dg induces a distance on Tg, and we keep the notation
dg for this distance. We denote by pg : [0,∞) −→ Tg the canonical projec-
tion. Clearly pg is continuous (when [0,∞) is equipped with the Euclidean
metric and Tg with the metric dg).
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Theorem 2.1 ([22]). — The metric space (Tg, dg) is a real tree.

We will always view (Tg, dg) as a rooted real tree with root ρ = pg(0).
If ζ > 0 is the supremum of the support of g, we have pg(t) = ρ for every
t � ζ. In particular, Tg = pg([0, ζ]) is compact. We will call Tg the real tree
coded by g.

A useful ingredient in the proof of Theorem 2.1 is the following root-
change lemma, whose proof is an elementary exercice.

Lemma 2.2. — Let s0 ∈ [0, ζ). For any real r � 0, denote by r the unique
element of [0, ζ) such that r − r is an integer multiple of ζ. Set

g′(s) = g(s0) + g(s0 + s)− 2mg(s0, s0 + s),

for every s ∈ [0, ζ], and g′(s) = 0 for s > ζ. Then, the function g′ is
continuous with compact support and satisfies g′(0) = 0, so that we can
define the metric space (Tg′ , dg′). Furthermore, for every s, t ∈ [0, ζ], we
have

dg′(s, t) = dg(s0 + s, s0 + t) (2.1)

and there exists a unique isometry R from Tg′ onto Tg such that, for every
s ∈ [0, ζ],

R(pg′(s)) = pg(s0 + s). (2.2)

Thanks to the lemma, the fact that Tg verifies property (i) in the defi-
nition of a real tree is obtained from the particular case when σ1 = ρ and
σ2 = σ = pg(s) for some s ∈ [0, ζ]. In that case however, the isometric
mapping fρ,σ is easily constructed by setting

fρ,σ(t) = pg(sup{r � s : g(r) = t}) , for every 0 � t � g(s) = dg(ρ, σ).

The remaining part of the argument is straightforward: See Section 2 in [22]
(or Lemma 3.1 in [28] for a different argument).

Remark. — In addition to the natural genealogical order, the tree Tg is
also equipped with the total order induced by the order on the real line and
the coding function g. We will not use this observation here as we prefer
to consider real trees as unordered trees (compare with the discrete plane
trees that are discussed in Section 3).

Can one compare the trees coded by two different functions g and g′?
The following lemma gives a simple estimate.
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Lemma 2.3. — Let g and g′ be two continuous functions with compact
support from [0,∞) into [0,∞), such that g(0) = g′(0) = 0. Then,

dGH(Tg, Tg′) � 2‖g − g′‖,

where ‖g − g′‖ stands for the supremum norm of g − g′.

Proof. — We can construct a correspondence between Tg and Tg′ by
setting

R = {(σ, σ′) : σ = pg(t) and σ′ = pg′(t) for some t � 0}.

In order to bound the distortion of R, let (σ, σ′) ∈ R and (η, η′) ∈ R. By
our definition of R we can find s, t � 0 such that pg(s) = σ, pg′(s) = σ′ and
pg(t) = η, pg′(t) = η′. Now recall that dg(σ, η) = g(s)+ g(t)− 2mg(s, t) and
dg′(σ′, η′) = g′(s) + g′(t)− 2mg′(s, t), so that

|dg(σ, η)− dg′(σ′, η′)| � 4‖g − g′‖.

Hence we have dis(R) � 4‖g− g′‖ and the desired result follows from (1.1).
�

The mapping g → Tg is thus continuous if the set of functions satisfying
our assumptions is equipped with the supremum norm. In particular, this
mapping is measurable.

3. Galton-Watson trees and the CRT

Denote by (et)0�t�1 a normalized Brownian excursion. Informally,
(et)0�t�1 is just a linear Brownian path started from the origin and con-
ditioned to stay positive over the time interval (0, 1), and to come back to 0
at time 1. See e.g. Sections 2.9 and 2.10 of Itô and McKean [36] for a discus-
sion of the normalized excursion. We extend the definition of et by setting
et = 0 if t > 1. Then the (random) function e satisfied the assumptions of
the previous section and we can thus consider the real tree Te, which is a
random variable with values in T.

Definition 3.1. — The random real tree Te is called the Continuum
Random Tree (CRT).

The CRT was initially defined by Aldous [1] with a different formalism,
but the preceding definition corresponds to Corollary 22 in [3], up to an
unimportant scaling factor 2.
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One major motivation for studying the CRT is the fact that it occurs as
the scaling limit of critical Galton-Watson trees conditioned to have a large
(fixed) number of vertices. In order to state this result properly, we need to
introduce some formalism for discrete trees, which we borrow from Neveu
[54]. Let

U =
∞⋃

n=0

N
n

where N = {1, 2, . . .} and by convention N
0 = {∅}. If u = (u1, . . . um) and

v = (v1, . . . , vn) belong to U , we write uv = (u1, . . . um, v1, . . . , vn) for the
concatenation of u and v. In particular u∅ = ∅u = u.

Definition 3.2. — A plane tree θ is a finite subset of U such that:

(i) ∅ ∈ θ.

(ii) If v ∈ θ and v = uj for some u ∈ U and j ∈ N, then u ∈ θ.

(iii) For every u ∈ θ, there exists a number ku(θ) � 0 such that uj ∈ θ if
and only if 1 � j � ku(θ).

We denote by T the set of all plane trees. In what follows, we see each
vertex of the tree θ as an individual of a population whose θ is the family
tree.

If θ is a tree and u ∈ θ, we define the shift of θ at u by τuθ = {v ∈ U :
uv ∈ θ}. Note that τuθ ∈ T. We also denote by h(θ) the height of θ, that is
the maximal generation of a vertex in θ, and by #θ the number of vertices
of θ.

For our purposes it will be convenient to view θ as a real tree: To this
end, embed θ in the plane, in such a way that each edge corresponds to a
line segment of length one, in the way suggested by the left part of Fig. 1.
Denote by T θ the union of all these line segments and equip T θ with the
obvious metric such that the distance between σ and σ′ is the length of the
shortest path from σ to σ′ in T θ. This construction leads to a (compact
rooted) real tree whose equivalence class does not depend on the particular
embedding.
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Figure 1

The discrete tree θ, or equivalently the tree T θ, can be coded by two
simple discrete functions, namely the contour function and the height func-
tion. To define the contour function, consider a particle that starts from the
root of T θ and visits continuously all edges at speed one, going backwards
as less as possible and respecting the lexicographical order of vertices. Then
let Cθ(t) denote the distance to the root of the position of the particle at
time t (for t � 2(#θ− 1), we take Cθ(t) = 0 by convention). Fig.1 explains
the definition of the contour function better than a formal definition. Note
that in the notation of Section 2, we have T θ = TCθ , meaning that T θ

coincides with the tree coded by the function Cθ.

The height function Hθ = (Hθ
n, 0 � n < #θ) is a discrete function

defined as follows. Write u0 = ∅, u1 = 1, u2, . . . , u#θ−1 for the elements of θ
listed in lexicographical order. Then Hθ

n is the generation of un (cf. Fig.1).

Now let us turn to Galton-Watson trees. Let µ be a critical offspring
distribution. This means that µ is a probability measure on Z+ such that∑∞

k=0 kµ(k) = 1. We exclude the trivial case where µ(1) = 1. Then, there
is a unique probability distribution Πµ on T such that

(i) Πµ(k∅ = j) = µ(j), j ∈ Z+.

(ii) For every j � 1 with µ(j) > 0, the shifted trees τ1θ, . . . , τjθ are inde-
pendent under the conditional probability Πµ(· | k∅ = j) and their
conditional distribution is Πµ.

A random tree with distribution Πµ is called a Galton-Watson tree with
offspring distribution µ, or in short a µ-Galton-Watson tree. Obviously it
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describes the genealogy of the Galton-Watson process with offspring distri-
bution µ started initially with one individual.

We are now able to state our invariance principle for Galton-Watson
trees. If T is a real tree with metric d and r > 0, we write rT for the
“same” tree with metric rd. We say that µ is aperiodic if it is not supported
on a proper subgroup of Z.

Theorem 3.3. — Assume that the offspring distribution µ is critical
with finite variance σ2 > 0, and is aperiodic. Then the distribution of the
rescaled tree σ

2
√

n
T θ under the probability measure Πµ(· | #θ = n) converges

as n→∞ to the law of the CRT.

This is an immediate consequence of Theorem 23 in [3]. In fact the latter
result states that the rescaled contour function ( σ

2
√

n
Cθ(2nt), 0 � t � 1)

under Πµ(· | #θ = n) converges in distribution to the normalized Brownian
excursion e. Note that the rescaled tree σ

2
√

n
T θ is coded by the function

σ
2
√

n
Cθ, in the sense of Section 2 above. It then suffices to apply Lemma

2.3.

A simple approach to the convergence of the rescaled contour functions
towards the normalized Brownian excursion was provided in [51]. A key
ingredient is the fact that the height function under Πµ can be written as
a simple functional of a random walk. Let S be a random walk with jump
distribution ν(i) = µ(i + 1) (i = −1, 0, 1, 2, . . .) started from the origin, and
T = inf{n � 1 : Sn = −1}. Then, under Πµ,

(Hθ
n, 0 � n < #θ)

(d)
= (Kn, 0 � n < T )

where
Kn = Card

{
0 � j < n : Sj = inf

j�k�n
Sk

}
. (3.1)

Formula (3.1) was noticed in [47], where it motivated the coding of general-
izations of the CRT (see Section 4 below). Under the additional assumption
that µ has exponential moments, formula (3.1) was used in [51] to show that
the height function (and then the contour function) under Πµ(· | #θ = n) is
close to an excursion of the random walk S of length n. Invariance principles
relating random walk excursions to Brownian excursions then lead to the
desired result.

See also Bennies and Kersting [7] for a nice elementary presentation
of the relations between Galton-Watson trees and random walks, with an
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application to a (weak) version of Theorem 3.3, and Chapters 5 and 6 of
Pitman [58].

Remarks. — (a) Theorem 3.3 has various applications to the asymptotic
behavior of functionals of Galton-Watson trees. For instance, by considering
the height of trees, we easily get that for every x � 0,

lim
n→∞

Πµ

(
h(θ) � 2x

√
n

σ
| #(θ) = n

)
= P (M(e) � x), (3.2)

where
M(e) = sup

s�0
e(s).

The probability in the right-hand side of (3.2) is known in the form of a
series (Kennedy [37], see also Chung [14] for related results, and Section 3.1
in [2]).

(b) Special choices of the offspring distribution µ lead to limit theorems
for “combinatorial trees”. For instance, if we let µ be the geometric dis-
tribution µ(k) = 2−k−1, which satisfies all our assumptions with σ2 = 2,
then Πµ(· | #θ = n) is easily identified as the uniform distribution on the
set of all plane trees with n vertices. In particular, (3.2) gives the asymp-
totic proportion of those plane trees with n vertices which have a height
greater than x

√
2n. Similar observations apply to other classes of discrete

trees, e.g. to binary trees (take µ(0) = µ(2) = 1/2, and note that we need
a slight extension of Theorem 3.3, since µ is not aperiodic), or to Cayley
trees (corresponding to the case when µ is Poisson with parameter 1). Such
asymptotics had in fact been established before Theorem 3.3 was proved,
by the method of generating functions: See [12] and especially Flajolet and
Odlyzko [29].

(c) The convergence in Theorem 3.3 is not strong enough to allow one
to deal with all interesting functionals of the tree. Still, Theorem 3.3 can
be used to guess the kind of limit theorem one should expect. A typical
example is the height profile of the tree, that is for every level k the number
of vertices at generation k. Theorem 3.3 strongly suggests that the suit-
ably rescaled height profile of a Galton-Watson tree conditioned to have n
vertices should converge in distribution towards the local time process of
a normalized Brownian excursion (see also the discussion of local times of
stable trees in Section 5 below). This was indeed proved by Drmota and
Gittenberger [19] (see also Pitman [57] and Aldous [5]).

The effect of conditioning on the event {#θ = n} is to force the tree θ to
be large. One can imagine various other conditionings that have the same
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effect, and will give rise to different limiting real trees. Typically, these limits
will be described in terms of the Itô excursion measure. Recall that the Itô
excursion measure n(de) is the σ-finite measure on the space C(R+, R+) of
continuous functions from R+ and R+, which can be obtained as

n(de) = lim
ε→0

1
2ε

Pε(de) (3.3)

where Pε(de) stand for the distribution of a linear Brownian motion started
from ε and stopped at the first time when it hits 0, and we omit the precise
meaning of the convergence (3.3) (see Chapter XII of [59] for a thorough
discussion of Itô’s excursion measure). We write ζ(e) = inf{s > 0 : e(s) =
0} for the duration of e. The connection with the normalized Brownian
excursion is made by noting that the distribution of e is just the conditioned
measure n(de | ζ(e) = 1).

We write Θ2(dT ) for the distribution of the tree Te under n(de) (the
reason for the subscript 2 will become clear later). Self-similarity properties
of our random real trees become apparent on the measure Θ2.

Proposition 3.4. — For every r > 0, the distribution of rT under Θ2

is rΘ2.

This result readily follows from the analogous statement for the Itô mea-
sure.

To illustrate the usefulness of introducing the measure Θ2, we state a
variant of Theorem 3.3. This variant and other results of the same type can
be found in Chapter 2 of [21] (see also Geiger and Kersting [31] for related
results). The height h(T ) of a real tree is obviously defined as the maximal
distance to the root.

Theorem 3.5. — Under the same assumptions as in Theorem 3.3, the
distribution of the tree n−1/2T θ under Πµ(dθ | h(θ) > n1/2) converges as
n→∞ to Θ2(dT | h(T ) > 1).

In contrast with Theorem 3.3, this statement does not involve the con-
stant σ.
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4. Stable trees

One may ask what happens in Theorems 3.3 and 3.5 in the case when
µ has infinite variance. Assuming that µ is in the domain of attraction of a
stable distribution with index α ∈ (1, 2), we still get a limiting random real
tree, which is called the stable tree with index α.

Before stating this result, we need to spend some time defining the limit-
ing object. We fix α ∈ (1, 2) and consider a stable Lévy process X = (Xt)t�0

with index α and no negative jumps, started from the origin. The absence
of negative jumps implies that E[exp(−λXt)] <∞ for every λ � 0, and we
may normalize X so that

E[exp(−λXt)] = exp(λαt).

Set It = infr�t Xr, which is a continuous process. Then it is well known
that the process X − I is Markovian. Furthermore, the point 0 is regular
for X − I, and the process −I provides a local time at the origin for this
Markov process. The associated excursion measure is denoted by N. It will
play the same role as the Itô excursion measure (which one recovers in the
case α = 2, up to inimportant scaling constants) in the previous paragraph.
We again use the notation ζ for the duration of the excursion under N.

Proposition 4.1. — There exists a continuous process (Hs)s�0, called
the height process, such that

Hs = lim
ε→0

1
ε

∫ s

0

dr 1
(
Xr � inf

r�u�s
Xu + ε

)
, for every s � 0, N a.e.

Moreover H0 = 0 and Hs = 0 for every s � ζ, N a.e.

The formula for Hs is a continuous analogue of the formula (3.1) for the
discrete height function of a Galton-Watson tree.

Definition 4.2. — The measure Θα defined as the law of the tree TH

under N, is called the distribution of the stable tree with index α. We
also denote by Θ(1)

α the distribution of TH under the probability measure
N(· | ζ = 1).

We can now state an analogue of Theorem 3.3 in the stable case.
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Theorem 4.3 ([20]). — Suppose that µ is critical and aperiodic, and
that it is in the domain of attraction of the stable law with index α ∈ (1, 2),
meaning that there exists a sequence an ↑ ∞ such that, if Y1, Y2, . . . are i.i.d.
with distribution µ,

1
an

(Y1 + · · ·+ Yn − n)
(d)−→

n→∞
X1.

Then, the law of the tree n−1an T θ under Πµ(· | #θ = n) converges as
n→∞ to Θ(1)

α .

Other limit theorems relating discrete Galton-Watson trees to the mea-
sures Θα, in the spirit of Theorem 3.5, can be found in Chapter 2 of [21]
and in [22] (Theorem 4.1). These results apply more generally to the Lévy
trees of [22], which can be viewed as possible limits of sequences of critical
Galton-Watson trees for which the offspring distribution depends on the tree
taken in the sequence (in a way very similar to the classical approximations
of Lévy processes by random walks). The recent article [30] gives a limit
theorem for Galton-Watson trees with possibly infinite variance, which is
related to the results of [20] and [21].

The self-similarity property of Proposition 3.4 extends to stable trees:

Proposition 4.4. — For every r > 0, the distribution of rT under Θα

is r
1

α−1 Θα.

5. Probabilistic and fractal properties of stable trees

In this section we give some important properties of our stable trees.
The following results, which are taken from [22], hold for any α ∈ (1, 2].

Consider first a fixed real tree (T , d) in T with root ρ(T ). The level set
of T at level a > 0 is

T (a) = {σ ∈ T : d(ρ(T ), σ) = a}.

The truncation of the tree T at level a is the new tree

tra(T ) = {σ ∈ T : d(ρ(T ), σ) � a},

which is obviously equipped with the restriction of the distance d. It is easy
to verify that the mapping T → tra(T ) from T into itself is measurable.
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Let us fix a > 0 and denote by T (i),◦, i ∈ I the connected components
of the open set

T ((a,∞)) = {σ ∈ T : d(ρ(T ), σ) > a}.

Notice that the index set I may be empty (if h(T ) � a), finite or countable.
Let i ∈ I. Then the ancestor of σ at level a must be the same for every σ ∈
T (i),◦. We denote by σi this common ancestor and set T (i) = T (i),◦ ∪ {σi}.
Then T (i) is a compact rooted R-tree with root σi. The trees T (i), i ∈ I are
called the subtrees of T originating from level a, and we set

N T
a :=

∑
i∈I

δ(σi,T (i)),

which is a point measure on T (a)× T.

Theorem 5.1. — For every a > 0 and for Θα a.e. T ∈ T we can define
a finite measure �a on T , in such a way that the following properties hold:

(i) For every a > 0, �a is supported on T (a), and {�a �= 0} = {h(T ) > a},
Θα(dT ) a.e.

(ii) For every a > 0, we have Θα(dT ) a.e. for every bounded continuous
function ϕ on T ,

〈�a, ϕ〉 = lim
ε↓0

Cα ε
1

α−1

∫
N T

a (dσdT ′)ϕ(σ) 1{h(T ′)�ε}

= lim
ε↓0

Cα ε
1

α−1

∫
N T

a−ε(dσdT ′)ϕ(σ) 1{h(T ′)�ε} (5.1)

where Cα = (α−1)1/(α−1) if 1 < α < 2 and C2 = 2. Furthermore, for every
a > 0, the conditional distribution of the point measure N T

a (dσdT ′), under
the probability measure Θα(dT | h(T ) > a) and given tra(T ), is that of a
Poisson point measure on T (a)× T with intensity �a(dσ)Θα(dT ′).

The last property is the most important one. It may be called the branch-
ing property of the stable tree as it is exactly analogous to the classical
branching property for Galton-Watson trees (cf. Property (ii) in the defini-
tion of Galton-Watson trees in Section 3). The random measure �a will be
called the local time of T at level a. Note that the normalization of local
times, that is the particular choice of the constant Cα in (5.1), is made so
that the branching property holds in the form given in the theorem.
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Remarks. — (a) The branching property holds for the more general Lévy
trees which are considered in [22]. Other classes of random real trees, which
are related to various problems of probability theory or combinatorics, are
studied in [6] and [33]. A form of the branching property was used by Mier-
mont [53] in his study of fragmentations of the stable tree.

(b) It is possible to choose a modification of the collection (�a, a > 0)
which has good continuity properties. Precisely, this process has a càdlàg
modification, which is even continuous when α = 2. When α < 2, the
discontinuity points of the mapping a → �a correspond to levels of points
of infinite multiplicity of the tree (cf. Proposition 5.2 below).

Local times can be used to give an intrinsic definition of the uniform
measure on the tree: We set

m =
∫ ∞

0

da �a.

Note that if the tree is constructed as T = TH (resp. T = Te when α = 2),
the measure m corresponds to the image measure of Lebesgue measure
on [0, ζ] under the coding function s → pH(s) (resp. s → pe(s)). Thanks
to this observation, the probability measure Θ(1)

α can be identified with
Θα(· |m(T ) = 1).

The next proposition gives precise information about the multiplicity of
vertices in our stable trees. Recall that k(σ) denotes the multiplicity of σ.

Proposition 5.2. — We have m({σ ∈ T : k(σ) > 1}) = 0, Θα a.e. (in
other words almost all vertices are leaves). Moreover, we have Θα a.e.:

(i) If α = 2, k(σ) ∈ {1, 2, 3} for all σ ∈ T , and the set {σ ∈ T : k(σ) = 3}
of binary branching points is a countable dense subset of T .

(ii) If 1 < α < 2, k(σ) ∈ {1, 2,∞} for all σ ∈ T , and the set {σ ∈ T :
k(σ) =∞} of infinite branching points is a countable dense subset of
T .

Stable trees also enjoy a nice invariance property under uniform re-
rooting, which is related to the deterministic re-rooting Lemma 2.2. We
state this property under the law Θ(1)

α of the normalized tree. If T is a tree
and σ ∈ T , we write T [σ] for the “same” tree T with root σ.
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Proposition 5.3. — The law of the tree T [σ] under the measure
Θ(1)

α (dT )m(dσ) coincides with Θ(1)
α (dT ).

In the case α = 2, this invariance property was already noticed in Aldous
[2]. Still for α = 2, more precise invariance properties under re-rooting can
be found in [52] and [50].

We conclude this section with a discussion of the fractal dimension of
stable trees. If E is a subset of R+, we use the notation

T (E) = {σ ∈ T : d(ρ, σ) ∈ E}

where ρ = ρ(T ) is the root of T .

Theorem 5.4. — Let E be a compact subset of (0,∞) and A = supE.
Assume that the Hausdorff and upper box dimensions of E are equal and let
d(E) ∈ [0, 1] be their common value. Then, Θα a.e. on the event
{h(T ) > A}, the Hausdorff and packing dimensions of T (E) coincide and
are equal to

dim(T (E)) = d(E) +
1

α− 1
.

In particular,
dim(T ) =

α

α− 1
, Θα a.e.

and, for every a > 0,

dim(T (a)) =
1

α− 1
, Θα a.e. on {h(T ) > a}.

Remark. — The formula for dim(T ) has also been derived by Haas and
Miermont [33] independently of [22]. More precise information about the
Hausdorff measure of stable trees can be found in [23].

6. Spatial trees

We will now explain how the genealogical structure of our stable trees
can be combined with spatial displacements (given by independent Brown-
ian motions in R

k) to yield a construction of superprocesses with a stable
branching mechanism. To present this construction in a way suitable for
applications, it is convenient to introduce the notion of a spatial tree.
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Informally, a (k-dimensional) spatial tree is a pair (T , V ) where T ∈ T

and V is a continuous mapping from T into R
k. Since we defined T as a

space of equivalence classes of trees, we should be a little more precise at
this point. If T and T ′ are two (rooted compact) real trees and V and
V ′ are R

k-valued continuous mappings defined respectively on T and T ′,
we say that the pairs (T , V ) and (T , V ′) are equivalent if there exists a
root-preserving isometry Φ from T onto T ′ such that V ′

Φ(σ) = Vσ for every
σ ∈ T . A spatial tree is then defined as an equivalent class for the preceding
equivalence relation, and we denote by Tsp the space of all spatial trees.
Needless to say we will often abuse notation and identify a spatial tree with
an element of the corresponding equivalent class.

We denote by Tsp the set of all spatial trees. Recall the notation of
Section 1. We define a distance on Tsp by setting

dsp((T , V ), (T ′, V ′)) =
1
2

inf
R∈C(T ,T ′),(ρ,ρ′)∈R

(
dis(R) + sup

(σ,σ′)∈R
|Vσ − V ′

σ′ |
)
,

where ρ and ρ′ obviously denote the respective roots of T and T ′. It is easy
to verify that (Tsp, dsp) is a Polish space.

Let us fix x ∈ R
k. Also let T ∈ T be a compact rooted real tree with root

ρ and metric d. We may consider the R
k-valued Gaussian process (Yσ, σ ∈

T ) whose distribution is characterized by

E[Yσ] = x ,

cov(Yσ, Yσ′) = d(ρ, σ ∧ σ′) Id ,

where Id denotes the k-dimensional identity matrix. The formula for the
covariance is easy to understand if we recall that σ ∧ σ′ is the most recent
common ancestor to σ and σ′, and so the ancestors of σ and σ′ are the same
up to level d(∅, σ ∧ σ′). Note that

cov(Yσ − Yσ′ , Yσ − Yσ′) = d(σ, σ′) Id.

Let N (T , δ) stand for the minimal number of balls with radius δ needed to
cover T . From Theorem 11.17 in [41], we know that under the condition

∫ 1

0

(logN (T , ε2))1/2 dε <∞, (6.1)

the process (Yσ, σ ∈ T ) has a continuous modification. We keep the notation
Y for this modification. Assuming that (6.1) holds, we denote by Qx

T the
law on Tsp of (T , (Yσ, σ ∈ T )).
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It is easy to verify that condition (6.1) holds Θα(dT ) a.e., for every
α ∈ (1, 2]. The definition of Qx

T then makes sense Θα(dT ) a.e., and we may
set

N
α
x =

∫
Θα(dT )Qx

T ,

which defines a σ-finite measure on Tsp.

We can now turn to connections with superprocesses. Under the measure
N

α
x , we may for every a > 0 define a measure Za = Za(T , V ) on R

k by
setting

〈Za, ϕ〉 =
∫

�a(dσ)ϕ(Vσ),

where the local time measure �a was introduced in Theorem 5.1. The next
proposition reformulates a special case of Theorem 4.2.1 in [22].

Theorem 6.1. — Let γ ∈Mf (Rk) and let
∑
i∈I

δ(T i,V i)

be a Poisson point measure on Tsp with intensity
∫

γ(dx) N
α
x . Then the

process (Za, a � 0) defined by

Z0 = γ ,

Za =
∑
i∈I
Za(T i, V i) , a > 0 ,

is a super-Brownian motion with branching mechanism ψ(u) = uα (ψ(u) =
2u2 if α = 2) started at γ.

In the formula for Za, only finitely many terms can be nonzero, sim-
ply because finitely many trees in the collection (T i, i ∈ I) are such that
h(T i) > a. From the continuity properties of local times, we see that the
version of Z defined in the proposition is càdlàg on (0,∞) for the weak
topology on finite measures on R

k. By the known regularity properties of
superprocesses (see e.g. the more general Theorem 2.1.3 in [15]), it must
indeed be càdlàg on [0,∞).

Theorem 6.1 is clearly related to the Brownian snake construction of
superprocesses (in the case α = 2) or more generally to the Lévy snake
of [48] or [21]. Consider the case α = 2 and assume that the spatial dis-
placements have constructed (with initial point x) using the tree Te (where
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e is distributed according to the Itô measure). For every s � 0, we may
consider the path consisting of the spatial positions Vσ along the ances-
tor line of the vertex pe(s). This gives a random path Ws with duration
de(ρ, pe(s)) = e(s). The process (Ws)s�0 is then the path-valued Markov
process called the Brownian snake, here constructed under its excursion
measure from x.

In view of Theorem 6.1, the measures N
α
x (or rather the distribution

under N
α
x of the measure-valued process (Za, a � 0)) are called the excursion

measures of the ψ-super-Brownian motion. In the quadratic branching case,
these measures play an important role in the study of connections between
superprocesses and partial differential equations: See in particular [43]. In
the case of a general branching branching mechanism, excursion measures
are constructed via the Lévy snake in Chapter 4 of [22], and a different
approach has been proposed recently by Dynkin and Kuznetsov [26].

Connections with partial differential equations are helpful to analyse
the probabilistic properties of spatial trees. We content ourselves with one
statement concerning the range

R = {Vσ : σ ∈ T }.

Theorem 6.2. — Let K be a compact subset of R
k. Then the function

u(x) = N
α
x(R∩K �= ∅) , x ∈ R

k\K
is the maximal nonnegative solution of 1

2∆u = uα ( 1
2∆u = 2u2 if α = 2) in

R
k\K.

This theorem is a reformulation in our formalism of results proved by
Dynkin [25] in the framework of the theory of superprocesses.

Integrated super-Brownian excursion (ISE). Let us return for a
while to the CRT, and combine the branching structure of the CRT with
k-dimensional Brownian motions started from x = 0, in the way explained
in the previous section. Precisely this means that we are considering the
probability measure on Tsp defined by

N
2,(1)
0 =

∫
Θ(1)

2 (dT )Q0
T ,

where Θ(1)
2 (dT ) is the law of the CRT, in agreement with our previous

notation Θ(1)
α . Recall the notation m for the uniform measure on T (this

makes sense Θ(1)
2 (dT ) a.s.).
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Definition 6.3. — The random probability measure U on R
k defined

under N
2,(1)
0 by

〈U, ϕ〉 =
∫

m(dσ) ϕ(Vσ)

is called k-dimensional ISE (for Integrated Super-Brownian Excursion).

Note that the topological support of ISE is the range R of the spatial
tree, and that ISE should be interpreted as the uniform measure on this
set. The random measure ISE was first discussed by Aldous [4]. It occurs
in various asymptotics for models of statistical mechanics: See in particular
[17] and [34].

7. Conditioned spatial trees and quadrangulations

In this section, we study a conditioning problem for the spatial trees of
the previous section, and we then explain why this conditioning problem
is related to certain asymptotics for planar quadrangulations. We consider
one-dimensional spatial displacements (k = 1) and we write N

(1)
0 for N

2,(1)
0

since we will only consider the case α = 2. Recall the notation (T , (Vσ)σ∈T )
for the generic element of Tsp, and R for the associated range.

Our goal is to define the probability measure N
(1)
0 conditioned on the

event {R ⊂ [0,∞)}. In other words we consider a tree of Brownian paths
started from the origin, whose underlying genealogical structure is the CRT,
and we want to condition this tree to remain on the positive half-line. Ob-
viously this conditioning is very degenerate (it is already degenerate if one
considers a single Brownian path started from the origin).

Theorem 7.1 ([50]). — We have

lim
ε↓0

ε−4
N

(1)
0 (R ⊂ (−ε,∞)) =

2
21

.

There exists a probability measure on Tsp, which is denoted by N
(1)

0 , such
that

lim
ε↓0

N
(1)
0 (· | R ⊂ (−ε,∞)) = N

(1)

0 ,

in the sense of weak convergence in the space of probability measures on Tsp.
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The measure N
(1)

0 is the law of the conditioned spatial tree we were aim-
ing at. The next result will show that, rather remarkably, this conditioned
tree can be obtained from the unconditioned one simply by re-rooting it at
the vertex corresponding to the minimal spatial position.

Before stating this result we need some notation for re-rooted trees. If
(T , V ) is a spatial tree, and σ0 ∈ T , the re-rooted spatial tree (T [σ0], V [σ0])
is defined by saying that T [σ0] is T re-rooted at σ0, and V

[σ0]
σ = Vσ − Vσ0

for every σ ∈ T .

Theorem 7.2 ([50]). — There is N
(1)
0 a.s. a unique vertex σ∗ which

minimizes Vσ over σ ∈ T . The probability measure N
(1)

0 is the law under
N

(1)
0 of the re-rooted spatial tree (T [σ∗], V [σ∗]).

This theorem is reminiscent of a famous theorem of Vervaat [?] con-
necting the Brownian bridge and the normalized Brownian excursion. The
proof of Theorem 7.2 makes a heavy use of the invariance property under
re-rooting (Proposition 5.3).

It is interesting to reinterpret the preceding theorem in terms of ISE.
If we want to define one-dimensional ISE conditioned to put no mass on
the negative half-line, a natural way is to condition it to put no mass on
]−∞,−ε[ and then to let ε go to 0. As a consequence of the previous two
theorems, this is equivalent to shifting the unconditioned ISE to the right,
so that the left-most point of its support becomes the origin.

Our motivation for studying conditioned spatial trees came from appli-
cations to planar quadrangulations. In order to describe these applications,
we first need to introduce well-labelled trees. We call labelled tree any pair
(θ, v) where θ ∈ T is a plane tree (cf. Section 3) and v is a mapping from
θ into the set Z of integers. This is the obvious discrete analogue of the
spatial trees considered above. We say that (θ, v) is a well-labelled tree if in
addition v(∅) = 1, v(u) � 1 for every u ∈ θ and |v(u)−v(u′)| � 1 whenever
u and u′ are neighboring vertices (that is, u is the father of u′ or u′ is the
father of u). Again, this is a discrete version of the conditioned spatial trees
discussed in the preceding theorems.

In a way similar to what we did in Section 3, there is an obvious way
of viewing a labelled tree as a spatial tree: If (θ, v) is a labelled tree, let T θ

be as in Section 3, and define V (θ,v) by setting V (θ,v)(σ) = v(u) if σ is the
vertex of T θ corresponding to u, and then interpolating linearly between
neighboring vertices to complete the definition of V (θ,v).
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LetWn stand for the set of all well-labelled trees with n edges (or equiv-
alently n + 1 vertices).

Theorem 7.3. — The law of the rescaled tree

((2n)−1/2T θ, (9/8)1/4n−1/4V (θ,v))

under the uniform probability measure on Wn converges as n→∞ towards
the measure N

(1)

0 .

This theorem is a consequence of more general statements obtained in
[46] for conditioned Galton-Watson trees. Closely related results can be
found in [13] and [52]. The factor (9/8)1/4 is easy to understand if we write
(9/8)1/4 = 2−1/4(2/3)−1/2 and note that 2/3 is the variance of the uniform
distribution on {−1, 0, 1} (while the factor 2−1/4 corresponds to the term
2−1/2 in (2n)−1/2T θ).

Remark. — Without the positivity constraint (for instance, considering
labelled trees with the only properties that the label of the root is 0 and the
labels of two neighboring vertices differ by at most 1), the limiting distribu-
tion would be N

(1)
0 instead of N

(1)

0 . This unconditional analogue of Theorem
7.3 follows rather easily from Theorem 3.3: See Janson and Marckert [39]
for much more general statements of this type (Kesten [38] discusses related
results for tree-indexed random walks under different conditionings of the
underlying trees).

Let us now discuss quadrangulations. A planar quadrangulation is a
planar map where each face, including the unbounded one, has degree 4. We
are interested in rooted quadrangulations, meaning that we distinguish an
edge on the border of the infinite face, which is oriented counterclockwise
and called the root edge. The origin of the root edge is called the root
vertex. Two rooted quadrangulations are considered identical if there is a
homeomorphism of the plane that sends one map onto the other. We refer
to Chassaing and Schaeffer [13] for more precise definitions. We denote
by Qn the set of all rooted quadrangulations with n faces. A key result
gives a bijection between the sets Wn and Qn (see Theorem 1 in [13], and
note that this bijection has been extended recently to more general planar
maps by Bouttier, Di Francesco and Guitter [11]). Moreover the radius
of the quadrangulation, defined as the maximal graph distance between
the root vertex and another vertex, corresponds via this bijection to the
maximal label of the tree. We can then deduce the following corollary ([13],
Corollary 3).
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Corollary 7.4. — Let Rn denote the radius of a random quadrangu-
lation chosen uniformly among all rooted planar quadrangulations with n
faces. Then,

n−1/4Rn
(d)−→

n→∞
ρ

where the limiting variable ρ is distributed as

(8
9

)1/4(
sup
σ∈T

Vσ − inf
σ∈T

Vσ

)

under N
(1)
0 (alternatively, ρ is distributed as (8/9)1/4 times the length of the

support of one-dimensional ISE).

The proof of the corollary is easy from the preceding observations. Prop-
erties of the bijection between the sets Wn and Qn imply that Rn has the
same distribution as sup{v(u) : u ∈ θ} under the uniform probability mea-
sure on Wn. By construction,

n−1/4 sup{v(u) : u ∈ θ} = n−1/4 sup{V (θ,v)(σ) : σ ∈ T θ}.

By Theorem 7.3, the law of the latter quantity under the uniform probability
measure on Wn converges to the law of

(8
9

)1/4

sup
σ∈T

Vσ

under N
(1)

0 . By Theorem 7.2, this distribution is the same as the limiting
one in Corollary 7.4. Note some information about this limiting distribution
can be found in Delmas [16] and in the recent preprint [8].

Large random quadrangulations, or more general planar maps, are used
in theoretical physics as models of random surfaces (see in particular [9],
[10] and [24]). Assuming that there is a limiting continuous object for uni-
form random quadrangulations with n faces, the normalizing factor n−1/4

in Corollary 7.4 suggests that its fractal dimension should be 4, a fact that
is widely believed in the physics literature. A recent paper of Marckert and
Mokkadem [52] uses ideas related to the previous discussion to construct
the Brownian map, which is a candidate for the continuous limit of random
quadrangulations.
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