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Remarks on uniqueness results of the
first eigenvalue of the p-Laplacian

G. BARLES (1)

Annales Faculte des Sciences de Toulouse Vol. IX, n°1 1988

RSUM.- Nous prouvons que la premiere valeur propre du laplacien-p
est associee a une fonction propre qui est strictement positive et
unique a une constante multiplicative pres si ~ est connexe. De plus, nous
montrons que c’est la seule valeur propre associee a une fonction propre

positive.

ABSTRACT. 2014 We prove that the first eigenvalue of the p-Laplacian is

associated to a positive eigenfunction, which is unique up to a
multiplicative constant if 8Q is connected. Moreover, we show that it is the
unique eigenvalue associated to a non negative eigenfunction.

Introduction

In this work, we are interested in the properties of the "first eigenva,lue"
of the p-laplacian. Let us recall that the typical eigenvalue problem for the
p-laplacian is to find A E R and u( 0) in weak solution of :

where H is a bounded domain of RN. In all the following, we will always
assume that the boundary 8 S2 is of class C’2~~. The problem of the existence
of such À and u has been studied recently by J.P. GARCIA- AzORERO and
I. PERAL-ALONZO [5] : They show the existence of an increasing sequence

of eigenvalues such that a k -~ 

(1) Ceremade - Université de Paris IX-Dauphine. Place de Lattre de Tassigny. 75775
Paris Cedex 16.



We prove here that, roughly speaking, the first eigenvalue Ai, which is
defined by

possesses all the properties of the first eigenvalue of a second -order non
degenerate elliptic operator as soon as aSZ is connected. Ai is associated

to a eigenfunction which is positive in H and is unique (up to a
multiplicative constant). Moreover, Ai is the unique eigenvalue associated
to a nonnegative eigenfunction. This kind of properties has been studied for
N = 1 by M. OTANI [13] and in a ball of RN by F. de THELIN [4].

Of course, the main difficulty to prove these results relies on the - a priori
- lack of regularity of the eigenfunctions. For example, in the unit ball, the
existence of a radially symmetric eigenfunction, for which it is easy to show
that it is smooth except perhaps in zero, simplifies all the arguments below.
Therefore, the first part of this paper is devoted to the study of the regularity
of a solution u of (1) for A = À1. It would be too long to mention here all
the works (that we know!) concerning the regularity for similar degenerate
elliptic equations; we only give here those we have directly used and refer
the reader to the references in these works. Essentially, these results are
of two types: the first one concerns the minima (and quasi-minima ) in the
calculus of variations (cf. E. de GIORGI [3], M. GIAQUINTA and E. GIUSTI [6],
E. Di BENEDETTO and N.S. TRUDINGER [2]).

These results give the local Holder continuity and provide Hanack in-
equalities. Let us just recall that, in our case, the eigenfunctions for Ai are
minima of

The second ones concerns degenerate elliptic equations on divergence form

(cf. E. Di BENEDETTO [I], D.A. LADYZENSKAYA and N.N. URALTSEVA [9],
P. TOLKSDORF [14], K. UHLENBECK [16]). Very often, as in our case, it

is the Euler equation of a variational problem. These results give the 

regularity of the weak solutions. Finally, in P. TOLKSDORF [15], an argument,
which allows to use the Schwarz reflection principle, gives the global
regularity in certain cases. Using these results and these methods, we show
that every eigenfunction for Ai is positive in Q and belongs to for

some 0  a  1 and is of class in a neighbourhood of a Q. These results
do not use the connectedness of 8 S~.



In the second part, we are interested in the uniqueness results. Let us first
mention that similar uinqueness problems for nonlinear "first eigenvalue "
have been considered in P.L. LIONS [11,12] and that we use here the same
general ideas as in [11,12]. The main point is to have a strong comparison
principle which allows to use a method due to T. LAETSCH [10]. Therefore,
we first prove a strong comparison property between a weak subsolution u
and a weak supersolution v, both in n C(H) of

where / ~ Lq(O) (1 p + 1 q = 1). We show that if we assume that there exists
a neighbourhood of 8SZ in which u is C2, v is C’1 and > 0 then either
u and v coincide in this neighbourhood or u  v in H. Moreover, if we
assume that u, v are positive in Q, then either u - v in a neighbourhood
of ~03A9 or there exists 8 > 1 such that 8u  v. To do so, we need the
connectedness of This results complements the strong comparison
principle of P. TOLKSFORF [15]. Then, we prove the uniqueness results
announced above by the Laetsch’s method and we conclude this paper
by mentionning a bifurcation results which can be treated by the same
methods.

N.B.. - When this manuscript was typed, we have heard from J.I. DIAZ
and J.E. SAA that they have obtained very general uniqueness results for
equations with the p-Laplacian. (See [17,18]). We have also learned that
S. SAKAGUCHI has obtained independently some results similar to ours.

I. On the eigenfunction for Ai

In this section, we investigate the properties of a non-zero solution u in
of

Let us remark that every solution u of (4) satisfies

and therefore, the variational problem (5) is equivalent to (4), which is
its associated Euler Equation. This property will allow us to use results



concerning both minima in the calculus of variations and degenerate elliptic
equations on divergence form. Our results are t.he following..

PROPOSITION I.I.- let u be a weak solution of (/ ) different from 0,
then u e C§’"(Q) for some 0  a  I and satisfiesoc

PROPOSITION L2. - Let u be a weak solution of (.~~, then

THEOREM 1.3.- Let u be a weak solution of (l~, then there exists

a E (0,1) and e > 0 such that

where

Before proving these results, let us precise that the local regularity
is a consequence of the results of E. de GIORGI [3], O.A. LADYZENSKAYA and
N.N. URALT’SEVA [9] or M. GIAQUINTA and E. GIUSTI [6]. Moreover, the local
bounds in Lloo depend only on the LP norm of u and the distance to an
(cf. E. Di BENEDETTO and N.S. TRUDINGER [2], via Harnack inequalities).
Then, one gets easily estimates by the results of E. Di BENEDETTO
[1] or P. TOLKSDORF [14]. So, in theorem 1.3, only the boundary estimates
have to be shown. To do so, we adapt a method of P. TOLKSDORF [15] which
replaces the boundary estimates by an interior estimates via the Schwarz
reflection principle.

so u+ is a solution of (4) and (5). But, by a result of E. Di BENEDETTO and
N.S. TRUDINGER [2], the nonnegative solutions of (5) satisfy an Harnack
inequality. Then either u+ > 0 and so u > 0, or u-t- = 0. In this last case,
the same argument for -u yields the result.



Proof of Proposition L2. Of course, this result is interesting only in the
case when p  N since if p~> N, Wo’p(S2) ~ for some ’0  a  1 ~ ~

and if p = N, Wo’p(~) ~ Lq(O) for all q E f 1, ~-oo~. So, we assume that
p  N. Let u be a solution of (4). Changing u in -u, we may assume that
u > 0 in H, by Proposition 1.1. Now, we define v by

and we take c,p = (k > 0) in (4); we obtain

The left-hand side is equal to

and with q = Np. ~ (N - p)-1. Therefore

Finally, if u E we choose k such that

and the right-hand side is estimated by

We conclude that u E L’’ (Q), where r’ = (k + l)q = qr . But q > p, so an
p

easy bootstrap argument gives the result.

Proof of Theorem L 3 . The proof consists essentially in obtaining
boundary estimates in by using the method of P. TOLKSDORF [15]
and the estimates of E. Di BENEDETTO [1]. Since the arguments are routine
adaptations of those of [15] and ~1~, we only sketch the proof. Let :co E 80;
since ~03A9 is a C2,03B2- surface, there exists a C2,03B2 diffeomorphism 5p from
a neighbourhood of 0 in RN-l into a neighbourhood of :ro in 80. We



extend it to a C1,03B2 diffeomorphism 03C8 from a neighbourhood of 0 in
H+ = {(y’, yn) ~ RN-1 R+} in a neighbourhood of xo in S2 by setting

where n(x) is the outward unit vector at x E 8 SZ. This transformation has
the following property: if we define v by

then

where

and A( y) is, for all y, an invertible (N - 1) x ( N - 1) matrix. So, this
transformation decouples the (N -1) first derivatives, and the ~ derivative.
A similar idea was used by R. JENSEN [8]. Finally, if u is solution of (5), v
is solution of 

, ,

where

for R, r~ small enough, and

Now, we use the Schwarz reflection principle i.e., we extend v to U =
I _ ~~ Iyn  ’?} by setting

and the other functions are extended by parity on yn . The particular form
of J implies that v is solution of an analogous variational problem in 

’



Then, if we denote by

for y E !7, p’ E pn E R, v is a weak solution of

in U+ and U- But, since v and its derivatives are continuous on yn = 0,
we have (6) in U and v E 

Now, we use the C1,03B1loc-estimates of E. Di BENEDETTO [1]. Let us just
recall that these estimates depend only on N, p, 03C8, Ai and the Lq-norm of

for a q > Np’, ( " + 1 - , = 1). Finally, let u be a solution of (4) and
(5) different from zero; we consider the approximated problems

By standard arguments, ue exists and belongs to for all q E (1, -~oo( [
since E for all q E (1, -i-oo(. Moreover, uf satisfies the a priori
estimates above which depend only on the constants of the problem and the
Lq norm of u for a q > Np’. So, by Ascoli theorem, there exists a 
such that ue converges in and the classical uniqueness result for
the Dirichlet problem (3) implies that the limit is necessarely u. Hence,
u E for some 0  a  1. Moreover, since u > 0 in 0 or - u > 0 in
H, by the strong maximum principle (cf. P. TOLKSDORF [15]), we have

therefore, since E there exists ~ > 0 such that

So, in (4) becomes strictly elliptic and, by classical results, (see
D. GILBARG and N.S. TRUDINGER [7]), u E C2,03B2(03A9~), for all ~  ~.

II. Uniqueness results

The aim of the section is to prove that the positive eigenfunction
associated to Ai is unique (up to a multiplicative constant) and that Ai is



the unique eigenvalue associated to a nonnegative eigenfunction,in the case
when ~03A9 is connected. We will assume, in all this part, that ~03A9 is connected.
Before giving this result, we need the following strong comparison result.

THEOREM 11.1.- Let u and v be respectively weak sub and supersolution
of (3) in n ~’(S~). We assume in addition that there exists E > 0
such that u E with > 0 in SZE and v E Then, either
u = v in n or u  v in Q. Moreover, if u and v are positive in SZ, then
either u - v in SZ~ or there exists 8 > 1 such that 8u  v.

Remark 1. Of course, the same result holds if v E with

|~v| > 0 in 03A9~ and u ~ 

Remark 2. - In order to compare the result of Theorem II. 1 with the

strong comparison result of [15], we remark that we only need u and v to
be smooth in a neighbourhood of a S2; but with this weaker assumption, our
result is weaker than the result of [15] since if u( x) = v( x) for some x E Q,
we can only conclude that u - v in Nevertheless, we are more interested
- for application to the eigenvalue problem - in the case when u, v > 0 and
this type of result was not considered in [15].

Now, we can state the

THEOREM 11.2.2014 Let v E be a weak solution of

- div in n (7)

with v > 0 in Q, then u a positive eigenfunction for then

(z) À = ÀI

(ii) ~~c E R such that v = ~cu.

Remark 3. Let us just remark that weak solutions of (7) in Wo’p(S2)
are Holder continuous: this is a consequence of the fact that such solutions

are in the De GIORGI classes (cf. [2], [3], [6]...). Therefore, the Harnack
inequality of [2] concludes that v > 0 in SZ.
We first prove Theorem II.2, using Theorem 11.1. .

Proof of Theorem Let Xo E SZ~ being defined in Theorem 1.3.

Let = and = u. We are going to prove that ~ == v. In
u(x° ) 

~ g g p



fact, first, we want to prove that 03C9 ~ 0. To do so, we use a method due to
Th. LAETSCH [10]. We define to by

If to = 1, the result is proved. If to  1, tocv is subsolution of

because 03BB ~ Ai and tocv  v. By Theorem II. 1, either t003C9 - v in 03A9~ or
there exists 0 > 1 such that v. But, at xo E  v(xo ); so,
we are in the second case and the inequality 03B8t003C9  v with 8 > 1 contradicts
the definition of to. Hence, to - 1 and the result is proved. Now arguing
exactly as before with to = 1, we find that 03C9 ~ v in therefore A = Ai
and the same argument as above proves the opposite equality > v.

Now, we turn to the proof of Theorem 11.1.

Proof of Theorem II.1. - We only treat the case when u and v are positive
in H, the other result being obtained in the same way. Since v E C1 (U ~~,
where U’1 = {x E  d(x, 8 ~)  E~, we can use the strong comparison
priciple of P. TOLKSDORF [15] in U,~ since we already know by the weak
maximum principle that u  v in H. Hence, if u is not equal to v in SZE then
for ~ small enough U" is connected and this result gives

In particular, on {x E = ~/2}, u  v. Let b be defined on 03A9~/2
by

d( ~, a SZ~ is on 5~~~2 and for C and a small enough, it is easy to check
that u + b is still a subsolution of

and that u + b  v on So, by the weak maximum principle

Now, we can make two remarks. First, since Vu is bounded in and
since > aC > 0 in S2E~2, there exists r~l > 0 such that



The second remark is that, on c~(S2 - 

where 6 = C exp a~ - 1 . So, by the weak maximum principle in
S~E~2, we have

Denoting by r~2 = inf ~S(u(x))-1, x E S~ - SZE~2 ~, we have

If we set ~ = we get

and the proof is complete.
Let us conclude by giving a bifurcation result which can be proved by

the same methods as above.

THEOREM 11.3. 2014 Let f : R ~ R be a nondecreasing function satisfying
f (o) = 0. Y~e assume that t -~ is decreasing for t > 0 and that

 ~1. . Then
+00

(g) I
 03BB1, 0 ia- the unique nonnegative solution of

I

f > 03BB1, there exists exactly two nonnegative solutions of
o

~’8~ : 0 and a solution which is positive i~a ~.
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