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CONDITIONS ON THE PROJECTIVE CURVATURE
TENSOR OF HYPERSURFACES IN EUCLIDIAN SPACE

J. Deprez(*)(1), F. Dillen(*)(2), P. Verheyen(3) and L. Verstraelen(4)

Annales Faculté des Sciences Toulouse
Vol V I I,1985, P 229 à 249

(1 J(2J(3J(4J Katholieke Universiteit Leuven Dept. Wiskunde, Celestijnenlaan 200 B, 3030 Heverlee
’ 

(Belgium)

Resume : Nous étudions les hypersurfaces d’un espace Euclidien satisfaisant à certaines conditions

sur le tenseur de courbure projective et nous obtenons des charactérisations locales de certains

types des immersions. Nous donnons une charactérisation de certaines hypersurfaces de révolu-

tion qui sont, dans Ie cas 3-dimensionel, des généralisations de la caténoide.

Summary : Hypersurfaces of a Euclidean space satisfying certain conditions on the projective
curvature tensor are studied and local characterizations of certain types of immersions are obtai-

ned. A characterization is given of certain hypersurfaces of revolution that are, in the 3-dimen-

sional case, generalizations of the catenoid.

I. - INTRODUCTION

In this paper we study hypersurfaces of a Euclidean space satisfying one of the condi-
tions R.P = 0, P.C = 0, C P = 0, P.P = 0, P’R = 0, P.Q = 0 or Q.P = 0, where R denotes the

Riemann-Christoffel curvature tensor, Q the Ricci endomorphism, C the Weyl conformal curvature

(*) Research Assistent of the National Fund of Scientific Research of Belgium
Dedicated to Prof. Emer. Dr. A. Borgers.
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tensor and P the Weyl projective curvature tensor of the hypersurface and where the first tensor

acts on the second as a derivation.

Riemannian manifolds and submanifolds satisfying similar conditions have been

studied by various authors. For references one can consult [3] and [4] .

We will prove the following theorems.

THEOREM 1. Let f : (Mn,g) -~ be an isometric immersion of an n-dimensional Riemannian

manifold in (n > 2). Then the following assertions are equivalent ;

(i) (Mn,g) satisfies R~P = 0,

(ii) (Mn,g) satisfies R~R = o, ,

(iii) f is

(a) congruent to the inclusion of an open part of a hypersphere Sn of IEn+ 1 , or
(b) congruent to the inclusion of an open part of an elliptic hypercone Cn of

or

(c) an immersion with type-number at rnost 2 in every point, or 

(d) a locally extrinsic product of the inclusion of an n1-sphere S-1 in IEn 1+1
and the inclusion of an (n - n 1 )-plane 

1 (n 1 E ~ 3,...,n-1 } ), i.e. f(M) )
is an open part of a spherical hypercylinder, or

(e) a locally extrinsic product of the inclusion of an elliptic hypercone in

IE n 1 +1 and the inclusion of an ( n - n )-plane IEn-n1 ( n 1 E ( 3,...,n-I ) ).

For the equivalence (ii) ~ (iii) and elliptic hypercones, see [3] .

THEOREM 2. Let f : (Mn,g) -~ be an isometric immersion of an n-dimensional Riemannian

manifold in ~ (n > 3). Then the following assertions are equivalent:

(i) (Mn,g) satisfies P.C = 0,

(ii) (Mn,g) satisfies = 0,

(Hi) (Mn,g) satisfies C.R = o, ,

(iv) is conformally flat.

The equivalence (iii) ~ (iv) was shown in [4] .

THEOREM 3. Let f (Mn ,g) -~ be an isometric immersion of an n-dimensional Riemannian

manifold in (n > 2). Then the following assertions are equivalent :



( i ) (Mn,g) satisfies P. R = 0,

(ii) satisfies P.P = 0,

(iii) (Mn,g) satisfies P.Q = 0,

(iv) (M n,g) satisfies P = 0,

(v) f is congruent to the inclusion of an open part of a hypersphere Sn of or

f is a cylindrical immersion.

THEOREM 4. Let f : (Mn,g) -~ be an isometric immersion (n > 2). Then (Mn,g) satisfies
Q.P = 0 if and only if

(i) ) f is congruent to the inclusion of an open part of a hypersphere Sn of IE n+ 1 , or
(ii) ) there exists an open dense subset U of M such that each restriction f« of f to a

connected component U« of U is

(a) a cylindrical immersion, or

(b) an immersion which is locally congruent around each point in U« to the
inclusion of a hypersurface of revolution K~ (c E IR+).

For a description of the hypersurfaces K~ , see section 6. In particular, for n = 3, the hypersurfaces
of IE4 are hypercatenoids (in this respect, see also [1 ] ).

2. - BASIC FORMULAS

Let (Mn,g) be a (connected) n-dimensional Riemannian manifold (n ~ 2). In the follo-
wing X,Y,Z denote vector fields which are tangent to Mn. V is the Levi-Civita connection of

(Mn,g) and R is the Riemann-Christoffel curvature tensor of (Mn,g). Q is the (1,1 )-tensor related
to the Ricci tensor S of (M,g) by g(QX,Y) = S(X,Y) for all X and Y. T = tr Q is the scalar curva-

ture of (M,g). Y is the (1,1 )-tensor field defined by (X I1 Y)(Z) : = g(Z,Y)X - g(Z,X)Y.
The Weyl conformal curvature tensor and the Weyl projective curvature tensor are defined by

Let f : (Mn,g) -~ 1 be an immersion of (Mn,g) in an (n+1 )-dimensional Euclidean
space. Let $ be a local normal section on f. Then the second fundamental form h and the second



fundamental tensor A of f are defined by the formulas of Gauss and Weingarten : = ~XY +
h(X,Y)~ and = -AX (V is the standard connection of A is related to h by
h(X,Y) = g(AX,Y). We will not distinguish between A p and its matrix (p E M). The type-number
of f in p E M is the rank of A . The equation of Codazzi is given by = (V yA)X and the
equation of Gauss is given by

Let p G M. In the following x,y,z denote vectors in T M. Let x Ay denote the endo-
morphism TpM ~ TpM : z ~ g(z,y)x - g(z,x)y. Since Ap is symmetric, there exists an orthonor-
mal basis of (T consisting of eigenvectors of A , i.e. such that

where Ài E IR for each i ~{1,...,n}. 03BB1 ,...,03BBn are called the principal curvatures of f in p. (2.1),
(2.2), (2.3) and (2.4) imply that

(2.5) where

Let 03BB1,..,03BBr denote the mutually distinct eigenvalues of A with multiplicities
respectively. Denote by V03B1 the space of eigenvectors with eigenvalue 03BB03B1 (o; E {1,...,r}).

If 
’ then ~ij 

" 

~i 
" and ~ij 

" 

~kC {1,...,n } and
0~3 ~ {l,...,r {). We define numbers ~ 1 = = 

~~ and a~ - a~ where e~ ~ V~ and
ej~~(U~{~...~j I 

According to Lemma 2.1 in [8] there exist n continuous functions ~  ...  X on
the domain of 03BE on M such that for each p in M the eigenvalues of A are given by B. (p),...,03BBn(p).



It easily follows that the subsets Mr = {p E M I the number of distinct eigenvalues of A is at
least r ~ of M are open (i E 1,...,n ). U : = M n U B M n U ... U int(M 1 B M 2 is an open
dense subset of M such that on each connected component of U the number of distinct eigenvalues
is constant, the multiplicities of the eigenvalues are constant and the eigenvalue functions are
differentiable (see [9]).

(Mn,g) is called (locally) conformally flat if (M,g) is (locally) conformally equivalent
to IEn. It is well known that (Mn,g) is conformally flat if and only if C = 0 for n > 4. We recall
that every surface is conformally flat and that C = 0 for every 3-dimensional Riemannian manifold.
It is wel known that (Mn,g) is locally projectively equivalent to IEn (i.e. around each point of Mn
there exists a mapping to IEn preserving geodesics) if and only if P = 0 for n > 3. Every surface
satisfies P = 0.

f is called totally umbilical if its second fundamental tensor is proportional to the
identity map everywhere. It is well known that f is totally umbilical if and only if f is congruent
to the inclusion of an open part of a hypersphere or a hyperplane [2 ] .

f is called quasi-umbilical if for each point p in M A has an eigenvalue with multi-
plicity at least n-1. For n > 4, E. Cartan proved that f is quasi-umbilical if and only if (Mn,g) is
conformally flat. We remark that C = 0 in p if and only if A p has an eigenvalue with multiplicity
at least n-1 if n > 4 (i.e. also the «pointwise» version of Cartan’s result holds).

f is called cylindrical if rank 1 for each p in M. ° f is cylindrical if and only if

(Mn,g) is locally flat. A complete cylindrical immersion is a cylinder over a plane curve [5] .

Concerning the notations P.C = 0, C.P = 0, P.Q = 0,... we say for example that (Mn,g)
satisfies P.C = 0 if and only if P(X,Y).C = 0 for all vector fields X and Y tangent to M, where
P(X,Y) acts as a derivation on the algebra of tensor fields on M, i.e.

for X,Y,Z,V,W tangent to The derivation R(X,Y). is the derivation

~X~Y - ~Y~X - ~[X,Y]. R(X,Y).g = 0 and C(X,Y).g = 0 for all vector fields X and Y while
in general P(X,Y).g ~ 0 and Q.g ~ 0. We remark that P.g = 0 if and only if is Einstein.

n

For any (1,3)-tensor field T on M we define (C~ ~T)(Y,Z) = Y 
n 

’ 

, = 1 
’ ’ ’

and = ~ I g(T(E~Y)E~Z) for all vector fields Y,Z and any local orthonormal

frame field ,...,E~}. The following lemma shows that certain derivations commute with certain
contractions.



LEMMA 2.1. Let B be a (1,1 )-tensor T a field on M. Then

(i) C1,4(B.T)=B.(C1,4T),
C1 > 3(B.T) = B.(C1 ,3T) //’ B is 

(B.P)(X,Y)Z = (B.R)(X,Y)Z - 2014 ~ { (B.S)(Z,Y)X - (B.S)(Z,X)Y} /b/- o// vector

X,Y,Z.

Proof. (i) We have

for all vector fields Y,Z.

(ii) We have



for all vector fields Y,Z if B is antisymmetric.

(iii) This is proved by a straightforward computation. ’

3. - THE CONDITION R.P = 0

The proof of the equivalence (ii) a (iii) in Theorem 1 was given in [3] . We show that

each Riemannian manifold satisfying R.R = 0 also satisfies R.P = 0 and conversely (*).

Suppose that a Riemannian manifold (Mn,g) satisfies R.R = 0. By Lemma 2.1 (i) and

(iii) (Mn,g) also satisfies R.P = 0 since C1 4R = S. Conversely, assume that (Mn,g) is a Riemannian
manifold with R.P = 0. It is easily seen that C. 3P = - - S + - g. By Lemma 2.1 (ii) (Mn,g)1, 3 n-1 n-1
satisfies R.(C1 , 3P) = 0. Moreover, since R.g = 0, this shows that R.S = 0. Lemma 2.1 (iii) then

implies that (M~,g) satisfies R.R = 0. This finishes the proof of Theorem 1. ’

4.. THE CONDITIONS P.C = 0 AND C.P = 0

The equivalence of (iii) and (iv) in Theorem 2 was shown in [4] and the implications
(iv) ~ (i) and (iv) ~ (ii) are evident.

Proof of (i~ ~ (iv). Let f : (Mn,g) -~ be an isometric immersion of a Riemannian manifold

satisfying P.C = 0. We shall show that C = 0.

Let p E Mn and choose a basis ei,...,e } of T p Mn satisfying (2.4). Using the for-
mulas (2.5), we find that

(*) ) We thank R. Deszcz for pointing this out to us.



for all i,j,k and Q in {1,...,n } . For mutually distinct i,j and k in { 1,...,n } , we obtain from

(P(ei,ej).C)(ek,ei)ej = 0, (P(ei,ej).C)(ek,ei)ek = 0 and (P(ei,ek).C)(ei,ek)ei = 0 that

Now suppose C ~ 0 in p. We shall then show that a contradiction follows. We may

assume that a~ =~0. Taking i = 1, k = 2 and j e {3,...,n} J in (4.1) and (4.3), we obtain that

~1 ~ ~2 ~ ’" ~ This gives that

for all mutually distinct i and j in 1,...,n ~.
Let A1,...,Ar denote the mutually distinct eigenvalues of A in p and let s1 ,...,sr be their

respective multiplicities.



Suppose r > 3. Take mutually distinct in t 1 ,...,r 1. Then (4.4) implies that
0 and that A = 0. This gives a contradiction. Assume r = 2. (4.2) is

equivalent to

for all mutually distinct ij and k in {1 ,...,n } . We may suppose that s2 > 1. Choosing mutually
distinct ij and k in 1,...,n } in (4.5) such that Ai = X~ and B 1 = A k = ?~ 1 we find that A 2 = 0.
(4.4) now implies that s, = 1. From (2.5) it is easily seen that C = 0 in p (Ap has an eigenvalue
with multiplicity n-1 ). This gives a contradiction.

If r = 1, (2.5) shows that C = 0 in p, which again contradicts our initial assumption
C ~ 0 in p. This proves the implication.

Proof of (iii). l n the same way as in section 3 we can prove that (Mn,g) satisfies C.R = 0 if
and only if it satisfies C.P =0. This finishes the proof of Theorem 2 ..

5. - THE CONDITIONS P.P = 0, P.R = 0 AND P.Q = 0

First we will prove the following lemmas.

LEMMA 5.1. Let f : (Mn,g) -~ IEn+ 1 be an isometric immersion of an n-dimensional Riemannian
manifold (n > 2). . Then the following statements are equivalent :

(i) (M n,g) satisfies P. R = 0,

(ii) (Mn,g) satisfies P.P = 0 ,

(iii) for each p E M 
n A P is one of the following types :

Proof. It is easy to check that the implication (iii) ~ (i) holds : in fact P = 0 if (iii) is true. Next we

show that (i) implies (ii). Suppose that (Mn,g) satisfies P.R=0. By Lemma 2.1 (i) and (iii), (Mn,g)
then also satisfies P.P = 0. Finally, we prove that (ii) implies (iii). Suppose that (Mn,g) satisfies
p.p = o.



Let p G Mn and choose a basis e~,...,en ~ J for T p M satisfying (2.4). Using the formu-
las (2.5), we find that

for all mutually distinct i, j and k in { 1,...,n ~ and all Q in f 1,...,n ~ . We obtain from
0 and 0 that

for all mutually distinct i, j and k in { 1,...,n ~ . X~ (5.1) - X. (5.2) gives that

for all mutually distinct i, j and k in {1,...,n }.
Let A~,...,Ar denote the mutually distinct eigenvalues of A in p and let s~,...,sr be their

respective multiplicities.

Suppose r > 4 . Then (5.3) yields (03BB03B1 - A )(A - A ) = 0 for mutually distinct7

a, ~i, ~ and S in ~ 1,...,r ~ . We may therefore assume that A« = 0. (5.3) now gives that

03BB03B203BB03B303BB03B4(03BB03B2 - A )(AS A ) =o, which is impossible. We conclude that r  3.

Assume r = 3. It then follows from (5.3) that .A1 (A - )(A - A ) = 0 which
implies that, for instance, A1 = 0. Choosing i, j and k in {1,...,n} such that 03BBi = A , 03BBi = 03BB3 and

_ 
2 l 3

~k - (5.1 ) gives that

Furthermore, for i, j and k in } 1 ,...,n ~ such that Ài = X~, X. = ~1 and X~ = ~3, (5.2) yields

(5.4) contradicts (5.5). So r ~ 3.

Suppose r = 2. Then we may assume that s2 > 2. Taking mutually distinct i, j and k



in {1 ,...,n { such that ~, ~ ~ ~ ~o and X. == X~, (5.3) gives that ~ B" (X~ " = 0. We conclude

that Xi = 0 or X~ = 0. First we show that X~ = 0. Suppose that X~ =~= 0. Then X~ = 0. It follows
from (5.2), taking the same choke for the indices !, j and k as above, that trA = X~. This would
mean that s2 

= 1. This contradicts one of our initial assumptions. Secondly, we show that Si 
= 1.

Suppose Si ~ 2. Then we can choose mutually distinct ij and k in {1 ,...,n} such that ~; = ~ ~ ~1
and 03BBj = 03BB2 = 0. Formula (5.2) now gives that 03BB1 = trA, from which we conclude that s1 = 1.
This is in contradiction with the assumption Si > 2. This shows that the matrix of A in the basis
{Ci ,...,e } has one of the desired forms.

Finally, the case r = 1 is trivia!. This finishes the proof of Lemma 5.1. ’

LEMMA 5.2. Let f : (M",g) ~ !E" 1 be y/7 isometric immersion of an n-dimensional Riemannian

manifold (n > 2). Then (M",g) P.Q = 0 /f /br point p /77 M" A is one
of the following types :

Proof, Let i : (Mn,g) -~ 1 be an isometric immersion of an n-dimensional Riemannian mani-

fold. Let p be a point in M and choose a basis 1 1 for T p M satisfying (2.4). Using the
~k

formulas (2.5), we find that = (ci. - ) ) {( k - j)03B4jkei-( k- j)03B4ikej} for all

i,j and k in {1,...,n}. From this we learn that P.Q = 0 in p if and only if (P(e.,e.).Q)e. = 0 for all
mutually distinct i and j in 1,...,n ~ . This implies that P.Q = 0 if and only if

for all mutually distinct i and j in 1,...,n ~.
Let 1~1,...,~r denote the mutually distinct eigenvalues of A in p and let be

their respective multiplicities. We will show that P.Q = 0 in p if and only if



for all distinct a and ~i in { 1,...,r ~ . For different a and j3 in 1,...,r ~, (5.6) gives that

Substracting (5.9) from (5.8) gives (~ - = 0. So P.Q = 0 in p implies (5.7).
The other implication is trivial.

Now it is easy to see that immersions for which all second fundamental tensors have

the form described in the lemma are immersions of Riemannian manifolds satisfying P.Q = 0.

Next we show the converse.

Assume that r > 3. Choose mutually distinct and 7 in t 1,oo.,r J . Then, by (5.7)
we have trA - Àa - À{3 = 0 and trA - A - ~ = 0. This gives A = A , which is impossible.

Suppose that r = 2. First we assume that 2 and s2 ~ 2. (5.7) learns that P.Q = 0

if and only if A in p has the form (b) in the lemma. If, say, Si = 1, then À2 = 0 by (5.7). So A in p
has the form (c) in the lemma.

If r = 1, then A in p has one of the desired forms. This proves the lemma..

Now we prove Theorem 3. Using Lemma 5.1 and Lemma 5.2 it is easy to see that

(v) =~ (i), (i) ~ (ii) and (ii) ~ (iii) hold. The equivalence (iv) ~ (v) is well known. Thus, we only

must show that (iii) implies (v).

Call

Mi and M2 are open.

First, we show that M2 = ~. Suppose that M~ ~ ~ and let W2 be a connected compo-
nent of M2 . By Proposition 2.3 in [8] , the distributions T~ : = { X E TW~ I AX = (s2-1 and



T2 : = {X ~ TW2|AX " -(s1-1 )03BBX} are differentiate and involutive and 03BB is a constant function
on W~. We show that T~ and T~ are parallel. Let X~ and Y~ (resp. X~ and Y~) be vector fields
with values in T1 (resp. T2). The equation of Codazzi (~X1A)X2 = (~X2A)X1 then gives that
(A+ (s~-1)B)V~ X~=(A-(s~-1)B)V~ X~. From this we obtain that (A+(s~-1)B)V~ X~=0and (A - 0. Therefore, X~ has in T~ and V~ X~ has values in Ti.
Furthermore, 0 = X~  Y~,Z~ > =  Y~,Z~ > +  Y~ ~ Z~ > =  B~ Y~ ,Z~ > for each
vector field Z~ with values in T~. This shows that V~ Y~ always has only values in T.. Similarly,

has on)y values in T2. The equation of Gauss gives that

on the other hand, g(R(X1,X2)X,Y) = = ~Y~XX1
- ,X2) = 0 for all vector fields X and Y tangent to W2 since T1 is parallel. This gives
a contradiction with (5,1 0). This proves that M~ = §.

Suppose M1 # §. Let W1 be a connected component of W1 is open. f |W1 is
Itotally umbilical. In particular, X is a constant function on W1. W1 is closed as well: since the

eigenvalue functions of A can be chosen to be conti nuous functions (see [8] ), A = 03BBITq M (with
X G for each q in I,e. W1 C W1. Since Mn is connected, W1 = Mn and f is a totally umbi-
lical immersion.

lf M ~ = §, f is a cylindrical immersion. This finishes the proof of Theorem 3..

6.. - THE CONDITION Q.P = 0

A. LEMMA 6,I . Let f : (Mn,g) ~ IEn+1 be an isometric immersion of an n-dimensional Rieman-
nian manifold. (M n,g) satisfies Q.P = 0 if and only if for each p in M n A P is one of the following
types ,.



Proof. Let f : ~ IEn+1 be an isometric immersion of an n-dimensional Riemannian mani-

fold. Let p be a point in M" and choose a basis J for T M" satisfying (2.4). Using the
~k

formulas (2.5) we find that = (2014 - Cj.) { 03B4jk( j + + J for all

ij and k in {1,...,n}. From this we !earn that Q.P = 0 in p if and only if (Q’P)(e;,ej)ej =0 for a!)
distinct i and j in {1 ,...,n}. This implies that Q.P = 0 if and only if

for all different i and j in {1,...,n } . Let ij and k be mutually distinct indices in { 1,...,n ~ . Then
X;(trA - X,)(trA - X; - (n-1 )a~) = 0 and (n-1 )Ak) =0. Substraction yields
that

Conversely, (6.2) implies (6.1). Therefore, (Mn,g) satisfies Q.P = 0 if and only if (6.2) is fulfilled

for all mutually distinct i,j and k in 1,...,n ~ . It is easy to see now that Q.P = 0 if all A p have one
of the forms described in the lemma. Next, we show the converse.

Let ~1,...,~r denote the mutually distinct eigenvalues of A in p and let sl,...,sr be

their respective multiplicities. First, suppose r > 3. Now, (6.2) implies that A«) = 0 for
each a E ~ {1,...,r } . This shows that A has at most two distinct eigenvalues. This contradicts our
initial assumption.

Suppose that r = 2. If s 1 > 2, then (6.2) gives that 1 (trA - Xl) = 0 (take i and j with

03BBi = 03BBj = 03BB1 and k with 03BBk = X2). In the same way, if s2 > 2, then 03BB2(trA - 03BB2) = 0. If s1 > 2 and
s2 > 2, the only possibility is that, say, 03BB1 = 0 and 03BB2 = trA ~ 0. This is impossible as

trA = s ?~ ~ A . Therefore, we may assume that for instance s2 = 1. 0, A has one of the
forms described in the lemma. 0, then X2 = 

The case r = 1 is trivial. This proves the lemma. -

B. EXAMPLES

It is clear that (Mn,g) satisfies Q.P = 0 if f : (Mn,g) -~ IEn+ 1 is a cylindrical immersion

or a totally umbilical immersion, since in these cases (Mn,g) satisfies P =0. Now we will give a non-

trivial example of a hypersurface satisfying Q.P = 0.

Let 03B3 : I ~ IEn+1 : u ~ (u,03C6(u),0,...,0) be a plane curve in lying in the 

plane and suppose > 0 for all u. Let (Mn,g) be the hypersurface of revolution in 

obtained by rotation of 7 around the xl-axis, i.e.



with the induced differentiable and geometric structure. Let F be the obvious parametrization of

M and call p = F(u,82,...,en),(u E I and 82,...,8n E [o,2~r] ). Then T p M is spanned by the vectors

is a normal vector in p. Then, if W(u; > 0 is defined by W 2 (u) : = II 03BEp ~2 = l + (p) = 03BEp
9F ... - 

’ ’ 

W(u)
is a unit normal vector in p. We find that ( - (u,03B82,...,03B8n))p is an eigenvector of A with eigen-

value 03C6’’(u) W3(u) and that ( (u,03B82,...,03B8n))p,...,(~F ~03B8n (u,03B82,...,03B8n))p are eigenvectors all with the

same eigenvalue - . Consequently, Ap has the form described in (b) of Lemma 6.1 if and
P

only if 03C6 satisfies the following differential equation :

Next, we describe the solutions of this differential equation.



Take c E IR+ and let c’ : = c ~ln-2. Consider the function hn,c given by

Since 0 everywhere, we can define the inverse function : = h n,c -1. It can be shown

that is defined on with E IR+ 0 for all n > 3 and a 3,c = +~. Next we consider the
function given by



For each solution : I -~ IR of the equation (*) there exist numbers c E IR+ and b E IR such
that = Fn for all x in I. We remark that F3 c(x) _ .!.cosh cx for all x in IR, i.e. 7 is a
catenary.

Call K~ the hypersurface of revolution obtained by rotation of the curve

: ]-a n,c ; 03B1n,c[~ IEn+1 : u H (u,F n,c (u),0,...,0) around the x1-axis. All hypersurfaces of
revolution on IEn+ 1 such that all second fundamental tensors have the form described in

Lemma 6.1 (b) are open parts of a K~ .

C. PROOF OF THEOREM 4.

It is clear from A and B that one of the implications holds. We now prove the other

one. Suppose that (Mn,g) satisfies Q.P = 0. The lemma determines the possible forms for the
second fundamental tensors.

First, suppose that there is a point p in M with Ap a multiple of In the same

way as in the previous section, this implies that f is a totally umbilical immersion. p

Next, we assume that M has no umbilical points. Call W = p E M I rank A p = n } .
Then W is open. Call U = W U int(M 1 W). Then U is an open dense subset of M. Take a connec-

ted component U of U. If int(M 1 W) then = f I 03B1 is a cylindrical immersion. We next
consider the case Ua C W. We will need some more lemmas.

Define T1 : _ ~ x E and T2 : - ~ x ETUa (2-n)Ax £ . By
Proposition 2.3 in [8], T] and T2 are differentiable involutive distributions and 03BB is constant along
integral manifolds of T~. Furthermore, for X] a vector field with values in T1 1 and XZ a vector
field with values in T2 , the equation A)X2 - = 0 of Codazzi implies that

1 2

(6.3) ~X2X1 takes its values in T1 1

and that (A - 
1 X2 + (X2 . l 1 X2)] l denotes the component of ~X1 X2

in T],

(6.3) implies that

(6.5) takes its values in T~

for each vector field Y~ with values in T~ .



For each p in Ua we write M 1 ~p) for an integral manifold of T1 through p and

y p :1-~ M for an integral curve of T2 through p. We assume that 
= p and that yp is parame-

trized by arclength. Around any p in U we can choose a local orthonormal frame field

t E 1 ,...,E n ,E n+1~ J for IE n+ 1 which is adapted to fa and such that furthermore span

T1 and En spans T2 . (6.4) and (6.5) imply that

and that

In the following lemma we study the shape of the immersions (fj ) P ° . = f I ( P ) .

LE M M A 6 ° 2 . For each p in U a ’ f(M I (p ) is an open part of an ( n-I )-dimensional sphere in IEn+ 1

with radius 
1 En.1n03BB2

. Consequently, (f ) is local injective.

( r’ ) ~ ~2
n - i

Proof. Let q G Mj (p), lf ( is a frame field around q as above, the normal bundle

of (fj ) P is spanned by E "’ and E "’ ~j . Let Ak 
n 

and Ak n+I 
be the second fundamental tensors of

f1 and denote by D’ the normal connection of f1 . Then EiEn+1 
= -AE ; = -XE . , (I G ( I ,...,n-I )).

This yields that

We also have that 0 ,E = 0 ,E =-- E. , (i E f {1,...,n-1}), by (6.7). SoEi n Ei n 1 _ n i

This proves the lemma..

Let IEn(p) be the unique hyperplane of IEn+ 1 containing f(M 1 (p)), callv p the normal
in this hyperplane on f(M 1 (p)) in p and let m(p) be the center of the sphere. Then



(p is the vectorpart of 03BDp).
Next, we study the shape of the image f o y of the integral curves.

LEMMA 6.3. For each p in U03B1, f o y /, a plane curve n//Y/? nowhere zero curvature.

Let q 0 { E~ { is a frame field around q as above, then

Since (f o ~p)’ A (f o ~p)" A (f . 7p)’" = 0 f . is a plane curve. From (6.12) it is clear that
the curvature of f o y is nowhere zero. ’

Call the unique plane in containing im(f 07). is the plane
through f(p) spanned by and It is clear from (6.10) and (6.11) that m(p) ~ 
We prove the following lemma concerning the position of the planes 

LEMMA 6.4. Let p ~ M. Then there is a line C(p) in 1 
such that 6(p) = n for

each q in M~ (p) which is distinct from p and for which f(q) is not the antipodal point of f(p).
Moreover, m(p) ~ C(p) and C(p) -L 

Proof. Let q ~ Ml (p) with q ~ p and f(q) not the antipodal point of f(p). We prove that
)E~(p) ~ n )E"(p) contains f(p) and m(p). )E~(p) (~ )E"(p) since the normal
t?p on )E"(p) lies in So n is the tine f(p)m(p). This !inef(p)m(p) intersects

(p)) in at most 2 points : f(p) and possibly the antipodal point of f(p). Since f(q) 6 (p))
and f(q) is neither of these points, f(q) As f(q) C )E"(p), this shows that 
In any case m(p) = m(q) ~ IE2(p) ~ IE2(q) and ~p=~q is a common direction of 
tE (q). Therefore n is the line C(p) through m(p) in the direction ~p. This line does
not depend on q.

It is clear from the construction of 6(p) that m(p) e C(p) and that C(p) ± )E"(p). -



For p E U a choose a coordinate system U -~ ]-E,E[n : q ~ (x1 (q),...,xn(q))
around p = ~c 1 (0,...,0) such that for each choice of numbers E ]-e,e[ the sets

q E U I xn(q) = an are integral manifolds of T 1 and the curves ]-e,e[ -~ U : t -~ ,...,a n1 ,t)
are integral curves of T2 (see [6] p. 182). We prove the following lemma concerning the position
of the centers m(q) and the lines Q(q)..

LEMMA 6.5. Let p G M and suppose that ~c : U -~ ]-E,E[n is a coordinate system around p as
above. Then, for each q E U, Q(q) = Q(p), m(q) E Q(p) and Q(p) 1 IEn(q).

Proof. Suppose that (c ,...,c ). Call q’ : = ~c 1 (0,...,O,c ), q" _ ~ 1 (c ,...,c - ,0). Then
IE (q) - and IE2(p) = IE2(q’), which implies that Q(p) = =

IE2(q’) n IE2(q) = Q(q). The other statements in Lemma 6.5 now easily follow from Lemma

6.4..

Now, we can finish the proof of Theorem 4. Suppose p E U and let U -~ 

be a coordinate system around p as before. Call the curve 7 : : ]-E,E[ -~ U~ : t (0,...,O,t).
Determine the line Q(p) in the way shown by Lemma 6.4. Call M’ the hypersurface of 

obtained by rotation of f o 

y around Q(p). We will show that f(U) C M’ . . Take

q = ~u 1 ,...,c n1 E U and let q’ _ ~ 1 (0,...,O,c n ). Then f(M 1 (q)) = f(M 1 (q’)) is an open

part of a sphere in IEn(q) 1 Q(p) with center m(q) E Q(p) having the point f(q’) in common with

f 0 y . This shows that f(q) E M’. From the discussion in B it is clear that f |U03B1 is congruent to
the inclusion of an open part of a Kc .
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