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A large deviation result for the subcritical
Bernoulli percolation (*)

OLIVIER COURONNÉ(1)

ABSTRACT. - We consider subcritical Bernoulli percolation in dimen-
sions two and more. If C is the open cluster containing the origin, we prove
that the law of C/N satisfies a large deviation principle with respect to
the Hausdorff metric.

RÉSUMÉ. - Nous considérons la percolation de Bernoulli dans les dimen-
sions supérieures ou égales à deux. Si C est le cluster d’arêtes ouvertes
contenant l’origine, nous prouvons que la loi de C/N satisfait un principe
de grandes déviations par rapport à la métrique de Hausdorff.

Annales de la Faculté des Sciences de Toulouse

1. Introduction

Consider the cluster C of the origin in the subcritical phase of Bernoulli
percolation in Zd. This is a random object of the space /Cc of connected
compact sets in Rd. We let DH be the Hausdorff distance on /Cc. Let

be the inverse correlation length. Assume that H103BE is the one-dimensional

Hausdorff measure on Rd constructed from 03BE.

In the supercritical regime, large deviation principles have been proved
for the law of C / N [3, 4]. In two dimensions, it relies on estimates of the
law of dual clusters, which are subcritical. More precisely, let h be a contour
in R2 enclosing an area. The probability that a dual cluster is close for the
Hausdorff distance to Nh behaves like exp(-NH103BE(0393)). But what happens
if we consider more general connected sets than contours ?

(*) Reçu le 6 novembre 2003, accepté le 1 i juin 2004
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France.
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In this note we establish a large deviation principle for the law of C/N
in the subcritical regime in dimensions two and more. Let )C, denote the set
of connected compact sets of Rd quotiented by the translation equivalence.
The usual distance between compact sets is the Hausdorff distance. We
denote it by DH when considered as a distance on K,. Let C be still the
open cluster containing the origin. Write C for the equivalent class of C
in K,. Let P be the measure and Pc be the critical point of the Bernoulli
percolation process. The formulation of our large deviation principle is the
following:

THEOREM l.l. - Let p  pc. Under P, the family of the laws of
(C/N)N1 on the space K, equipped with the Hausdorff metric DH sat-
isfies a large deviation principle with good rate function H103BE and speed N:
for any borel subset U of lCc,

where the interior and the closure are taken with respect to the Hausdorff
metric on /Cc.

The proof of the lower bound relies on the FKG inequality; we use it to
construct a cluster close to a given large connected set with a sufficient high
probability. Concerning the upper bound, the proof is based on the skeleton
coarse graining technique and on the BK inequality; it follows the lines of
the proof in [3] with slight adaptations.

We underline that in supercritical percolation the large deviation prin-
ciples lead to estimates of the shape of large finite clusters. In fact, there
exists a shape called the Wulff crystal, which minimizes the rate function
under a volume constraint. Unfortunately, the large deviation principle does
not allow us to describe the typical shape of a large cluster in the subcriti-
cal phase. In this régime,, computing simulations of large clusters show very
irregular objects.

We note furthermore that our main result has been obtained indepen-
dently by Kovchegov, Sheffield [11]. Their approach is quite different and
makes use of Steiner trees to approximate connected compact sets.

In the next section we recall the definition and basic results of the perco-
lation model. Then we define the measure H103BE and the space K,. Geometric



- 203 -

results required about connected compact sets are given in Section 4. In
Section 5 we introduce skeletons, and use them to approximate connected
compact sets. The proof of the lower bound follows in Section 6. The coarse
graining technique is given in Section 7, and the proof of the upper bound
follows in Section 8.

Acknowledgements. 2013 This issue was raised by Raphaël Cerf, who
spared no effort in giving me advice. I thank him. 

2. The model

We consider the site lattice Zd where d is a fixed integer larger than
or equal to two. We use the euclidian norm 1. 12 on Zd. We turn Zd into a
graph JLd by adding edges between all pairs x, y of points of Zd such that
lx - g|2 = 1. The set of all edges is denoted by JEd. A path in (Zd, Ed) is

an alterning sequence xo, eo,..., en-l, xn of distinct vertices xi and edges
ei where ei is the edge between xi and Xi+1.

Let p be a parameter in (o,1). The edges of E d are open with probability
p, and closed otherwise, independently from each others. We denote by P
the product probability measure on the configuration space Q = {0,1}Ed.
The measure P is the classic Bernoulli bond percolation measure. Two sites
x and g are said connected if there is a path of open edges linking x to y. We
note this event (x - y}. A cluster is a connected component of the random
graph.

The model exhibits a phase transition at a point p,, called the critical
point: for p  Pc the clusters are finite and for p &#x3E; pc there exists a unique
infinite cluster. We work with a fixed value p  pc.

The following properties describe the behaviour of the tail distribution
of the law of a cluster (for a proof see [9]).

LEMMA 2.1. - Let p  Pc and let C be the cluster of the origin. There
exists ao &#x3E; 0 and ai &#x3E; 0 such that for all n

We briefly recall two fundamental correlation inequalities. To a confi-
guration cv, we associate the set K(03C9) = { e e JE2 : o(e) = 11. Let A and B
be two events. The disjoint occurrence A o B of A and B is the event
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w such that there exists a subset H of K(w) such that if
w’, w" are the configurations determined by K(w’) = H
and K(03C9") = K(03C9)BH, then 03C9’ ~ A and 03C9" ~ B.

There is a natural order on Q defined by the relation: 03C91  w2 if and

only if all open edges in W1 are open in w2. An event is said to be increas-
ing (respectively decreasing) if its characteristic function is non decreasing
(respectively non increasing) with respect to this partial order.

Suppose A and B are both increasing (or both decreasing). The Harris-
FKG inequality [7, 10] says that P(A fl B)  P(A)P(B). The van den
Berg-Kesten inequality [1] says that P(A o B)  P(A)P(B).

For x, y two sites we consider (x - y} the event that x and y are
connected. In the subcritical regime the probability of this event decreases
exponentially: for any x in Rd, we denote by [x] the site of Zd whose
coordinates are the integer part of those of x. Then

PROPOSITION 2.2. - The limit

exists and is &#x3E; 0, see [9, section 6.2]. The function 03BE thus obtained is a norm
on Rd.

In addition for every site x in Zd, we have

Since 03BE is a norm there exists a positive constant a2 &#x3E; 0 such that for an x

in Rd,

3. The H103BE measure and the space of the large déviation principle

With the norm 03BE, we construct the one-dimensional Hausdorff measure

1t¿. If U is a non-empty subset of Rd we define the 03BE-diameter of U as
03BE(U) = sup{03BE(x - y) : x,y ~ U}. If E C UiEIUi and g(Uj)  ô for each i,
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we say that f Uiliei is a 6-cover of E. For every subset E of Rd, and every
real ô &#x3E; 0 we define 

where the infimum is taken over all countable 8-covers of E. Then we define
the one-dimensional Hausdorff measure of E as

For a study of the Hausdorff measure, see e.g. [6].

We denote by lC the collection of all compact sets of R d. The Euclidian
distance between a point and a set E is

We endow 1C with the Hausdorff metric DH:

Let Kc be the subset of JC consisting of connected sets. An element of Kc is
called a continuum. We define an equivalence on Kc by: K1 is equivalent to
K2 if and only if Ki is a translate of K2. We denote by Kc the quotient set
of classes of Kc associated to this relation, and by DH the resulting quotient
metric:

We finally define the Hausdorff measure on K, by

which makes sense since H103BE is invariant by translation on /Cc.

Now we state an essential property required by the large deviation prin-
ciple.

PROPOSITION 3.1. - The measure H103BE is a good rate function on then
space Kc.

Proof. - The lower semicontinuity is due to Golab and the proof can be
found in [6, p 39]. We follow now the proof of the proposition 5 in [3]. Let
t &#x3E; 0 and let (Kn, n E N) be a sequence in /Cc such that H103BE(Kn)t for all
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n in N. For each n we can assume that the origin belongs to Kn. Since the
diameter of an element of /Cc is bounded by a constant time its H103BE-measure,
there exists a bounded set B such that

Thus, the sets Kn are subsets of B. For every compact set Ko the subset
{K e K : K c K0} is itself compact with respect to the metric DH [2].
Hence (Kn)n~N admits a subsequence converging for the metric DH ; the
same subsequence of (Kn)n~N converges for the metric DH. D

4. Curves and continua

A curve is a continuous injection F : [a, b] - Rd, where [a, b] C R is a
closed interval. We write also F for the image F([a, b]). We call 0393(a) the first
point of the curve and r(b) its last point. Any curve is a continuum. We say
that a curve is rectifiable if its H103BE-measure is finite.

We state a simple lemma:

LEMMA 4.1. - For each curve r : [a, b] - Rd,

Next, we associate to a continuum a finite family of curves in two differ-
ent manners. With the first one, we shall prove the lower bound, and with
the second one, we shall prove the upper bound.

DEFINITION 4.2. - A family of curves {03B3i}i~I is said hardly disjoint if
for all i ~ j, the curve "Yj can intersect "Yi only on one of the endpoints of
03B3i.

PROPOSITION 4.3. - Let F be a continuum with H103BE(0393)  oc. Then for
all parameter 6 &#x3E; 0, there exists a finite family f Filie, of rectifiable curves
included in F such that DH(F, UiCI:F?-,)  6, U1,Elri is connected and the

family {0393i}i~I is hardly disjoint.

Furthermore, there exists a deterministic way to choose the Fi ’s such
that if r’ is a translate of r, the resultant P’ ’s are the translates of the Fi ’s
by the same vector.

PROPOSITION 4.4. - Let r be a continuum with H103BE(0393)  00. Then for
all parameter 03B4 &#x3E; 0, there exists a finite family {0393i}i~I of rectifiable curves
included in r such that DH(f, UiEIr2)  6, with the following properties: the
euclidian diameter of fi is larger than ô for all i in I, Uli=10393i is connected

for all l  1, and the first point of Fl is in ~kl0393k.
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Propositions 4.3 and 4.4 are corollaries of lemma 3.13 of [6] in which we
have stated the additional facts coming from the proof. D

We often think of ILd as embedded in Rd, the edges {x, y} being straight
line segments [x,y]. An animal is a finite connected subgraph of ILd con-
taining the origin. The Hausdorff distance between an animal and its cor-
responding cluster is - So, to prove the large deviation principle we shall
consider the animal of the origin instead of the cluster. The point is that
an animal is a continuum. Hence we shall be able to apply Propositions 4.3
and 4.4 to an animal.

5. The skeletons

DEFINITION 5.1. - A skeleton S is a finite family of segments that are
linked by their endpoints. We denote by E(S) the set of the vertices of the
segments of S and by card5’ the cardinal of E(,S’) . We define HS103BE(s) as
the sum of the ç-length of the segments of ,S’. A point is also considered as
a skeleton.

Examples :

Counter-examples: the following families of two segments are not skeletons
- .

Sometimes a skeleton S is simply understood as the union of its segments,
and so is a compact connected subset of Rd. This is the case when we write

H103BE(S). We always have 

If Si and ,S’2 are two skeletons which have a vertex in common, then S’ =

S1 U ,S’2 is also a skeleton, and
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LEMMA 5.2. - For every P continuum with H103BE(0393)  oc, for all ô &#x3E; 0,
there exists a skeleton S such that

The skeleton S is said to 6-approximate F.

Proof. - Let f be a continuum with H103BE(0393)  00. Let {0393k}k~I be the
sequence of rectifiable curves coming from Proposition 4.3 with parameter
6/2. Consider ri. We take to = 0, xo = 03931(0) and for n à 0

If tn+1 is finite then Xn+1 = Fi (tn+1). Otherwise, we take for xn+1 the last
point of fI if it is different from xn, and we stop the sequence of the xi’s.
Since 03931 is rectifiable and because of Lemma 4.1, this sequence is finite.
We call Si the family of the segments [xi, Xi+1] for i = 0 to n - 1. By
construction Si is a skeleton, the endpoints of fI are vertices of Si and Si
6/2-approximates Fi. We construct in the same way the other Si’s for i in
I. By assumption, the Fz’s are connected by their endpoints. Since these
endpoints are vertices of Si’s, the union of the Si’s denoted by S is also a
skeleton. We control the HS103BE measure of ,S’ by

where we use (5.2) and Lemma 4.1. The Hausdorff distance between S and
r is controlled by

DH(S,0393)  DH(S, UiElfi) + 6/2  sup DH(Si, ri) + 8/2  8. ~
ici

Remark 5.3. - If F’ is the image of r by a translation of vector il, then
the skeleton S’ constructed as above from I" is the image by the same
translation of the skeleton ,S’ constructed from r.

6. The lower bound

We prove in this section the lower bound stated in Theorem 1.1. By a
standard argument [5], it is equivalent to prove that for a1l8 &#x3E; 0, all r in K,

We introduce two notations. The r-neighbourhood of a set E is the set
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Let E1, E2 be two subsets of Rd. We define

We now take r in f such that the origin is a vertex of the skeleton S
constructed from f, as described in the proof of Lemma 5.2. This can be
done because of the previous remark. First observe that

We let

G(N, 6/2, r) = 13 a connected set C’ of the percolation process,
containing 0, such that DH(C’/N, F)  03B4/2}.

We hav

We study the first term of the product. Let r be positive and let x and
y be two sites. The event that there exists an open path from x to y whose
Hausdorff distance to the segment lx, y] is less than r is denoted by x  y.
We restate lemma 8 in Section 5 of [3]:

LEMMA 6.1. - Let 0(n) be a function such that 0(n) - oo.
For every point x, we have

Take the skeleton S which 6/4-approximates r, as in Lemma 5.2. We
have carefully chosen r such that the origin is a vertex of S. We label

xi, ... , xn the vertices of S. We note i - j if [xi, xj] is a segment of S. Then

The fact that the origin is a vertex of ,S is used in the last inequality. Since
the events last considered are increasing, the FKG inequality leads to
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But by Lemma 6.1

Hence

Now we analyze the second term P(e(I, CIN)  61 G(N, 03B4/2, 0393)) of the
product in (6.1). First observe that the event

is included in

The two events appearing in the last intersection are independent, since
they depend on disjoint sets of bonds. So

for a certain constant ci &#x3E; 0. In the last inequality, we use (2.1) and a
bound of the cardinality of 03BD(N0393, N 8) ~Zd. The member on the RHS tends
to 0 as N tends to infinity. Hence

By limits (6.2) and (6.3), the inequatity (6.1) yields to the lower bound.
n

7. Coarse graining

Now we associate a skeleton to an animal. By a counting argument it
will yield to the desired upper bound.



DEFINITION 7.1. - Let S = {Ti}i~I be a skeleton, and let C be an ani-
mal. We say that S fits C if E(S) is included in the set of vertices of C, if
for all i in I there exists a curve 03B3i such that 03B3i is included in C and has
the same endpoints than Ti, and if the family {03B3i}i~I is hardly disjoint.

LEMMA 7.2. - Let s &#x3E; 4. For all animal C with diam(C) &#x3E; s, there
exists a skeleton S such that HS103BE(S)  a2(s/8)cardS, DH (C, S)  s, and
the skeleton S fits the animal C.

Such a skeleton is said to be s-compatible with the animal C.

Proof. - We recall that an animal is also a continuum. Let {0393k}k~I be
a sequence of rectifiable curves as in Proposition 4.4 with parameter s/2.
Consider for example fi. We take xo = 03931(0) and to = 0. For n  0, let

If tn+1 is finite, then xn+1 = fI (tn+1). Otherwise, we erase xn, we put
xn the last point of Pl and we stop the sequence. Note that t1 cannot be
infinite.

We call S’1 the family of the segments [xj, Xj+1]. The set S’1 is a skeleton,
and is called the s-skeleton of FI. For the other i’s in I we construct S’i the
s-skeleton of Fi in the same way. For each i in I we have

Since the euclidian diameter of Fi is larger than s for each i in I, we have
card S’i  2. Since s &#x3E; 4, it follows that HS103BE(S’i)  a2(s/8) card S’i, for each
1 in I.

We now refine the skeleton S’i into another skeleton S’i. For each j &#x3E; i

such that the first point of 0393j, say z, is in Fi but is not a vertex of S§ , we take
the segment of S’i whose endpoints x and y surround z on r2. We replace
in S’2 the segment [x, y] by the two segments [x, z] and [z, y]. When we have
done this for all j we rename S’i by Si. The set Si is always a skeleton which
satisfies DH (Si, Fi)  sl2. By triangular inequality, HS103BE(Si)  HS103BE(S’i).
We denote by S the concatenation of the S’2’s. By induction, S is a skeleton.
Furthermore, each vertex of S is a vertex of Si’ for a certain i.

Now we check that S fulfills the good properties. We have
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and

The next statement gives the interest of such a construction. For a given
skeleton S we let A(S) be the event that S is s-compatible with an animal.

LEMMA 7.3. - For all scales s &#x3E; 4,

Proof. - If S is compatible with an animal, we have the disjoint occur-
rences of the events (xz - Xj 1 for all i  j such that [xi,xj] is a segment
of S. The BK inequality implies

The last sentence of Proposition 2.2 yields to the desired result. D

8. The upper bound

We prove here the upper bound stated in Theorem 1.1. Consider the
animal C containing the origin. Let 03A6H(u) = (K E KC: H103BE(K)  u}. We
prove that ~u  0, ~03B4 &#x3E; 0, ~03B1 &#x3E; 0, ~N0 such that ~ N  N0,

This is the Freidlin-Wentzell presentation of the upper bond of our large
deviation principle, see [8].

Let c be a positive constant to be chosen later, and take s = 8c ln N. For
N large enough, DH(C/N, 03A6H(u))  03B4 implies diam C &#x3E; s. By Lemma 7.2,
we can take S a skeleton that s-approximates C. We have DH(C/N, S) 
8c ln N/N, so for .N large enough,

Since S is an element of /Cc, the inequality DH(S/N, 03A6H(u))  6/2 implies
that H103BE(S)  uN and so HS103BE(S)  uN by (5.1).
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Let a be such that a &#x3E; u/al. We have

But P(diam C &#x3E; aN)  exp -alaN by inequality (2.2). Since a &#x3E; u/al,
we have P(diam C &#x3E; aN)  exp -uN.

We estimate now the term P(HS103BE(S)  uN, diam C  aN). Let
A(n, u, a, N) be the set of skeletons T such that HS103BE(T)  uN, E(T)
is included in Zd, card T = n, and there exists a connected set of sites con-
taining the origin of diameter less than aN that is s-compatible with the
skeleton T. We have

The number of skeletons we can construct from n points is bounded by
(nn)2. Take a skeleton in A(n, u, a, N). All its vertices are in a box centered
at 0, of side length 2 (aN + c ln N) . So the cardinal of A(n, u, a, N) is less

than 2dn(aN + c ln N)dn(nn)2  exp a3n ln N, for a certain constant a3 &#x3E; 0.

Take b &#x3E; 0 a constant such that a3 - a2 b  0. We assume now that c &#x3E; b.

We have

because HS103BE(T)  a2(s/8)card T. Then for N large enough by Lemma 7.3

P(HS103BE(S)  uN, diam C x aN)

for any a4 &#x3E; b and N large enough. We take c such that a4/c  a and this

concludes the proof. 0
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