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Travelling wave analysis
of an isothermal Euler-Poisson model(*)

S. CORDIER(1), P. DEGOND(2),
P. MARKOWICH(3) and C. SCHMEISER(4)

Annales de la Faculté des Sciences de Toulouse Vol. V, n° 4, 1996

. RÉSUMÉ. 2014 Nous présentons une analyse en ondes progressives des
equations d’Euler isothermes pour les electrons et les ions couplées par
l’ équation de Poisson. L’analyse est fondee sur une analyse par portrait
de phase qui conduit a trois types de solutions generiques.

ABSTRACT. - We present a travelling wave analysis of the isothermal
Euler equations for electrons and ions coupled by the Poisson equation.
The analysis is based on a phase plane analysis which leads to three types
of generic solutions. .

1. Introduction 

~ 

The Euler-Poisson system is used to describe the dynamics of a plasma
consisting of electrons and ions in their self consistent electric field. In

plasma physics, it is very often assumed that the plasma is quasineutral.
The quasineutrality assumption can be viewed mathematically as a singular
limit of the full Euler-Poisson model which leads to a different hyperbolic
system. We shall refer to this limit system as the quasineutral Euler model.
The aim of this paper is to perform a travelling wave analysis of the
full Euler-Poisson system in order to determine the shock profiles of the
quasineutral Euler system.
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(2) M.I.P., U.F.R./M.I.G., U.P.S., F-31062 Toulouse Cedex (France)
~3~ Fach. Math., T.U. Berlin (F.R.G.)
~ Inst. f. Ang. u. Num. Math., T.U. Wien (Austria)



In this paper, we shall restrict to isothermal Euler models. The more

complex case of full Euler models will be dealt with in a forthcoming
paper. In section 2, we present the isothermal Euler-Poisson model in
scaled form and we formally derive the quasineutral Euler model in section 3
when the scaled Debye length A tends to 0. In section 4, the travelling
wave problem for the full Euler-Poisson system is stated. For the sake of

simplicity, we shall assume that the mass of the electrons is zero. In reality
the electron mass is small compared to the mass of the ions. We prove
that for smooth solutions, the Euler-Poisson system can be reduced to a
system of two ordinary differential equations. The phase plane analysis of
such a dynamical systems has been initiated by Ascher, Markowich, Pietra,
Schmeiser in [1] for semiconductor applications. In this paper, we shall

apply similar techniques. We prove that there exists three different generic
types of travelling wave solutions which we shall refer to as the solitary wave
solutions, the periodic solutions and the shock solutions.

In section 5, we prove that the only smooth travelling wave solutions
are solitary waves. These solutions can only be constructed for sufficiently
small Mach numbers. They lead, when ~1 -~ 0, to trivial solutions of the
quasineutral Euler system.

In section 6, we show that shock solutions i.e. solutions which tend, when
A -~ 0, to a shock wave for the quasineutral Euler model exist for sufficiently
large shock strengths. These solutions connect a hydrodynamic shock on
the ion hydrodynamic variables with the two states at infinity by a smooth
curve.

In section 7, we construct periodic solutions. These solutions have

already been described in basic books of plasma physics like [8]. Weak
limits of such solution exist when a -~ 0, but these limits are not weak
solutions of the quasineutral Euler-Poisson model in a classical sense.

Finally, in section 9, we give the guidelines to extend these results to the
polytropic model, to the finite electrons mass model and to the multi-species
plasma models.

2. The Euler-Poisson system

Let us consider a one-dimensional plasma consisting of electrons and
ions. The electrons of mass mn, charge qn = -e and of given constant
temperature Tn are described by their density nn and their velocity un;



the ions of mass mp, charge qp = +e and of given constant temperature
Tp by n p and u p respectively. These scalar variables satisfy the isothermal
mono-dimensional Euler system of conservation laws. The mass (or charge)
conservation equation reads:

where a is the generic index for the species of particles with a = n (for the
electrons) and a = p (for the ions). The momentum conservation equation
can be written:

where Pa (n) denotes the pressure of the a-th species. We need an equation
of state to close the hydrodynamic system; in this paper, we consider the
isothermal gas law:

with k B the Boltzmann constant and Ta the constant temperature. How-
ever, all the following analysis can be carried out with the polytropic gas
law:

where y > 1 and ca is a constant. The self consistent electric field
E = is given by the Poisson equation:

where ~p is the permitivity and ~ the potential.
We now introduce the following scaling. We choose a characteristic length

L, temperature To and density No from physical considerations. The masses
are scaled by the ion mass and thus, mp = 1 and mn « 1 ; the charges
are scaled to +1 for the ions and -1 for the electrons. Then, we define the
velocity, time and electric field units by:

respectively. The resulting scaled version of Euler-Poisson system reads



where nn, un, , T~, are now the scaled density, velocity and temperature of
the electrons and np, up, Tp are the corresponding quantities for the ions.
The dimensionless paremeter A in the Poisson equation (2.11) is the scaled
Debye length A = where

The system (2.7)-(2.11) contains two small parameters À « 1 and ~ « 1.
The quasineutral Euler model in obtained by formally letting ~ --~ 0.

Usually, in typical plasmas, the parameter A is very small which physically
explains this limit. The mathematical study of the Euler-Poisson model
has been initiated by Degond and Markowich in [3] for semiconductors. The
analysis of the singular quasineutral limit has been studied by Brenier for
the Vlasov-Poisson equations [4] and in particular, the relations between
the quasineutral limit of Vlasov-Poisson and the incompressible limit of
the Euler equations. We also mention a recent work [5] about the defect
measures of the limiting solutions when the Debye length tends to 0. Finally,
the quasineutral limit has been studied by Schmeiser and Markowich [7] for
a semiconductors model and Golse and Sentis [6] in the case of the Poisson
equation with Maxwellian electrons and a fixed background on ions. See
also [16] for related problems.

3. The Quasineutral Euler model

First, we let A = 0 in the Poisson equation (2.11) and we get the so-called
quasineutrality assumption:

Physical justifications can be found in all introductions to plasma physics
(for example) [9].



Then, the conservation equations (2.7) and (2.8) give:

This total current Jo can be determined by the boundary conditions.

We shall assume that Jo(t) = 0 and thus, we have a unique velocity
un = up = u. The equation for nu can be obtained by adding the two
momentum equations (2.9) and (2.10) together:

The electric field does not appear explicitely in this limit system, but can be
computed a posteriori from the electron momentum equation (2.10). Thus,
the remaining variables (n, nu) satisfy a gas dynamics system [11].

One aim of this paper is to provide some justification of this formal
limit: we want to construct the shock wave solutions of the quasineutral
Euler model as limits of travelling wave solutions of the full Euler-Poisson
model.

However, only part of this program can be achieved. Indeed, we shall
prove that there exist 3 distinct types of travelling wave solutions of the full
Euler-Poisson model.

First type. 2014 Solitary wave solutions are the only smooth travelling wave
solutions of the full Euler-Poisson model (sect. 5). When A goes to 0,
they lead to a trivial constant solution of the quasineutral Euler model.
They are associated with velocities of the wave a~ which are close to the

characteristic velocity of the quasineutral Euler model more precisely
Q’C  r  o-~ + .

Second type . - Periodic solutions are bounded travelling wave solutions
which involve one hydrodynamic shock for the ion state variables connected
with a smooth periodic solution for increasing x (sect. 7). They are

associated with velocities a~ which are in between 7~ + ~1 and + ~2.
When A - 0, they have a weak limit which is not a weak solution of the
quasineutral Euler model.

Third type. - Shock solutions are travelling wave solutions consisting
of two smooth curves connecting the two states at infinity with the two
sides of a hydrodynamic shock for the ion state variables. When a -~ 0,
these solutions actually tend to a shock wave solution of the quasineutral



Euler model with the correct speed (1 and the correct Rankine Hugoniot
relations (sect. 6). However, such solutions only exist for o~ > ~C + 0~2.
This indicates that shock wave solutions of the quasineutral Euler model
are limits of travelling wave solutions of the full Euler-Poisson model only
if the velocity of the shock wave is larger than some thershold velocity (or
equivalently if the shock is strong enough). 

’

This analysis will be extended to the non-isothermal Euler-Poisson
model where the pressure law is replaced by an energy equation in a
forthcoming paper. For such systems, the quasineutral limit leads to a
non linear hyperbolic system in a non conservative form which brings some
indetermination in the jump relatiQns [14]. The relevant jump relations can
be derived from a similar travelling wave analysis [2]. .

4. The travelling Wave Problem

Let A > 0 be fixed. We construct travelling wave solutions of the Euler-
Poisson system (2.7)-(2.11) of the form U = (np, nn, up, un, ~):

with ç = (.r 2014 where a is the velocity of the travelling wave. The
Euler-Poisson system can be written, for smooth solutions, as the following
system of ordinary differential equations:

where I denotes the differentiation with respect to £. If the solution
becomes discontinuous, this system has to be completed by the following
jump relations:



where [’ ] stands for the difference between the right and left limits of the
corresponding function. Indeed, the electric field E is continous and does
not change the classical jump relations. We notice that the electron and ion
jump relations are decoupled. The jump relations have to be supplemented
by entropy conditions which will be made explicit in section 6.

We can now solve the mass (or charge) conservation equation by stating
that the currents

are constant through the shocks.

Since we are interested in the travelling wave solutions which have a
chance to converge when A --~ 0 to a shock wave solution of the quasineutral
model, we shall be mainly interested in those travelling waves which
converge to a constant state for £ -~ However, we shall see that
this constraint is too strong and we shall relax the requirement on the
behaviour at ç = +00, and only require thus the solution to be bounded
when ç --~ +00. In the last section of this paper, we shall complete the
travelling wave analysis by giving all the bounded travelling wave solutions,
but we shall not present the analysis.

Thus, we shall be looking at bounded travelling wave solutions such that
the variable U = (np, nn, up, un, 03C6) has a limit when ç ~ 2014~ which in
compatible with the quasineutral hypothesis:

with



If in addition U has a limit when ç -~ +00:

then, we necessarily have:

Finally, we can impose ~- - 0 and we set Jp = Jn = J = n_ {u_ - r) the
constant current.

In the remainder, we shall restrict ourselves to the case J > 0. Indeed, if
the functions nn(03BE), un(03BE), np(03BE), up(03BE), 03C6(03BE) are solution of problem (4.2)-
(4.18) for given J and a, then nn(-03BE), -un(-03BE), np(-03BE), -up(-03BE), 03C6(-03BE)
is the solution for -J and 2014r.

The aim of this analysis is to determine the jump relations between the
left and right limits when they exist. We summarize the problem as follows:
for a given left state:

and a velocity a~ being fixed, we want to construct a travelling wave solution
satisfying:

. the differential equations (4.4)-(4.5)-(4.6) in the intervals of continuity
of the solutions;

. the jump relations (4.9)-(4.10)-(4.11) together with entropy condition
at a discontinuity

. the current conditions (4.12)-(4.13) which are equivalent to (4.2)-(4.3)
in the smoothness intervals and to (4.7)-(4.8) at a shock;

. the asymptotic behaviour (4.14)-(4.15) for 03BE ~ 2014~ and (4.16)-(4.17)
if the limit at ~ -~ exists.

The set of solutions of (4.1)-(4.18) can be parametrized by the velocity
r of the wave.



5. Smooth solutions

In this section, we consider only smooth solutions of the travelling wave
problem (4.1)-(4.18). .

5.1 Reduction to a dynamical system . 

-

From (4.12) and (4.13), the momentum equations (4.4) and (4.5) can be
written:

moreover by use of (4.12) and (4.13), we shall express the velocities un and
up in terms of the corresponding densities nn and np. Then, (5.1) and (5.2)
lead to:

where we have set:

the so called enthalpy of the a-th species. We also define the derivative ha
of with respect to ?~: :

The function Ha is increasing for n and decreasing for n  na, where
na is defined by = 0 i.e.:

Since ~ « 1, we make the following assumption:



We shall verify later on that this assumption does not restrict the analysis.
In terms of the travelling wave velocity, the density na corresponds to:

Thus, the associated velocity 03C3 is the sonic velocity of the a-th species and,
therefore, na will be referred to as the sonic density of the a-th species.
We prove below that n corresponds to subsonic states and n  np to
supersonic ones (sect. 6).

By adding the equations (5.3) and (5.4), we get:

This constant d can be computed from the left boundary condition (4.18) :

Then, (5.9) enables us to compute the electron density in terms of the
ion density; indeed, from hypothesis (5.8), nn varies in a region where the
function Hn is monotonically increasing. We define the following function:

for nn > or equivalently, since Hn is increasing if np is such that:

where pmin and pmax are defined by Hp(p) = d - Hn(nsn) such that
0  Pmin  n -  pmax  00.

Hence, we have just proved that (4.4)-(4.5)-(4.6) can be equivalently
written (for smooth solutions), as the following dynamical system:

where, from now on, we shall denote by p = np the ion density.



We have a first integral of system (5.14):

with

We notice that this constant is preserved even through shocks from the
jump relations (4.9)-(4.10)-(4.11) since the function g(p) is the flux of the
total momentum. 

°

5.2 Phase plane analysis

Again, we recall that from now on, we shall write p instead of n p to make
notations simpler.

In order to give explicit calculations,wa shall consider the massless

electrons approximation i.e. r~ = 0. We shall relax this hypothesis in
section 9 provided (5.8) holds. Obviously, (5.8) is satisfied when ~ = 0.
Then, the electron enthalpy Hn reduces to Hn(n) = Tn ln(n/no) and the
function nn given by (5.11) can be written in the form:

and since 0, the condition (5.8) is always satisfied and there is no
restriction, i.e. pmjn = 0 and pmax = +00.

We recall that such dynamical systems have been studied in the semi-
conductors context in [1]. We follow the same lines being interested in the
phase portrait of the system (5.14) in the (p, E) plane.

At first we remark that the phase portrait is symmetric with respect to
the E = 0 axis. ’

5.2.1 Stationary points

The points of main are the stationary points of {5.14), because they will
provide the possible asymptotic states when 03BE ~ ±~ of the travelling wave.

These points are defined by the equations:



The case p = np will be studied threreafter. Assuming there exist

exactly two stationary points of the form (p, 0) with p solution of:

Because p ’2014~ Hn(p) + Hp(p) is monotonically decreasing for p E [0, ]
and monotonically increasing for p E [ nc , +00] with the critical density nc .

defined by: 
~--

the equation (5.18) has two solutions p = n- (from the definition (5.10) of
d) and p- such that the critical density nc lies between n- and p- . We
introduce the notation with no = min~ n- , p- ~ and n1 - max~ n- p- }
such that no  In the following we shall prove that the existence
of solutions of the travelling wave problem requires n-  nc, i.e. n- = no.

We note that nc can be viewed as the sonic density for the global
quasineutral fluid.

The critical line n = nc splits the phase plane (p, E) into the subsonic
domain (n > nc) and the supersonic domain (n  nc) for the quasineutral
fluid.

Moreover, we shall refer to the region p E [ no , ] of the (p, E) plane
where we have p  nn(P) and thus E’  0 as the negatively charged region
and to the region where p ~ ~ [ no , ] as the positively charged region.

The sign of p’ depends on the sign of E and on the position of p with
respect to the sonic line p = Thus, p’ > 0 if E > 0 and p > np or if
E  0 and p  n p and we have p’  0 in the two other quadrants.

5. ~.~ Local analysis

The local behaviour at the stationary points can be determined from a
linearization of system (5.14) ; the jacobian of (5.14) is:

Since > 1 and  1 (by construction), the nature of
the stationary point depends on its position with respect to n. We have
no  nc and, by definitions (5.19) and (5.7), nc  thus hp(no)  0 and

is always a saddle point.



On the other hand, if the density is such that ni  np, the point
is a center, whereas nl > n~ implies that (ni , 0) is a saddle point.

Let us assume that nl  np. The trajectory starting at point (no, 0)
with E  0 is given by the equation E(p) == 2014B/2(~(p) 2014 g(n_ ) . We have:

But since we have from (5.6) and (5.17):

we deduce that:

Since hp vanishes at n p and since p = 4=~ p E {no, the derivative
of g(p) with respect to p vanishes at n0, n1 and nsp with n0  n1  nsp.
The graph of the function g(p) is depicted on figure 1. It follows that E

decreases from no to nl and increases for p > n1.

Fig. 1 Graph of function g for nl ~ n~ and g(no) > > 0.



We want to characterize when the trajectory starting at crosses

the axis E = 0 at a point (n*, 0) with np > n* > nl (case (i)) or when this
trajectory leads to the sonic line (case (ii)). This depends on the sign of
g(no) - Indeed, the density n* is defined by g(n*) = g(no) and the
equation g(p) = g(no) has a solution if and only if g(no) - g(np) > 0. Thus
case (i) corresponds to g(no) - > 0 and case (ii) to g(no)  

The case n 1 > n~ is called case (iii).

5. ~. 3 ,S’onic line p = n~

The sonic line for the ion fluid p = np splits the phase plane (p, E) into
the subsonic domain p and the supersonic domain p  

This is a line of singularities of the system (5.14) since hp vanishes for
p = n p . Thus, it is only possible to cross this line at E = 0.

In fact, (p, E) = (n~, 0) is a point of non uniqueness of (5.14). Indeed

the initial value problem for (5.14) with initial data (p, E) = (np, 0) has two
solutions in the case n 1 (which has been previously defined as case (i)
and (ii)) and none in the case nl > n~ (refered as case (iii)).

In the first case, the trajectory leading to {n~, 0) (called sonic trajectory
and denoted TS) passes twice through (np, 0), once on its way from subsonic
to supersonic region and once on its way back. Then, we have to distinguish
if the supersonic part of this sonic trajectory TS crosses the axis E = 0
at some point p  np, which corresponds to the case where the equation

= g(p) has a solution n*, i.e. case (ii), or not in which case the two
different branches of the supersonic part of Ts (E > 0 and E  0) never
intersect; this is the case (i).

Because of the first equation of (5.14), we have = oo at all point
(np, E) with E ~ 0. At any point (np, E) with E > 0 two trajectories start
(one going into the supersonic region and one in the subsonic region) and at
every point {n~, E) with E  0 two trajectories end (one coming from the
subsonic region and one from the supersonic region). All points at p = n~
are reached for finite values of the independent variable ~.



5.3 The phase portraits

Then, we have to distinguish between the three following generic cases.

5.3.1 The solitary wave case (or case ~i~~

This is case (i): g(no) - 0. There exists a homoclinic orbit

starting from (no, 0), the point (ni , 0) is a center and is such that ni  np.
The phase portrait is depicted in figure 2.

Fig. 2 Soliton case.



Fig. 3 Periodic case.

Fig. 4 Shock case.



5. 3. ~ The periodic case (or case 

This is case (ii): g(no) -  0 and nl  There is no homo clinic

orbity starting from (no, 0), the point (nl, 0) is now a center. There exists
one closed orbit passing through the sonic point (n p, 0) corresponding to a
periodic solution. The corresponding phase portrait is given in figure 3.

Of course, there also exist periodic solutions in case (i). But for a reason
to be explained later on, we shall refer to this case as the "periodic case" .

5.3.3 The shock case (or case (iii))
This is case (iii) : n 1 > . The two stationary points are saddle

points. This case is called the shock case because it will provide travelling
wave solutions which tend, when a --~ 0, to a shock wave solution of the
quasineutral Euler problem. Its phase portrait is shown on figure 4.

Moreover, the three following limiting case have to be considered.

5.3.1~ The trivial case

This is the case where no = nl = ~c. . There is only one degenerate
stationary point. Going back to the velocity of the wave, this case

corresponds to the acoustic speed for the quasineutral Euler model

The associated phase portrait is given on figure 5.

Fig. 5 Trivial case.



5.3.5 The critical case

This is the case where g(no) = The trajectory starting from (no, 0)
reaches in finite time the point (np~, 0). The associated phase portrait is

given on figure 6.

Fig. 6 Critical case.

The determination of the associated velocity 03C3 cannot be done explicitely
in the general case; but the equation g(no) = can be written as

an equation for the ion Mach number M = We have from the

definitions of no and nl (see (5.18)): : d = Hn(no) + Hp(no), and thus:

and from (5.7),



or again,

and again using (5.7)

since M2 = . This equation has a unique solution .NI > 1 that
we denote by .~I~t _ , which depends on Tp and Tn. . This equation can be
simplified further if we choose a reference temperature equal to the electron
one (Tn = 1),

In the limit of cold plasma i.e. Tp -~ 0, the equation (5.25) is more

conveniently written in terms of the electron Mach number

which is also equal to :

and gives when Tp -~ 0:



This is the Mach number equation for the existence of solitary waves via the
Zagdeev potential theory [8] (see also [9] for its connection with the Bohm
sheath criterion and [15] with an ion extraction model). The only positive
solution is 1.5852. In some sense (5.25) generalizes the criterion for
the existence of solitary waves derived in [8] to finite temperature plasmas
as we shall see later on. ’

5.3.6 The sonic case

This is the case where nl = ns. . In this case, the local behaviour at the

stationary point cannot be determined from a linearization. However, we
can prove that there exists exactly one trajectory starting from (ni , 0) with
E > 0 and p > ni and one ending at with E  0 and p > nl.
Moreover we can prove that these trajectories have horizontal tangent at

0). This is left to the reader. The velocity of the wave corresponding
to this case is the ion sonic velocity and thus, this case will be referred as
the sonic case. Its phase portrait is given in figure 7.

Fig. 7 Sonic case.



5.4 Solitary wave solutions

We shall now describe the smooth travelling wave solutions of (4.1 )-
(4.18).

THEOREM 5.1. - There exists a non constant smooth travelling wave
solution of (1~.1)-(1~.18~ if and only if the ion Mach number M def 
is such that

where M- is the solution of ~5. ~5~ with M > 1. Moreover, this solution
satisfies:

The shape of such a solitary wave solution is given in figures 8 and 9.

Fig. 8 Solitary wave solution: densities.



Fig. 9 Solitary wave solutions: electric field.

Proof. - First of all, note that a non constant solution must start on
the unstable manifold of a stationary saddle point. Thus, the point (n_, 0)
can be either (no, 0) in one of the three generic cases (i) to (iii) or (ni , 0) in
the case (iii).

Moreover, the trajectory must also connect the stable manifold of another
stationary point. Since there is no such heteroclinic orbit (which joins two
stationary points) in any case, then the non constant solution of (4.1)-(4.18)
must follow a homoclinic orbit. The only possible case for a homoclinic orbit
is case (i). The orbit of such a solution is depicted on figure 2 in bold line.

The first condition (Tn + Tp)/Tp  M arises directly from n- =
no  nc. The second condition comes from the characterization of case

(i) (§ 5.3.5) which leads to equation (5.25).
The property (5.29) is obvious. By integrating the first equation of (5.14),

we get:

and the second equation leads to

The property (5.32) expresses the global neutrality of the plasma.

PROPOSITION 5.2. - The necessary and sufficient condition (~.,~8~ for
the existence of non constant smooth solutions of problem (4.1)-(4.18) is

equivalent to



The left inequality u- - Tp + Tn is some sort of Lax entropy con-
dition for the travelling wave solutions [13, p. 261], since u- - Tp + Tn is
the characteristic velocity of the waves going to the left for the quasineutral
system.

We are now interested in the limit when A goes to 0 of such travelling
waves profiles. Indeed, for the set U~ of solutions of (4.2)-(4.18), we have
the following theorem.

THEOREM 5.3. - Assume (5.,~8~ holds. Let np, nn, up, u~, ~~ be a non
constant smooth solution of problem ~,~.1)-(,~.18). Then, we have that

Therefore, the solitary wave solutions lead to constant solutions in the
limit A goes to 0. The proof is obvious since the functions , u~ , u~
and ~~’ are continuous and satisfy (5.29). .

6. Shock solutions

We have shown that there is no heteroclinic orbit which connects two
different stationary points. If we want to construct travelling wave solutions
with different limiting values at ç = then we have to consider solutions

involving possible discontinuities. We first describe the admissible shocks
from the jump relations and the entropy condition.

6.1 The admissible shocks

The (Rankine-Hugoniot) jump relations for a shock have been given in
(4.7)-(4.11). We already notice that the electrons remain subsonic (see
condition (5.8)) so that the electron state variables nn and have no

jump. On the other hand, the electric quantities E and § are continous.
Thus, the jump occurs only on the ion quantities p = n p and up.
A simple computation shows that the jump condition (4.9) is equivalent

to the equation:

where if ~o is a point of discontinuity of p, we have defined:



the left and right limits of p. To obtain a physically relevant solution, an
additionnal entropy condition has to be imposed [13]. A way of stating it is
to require that the shock occurs from a supersonic state to a subsonic state
in the direction of the flow which is the increasing x direction since J > 0.
In the present situation, it can be written:

In the sequel, values p,~ and pr of the ion density are called conjugate if they
satisfy both (6.1) and (6.3). For weak shocks, the entropy condition (6.3)
is equivalent to the following constraint on jumps:

where S(p, up) = pup + 2Tpp(ln p - 1} is the entropy and F(p, up) =

(pu) + 2Tp p ln p) u p the associated entropy flux.

6.2 The shock solutions

We shall now characterize the infinite limiting value when ~ --~ +00 in
terms of the one at 03BE ~ 2014~ by use of the first integral of (5.14) which is
preserved even through the shocks. Since the infinite states are assumed
to be quasineutral, the expression of the first integral g can be simplified
further: .

and the equation g(n+ ) = g(n- ) can be recast for n+ ~ n- according to:

We now notice that the current J, the sonic density n~ and critical densities
nc are unchanged through the shock. Thus, equation (6.6) implies that nc
lies between n- and n+ . .

However, the phase diagram changes during the shock together with the
constant d. Indeed, the function Hp(p) is not preserved through a shock
and so is d (5.9).
We first consider the phase portrait of a smooth portion of the travelling

wave solution before the occurence of a shock (the left phase portrait). The



starting point (n-, 0) cannot be in the subsonic domain (case (iii)). Indeed
the solution cannot leave this domain with a jump because the entropy
condition prevents it and there is never two stationary points in the subsonic
domain. Then, the starting point (n-, 0) has to be in the supersonic domain
and more precisely, it must be a saddle point. Indeed if the solution would
start from a center point, it would necessarily have a discontinuity which
would lead to the point (pr, 0) in the subsonic domain conjugate to (n-, 0).
But there is no trajectory either smooth or discontinuous connecting (pr, 0)
to {n+, 0) by (6.6). Finally, n- must be the point no of one of the three
generic cases.

Then, we are interested in the phase portrait of the solution after the
occurence of a shock (the rigth phase portrait). The entropy condition
states that the point {pr, Eo) after the shock lies in the subsonic domain.
This point must lie on the stable manifold of the stationary point (n+, 0).
Thus, the point (n+, 0) is either a saddle point in the subsonic domain,
i.e. (nl , 0) in case (iii), or a saddle point in the supersonic domain which
is connecting the point (pr, Eo) in the subsonic domain, i.e. {no, 0) in the
critical case.

This last case is readily eliminated because we have both n-  n~ and

n+  n~ and this contradicts equation (6.6). In fact, such solutions corre-
spond to the limiting case of solitary wave solutions when the homoclinic
orbit reachs the sonic point (n, 0) and return to the stationary point (no , 0).
Thus, this does not enter the set of shock solutions as characterized by (6.6).

Therefore, the point (n+, 0) is necessarily in case (iii) which in particular
implies n+ > np. have the following theorem.

THEOREM 6.1. - There exists a unique admissible travelling wave solu-
tions of (~,~.1~-~.~.18~ with n- ~ n+ if and only if

In this case, the jump relations are given by ~6. 6~ with n-  n~  n+ . The

velocity u+ is given by J = n-(u- - ~) = n+(u+ - ~). Moreover, this

solution satifies:

The shape of such a shock solution is given in figures 10 and 11.



Fig. 11 Shock solution: electric field.

Proof. - The condition (6.7) is equivalent to state that the point (n+, 0)
is in the ion subsonic domain, i.e. n+ > np. We recall that the latter
condition is a necessary condition for the existence of shock solutions.

Indeed, we have from the relation (6.6):

We now assume that (6.7) holds and we shall construct explicitly the
travelling wave solution.



We have shown that the solution starts at the saddle point (n- - no, 0)
in the supersonic domain, then it follows the trajectory either in the half
plane E > 0 or in the half plane E  0. This trajectory is given by:

At one point Eo) of this trajectory, the solution has a shock which leads
to the conjugate point (pr, Eo) in the subsonic domain. This point must lie
on the unstable manifold of the saddle point (n+ = ni, 0) of the subsonic
domain (case (iii)).

Hence, the sign of E is constant along the trajectory. We shall prove
(6.8). Indeed, the electron density increases from n- to n+ > n- and is
given by (5.11) which is a decreasing function of Hp(p). If E > 0, then

Hp(p) increases along the trajectory because of (5.6) and (5.14), and thus
nn decreases. This is impossible; thus, E has to be negative.

The second part of property (6.8) is obvious, by integrating the first
equation of (5.4), we get:

and the second equation of system (5.14) leads to (6.9):

Finally, we have to determine the intermediate shock i.e. the values of Pi,
pr and Eo  0. Since n- and n+ are known we can compute the constant
d for the left and right phase portraits:

Then, the jump relation (6.1) allows us to express pr in terms of p,~ and the
continuity of the electron density can be written as an implicit equation for
the variable Pi: .



where n~ denotes the different functions nn(P) before and after the inter-
mediate shock. We set M’ = = this is the Mach number

for the ions of the state before the shock and thus, M’ > 1 since p,~ is a

supersonic state. Then, since np is known, the implicit equation (6.13) in
variable p,~ can be written in variable M’ as follow:

An obvious computation gives:

Moreover, we shall prove that d+  d- . Indeed,

But, since n~ = n+n- from (6.6) :

Thus, n+ > n- and the properties of ~ imply d+  d- .

Then, there exists a unique solution Mo > 1 of (6.14) and finally, the
intermediate shock is uniquely determined. The corresponding electric field
Eo can be computed by (6.11). We notice that the Mach number of the
intermediate shock M’ = for the ions is equal to the Mach number
of the shock between the infinite values of the density M’ = 

for the quasineutral fluid. 0



The property (6.9) expresses the global neutrality of the plasma. The
trajectory in phase space associated with the travelling wave solutions
described in Theorem 6.1 is depicted on figure 4 in bold line.

Remark 6.2. - We point out that such a shock solution cannot have
several jumps, since after the first shock, the solution is subsonic and

cannot pass into the supersonic domain again. Moreover, we have uniquely
determined the possible intermediate jump.

PROPOSITION 6.3. - The necessary and sufficient condition (6. 7) for the
existence of solutions of problem (.~.1~-(,~.18~ with n+ ~ n- is equivalent to
the following condition on the wave velocity:

or equivalently to the following constraint on the strength of the jump:

We are now interested in the limit when a goes to 0 of such travelling wave
profiles. Indeed, we have constructed a set U~ of solutions of (4.2)-(4.18);
we have the following theorem.

THEOREM 6.4. - Assume (6.7~ holds. Let nn, u~ and ~~‘ be
the solution of problem ~l~.l~-~.~.18~. Then, these functions converge in a
distributional sense as follows:

where n+ is given by ~6.6~, u+ by J = n-(u- - ~) = n+(u+ - ~) and
~+ = (Hn(n+) - Hn(n-)). . Moreover, the electric field E~ converges in a
distributional sense:

where bxo represents the delta distribution located at xa.



The shock solutions lead to shock wave solutions of the quasineutral Euler
model which propagate with velocity r.

Proof. - The result follows from the fact that the travelling wave
solution for A > 0 is written:

where U = U(()) is the above constructed solution. 0

Remark 6.5. - The determination of the intermediate shock on the ion
state variables and in particular p,~ and pr is not useful, if we are only
interested in the limit of these solutions when A goes to 0. However, the
monotony of nn along the trajectory will serve us to extend the analysis to
the case ~ ~ 0. Finally, the shock relation for the quasineutral Euler model
is described by the jump relation (6.6). This analysis also permits us to
determine the strength of the delta function (6.20) which is the weak limit
of the electric field and to justify the quasineutrality by (6.9).

7. Periodic solutions

We have shown that the existence of shock solutions requires sufficiently
strong differences on the left and right densities n+ and n- (Proposi-
tion 6.3). On the other hand smooth travelling wave solutions are solitary
waves which satisfy n+ = n- . In order to fill the gap in between these

two types of solutions in some way and find travelling wave solutions with
ratio n+ /n - close to, but no equal to 1, we shall have to weaken the condi-
tions on the asymptotic behaviour for ~ --~ +00. We now look for solutions
U = (nn np, un up, ~) which remain bounded for £ -~ -E-oo, without nec-
essarily assuming a limit as ~ -~ +00. We have following theorem.

THEOREM 7.1. - We assume

where M- is the solution of (5. ~5~ with M > 1. Then, there exists a

unique bounded travelling wave solutions of (,~.1~-~1~..18~. Moreover, there
exist ~o E I~, > ~o and T > 0 such that:



. nn, np, un, up and ~ are smooth solutions of (1~.1~-(,~.18~ for ~  ~o~
with nn > nn (subsonic electrons) and np  np (supersonic ions);

. at the point ~o, the quantities np and up have an admissible disconti-
nuity, but nn, ~ and un are continuous;

. for ~ E ] ~o ~~ ~1 ~, the solution is smooth and follows the sonic trajectory
Ts in the subsonic domain. The solution passes through the sonic line
at~=~1~ ;

. for all integer n, and for ~ E + nT + (n + 1)T ~, the solution
. follows the supersonic loop of the sonic trajectory Ts and has a periodic
behaviour.

The shape of such a periodic solution is given in figures 12 and 13. Its

trajectory in phase space is depicted on figure 3 in bold lines.

Fig. 12 Periodic solution: densities.

Fig. 13 Periodic solution: electric field.



Proof. - Assume

i.e. case (ii). If a travelling wave solution with np and nn tending to n+ as
ç -~ +00 would exist, then n+ would be linked to n- by relation (6.6) with
n-  nc. Then, n+ would necessarily be the center point in case

(ii). But a center cannot be attained by a smooth solution.

Now, instead of looking for travelling wave solution such that np and nn
tend to n+ as ~ -~ +00, we look for travelling wave solutions which are
bounded when ç --~ +00.

The only closed trajectory in case (ii) on which the solution can be
bounded is the sonic one TS or any closed trajectory which in inside the
sonic loop TS . However, the solution starts at ç = 2014~ from the hyperbolic
stationary point (n-, 0). It must reach such a trajectory by a jump.
However, a jump leads to the subsonic domain n > n p . Thus, the only
supersonic closed orbits which are reachable through a jump from {n-, 0)
are those which are connected to the subsonic domain. Only one trajectory
is in such case: the sonic trajectory TS. Furthermore, the sonic point (n p, 0)
is a point of non uniqueness so that the solution can follow the supersonic
loop of TS infinitely many times. 

"

The same ideas as in the shock case imply that the solution starts on the
E  0 branch of the unstable manifold of (no = n-, 0). We have now to
characterize the intermediate jump at the point ço. This shock has to satisfy
the conservation of momentum and global conservation of g - {1/2).E2:

Thus, we have to solve the same equation as in the critical case, i.e.

g~n-) = but now as an equation for d+ instead of ~:

This leads to the following equation for d+ :



where n-, J, np are known. This can be written in the following form:

The right hand side is non negative since ~Hp takes its minimum at the point
n p . Then, like in the shock case, we can compute p,~ as the unique solution
of the implicit equation (6.13). This concludes the proof. 0

Remark 7.2. 2014 We have the global neutrality over each loop on the sonic
trajectory TS :

Moreover, we also have the global neutrality property on the first part of
the periodic solutions:

The proof follows from the integration of the Poisson equation in (5.14) and
using = E{-oo) = 0 for (7.4) and the periodicity for (7.5).

PROPOSITION 7.3. The necessary and sufficient condition (7.1) is

equivalent to the following condition on the wave velocity:
T . T

We now consider the limit when a ~ 0 of such periodic solutions. We
have the following result.

THEOREM 7.4. Assume ~7.1~ holds. Let np, n~, up, nn and ~~ be

the unique bounded travelling wave solution of problem ~.~.1~-~,~.18~. Then,
these functions converge in the distributional sense as follows:



where n, u and ~ are the average values of the density np, velocity up and
potential ~ over one loop of the supersonic part of the sonic trajectory TS.
More precisely, we define the length of travel T/2 over the half loop (from
~n~, 0) to (n*, 0) defined by g(n*) = g( n) in case (ii) along by

and the average value of a function over a loop is

for symmetric functions of 03BE i. e. = Moreover,
the electric field E~ converges in a distributional sense:

Proof. - The computation of the length of travel T/2 over the half loop
comes from the first equation of (5.14):

then, we obtain, from the first integral of (5.14):

since E  0. Thus, we have:

and by integrating from 0) to (n* , 0), we obtain (7.10).
Then, the weak convergences (7.7) comes from the weak convergences of

periodic functions f ~ to their average value when the period i.e. AT tends to
0. (7.8) is consequence of the periodicity through the relation p(up - a) =
constant. The electric field tends to a delta function; indeed, because of its
symmetry over each period: + T/2 + h) = + T/2 - h). The



mean values of E over its period are 0 and thus, the electric potential ~~’
is a periodic function for £ > ~1. Thus, (7.9) comes from integrating the
electric field E from 2014~ to 03BE1:

and we have

Then, we have

Therefore, ~~’ tends to a Heaviside function from 0 to § given by (7.9) and
E’ = -8~~~’ tends to a delta function in the distributional sense when A
goes to 0.

The property = np arises from the global neutrality (Remark (7.4)). ~

Remark 7.5. - If we identify the "right state" as the average value p
and up, we obtain "jump relations" for the limits as a --~ 0 of the solutions
(7.7)-(7.9). However the momentum is no more preserved. Indeed the flux
of momentum is given by g(n) and we have from the first integral:

and by averaging:

Thus, a part of the momentum flux has been converted into electric field

energy since (E2 ) is not zero in general.



Now, we consider the charge conservation equation. The average velocity
is computed from the current conservation:

and by averaging, we get

Thus, the mass (or charge) conservation is also not preserved for the weak
limit of the periodic solution, and we need to compute separatly the average
values of p and up. . Thus, weak limits when a -~ 0 of periodic travelling
wave solutions are not weak solutions of the quasineutral Euler model.

M - , , the phase portraits before and after the shock both
"tend" to the critical case portrait. Then, the constant d+ solution of (7.2)
tends to d- and the intermediate shock becomes weaker and weaker.

Moreover, the solution passes infinitely many times near the stationary
point (no, 0) in case (ii) and since "it spends a lot of time near no" we have:

But, since the velocity of these waves 03C3 ~ u- -M-Tp not the velocity
for small shocks of the quasineutral Euler model 03C3 ~ u- -Tp + Tn, then,
the momentum flux has still a jump accross the shock of order 1:

with (E~) ~ 0 and (E2) /. 0 as M - ~-.
From these considerations, it is clear that the discontinuous solution from

the left state (n- , u- ) to the right state (n, u) is not a weak solution of the
quasineutral system. Such solutions can be associated to a special choice
of the Lipschitz continuous path in the definition of the nonconservative
products developed in [14].
When .NI -~ 1 + Tn /Tp, the loop becomes very small, i.e. n* -~ n p and

we have:

Then, the jump relations obtained with the periodic solutions extend

continuously to the jump relations for shock solutions. Therefore, for



.Jl~t -> 1 + Tn /Tp, there is in some sense a continuous matching of the set of
solutions obtained in Theorem 7.4 with the shock curve of the quasineutral
Euler model.

The three generic solutions we constructed have been already described
by plasma physicists. We presented the problem arising from the limit of
periodic solutions. The plasma physicists usually deal with this problem
by stating that the energy of plasma oscillations is dissipated. The math-
ematical analysis of these dispersive phenomenom has to be investigated
further.

8. Stationary solutions

In this section, we are interested in the stationary solutions of the
isothermal Euler-Poisson model, i.e. in the travelling waves of (4.1)-(4.18)
with 03C3 = 0. It can be naturally extended to polytropic model as in

section 9.2.

We set J = n- (u- - r) the total current. The existence of a solution
which has a limit when ~ 2014~ -oo imposes n- = no  nc. Then, we have
the following theorem.

THEOREM 8.1.2014 Let n- > 0 and u- > 0 be given. Define M = 
the ion. Mach number of the left state.

. If (Tn + Tp)/Tp  M  M_ where M_ is defined by (5.25), then
there exists a unique non constant smooth travelling wave solution of
(.~.1~-(.~..18) with a~ = 0 as constructed in Theorem 5.1.

. If M > (Tn + Tp)/Tp then there exists a unique admissible travelling
wave solutions of (l~.l~-(.~.18~ with ~ = 0; this is a shock solution as

described in section 6.

In these two cases, the solution verifies:

In between, i. e. for M-  M  (Tn + there is no non-constant

stationary solution with a limit U+ when ~ --~ but there exists a

bounded stationary solution of the Euler-Poisson model with a periodic
behaviour for ~ > ~1 as described in Theorem 71.



9. Extensions

We first complete the set of bounded travelling waves by solutions which
satisfy weaker condition at -oo. Then, we extend the analysis to polytropic
models and to small but finite electron mass models.

9.1 Completing the set of travelling wave solutions

In this section, we shall complete the set of non constant bounded

travelling wave solutions by relaxing the boundary condition when ~ -; -oo.

A solution of (4.1)-(4.18) is bounded as 03BE ~ 2014~ if and only if it has a
limit U- (case previously analyzed) or it has a periodic behaviour, i.e. it

stays on a closed orbit. The only closed orbits are in the supersonic domain
in case (i) and (ii).

All the trajectories which are inside the homoclinic orbit issued from no
in case (i) or inside the sonic trajectory TS in case (ii) are smooth periodic
solutions of (4.1)-(4.18). These solutions can be characterized by the values
g > 0 of g(p) - (1/2)E2, d > 0 of Hn(p) + Hp(p) and J > 0 of the current
which are constant. These invariants play the role of the initial values n - ,
u- and the velocity a in the preceeding cases.

For given g, d and J, we define the functions Hp, Hn, g, nn of p and the
sonic and critical densities np and n~ as usual. We also define the densities
no and nl by the equation (Hn -~- Hp)(p) = d such that no  nc  n1.

Then, these constants correspond to a closed orbit in case (i) and (ii) if and
only if n 1  n p (or equivalently ( Hp + > d since (Hp + Hn ) { p)
is increasing for p > nc) and g > . Then, we have the
following result. .

THEOREM 9.1.2014 Let J > 0, d > 0 and g > 0 be given such that

where Ha for a = n, p, g, no, n~ and n~ are defined by (5.5), (5.16), (5.9),
(5.7~ and (5.19). Then, there exists a unique bounded non constant periodic
travelling wave solution of (,~.1~-(.~.18~. At one point (p1, Eo) on this closed
orbit with Eo  0, the solution can have a jump such that:



Ifn(2Tp + Tn)  g, the solution has a limit when

such that (Tp + Tn )n+ + ~2~n+ = g. .
Otherwise, the solution returns in the supersonic domain and has a

periodic behaviour.. -

The latter condition indicates the conservation of the total momentum.

9.2 Polytropic models

We shall extend the travelling wave analysis to polytropic models where
the isothermal law is replaced by the following pressure law:

where y > 1 and ca are constant for each species. We shall present this
analysis with the same polytropic constant y for electrons and ions for
the sake of simplicity. Indeed, this analysis will serve us in the study of
the complete Euler model, i.e. with energy equations. The travelling wave
analysis can be carried out for smooth solutions exactly like in section 5.
We obtain the dynamical system (5.14) with: ,

We have the following theorem for smooth solutions.

THEOREM 9.2. - There exists a non constant smooth travelling wave
solutions of ~,~.1~-~,~.18~ with y > 1 if and only if the ion Mach number

or equivalently,

is such th at



where M- is the solution of

with M > 1. Moreover, this solution satisfies (5.29)-(5.32).

The shape of such a solitary wave solution is the same as in figure 8. The
lower bound in (9.5) comes from the condition:

The upper bound given by (9.6) generalizes the condition of existence of
solitary wave solutions given in [8] for polytropic plasma models.
We are now interested in shock solutions. Then, we have the following

theorem.

THEOREM 9.3. There exists a unique admissible travelling wave so-
lutions of ~,~.1~-(,~.18~ with n- ~ n+ and y > 1 if and only if the Mach
number M is such that .

with M* = X -~’-1 where X is the solution of

In this case, the jump relations are given by the usual Rankine-Hugoniot
relations for the quasineutral Euler model which can be written:



The velocity u+ is given by J = n-(u" - ~) = n+(u+ - ~). Moreover, this
solution satisfies:

The condition (9.7) comes from n+ > n p and using the relation (9.8)
which arises from the conservation of the total momentum, i.e. the first

integral g(p) = J2/p + cpp03B3 + cnnn(p)03B3. The shape of such solutions is the
same as in figure 10. In between, we shall again construct periodic solutions.

THEOREM 9.4. - We assume:

where .~t _ is the solution of (9. 6) with M > 1 and M* is defined in (9. 7).
Then, there exists a unique bounded travelling wave solutions of (,~.1~-(,~.18~.
Moreover, there exists 03BE0 E R, 03BE1 > 03BE0 and T > 0 such that:

. nn, np, un, up and ~ are smooth solutions of (,~.1~-(.~.18~ or ~  ~o,
with nn > nn (subsonic electrons) and np  n~ (supersonic ions);

. at the point ~o the quantities np and up have an admissible discontinu-
ity, but ~ and un are continuous;

. for ~ E ] ~1 ~, , the solution is smooth and follows the sonic trajectory
Ts in the subsonic domain. The solution passes through the sonic line
at ~ = ~

. for all integer n and for ~ E + nT + (n + , the solution

follows the supersonic loop of the sonic trajectory TS and has a periodic
behaviour.

The shape of such a periodic solution is given in figure 12. Its trajectory
in phase space is depicted on figure 3 in bold lines.

9.3 Small electron mass

In this paragraph, we shall extend the travelling wave analysis to small
but finite electron mass models. We present the ideas for the isothermal



case. The key point is to express the electron density in terms of the ions
one using (5.11). For this, we need to ensure the monotony of the electron
enthalpy Hn all along the range of the solution nn (ç) or equivalently that
hypothesis (5.8) is satisfied by nn(ç) for all ~ E II8 . Indeed, we prove that if
the condition (5.8) is satisfied for n-, i.e. if

or equivalently if

then, condition (5.8) is satisfied along the trajectory of the solitary solutions,
of the shock solutions and of the periodic solutions. Indeed, the electron
density increases when E  0 since nn increases with decreasing Hp(p) and
(Hp(p)~~ = E. Thus, the electron density increases above the value n- on
the unstable branch of (n-, 0) since E becomes negative. This argument
allows thus to state the three existence theorems.

Solitary wave solutions

THEOREM 9.5. Assume holds. There exists a non constant

smooth travelling wave solution of ~.~.1~-~.~.18~ if and only if the ion Mach
number M def is such that

where M- is the solution of:

with M > 1. Moreover, this solution satisfies (5.29)-(5.32).

For the solitary wave solution, the electron density reaches its maximum
value when p = p* (i.e. when E = 0) such that p* > M" > y~ and
afterwards, it decreases from p* to no.



Shock wave solutions

THEOREM 9.6. - Assume (9.1 ~~ holds. There exists a unique admissible
travelling wave solution of (,~.1)-(,~.18~ with r~ ~ 0 if and only if

In this case, the relation between the states at infinity is:

The velocity u+ is given by J = n-(u- - ~) = n+(u+ - ~). Moreover, this
solution satisfies:

For shock solutions, the electric field is always negative and thus the
electron density increases monotonically along the trajectory from n- to n+. .

Periodic solutions

THEOREM 9.7. We assume ~9.1 ~~ holds and

where M- is the solution of (9.14) with M > 1. Then, there exists a

unique bounded travelling wave solutions of (1~.1~-(.~.18~ as described in

Theorem 7.1.

For periodic solutions, the electric field is negative for 03BE ~ ]-oo , ]
(where ~1 is defined in Theorem 7.1 ) and thus the electron density increases.



Then, on the first half period T/2, the electron density decreases (E > 0)
from to nn(n*). Moreover, (n*, 0) is in the negatively charged region
and thus nn(n*) > n* > no. Finally, (nn(p)) remains larger than n- for
the periodic solutions.

We mention that (9.14) generalizes the condition of existence of solitary
wave solutions given in [8] for isothermal plasma models with small but
non zero electon mass. On the other hand, (9.12) can be interpreted as a
condition for the Mach numbers

Thus, the shock solutions cannot be constructed for arbitrary large shock.

9.4 Several ions

When several species of ions are taken into account, it is proved in [10]
that the obtained quasineutral system is not always hyperbolic. However,
it seems possible to extend the travelling wave analysis. This will be done
in future work.

This analysis will be extended to the full Euler equations, i.e. with energy
equations instead of pressure laws [2]. In this case, the quasineutral limiting
system is in a non-conservative form which brings some indetermination in
the jump relations. We construct the three generic solutions and we get
jump relations for the shock solutions. Using these relations we can solve
the Riemann problem for the quasineutral system [12].
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