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Polymer networks and biological tissues are often swollen by a solvent such that their properties emerge
from a coupling between swelling and elastic stress. This poroelastic coupling becomes particularly
intricate in wetting, adhesion, and creasing, for which sharp folds appear that can even lead to phase
separation. Here, we resolve the singular nature of poroelastic surface folds and determine the solvent
distribution in the vicinity of the fold tip. Surprisingly, two opposite scenarios emerge depending on the
angle of the fold. In obtuse folds such as creases, it is found that the solvent is completely expelled near the
crease tip, according to a nontrivial spatial distribution. For wetting ridges with acute fold angles, the
solvent migration is reversed as compared to creasing, and the degree of swelling is maximal at the fold tip.
We discuss how our poroelastic fold analysis offers an explanation for phase separation, fracture, and
contact angle hysteresis.
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Polymer networks can absorb large amounts of solvents,
driven by the entropy of mixing. The solvent migration in or
out of an elastic network causes significant change in
volume through swelling or shrinking [1]. This interplay
between liquid transport and elasticity, known as poroelas-
ticity, is intrinsic to a number of biophysical processes, e.g.,
bleb formation in cells [2] and skin maceration (hyper-
hydration) [3], and crucial for technological applications of
soft materials such as “plasticizers” for softening “plastics”
[4], hydro- and organogels in mechanobiology [5], or
electronic encapsulants with self-healing properties [6].
The surfaces of soft poroelastic matter can exhibit sharp

folds that can be either acute or obtuse. Obtuse poroelastic
folds are found in creases, when swollen polymer networks
spontaneously develop morphologies [7–9] where a surface
folds onto itself [Fig. 1(a)]. These creases mimic the
growth-induced gyrification of mammalian brains [10–12]
and tumors [13]. Folds with acute angles are observed in
wetting [14–17] and adhesion [18,19], where the substrate is
pinched into an acute ridge of well-defined opening angle
[Fig. 1(b)]. Both types of folds are expected to create a

divergence of elastic stress [20], but the implication of the fold
geometry on the solvent distribution near the tip has barely
been addressed [21,22]. Yet, the singular stress-solvent
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FIG. 1. Poroelastic folds in (a) creasing, with fold angles θ > π,
and (b) wetting, with θ < π, leading to opposite solvent dis-
tributions. (a.i) Swollen or compressed surfaces can spontane-
ously fold into self-contacting creases. (a.ii) The obtuse fold gives
rise to a blowup of pore pressure, squeezing out the solvent and
causing a completely dry fold tip. A self-contacting crease
corresponds to θ ¼ 2π. (b.i) A water drop on a soft PDMS
gel, oblique side view. (b.ii) The acute fold angle at the wetting
ridge causes a negative pore pressure, aspirating the solvent
toward maximum swelling at the tip.
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interaction will turn out to be central to unexplained
observations such as the expulsion of solvent or uncross-
linked chains [23–25], wetting induced fracture [26,27],
and hysteretic phenomena in both wetting and creasing
[28,29].
In this Letter we analyze the poroelastic fold singularity,

resolving both the distribution of stress and the degree of
swelling at equilibrium. We observe a reversal of solvent
migration between “creasing” and “wetting,” by the mecha-
nism described in Fig. 1. For creasing, the fold stretches the
surface angle from θ ¼ π (initially flat) to θ ¼ 2π; the
polymer stress induced by this angular stretching generates
a high pore pressure near the tip that “squeezes” the solvent
out of the fold. The opposite trend is observed for wetting,
where the surface angle is compressed to θ < π, leading to
a maximal aspiration of solvent toward the tip. We high-
light how these intricate solvent distributions shed new
light on recent experiments.
Poromechanics.—We start by considering a flat poroe-

lastic substrate in the standard large-deformation frame-
work [30], which deforms into a planar, two-dimensional
fold. A solvent swells the elastic polymer network, char-
acterized by a swelling ratio J that compares the swollen
volume with that of the dry polymer network. Assuming
both the solvent and polymer molecules to be incompress-
ible, the polymer volume fraction naturally becomes 1=J,
while the liquid volume fraction ϕ is given by the
remainder

ϕ ¼ 1 − 1=J: ð1Þ

This relates the dilation of the elastic network (J) to the
volume fraction of the solvent (ϕ). Likewise, the free
energy of a poroelastic material contains two contributions:
a mixing energy that describes the interaction of the solvent
with the polymers, and an elastic energy due to the
stretching of the polymer network. The resulting stress
tensor σ ¼ −pI þ σel consists of a pore (osmotic) pres-
sure p and an elastic stress σel. According to Flory-
Huggins theory [31,32], the pore pressure at equilibrium
reads

pðϕÞ ¼ −
kT
v
½lnϕþ ð1 − ϕÞ þ ð1 − ϕÞ2χ� þ μ

v
; ð2Þ

with v the volume per liquid molecule, χ the interaction
parameter between solvent and network, and μ the solvent’s
reference chemical potential. The pore pressure is a
decreasing function of ϕ, and is always larger than the
reference pressure pðϕ ¼ 1Þ ¼ μ=v of the pure solvent.
The other component of the stress tensor, the elastic

stress σel, is a function of the Finger tensor B, which
characterizes the stretching of the polymer network. The
tensor is in general anisotropic, and the local volumetric
swelling ratio follows from J ¼ detðBÞ1=2. For long chain

polymer networks, a commonly used constitutive relation is
the so called “neo-Hookean” model:

σelðBÞ ¼ GðB − IÞ=J; ð3Þ
where G is the shear modulus of the polymer network.
The degree of swelling prior to folding depends on the

ratio of the osmotic pressure scale (kT=v), to the network’s
elastic modulus (G). The latter can be expressed as
G ¼ NkT, where N represents the number of chains per
unit volume [30]. With this, the problem is described by the
dimensionless parameter Nv ¼ Gv=kT. The preswelling
volume fraction ϕ0 of an isotropic medium, as described by
the classical Flory-Rehner theory [33], is then recovered
from σ ¼ −μ=vI. Typical values of ϕ0 can be inferred from
Fig. 2(a). We note that different hydrogels approximately
cover the range Nv ¼ 10−4…10−1 [30], while a polymer
network swollen with uncrosslinked chains has Nv ∼ 1.
Fold geometry and mechanics.—The central aim is to

resolve the stress singularity, which is manifestly aniso-
tropic, and the resulting solvent distribution inside a fold. In
polar coordinates, the most general, azimuthally symmetric
fold is described by the mapping

φ ¼ bΦ; r=λðrÞ ¼ R; ð4Þ
where ðR;ΦÞ characterizes the material points of the
substrate in the undeformed state [cf. Fig. 2(b)]. The first
equation expresses how an azimuthal angle Φ in the
reference state (prior to folding) is deformed into a new
angle φ. We assume that this azimuthal deformation is
uniform and defined by a factor b ¼ θ=π, where θ is the
fold angle. The response in the radial direction is captured
by the stretch, λðrÞ, mapping the radial position of a point
originally at R to the new position r. For incompressible
media, volume conservation dictates λ ¼ b−1=2 [34].
However, poroelastic networks may swell: λðrÞ can
grow well beyond the stretch for incompressible folds,
and needs to be determined self-consistently. The Finger
tensor B corresponding to Eq. (4) reads (cf. Supplemental
Material [35])

B ¼

0
B@

�
λ

1−rλ0=λ

�
2

0

0 ðbλÞ2

1
CA ≃

J≠∞

�
λ2 0

0 ðbλÞ2
�
: ð5Þ

In the second step it was assumed that J remains finite at
the tip, in which case jrλ0=λj ≪ 1 [35]. With this, J ¼ bλ2,
so that the local swelling ratio, and thus pðϕÞ can be
expressed in terms of λ. The problem is closed by imposing
mechanical equilibrium, ∇ · σ ¼ 0, which owing to the
azimuthal symmetry simplifies to

dσrr
dr

¼ 1

r
ðσφφ − σrrÞ: ð6Þ

This is a radial force balance that ultimately determines
λðrÞ, and thus the liquid fraction ϕðrÞ, near the tip.

PHYSICAL REVIEW LETTERS 130, 228201 (2023)

228201-2



Creasing.—Interestingly, it is crucial to distinguish
creasing (θ ¼ 2π) from wetting (θ < π), since the stress
singularity takes on opposite signs. We first proceed for
creasing, for which Eq. (5) gives the stress near the tip:

σrr ¼ −p̄þ Gb−1; σφφ ¼ −p̄þ Gb: ð7Þ
Here, the isotropic part of σel is absorbed within the
modified pressure p̄ ¼ pþ G=J. Using this stress to
integrate the radial force balance, Eq. (6), gives the pressure

p̄ðrÞ ¼ p̄0 −Gðb − b−1Þ ln r=r0: ð8Þ
The integration constant is conveniently expressed as a
length scale r0, which represents the typical distance from
the tip where we recover the pressure p̄0 in the bulk of the
preswollen medium [38].
Having solved for the stress, we may determine the

solvent distribution inside a poroelastic crease. For
b ¼ θ=π > 1, the logarithmic divergence in Eq. (8) can
indeed be generated by the pore pressure, Eq. (2). Namely, in
the limit of ϕ → 0, one finds p̄ðϕÞ ≃ −ðkT=vÞ lnϕ, so that

ϕ ¼ ðr=r0Þβ; with β ¼ Nvðb − b−1Þ > 0: ð9Þ

A central finding is thus that creasing induces an algebraic
decay of the solvent fraction toward the fold tip.
The exponent β is nontrivial, involving both the network
properties Nv and the fold angle b ¼ θ=π. Noting that
β > 0 for any angle θ > π implies that solvent is expelled

from the tip. Figure 2(c) shows this solvent distribution
inside the fold for Nv ¼ 0.1. Indeed, the volume fraction is
everywhere below the preswelling bulk value (ϕ0 ∼ 0.8).
Most dramatically, the dark zone at the center indicates the
complete dry-out of the crease tip.
Wetting.—Poroelastic wetting folds are fundamentally

different in nature from creasing folds. Namely for b < 1,
mechanical equilibrium, Eq. (8), requires a diverging
negative pore pressure, aspirating liquid toward the fold
tip. However, the lowest possible pressure that can be
achieved is that of the pure solvent, μ=v, achieved for
maximum swelling ϕ ¼ 1 or J → ∞. This suggests a
tendency toward “infinite swelling” for folds with b < 1,
in which the polymer network is unphysically stretched, a
paradox that was already anticipated from a small-defor-
mation linear poroelastic calculation [21].
The infinite-swelling paradox can be resolved by

accounting for strain stiffening of the polymer network.
For large swelling, the polymers stretch to a degree that
they can no longer be considered Hookean springs. This
effect can be accounted for by an effective elastic modulus
ψðIÞG, where ψðIÞ is an increasing function of the mean
stretch I ¼ trðBÞ [39]. We reanalyze the fold problem with
σel ≃ ψGB=J, i.e., anticipating p̄ to become subdominant
due to ψ ≫ 1. Using Eq. (5) we then write σφφ ¼ b2σrr, so
that integrating the radial force balance, Eq. (6), gives

σrr ¼ ðr0=rÞ1−b2Gb−1; ⇒ ψ ¼ ðr0=rÞ1−b2 : ð10Þ

(c)(a)

(d)(b)

FIG. 2. Solvent migration into or out of poroelastic folds. (a) Preswelling volume fraction ϕ0 as a function of Nv, for an unfolded
substrate. (b) A polar grid ðR;ΦÞ characterizes the material points in the unfolded substrate. (c),(d) Various folds forNv ¼ 0.1. The lines
represent the deformed grid, folded to new positions ðr;φÞ. The color represents liquid volume fraction ϕ, which is enhanced or reduced
with respect to the preswelling ϕ0 ∼ 0.8. (c) Creasing: upward folds for increasing fold angle θ. A crease corresponds to θ ¼ 2π. The
liquid fraction within a crease is given by Eq. (9). The dark red spot in the center indicates the dry-out near the crease tip. (d) Wetting:
downward folds with decreasing fold angles. In contrast to creasing, swelling is strongly enhanced near the tip (dark blue). In this case,
ϕ is given by Eq. (11), plotted for Imax ¼ 100.

PHYSICAL REVIEW LETTERS 130, 228201 (2023)

228201-3



For b < 1, this gives a stress singularity that is now carried
by the strain stiffening of the polymer network, rather than
by the pore pressure. Specifically, the divergence of σrr
implies that the polymers become maximally stretched at
the tip.
Yet, the degree of swelling indeed remains finite within

the standard framework for strain stiffening. For example in
the Arruda-Boyce [40] or the Gent model [41,42], the
function ψ diverges when I reaches its maximum exten-
sibility Imax, which indeed comeswith a finite swelling ratio.
For both the Arruda-Boyce and Gent model, the stress,
Eq. (10), implies a volume fraction (cf. Supplemental
Material [35]):

ϕ ≃ 1 −
b−1 þ b
Imax

�
1þ

�
r
r0

�
1−b2

�
: ð11Þ

Strain stiffening, encoded via Imax, thus offers a regular
solution for θ < π, with a finite ϕ at the ridge tip.
Figure 2(d) illustrates the strongly enhanced swelling

within wetting ridges. The color map indicates that the
solvent fraction is much larger than that of the preswollen
medium ϕ0. From the circular gridlines, one also infers the
very large stretching in the radial direction, which is
bounded only by the finite extensibility of the polymers.
We validate this intricate wetting scenario using finite

element simulations of a wetting ridge on a poroelastic
layer of thickness H, analog to wetting on elastomers [20].
The contact line is implemented as a concentrated line
force, leading to a Neumann balance with the substrate’s
surface tension that imposes the fold angle θ. The differ-
ence with [20] is the use of a poroelastic energy, with ψ
given by the Gent model (cf. Supplemental Material [35]).
Numerical results for θ ¼ 2π=3 are presented in Fig. 3,

which confirm the strong swelling near the fold tip. An
increase of J is observed already at relatively large distance,
confirming that the solution is fundamentally different from
an incompressible fold. The swelling ratio J saturates
due to strain stiffening, exactly at the values predicted
by Eq. (11). Interestingly, an intermediate scaling law
J ∼ r−α emerges in the “neo-Hookean limit” Imax → ∞.
This scaling reflects the anticipated infinite-swelling para-
dox when strain stiffening is absent, which is confirmed by
simulating the neo-Hookean model (blue solid line in
Fig. 3). In this case, we numerically observe that stress
and Finger tensors become isotropic in the vicinity of the
tip. Admitting a divergent J in Eq. (5), an isotropic B
implies λ ∼ r1−1=b, predicting the observed exponent
α ¼ 2ð1=b − 1Þ for the swelling ratio.
Implications for polymer networks.—Comparing creas-

ing and wetting [Figs. 2(c) and 2(d)], we find a reversal of
the solvent migration away from or toward the fold tip.
What are the implications of these continuum singularities
for experimental systems? For creasing, the singularity of
pressure is relatively weak (logarithmic) and compressive

in nature. In practice we estimate the value of the logarithm
in Eq. (8) in the range 1–10, when, e.g., taking r to vary
from molecular scales to the crease length r0 (typically
100 μm). Depending on the material, such compressive
stresses are typically uncritical. Thus, these deformations
are expected to be reversible, corroborated by experiments
showing the reversibility of creasing without material
failure [43–45].
By contrast, the singularity of wetting requires further

interpretation. The divergence of stress for a strain-stiff-
ening model is much stronger (algebraic) and tensile in
nature, and requires the polymers to become fully stretched
near the fold tip. Even when considering a moderate range
of r=r0, the predicted stress near the fold tip exceeds G by
orders of magnitude. Thus we expect irreversible material
failure close to the tip.
On hydrogels, such wetting-induced fracture has indeed

been observed experimentally [26,27]. Local fracture at the
fold tip, predicted from our analysis, thus offers an
explanation for strong contact line pinning [46] observed
on hydrogels [Fig. 4(a)]. Interestingly, however, wetting
experiments on poroelastic crosslinked polydimethyl silox-
ane (PDMS), which is “swollen” by uncrosslinked polymer
chains, do not exhibit any significant contact angle hyste-
resis—suggesting that pinning defects are absent. The key
difference with hydrogels is the polymeric, i.e., macromo-
lecular nature of the swelling fluid. This significantly
reduces the mixing entropy as compared to hydrogels
[Nv ∼ 1 instead of ∼10−4; see Fig. 2(a)] and enables

FIG. 3. Finite element simulation of a wetting ridge on a
poroelastic substrate of thickness H. The swelling ratio J is
plotted versus the radial distance to the fold tip, r=H, for the Gent
model with Imax ¼ 5, 32, 302, 3002 (solid lines, red to black) and
the neo-Hookean model (Imax ¼ ∞, blue solid line). Dashed lines
are the saturations predicted by Eq. (11). Model parameters:
χ ¼ 0, Nv ¼ 1, θ ¼ 120° (b ¼ 2=3), γ=GH ¼ 1. Inset: full
numerical domain and enlargement of the swollen tip.
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the extraction of the fluid phase into a small meniscus with
negative Laplace pressure. This scenario is sketched in
Fig. 4(b): the formation of a sharp poroelastic fold is
avoided by the extraction of solvent, which dramatically
reduces the magnitude of stress. This effect has been
observed experimentally in the context of adhesion [24]
and wetting [23,25]. The precise conditions for solvent
extraction remain to be identified, but clearly the geometric
focussing of poroelastic stress plays a central role.
Outlook.—We have demonstrated that poroelastic folds

generate intricate solvent distributions that are fundamen-
tally different between wetting and creasing, and which are
governed by nontrivial exponents. Our analysis offers an
explanation for wetting-induced pinning and fracture, and
opens a new route to poroelasticity under extreme defor-
mations. While our analysis is restricted to equilibrium, it is
clear that the divergence of stresswill persist during transient
diffusion of solvent. On shorter timescales, solvent
depletion renders the crease tip a singular point, breaking
the spatial invariance of the surface. This can cause pinning
and hence might explain the annealable scars left behind by
unfolded creases [29,43].More generally, our findings show
that the continuum framework of poroelasticity can break
down near singular points, which must be addressed in
future experiments or molecular simulations.

The authors thank J. Eggers for discussions. J. H. S.
acknowledges financial support from NWOVici (No. 680-
47-632), and S. K. and J. H. S. acknowledge support
from the University of Twente-Max Planck Center for
Complex Fluid Dynamics, and funding from the German
research foundation (DFG, Project No. KA4747/2-1). A. P.
acknowledges startup funding from Syracuse University.

[1] P. J. Flory, Principles of Polymer Chemistry (Cornell
University Press, Ithaca, 1953).

[2] G. T. Charras, J. C. Yarrow, M. A. Horton, L. Mahadevan,
and T. Mitchison, Non-equilibration of hydrostatic pressure
in blebbing cells, Nature (London) 435, 365 (2005).

[3] K. F. Cutting and R. J. White, Maceration of the skin and
wound bed 1: Its nature and causes, J. Wound Care 11, 275
(2002).

[4] X.-F. Wei, E. Linde, and M. S. Hedenqvist, Plasticiser loss
from plastic or rubber products through diffusion and
evaporation, npj Mater. Degrad. 3, 18 (2019).

[5] L. R. Smith, S. Cho, and D. E. Discher, Stem cell differ-
entiation is regulated by extracellular matrix mechanics,
Physiology 33, 16 (2018).

[6] Y. Yang and M.W. Urban, Self-healing polymeric materials,
Chem. Soc. Rev. 42, 7446 (2013).

[7] J. Dervaux and M. Ben Amar, Mechanical instabilities of
gels, Annu. Rev. Condens. Matter Phys. 3, 311 (2012).

[8] V. Trujillo, J. Kim, and R. C. Hayward, Creasing instabi-
lity of surface-attached hydrogels, Soft Matter 4, 564
(2008).

[9] T. Bertrand, J. Peixinho, S. Mukhopadhyay, and C.W.
MacMinn, Dynamics of Swelling and Drying in a Spherical
Gel, Phys. Rev. Appl. 6, 064010 (2016).

[10] B. Mota and S. Herculano-Houzel, Cortical folding scales
universally with surface area and thickness, not number of
neurons, Science 349, 74 (2015).

[11] T. Tallinen, J. Y. Chung, J. S. Biggins, and L. Mahadevan,
Gyrification from constrained cortical expansion,
Proc. Natl. Acad. Sci. U.S.A. 111, 12667 (2014).

[12] T. Tallinen, J. Y. Chung, F. Rousseau, N. Girard, J. Lefèvre,
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