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RESUME. — Le but de ce travail est de montrer des caractérisations
globales du fibré tangent des p!-vitesses et du fibré cotangent des p!-
covitesses. Dans le premier cas, la caractérisation que 1'on exhibe géné-
ralise des résultats précédents des auteurs. La deuxiéme caractérisation
étend les résultats de Nagano sur le fibré cotangent. Les démonstrations
s’appuient dans la caractérisation de Nagano des fibrés vectoriels & 1'aide
des propriétés des champs de vecteurs canoniques.

ABSTRACT. — We give global characterizations of tangent and cotan-
gent bundles of p!-velocities and covelocities. The first one generalizes
the previous results of the authors for tangent bundles and the second
one extends the results of Nagano for cotangent bundles. The Nagano’s
characterization of vector bundles by the properties of its canonical vector
fields is widely used. ‘
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1. Introduction

The problem of the characterization of tangent and cotangent bundles
has been studied by several authors [4], [5], [10], [18], [19], [20]. In the case
of the characterization of cotangent bundles, Nagano [18] has proved that if
M is a differentiable manifold endowed with a vector field C satisfying the
same properties of those satisfied by the canonical vector field of a vector
bundle, then there exists a unique bundle structure on M over the singular
submanifold S of C such that C is the canonical vector field. If, moreover,
M is an exact symplectic manifold then M is isomorphic to the cotangent
bundle T*S, indeed as symplectic vector bundles. A different approach
was used for the case of tangent bundles [4]. Since the tangent bundle
of an arbitrary manifold possesses a canonical almost tangent structure,
the starting point is to consider an almost tangent manifold M. If M
is integrable and satisfies some global hypothesis, then it is possible to
prove that M is an affine bundle modelled on the tangent bundle TN
of some manifold N and hence diffeomorphic to it. Moreover, if the
affine bundle admits a global section, then M is isomorphic to T'N via
the isomorphism induced by the section. This result can be extended to
cotangent bundles ([19], [20]). Recently we have used the ideas of Nagano
to give a characterization of tangent bundles [10].

In [6], [7] we have extended these results to the global characterization of
tangent and cotangent bundles of p!-velocities and covelocities by using
similar procedures to thoses of Crampin, Thompson et al. Thus, we
have proved that an integrable p-almost tangent (cotangent) manifold
satisfying some global hypotheses is an affine bundle modelled in a tangent
(cotangent) bundle of pl-velocities. In this paper, we return to the idea of
Nagano and prove that an integrable p-almost tangent (resp. cotangent)
manifold endowed with a family of p vector fields Cy, ..., Cp satisfying
some hypotheses is globally isomorphic as a vector bundle over S to TI}S
(resp. (T7)™S) where S is the singular submanifold defined by the vector
fields Cy, ..., C).

All these problems are interesting for Mechanics and Classical Field
theories. In fact, tangent and cotangent bundles are the natural framework
where the Lagrangian and Hamiltonian formalisms are developed [15]. Also
classical field theories may be formulated in tangent bundles of p!-velocities
and covelocities ([11], [12], [13], [14]). Then it is relevant to have some
criteria to decide when a manifold is globally a jet bundle.
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The paper is structured as follows. In section 2 we recall the results of
Nagano. Sections 3 and 4 are devoted to give a global characterization of
tangent bundles of p!-velocities, and in sections 5 and 6 we consider the
case of the cotangent bundles of p!-covelocities.

2. Characterization of vector bundles

Let M be a differentiable manifold and X a vector fieldon M. If z € M is
a singular point of X, i.e. X, = 0, then we define the characteristic operator
(Ax)_ of X at z as the linear endomorphism (Ax)_:T:M — T.M given
by
(AX),,(Y) =VyX,

where V is an arbitrary linear connection on M. If we choose local
coordinates (z*) on M and put

) ) d _ % 9

_ vt —vi . — T
X=X'90 Y=Y35, Veasigs=Tijzz

then we have .
.0X* 8
=Yl — -
(AX)"’Y 8z Oz’

(2.1)

since z is a singular point. Hence (A X).-,,- does not depend on V.

Now, let M be the total space of a vector bundle M — N. Then the
canonical vector field of the vector bundle M is the infinitesimal generator
C of the global low on M induced by the scalar multiplication on each fibre.
This vector field satisfies the following properties :

(i) C is complete, i.e. it generates a global one-parameter transforma-
tion group on M;

(ii) for each point # € M, there exists a unique lim;_,_ o (exp tC)(z),
where exp tC denotes the flow of C;

ili) the characteristic operator .associated to C satisfies
iii) the ch teristi t AC,, iated to C satisfi

((4c),)’ = (4c),

for each singular point z of C;

(iv) the set S of the singular points of C is a submanifold of M of
codimension = rank(A¢)_forall z € S.
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In fact, choose bundle coordinatesc (mi,y“) on M, where (a:‘) are coordi-
nates in N and (y®) are coordinates in the fibre. Then C is locally expressed
by

8
C=9y*—.
-

Hence the singular set S of C is the zero section of M, and so, it is
diffeomorphic to N.

Nagano [8] has proved the converse:

THEOREM 2.1. — Suppose that there ezists a vector field C on ¢ manifold
M satisfying the above conditions (i)-(iv). Then there exists a unique vector
bundle structure on M such that C is the canonical vector field.

We give a sketch of the proof. If S is the singular submanifold, we put
N(S)e = {X €TM | (40),(X) =X}, (22)
for each € S. Then N(S) is the normal bundle of S in M, i.e.
(TM)|g =TS® N(S).
Moreover we have

T.5={X € T-M | (A¢) (X) = 0}. (2.3)

Then we can define a map ¢ : N(S) — M as follows. We first define
the exponential map exp : E — M with respect to some linear connection,
where E is a sphere bundle E C N(S) and then we extend ¢ to N(S).
This construction is possible from the properties of C. Moreover ¢ becomes
a diffeomorphism and then the vector bundle structure on N(S) — S is

transferred to M — S in such a way that C becomes the canonical vector
field of M — S.

As a direct consequence we have the following.

COROLLARY 2.1.— Two vector bundles are isomorphic if and only if
there exists a diffeomorphism which preserves the canonical vector fields.
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8. p-Almost tangent structures

Let M be a (p+1)n-dimensional manifold and let there be given a p-tupla
of tensor fields (Jq, ..., Jp) of type (1,1) such that

(1) JaoJy = Jpo0J, =0,

(2) rank J, = n,
(3) ImJgN (@#a Im J;) = 0, for each a,1 < a < p.
The p-tupla (J1, ..., Jp) is called a p-almost tangent structure on M and

M is said to be a p-almost tangent manifold ([8], [16]).

Let N be a differentiable manifold and TI}N its tangent bundle of p!-
velocities, i.e. the manifold of all 1-jets of mappings from R? to N at the
origin 0 € RP (see [17]). Ty N is a manifold of dimension (p + 1)n. We
denote by = : T1N — N the canonical projection defined by ‘zr(g0 z ) = z.
We have a canomcal diffeomorfism

I:T)N —TNe&---&TN,

of TI}N onto the Whitney sum of TN with itself p times, defined by

r(]é,:zf) = (jé,zfli RRRR) Jé,zfp) )

where f, (a =1, ..., p) is the curve on N given by

fa(t) = £(0, ..., ¢, ..., 0),

where t is placed at the a-th position. Then, each element X € (T1 N )z =

7~1(z), = € N, may be identified via T with a p-tupla (X3, .. .y Xp) of
vectors Xe € T:N,1<a<p and 7: TI}N — N has a unique vector
bundle structure such that T is a vector bundle isomorphism.

Now, we may define p tensor fields J, (a = 1, ..., p) of type (1,1) on
Ty N as the respective (a)-lifts of the identity tensor of N to Ty N [17]. If
we consider fibred coordinates (z*,z%) on Ty N then we have

3 8 3
Ta (azi> ~ bzt Ta (aq;) =9

and (J1, ..., Jp) defines the canonical p-almost tangent structure on T N.
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For each a, 1 < a < p, we have a canonical projection
¢:TIN —T:,N
Bocip — dp-1dV,

defined by p?(Xy, ..., Xp) = (X1, ..+, Xa oen, Xp), for p > 1, where the
hat over a term means that it is to be omitted, and the tangent bundle
projection pt: TI}N = TN — N for p = 1. Denote by Cq,1 < a < p, the
canonical vector field of the vector bundle u® : T;N — T;}—lN , which, in
fibred coordinates, is expressed by

0

S
Ca = Qla——i' B
oz,

Then we obtain the following identities:

[CaaCb]zo’ LC‘,,Jb:—‘Sabev JaCp =0, 1<a,b<p. (3’1)

A p-almost tangent structure (J1, ..., Jp) on a manifold M is integrable
if and only if M is locally isomorphic to a tangent bundle of pl-velocities.
In [8] we have proved that a such structure (Jq, ..., Jp) on M is integrable
if and only if {J;, Jp} = 0,1 < @, b < p, where {J;, Jp} is the (1,2)-type
tensor field defined by

{Ja, THX,Y) = [JaX, TY] = Ja[X, TY] = B[JaX, Y].

In the next section we shall prove that an integrable p-almost tangent
manifold satisfying some additional hypotheses is globally a tangent bundle
of pl-velocities.

4. Characterization ot tangent bundles of p!-velocities

THEOREM 4.1.— Let M be a (p + 1)n-dimensional manifold endowed
with an integrable p-almost tangent structure (Jq, ..., Jp) and p vector fields
Ci, ..., Cp on M satisfying (3.1), i.e.

[Ca,Cb]:o, LCGJb:—éabev ]aCbZO, 1Sa,b§P

IfCy, ..., Cp also satisfy the condition (i)-(ii), then there ezists a unique
vector bundle structure on M which is isomorphic to the tangent bundle TI}S
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of p -velocities of the singular submanifold S of C = C1+---+Cp. Moreover
this isomorphism transport the canonical p-almost tangent structure and the
canonical vector fields of TPIS to (J1, ..., Jp) and Cy, ..., Cp, respectively.

Proof .— Since (J1, ..., Jp) is integrable then there exist adapted local
coordinates (Z*,Z;) in such a way that Ji, ..., J, are locally given by

7} (7] o)
J -_— = -, J -_— = 0 .
¢ (a?) oz, ¢ (af;,)
Suppose that C, is locally written by

Ca = (4a)' 5 + (Ba)y 5 »

where
(4a)' = (42)'@ B0, .-+, )y (Ba)i = (Ba)i(3, 71, -0, Bp).
From J.C, = 0 we deduce (Aa)i =0, and from Lg, J. = —8qcJc We obtain

i
9(Ba), _ sdsdsi

¢ = sd5d5:.
Bzfl

Then we can write C, as follows:

P _ . 0 i . 0
Cq = (Ba);(w, L1y eeny zp)ﬁ -+ Z(BG)Z(w)g .
¢ b#a b

Now, using that [C,, Cp] = 0 we obtain (Ba);; = (Bb)i = 0 whenever
a # b. Hence we have

8

— .
oz,

Ca = (Ba):(Z, 71, .-, Tp)

Define a new system of local coordinates (z*,z%) by
Tt = z, a:i = (Ba):('m_,fc).

Thus we obtain

Cq = zt—
a 7 !
oz},

(4.1)
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and moreover (z*,x.) are also coordinates adapted to (Jy, ..., Jp). Then
the singular submanifold S, defined by Cj is locally defined by the vanishing
of the coordinates :z:f, = 0, and then it has dimension pn. Further, if we
consider the vector field C = C; +--- 4 Cp then

and hence the singular submanifold S defined by C has dimension n. In
fact, we have S = S1N...NSp.

From (4.2) we directly deduce that C satisfies the conditions (iii) and (iv).
The conditions (i) and (ii) are easily deduced as follows. Since [C,, Cp] =0
then

exptC = exptCyo---0oexptCy,

from which we deduce that C is complete and for each z € M, there exists
a unique lim;_, _ oo (exp tC)(z).

Now, by Nagano’s theorem we obtain a unique vector bundle structure
on M over S such that C is the canonical vector field and we have an
isomorphism ¢:

N(S)

\/

where 7 is the canonical projection and 7/ is the induced projection via ¢.

Note that in coordinates (z*,z}) the characteristic operator A¢ is given

by
8 4 8
(AC)"’ (Ba:i) =0, (AC)‘" <3z}z> - ﬁ’

at each point z € S. Therefore, we have

N(s), {XeT,M{X EXaaaz},

TJ:{XGT,,.M}X:X*' 3.}.

ax?
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Then we can consider J, as a vector bundle homomorphism J, : T'S —
N(S) and define a vector bundle isomorphism J: TS@--- @ TS = TI}S —
N(S) by

p
J(X1y+ees Xp) = ) JaXa,
a=1

Thus we obtain the following commutative diagram:

TiS J N(S)
\ /
3

where 75 : T;S — S is the canonical projection. Combining both results
we obtain a vector bundle isomorphism

Tpl.S' $olJ M
\ /
S

which applies the canonical p-almost tangent structure and the canonical
vector fields of TI}S to (J1, ..., Jp) and Cy, ..., Cp, respectively.

Finally, the unicity is a direct consequence of Corollary 2.1. O

5. p-Almost cotangent structures

Suppose that M is a (p+1)n-dimensional manifold endowed with a family
{wa, Va, 1 < a < p} of p 2-forms w, of rank 2n and p n-dimensional
distributions V, such that

(1) Vajay..0, NVa =0, foreach a # ay, ..., a,,1<a; <+ - < ar <p
(2) Ko = Kersy, = @§=1,b#a Ve,
(3) “’“IVaxVG: 0,

where Vgi6y.0, = Vo + -+ Vo, and s,, : TM — T*M is the
bundle morphism defined by s,,(X) = ixw,. From (2) we have rank
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wg = codim Kg = 2n. The family {wq, V4, 1 < a < p} is called a p-almost
cotangent structure, and such a manifold M is called a p-almost cotangent
manifold ([9], [16]).

Remark 5.1.— These kind of geometric structures was independently
introduced by Awane ([1]-[3]) and named p-symplectic structures. A p-
almost cotangent structure is in fact a reduction of G1((p + 1)n, IR) to the
p-symplectic group SP(p,n; R) ([1], [2], [9], [16]). .

Let N be a manifold of dimension n and denote by (T1)*N the cotangent
bundle of p!-covelocities of N, i.e. the manifold of all 1-jets of mappings
from N to R? with target 0 € IRP. (T1)*N is a manifold of dimension
(p + 1)n. We denote by = : (TI})*N — N the canonical projection defined
by w(j}:’o f) = . Now, we have a canonical diffeomorphism

A:(T))'N —T*Ne@---T*N,
of (T;)*N with the Whitney sum of 7* N with itself p times. A is given by

A(J::,Of) = (j}:,ofl, LERE) ji,()fp) )

where f(z) = (f1(z), ..., fP(z)) € RP. Then each element
oe((7)°N) =r1(), zen,

may be identified, via A with a p-tupla (61, ..., 6P) of 1-forms 6% € T4 N,
1 < a < p, and we consider = : (Tg)*N — N as a vector bundle over N
isomorphic to the Whitney sun of 7* N with itself p times. Obviously, when
. p=1, then (Tll)*N = T*N. Moreover, for each a,1 < a < p, we have a
canonical projection

p°+ (TF)'N — (TL)°N

defined by p%(6!,...,6°) = (8,...,8°,...,6P), for p > 1, and the
cotangent bundle projection p! : T*N — N for p = 1. Then we have p
canonical vertical distributions V, = KerTp%, 1 < a < p. Furthermore we
have

p
V:@Va:KerTw.

a=1
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Now, we may define p presymplectic forms wg, 1 < a < p as follows.
First, we define a canonical 1-form A, for each a, 1 < a < p, by setting

Xa(6)(X) = 6°(2)(Tn(X)), X €Ty ((T3)'N), =(6)==.

If we consider fibred coordinates (z, z?) on (TI})*N then we have

. : , 9
Ag = zida’, wg=—dA, =dz* Adz}, V,= <3:c;-’> .

Denote by Cy, ..., Cp the canonical vector fields of the vector bundles
p*: (T3)°N — (T;_l)*N . In fibred coordinates we have

Then C, satisfies (i)-(iv). We also have the following identities
(A°)|Vb =0, ic,wp=—6apAp, 1<a,b<p.

In terms of G-structures, a p-almost cotangent structure {wq, V;} on M
is integrable if and only if the p-almost cotangent manifold M is locally
isomorphic to a cotangent bundle of p!-covelocities. In such a case, we can
choose local coordinates (z*, z?) around each point such that

wq = da* A da?, Va=< 9 >

a
8:ci

In [9] we have proved that {wg, V,} in integrable if and only if each
2-form w, is closed and the distribution V3 @ - -+ @ V}, is involutive.

Moreover we can prove that the mapping X — ixw, defines an isomor-
phism of vector bundles over M of V, onto v*V, where v*V denotes the
dual vector bundle of the transverse bundle vV determined by the foliation
V (see [3]).

6. Characterization of cotangent bundles of p!-covelocities

In this section we shall prove that an integrable p-almost cotangent
manifold with some additional hypothesis is globally a cotangent bundle
of pl-covelocities.
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THEOREM 6.1.— Let M be a (p + 1)n-dimensional manifold endowed
with an integrable p-almost cotangent structure {wq, V4, 1 < a < p} such
that the presymplectic forms wq, are globally ezact, i.e. wqa = —dAg with
(’\“)IVb = 0. Consider the vector fields Cy, ..., Cp on M defined by

ic,wp = —6abAp -

If the vector fields C1q, ..., Cp satisfy (i)-(ii) then there ezists a unique
vector bundle structure on M which is isomorphic to the cotangent bundle
(Tg)*S of p'-covelocities of the singular submanifold S of C = Cy +

-+ Cp. Moreover this isomorphism transports the canonical p-almost
cotangent structure and the canonical vector fields of (T;)*S to {wa, Va}
and Cy, ..., Cp, respectively.

Proof .— Since {wa, Vo} is integrable, then there exist adapted coordi-
nates 7°, 'i}, cony such that

we = dF* A dZ2, va=< 9 >

oz?

Hence, from w, = —dA,; we deduce

1

» af, . N Ofy
Ao =TT + dfy = (mi +7°)d54+2—1d5§

If we define new coordinates (z*, 2¢) by

. f
zt:ml, mg:ig-{—?a?—q,
then we have A\, = z;-’d:ci. Consider on M the vector fields Cy, ..., Cp
defined by

ica“’b = _6abAb .

From a direct computation we obtain

o

Wa 1S“SP,
)

PR/ )
C'a_:z:i
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and hence

P, 18 Ny
C:ZCa_wi R B
1 1

Then the singular set S defined by C is an n-dimensional submanifold of
M and thus C satisfies (iv). Moreover, the vector field C also satisfies (i)
and (ii). Clearly, (iii) follows directly from the local expression of C (see
below). Therefore, from the Nagano’s theorem we deduce that M has a
unique vector bundle structure over S such that C is the canonical vector
field. In fact, we have an isomorphism ¢ : N(S) — M such that the diagram

N(S) ¢ M
\ | /

is commutative, where 7 is the canonical projection and 7’ is the induced
projection via ¢.

The characteristic operator A¢ is given by

(40). (3) =0 (o). (72) = 505

at each point z € S. Therefore, we have

4
8
N(S)zz{XETzM|X=ZX§‘azq} ,
a=1 K

T:,S:{XeTleX:X" 3.}.
oz

Therefore we deduce N(S)_ = (V1) & --- & (Vp)

Now, consider the bilinear form

.
T

(Va), x TeS — R, (X,Y) — —wa(X,Y).

Since —w, is non-degenerate on (V)_ x TS then it makes (V;)_ the dual
space of T;S and hence we have

x

N(S),=T;So--- 0TS = (T;).S.
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Combining this isomorphism with ¢ we obtain a vector bundle isomorphism

(TS M

~

TS T
S

where 75 : (TI})*S — S is the canonical projection.

This ends the proof since the unicity is a direct consequence of Corol-
lary 2.1. 0
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