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Quantum simulation of thermodynamics in
an integrated quantum photonic processor

F. H. B. Somhorst 1, R. van der Meer 1, M. Correa Anguita 1, R. Schadow2,
H. J. Snijders3, M. de Goede3, B. Kassenberg3, P. Venderbosch3, C. Taballione3,
J. P. Epping3, H. H. van denVlekkert3, J. Timmerhuis1, J. F. F. Bulmer 4, J. Lugani5,
I. A. Walmsley6,7, P. W. H. Pinkse 1, J. Eisert 2,8,9 , N. Walk 2 &
J. J. Renema1,3

One of the core questions of quantum physics is how to reconcile the unitary
evolution of quantum states, which is information-preserving and time-
reversible, with evolution following the second lawof thermodynamics, which,
in general, is neither. The resolution to this paradox is to recognize that global
unitary evolution of a multi-partite quantum state causes the state of local
subsystems to evolve towards maximum-entropy states. In this work, we
experimentally demonstrate this effect in linear quantum optics by simulta-
neously showing the convergence of local quantum states to a generalized
Gibbs ensemble constituting a maximum-entropy state under precisely con-
trolled conditions, while introducing an efficient certification method to
demonstrate that the state retains global purity. Our quantum states are
manipulated by a programmable integrated quantum photonic processor,
which simulates arbitrary non-interacting Hamiltonians, demonstrating the
universality of this phenomenon. Our results show the potential of photonic
devices for quantum simulations involving non-Gaussian states.

One of the long-standing puzzles of theoretical physics is how notions
of statistical physics and basic quantum mechanics fit together in
closed systems1. Statistical mechanics is concerned with probabilistic,
stationary ensembles that maximize entropy under external con-
straints. Elementary quantum mechanics, in contrast, describes the
deterministic evolution of quantum states of closed systems under a
specified Hamiltonian. It has become clear2–5 that these seemingly
contradictory premises can be resolved by making the distinction
between global unitary dynamics and local relaxation (see Fig. 1). The
physical mechanism is that local expectation values converge to those
of statistical ensembles, while the entire closed quantum system
undergoes unitary dynamics. Large-scale, closed quantum systems,

therefore, appear locally thermal without the need to postulate an
external heat bath. Crucially, this local equilibration behavior is
believed to be ubiquitous, in the sense that one has to fine-tune the
Hamiltonian in order to not observe it5,6.

Themechanismof local equilibration is particularly clear-cut under
non-interacting quadratic bosonic Hamiltonians, such as described in
linear quantum optics. If the initial state is non-Gaussian, it is expected
to ‘Gaussify’ in time, i.e., to locally converge to Gaussian states that
maximize the entropy given all second moments of the state7–11. In this
case, for local Hamiltonian dynamics, it can be rigorously proven7–9,11

that the state converges to a so-called generalized Gibbs ensemble
(GGE)7,12–15, i.e., a thermal ensemble under further constants of motion

Received: 26 May 2022

Accepted: 2 May 2023

Check for updates

1MESA+ Institute for Nanotechnology, University of Twente, P. O. box 217, 7500 AE Enschede, The Netherlands. 2Dahlem Center for Complex Quantum
Systems, Freie Universität Berlin, 14195 Berlin, Germany. 3QuiX Quantum B.V., Hengelosestraat 500, 7521 AN Enschede, The Netherlands. 4Quantum
Engineering Technology Labs, University of Bristol, Bristol, UK. 5Center for Sensors, Instrumentation and Cyber Physical System Engineering, IIT Delhi, New
Delhi 110 016, India. 6Department of Physics, Imperial College London, PrinceConsort Rd., LondonSW72AZ, UK. 7Clarendon Laboratory, University of Oxford,
Parks Road, Oxford OX1 3PU, UK. 8Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany. 9Fraunhofer Heinrich Hertz Institute, 10587
Berlin, Germany. e-mail: jense@zedat.fu-berlin.de; nathan.walk@gmail.com; j.j.renema@utwente.nl

Nature Communications |         (2023) 14:3895 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-7035-9797
http://orcid.org/0000-0001-7035-9797
http://orcid.org/0000-0001-7035-9797
http://orcid.org/0000-0001-7035-9797
http://orcid.org/0000-0001-7035-9797
http://orcid.org/0000-0002-7230-3241
http://orcid.org/0000-0002-7230-3241
http://orcid.org/0000-0002-7230-3241
http://orcid.org/0000-0002-7230-3241
http://orcid.org/0000-0002-7230-3241
http://orcid.org/0000-0002-8592-4303
http://orcid.org/0000-0002-8592-4303
http://orcid.org/0000-0002-8592-4303
http://orcid.org/0000-0002-8592-4303
http://orcid.org/0000-0002-8592-4303
http://orcid.org/0000-0002-2633-9569
http://orcid.org/0000-0002-2633-9569
http://orcid.org/0000-0002-2633-9569
http://orcid.org/0000-0002-2633-9569
http://orcid.org/0000-0002-2633-9569
http://orcid.org/0000-0001-7912-9322
http://orcid.org/0000-0001-7912-9322
http://orcid.org/0000-0001-7912-9322
http://orcid.org/0000-0001-7912-9322
http://orcid.org/0000-0001-7912-9322
http://orcid.org/0000-0003-3033-1292
http://orcid.org/0000-0003-3033-1292
http://orcid.org/0000-0003-3033-1292
http://orcid.org/0000-0003-3033-1292
http://orcid.org/0000-0003-3033-1292
http://orcid.org/0000-0003-1204-6009
http://orcid.org/0000-0003-1204-6009
http://orcid.org/0000-0003-1204-6009
http://orcid.org/0000-0003-1204-6009
http://orcid.org/0000-0003-1204-6009
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38413-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38413-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38413-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38413-9&domain=pdf
mailto:jense@zedat.fu-berlin.de
mailto:nathan.walk@gmail.com
mailto:j.j.renema@utwente.nl


or conserved charges. Notwithstanding this comparably clear theore-
tical situation, only very recently, there has been substantial experi-
mental progress10,16–19, with still not all aspects being clarified. This is

primarily due to the fact that it is challenging to create sufficiently
isolated experimental systems to rule out that the observed equilibra-
tion is notdue todecoherencebut in fact, to thedesireddynamics16,20–25.

In this work, we experimentally show universal, reversible equili-
bration and Gaussification using an integrated quantum photonic pro-
cessor (see Fig. 2), i.e., a programmable linear optical interferometer.We
use the very high degree of control available in integrated photonics to
simulate, for arbitrary interaction times, a large number of randomly
chosen quadratic Hamiltonians, including ones that are not restricted to
nearest-neighbor coupling. We exploit the size of the optical network to
implement a set of additional optical transformations that certify that
the observed relaxation is due to the internal dynamics of our multi-
mode quantum state, and not due to interaction with the environment,
by undoing the Hamiltonian. We find that the single-mode measure-
ments converge to those of a thermal state with a temperature corre-
sponding to the mean photon number, while the overall time evolution
canbeundone,which certifies universal, reversibleGaussification. These
results exemplify the advantagesof photonics as aplatform forquantum
simulation26–32, namely good scaling of decoherence with system size, a
high degree of experimental control, and the rapid growth in achievable
quantumsystems, bothmeasured in thenumberofopticalmodes and in
the number of photons. The fact that photonic quantum interference
without explicit photon–photon interactions carries computational
hardness, as demonstrated by the hardness of boson sampling33–35,
shows that even non-universal photonic processors can perform
operations beyond the capabilities of classical devices29,36–38. The tech-
nological contribution of this work is to go a substantial step further and
investigate to what extent the newly found levels of control and system
size can be exploited for photonic quantum simulation of systems of
interest, contributing to placing integrated optical devices in the realm
of quantum technological devices26,39–42 for quantum simulation.

Results
Local equilibration
In any setting governed by closed-system Hamiltonian dynamics,
equilibration can only happen locally for local observables since the

Fig. 1 | Photonic simulation of quantum equilibration. A closed, many-body
quantum system, initialized in a product state and undergoing unitary evolution
generated by a Hamiltonian, necessarily remains in a pure state. However, local
observables may exhibit a generalized thermalization. Entanglement builds up
between sub-systems until, after some time teq, each sub-system appears to have
approximately relaxed into a maximum entropy state. The paradigmatic case of a
non-Gaussian bosonic state evolving under a quadratic Hamiltonian can be probed
via a photonic simulation platform. A fully programmable linear optical chip can
provide ‘snapshots’ of the local and global systemdynamics for arbitrary times and
interaction ranges by implementing the appropriate unitary UðV Þ= e�iĤt with V∈

U(m) form modes.

Fig. 2 | Overview of the setup. The left-hand side of the figure shows the two
spontaneous parametric down-conversion (SPDC) sources based on nonlinear
periodically poled Potassium Titanyl Phosphate (ppKTP) crystals, in which blue
pumpphotons are spontaneously split into two red photon pairs. One of these four
photons is used as a herald, and the other three are injected in the first threemodes
of our 12 × 12 integrated photonic programmable processor. The processor output
is sent to small fiber-beam-splitter networks and superconducting nanowire single-
photondetectors (SNSPDs),which act asquasi-photonnumber resolvingdetectors.

In the processor, we program the unitary U1 used to simulate the temporal
dynamics (the blue block). In addition, we can program a second unitaryU2 for the
verification process (the yellow block). The zoom-in shows a Mach–Zehnder
interferometer that implements one of the programmable beam splitters. The inset
shows a photograph of a fiber-connected integrated optical chip nominally iden-
tical to the one used in the experiment. Photo credit for the inset photo: Gijs van
Ouwerkerk (PHIX Photonics Assembly). Photo credit for the rest of the figure: The
authors.
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global entropymust be preserved in time. In the setting considered, the
global system is amulti-mode linear-optical system initially prepared in
a highly non-Gaussian stateρonmbosonic degrees of freedom, namely
∣ψ
�
ψ
�

∣ with ∣ψ
�
= ∣1, . . . , 1, 0, . . . , 0i of n = 3 single photons in m =4

optical modes. The bosonic modes are associated with annihilation
operators b̂1, . . . , b̂m. The subsequent integrated linear optical circuit is
given by a unitaryV∈U(m) that linearly transforms the bosonicmodes.
Any unitary from the group U(m) of m ×m unitary matrices can be
realized by a suitably designed linearly optical circuit. In state space,
such linear optical circuits are reflected by ρ↦ σ≔U(V)ρU(V)†, where
U(V) is the physical implementation of the passive mode transforma-
tion V that linearly transforms a set of bosonic operators to a new set as
ðb̂1, . . . , b̂mÞ

T 7!V ðb̂1, . . . , b̂mÞ
T
. The representation of the mode trans-

formation in Hilbert space V↦U(V) is commonly referred to as the
metaplectic representation in technical terms. Finally, the output dis-
tribution is measured in the Fock basis using quasi-photon num-
ber resolving detectors, givingmeasurements of the formμ↦ P(μ) with

PðμÞ= hn1, . . . ,nm∣UðV ÞρUðV Þy∣n1, . . . ,nmi, ð1Þ

where μ = (n1,…, nm) is a given pattern of detection events.
For our purpose of showing local equilibration, we interpret the

evolution UðV Þ= e�iĤt as the evolution under a Hamiltonian Ĥ for time
t>0,which distributes information. In the linear optical systemat hand,
wewill implement twoHamiltonians, a quadratic bosonic translationally
invariant ‘hopping’Hamiltonian, resembling the non-interacting limit of
a Bose-Hubbard Hamiltonian, and a Haar random transformation V∈
U(m) corresponding to a Hamiltonian with random long-range inter-
actions. In a fixed-size optical system, we can simulate the evolution at
various times by tuning the strength of the evolution, interpreting t as
scaling the strength rather than the duration of the interaction.

As the time t gets larger, increasingly longer-ranged entanglement
builds up. This means that the expected moments of the local photon
number n̂j : = b̂

y
j b̂j of each of the output modes labeled j = 1,…,m of

the state σ will increasingly, in the depth of the circuit, equilibrate and
lead to a distribution that resembles that of a (generalized) Gibbs
ensemble. In other words, as seen in Fig. 1, one encounters local
equilibration where the reduced quantum states of a subset of the
modes, or individual modes, equilibrate and take thermal-like values.
Equivalently, we can say that the state will locally thermalize in the
sense that it results in the same expectation values for local obser-
vables as if the entire systemhad relaxed to a thermal equilibriumstate.

Strictly speaking, here we observe a generalized thermalization in
the following sense. The Gibbs or canonical state reflecting thermal
equilibrium is given by ξ : = e�βĤ=trðe�βĤÞ for a suitable inverse tem-
perature β >0 that is set by the energy density. For non-interacting
bosonic systems, local equilibration for subsystems consisting of
several modes is instead expected to converge to a generalized Gibbs
state. To be specific, here, the initial state is a product state (and hence
has obviously short-ranged correlations)—albeit not being transla-
tionally invariant—and the bosonic quadratic Hamiltonian will, on the
one hand, be translationally invariant before it undergoes a time evo-
lution generated by UðV Þ= e�iĤt (or the Haar-random V∈U(m)). The
situation is particularly transparent where Ĥ is a hopping Hamiltonian,
which is translationally invariant. Defining the momentum space
occupation numbers as

N̂k : =
1
m

Xm

x,y= 1

e2πikðy�xÞ=mb̂
y
xb̂y ð2Þ

one finds that the GGE is then given by the maximum-entropy state ω
given by

ω : = argmax fSðηÞ : tr ðηN̂kÞ= hψ∣N̂k ∣ψi for all kg, ð3Þ

associated with an inverse temperature per momentum mode, where
SðηÞ= � trðη log ηÞ is the vonNeumann entropy. For an infinite system,
convergence to such a state is guaranteed7–9,11, in the sense that the
global pure state will remain pure, but again, all reduced states (and,
for that matter, all expectation values of local observables) will for
most times take the values of this GGE. For finite systems, it has been
rigorously settled in what sense the state is locally approximated by
such a GGE7,12–15 before recurrences set in. We discuss the specifics of
this mechanism in more detail in Supplementary Note 2. For the Haar-
random unitaries, we still find Gaussification in expectation, creating
an interesting state of affairs, as here, the theoretical underpinning is
less clear.

For subsystems consisting of a single bosonic mode only, cano-
nical or Gibbs states, as well as GGEs, both give rise to identical photon
number distributions reflecting Gaussian states: The state ‘Gaussifies’
in time. The situation at hand is particularly simple in the situation
where the expectation valueof thephotonnumber is the same foreach
of the m output modes. Then for a Gaussian state, the probability of
observing k photons reduces to

pðkÞ=
n�k +m�2

n�k

� �

n+m�1
n

� � =
Dk

ðD + 1Þk + 1
1 +O

1
m

� 	
 �
, ð4Þ

where D≔ n/m is the photon density per mode, which acts as an
effective temperature.

Interestingly, GGEs are still not quite thermal or canonical Gibbs
states, whichwould bemaximum-entropy states given the expectation
value of the energy, but a generalization of that state, due to the non-
interacting nature of the Hamiltonian. For example, in full non-
equilibrium dynamics under large-scale interacting Bose-Hubbard
Hamiltonians (as can be probed with cold atoms in optical lattices21),
one expects an apparent relaxation to a Gibbs state. In contrast, a GGE
maximizes the von Neumann entropy under the constraint of the
energy expectation and the momentum space occupation numbers,
whicharepreservedunder the non-interacting translationally invariant
evolution t 7! e�iĤt . Therefore, one can say that each of the momen-
tummodes is then associatedwith its own temperature, as sketched in
Fig. 1, and the system ‘thermalizes’ up to the constraints of the
momentum space occupation numbers being preserved.

Such GGEs are also interesting from the perspective of quantum
thermodynamics19,43,44. The presence of the additional conserved
charges indeed alters the thermodynamic properties and comes in as a
further constraint. It is also found that the minimum-work principle
can break down in the presence of a large number of conserved
quantities43. Resource theories for thermodynamic exchanges of non-
commuting and hence non-Abelian observables are also strongly
altered for GGEs compared to their thermal counterparts44.

Certification
In this section,we layout the certification tools thatwehavedeveloped
to verify that the experiment has worked close to its anticipated
functioning. Crucially, time evolution preserves the purity of a quan-
tum system; the system only appears to be equilibrated when con-
sidering the local dynamics. Therefore, in the ideal case, it should be
possible to undo the time evolution after applying U. This leads to the
evolution U†U = I, meaning that a revival of the initial, non-Gaussian
state is observed. In a noiseless experiment, this operation would
function perfectly, and all entanglement will be formed between the
photons as opposed to between the photons and the environment.
This latter form of entanglement corresponds to decoherence and
cannot be time-reversed by acting only on the photons. Therefore, the
extent to which one observes a revival of the initial state serves as a
measure of the degree of photon-photon entanglement versus the
degree of decoherence.
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We further formalize this idea in the form of a fidelity witness45,46

that certifies the fidelity Fðσ, ∣ψt

�Þ= ∣ ψt

�
∣σ∣ψt

�
∣ between the experi-

mentally prepared state σ and a pure target state described by a state
vector ∣ψt

�
: = e�iĤt ∣ψ

�
. The procedure requires a well-calibrated,

programmable measurement unitary and number-resolving (but not
spectral-mode resolving) detectors. It consists of two settings for the
measurement unitary: the inverse of the target unitary and the inverse
followed by a Fourier transform UF. The constant number of mea-
surement settings and polynomial classical computation resources
required means the procedure is efficiently scalable to arbitrary sys-
tem sizes. Here, we consider the specific case of witnessing against the
specific target state of our experiment, leaving the generalization to
Supplementary Note 1.

For the first measurement, we measure the state U†σU in the
photon number basis. More specifically, we measure the fraction p1 of
detection events that correspond to our input state (i.e., exactly one
photon in the first three input modes and no photon in the fourth
mode). If our photodetectors would perfectly resolve the temporal
and spectral degrees of freedom of the photons, this measurement in
itselfwould be sufficient for certification45. However, in our system, the
detectors only resolve the spatial mode. Neglecting this and naively
carrying out the above procedure could result in certifying a large
fidelity even with photons in distinct temporal modes, i.e., distin-
guishable states.

To rule this out, we employ an additional measurement setting as
part of a two-step certification process: we implementU† followed by a
Fourier transformation and count photons. From the first setting, we
upper bound the probabilityp1 of seeing onephoton in eachof thefirst
three spatial modes and no photon in the fourth. From the second, we
upper bound p2, the overlap probability of σ with the distinguishable
sub-space. This is done by monitoring the fraction of observed inter-
ference patterns that would be forbidden for truly indistinguishable
photons following a Fourier transform47–49.

In this way, we arrive at a fidelity bound of the form

F ≥p1 �
9
4
p2 � δðϵÞ ð5Þ

where ϵ >0 is the probability that the bound is correct, and δ is the
corresponding statistical penalty, which arises from the observed
photon counting statistics on p1 and p2. This bound is derived from
Chebyshev’s inequality and holds with very few assumptions on the
underlying distribution (for a full derivation, see Supplementary
Note 1).

If one is merely interested in establishing the presence of entan-
glement in the system, one can derive a simple entanglement witness
W from the estimated fidelity. We use the following definition of an
entanglement witness50

W : = λ2maxI� ∣ψt

�
ψt

�
∣ ð6Þ

where λ2max is themaximal Schmidt coefficient in the decomposition of
∣ψt

�
over a given partition, whose classical computation is not scalable

but feasible in our case. It follows then that F > λ2max is a witness of
entanglement.

Integrated photonic platform
We use an integrated quantum photonics architecture as our experi-
mental platform (see Fig. 2). Integrated quantum photonics con-
stitutes a platform for non-universal quantum simulation based on
bosonic interaction between indistinguishable photons27,51–55. In inte-
grated quantumphotonics, quantum states of light are fed into a large-
scale tunable interferometer andmeasured by single-photon-sensitive
detectors.

Our interferometer is realized in silicon nitride waveguides56,57,
it has an overall size of n = 12 modes and an optical transmission of
2.2–2.7 dB, i.e., 54–60% depending on the input channel. Reconfigur-
ability of the interferometer is achieved by a suitable arrangement of
unit cells consisting of pairwisemode interactions realized as tuneable
Mach-Zehnder interferometers58. Each unit cell of the interferometer is
tuneableby the thermo-optic effect. For a full 12-mode transformation,
the average amplitude fidelity F =n�1Trð∣Uy

set∣∣Uget∣Þ is F =0.98, where
Uset and Uget are the intended and achieved unitary transformations in
the processor, respectively. The processor preserves the second-order
coherence of the photons57.

We implement a quantum simulation of thermalization and a
verification experiment in two separate sections of the interferometer.
These two sections are indicated in blue and yellow, respectively, in
Fig. 2; the area below the dotted line in Fig. 2 is not used. These two
sections both form individual universal interferometers on the
restricted space of four optical modes, allowing us to apply two arbi-
trary optical transformations U1 and U2, in sequence.

We use the first section to simulate the time evolution of our
input state. We select two families of Hamiltonians to simulate: A
hopping Hamiltonian ĤNN = γ

P
k b̂

y
k b̂k + 1 + h:c:which consists of equal-

strength nearest-neighbor interactions between all modes, which
simulates the superfluid, non-interacting limit of the Bose-Hubbard
model, and a set of 20 randomly chosen long-range Hamiltonians
ĤLR =

P
i,jγi,j b̂

y
j b̂i +h: c:, which we generate by applying the matrix

logarithm to a set of Haar-random unitary matrices59.
The second section of the interferometer, indicated in Fig. 2 in

yellow, is used for certification. When we wish to directly measure the
quantum state generated by the first section, we set this area to
the identity, leaving the state afterU1 untouched. However,we can also
use this second section tomakemeasurements in an arbitrary basis on
the quantum state generated by U1, which allows us to certify the
closeness of our produced quantum state to the ideal case.

Our photon source is a pair of periodically poledpotassium titanyl
phosphate (ppKTP) crystals operated in a Type-II degenerate config-
uration, converting light from 775 to 1550nm60, with an output
bandwidth of Δλ ≈ 20 nm. By using a single external herald detector
and conditioning on the detection of three photons after the chip, we
post-select on the state vector ∣ψ

�
= ∣1, 1, 1, 0i52. By tuning the relative

arrival times of our photons, we can continuously tune the degree of
distinguishability betweenourphotons.On-chipmeasurements via the
Hong-Ou-Mandel (HOM) effect61 lower bound the wave function
overlap between photons x = ∣〈ψi∣ψj〉∣, according to V = x2, where ∣ψi

�
is

thewave function of photon i, andV is the visibility of theHOMdip.We
measure the visibility of 89% and 92% for photons of different sources
and 94% for photons of the same source. Photon detection is achieved
with a bank of 13 superconducting single-photon detectors62,63, which
are readoutwith standard correlation electronics. For eachof our four
modes of interest, we multiplexed three detectors to achieve quasi-
photon number resolution64, with the thirteenth detector used as the
herald. By means of adjusting the time delay between the photons, we
can adjust their degree of mutual distinguishability. We can switch
between indistinguishable particles, which produce an overall entan-
gled state (i.e., exhibiting both modal and particle entanglement),
which will exhibit thermalization, and distinguishable particles, in
which each photon traverses the experiment unaffected by the others,
corresponding to a product state of the single-photon wave functions,
which does not exhibit local thermalization.

Experimental results
Figure 3 shows the results of our quantum simulation of the hopping
Hamiltonian and 20 random instances of longe-range Hamiltonians in
sub-figures (a) and (b), respectively. The two sub-figures each have a
tabular structure, where the columns indicate the different simulated
time steps, with the simulation time indicated at the head of the
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column, and the rows indicate different measurement settings, i.e.,
either the experiment itself or the corresponding certification mea-
surements. The data in these figures were acquired over 20min for the
photon number distribution, 320min per certification measurement
for the hopping Hamiltonian, and 220min for each certification mea-
surement of the long-range Hamiltonian, with four-photon events
(three photos in the processor plus herald) occurring at a rate of 4Hz.

The first row of the two sub-figures displays the single-mode
photon-number statistics k↦ p(k) as generated after the application of
U in the first section of the processor. The output statistics were
measured for the first output mode. The experiment was carried out
for both distinguishable (blue points) and indistinguishable (red
points) photons. The gray bars show the expected distribution at full

equilibrationgivenbyEq. (4). ForbothHamiltonians, initially, the input
state is still clearly present, as indicated by the high probability of
observing exactly one photon in the observed outputmode. However,
entanglement builds up as time evolves since the photons increasingly
equilibrate. Consequently, for the indistinguishablephotons, the initial
input state evolves to a thermal-like state at t = 1. For both Hamilto-
nians, the distinguishable photons (whose output statistics corre-
spond to those of classical particles) do not approach the canonical
thermal state, demonstrating the intrinsic link between entanglement
and thermalization.

For the hopping Hamiltonian, at later times (t = 2, t = 5), the finite
size of our Hamiltonian gives rise to a recurrence, i.e., the state moves
away from equilibrium again and evolves back towards the initial input

Fig. 3 | Quantum simulation of single- and multi-mode measurements.
a Hopping Hamiltonian (superfluid): In panel I, the time evolution of photon-
number probability distribution in spatial output mode 1 is plotted. The black
points (squares) show the theoretical prediction for indistinguishable (distin-
guishable) particles, while colored points correspond to experimental data. Panels
II–IV show the observedoutput distributions. These rows correspond to the output
distributions of the hopping Hamiltonian (panel II), the first certification mea-
surementU−1 (panel III), and the second certificationmeasurementUFU−1 (panel IV).
Theoretical predictions (Th) are represented by bars, and the experimental results
(Exp) are represented by circles. The green-colored data corresponds with out-
comes that benefit the certification protocol, whereas the reddata is forbidden, i.e.,
ideally, should not occur. b Long-range Hamiltonian (Haar random): In panel I, the

time evolution of photon-number probability distribution in spatial output mode 1
for 20 different random Hamiltonians is plotted. The black points (squares) show
the theoretical prediction for indistinguishable (distinguishable) particles, while
colored points correspond to experimental data. Panels II–IV show the observed
output distributions for thefirst long-rangeHamiltonian. These rows correspond to
the output distributions of the first long-range Hamiltonian (panel II), the first
certificationmeasurementU−1 (panel III), and the second certificationmeasurement
UFU−1 (panel IV). Theoretical predictions (Th) are represented by bars, and the
experimental results (Exp) are represented by circles. The green-colored data
correspondswith outcomes that benefit the certification protocol, whereas the red
data is forbidden, i.e., ideally, should not occur.
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state7,8. For the long-range Hamiltonian, in contrast, the long-range
interactionsmean that recurrences are pushed away to a later time not
included in the simulation. These results suggest the presence of long-
range order (as opposed to structured, nearest-neighbor interactions)
tends to increase the time for which a system will continue to exhibit
local relaxation. While this picture is intuitive, a rigorous under-
standing of these effects is an exciting open problem for theory and
future experiments. The general agreement across a large range of
randomly chosen Hamiltonians also represents strong experimental
evidence for the ubiquity of these effects5,6.

The second row of the two sub-figures shows the full output-state
distribution μ↦ p(μ) after only the application of U, measured with
indistinguishable photons. The bars in the background correspond to
the expected distributions. For the long-range Hamiltonian, a single
representative example of our 20 Hamiltonians is plotted. From this
data, it can be clearly seen that at the point of thermalization, the
photons are spread over many possible output configurations,
whereas a recurrence manifests as a transition back to fewer possible
output configurations.

The third and fourth rows show the output-state distributions
after the first and second certification measurement, respectively. In
these rows, the output configurations which contribute positively to
the fidelity witness are indicated in green, and those which contribute
negatively are indicated in red. The first certification measurement
undoes the entanglement generated by U and ideally only results in
state vectors of the form ∣ψout

�
= ∣1, 1, 1, 0i. The second certification

measurement also applies a three-mode Fourier to the generated
states. Ideally, this results in only four allowed output configurations.
Thesecertificationmeasurements showgoodagreementwith the ideal
allowed states, demonstrating a high degree of control over the
experiment. For the second certification measurement, most of
the deviations from the expected distribution can be attributed to the
known photon indistinguishability. From the data presented in the
third and fourth row, we extract the values of p1 and p2, respectively,
which are used in the fidelity witness as laid out in Eq. (5).

Figure 4a, b shows the certified fidelities for both the hopping
Hamiltonian and the first random long-range Hamiltonian, respec-
tively. The three horizontal ticks on each data point correspond to
confidence values of ϵ =0.7, ϵ =0.8, and ϵ =0.9. The line shows the
entanglementwitness, corresponding to abi-partition betweenmode 1
and the remaining modes. The relatively constant fidelity to the target

global state contrasts against the conversion of the local, single-mode
statistics to thermal statistics, as seen in Fig. 3.

Figure 4 a) shows that entanglement is certified for t = 1 in the
hopping Hamiltonian system. The observed fidelity F = 0.359 is above
the threshold of the entanglement witness. Similarly, Fig. 4b) shows an
unambiguous certification for the first long-range Hamiltonian at t = 2.
The fidelity F =0.360 is well above the certification threshold. Both of
these entanglement certifications hold with a confidence of at
least 90%.

The certification fidelities are limited by imperfect control over
the processor. This follows from the certification fidelity at t =0.2 for
the long-range Hamiltonian. This fidelity F = 0.462 is significantly
higher than others. Closer inspection shows a near-optimal value for
p2, which is now only limited by the partial distinguishability of the
generated photons. This implies that the certification at other time
steps is limited by imperfect chip control, i.e., a limitedfidelity atwhich
any measurement can be implemented. A second factor limiting the
certification is detector blinding, which affects the obtained values of
p1 (see Supplementary Notes 5 and 6 for more details on detector
blinding and the convergence of the certification statistics).

Discussion
In conclusion, we have experimentally shown that a pure quantum
state in a closed environment can locally behave like a thermal state
because of entanglement with the other modes. To this end, we
simulated both the non-interacting limit of a Bose-Hubbard hopping
Hamiltonian and 20 random long-range Hamiltonians on a program-
mable 12-mode photonic processor. Previous experiments in this
direction have not been able to show this kind of reversibility since
creating a sufficiently isolated quantum system and controllable evo-
lution is notoriously difficult. However, our experiment is fully time-
reversible, just like quantum mechanics itself. This reversibility has
allowed us to certify that equilibration and thermalization are due to
entanglement between the quantum particles rather than with the
environment. These results also provide experimental evidence for the
universality of these phenomena and shed new light on the role of
long-range interactionson relaxationdynamics. From thepoint of view
of the development of quantum technologies, these experiments
showcase the degree of control, lowdecoherence, and rapidly growing
size of integrated quantumphotonic processors as instances of a near-
term quantum computational platform.

Fig. 4 | Global state fidelity certification. a Certification of entanglement in the
hopping Hamiltonian (superfluid): The lower bound certification fidelity estima-
tions for the hopping Hamiltonian are plotted against a theoretical entanglement
witness. b Certification of entanglement in the first long-range Hamiltonian (Haar
random): The lower bound certification fidelity estimations for the first long-range
Hamiltonian are plotted against a theoretical entanglement witness. In both plots,

the top, middle, and bottom points at each time step correspond to confidence
values of ϵ =0.7, ϵ =0.8, and ϵ =0.9, respectively. The background color saturation
qualitatively shows the total entanglement generated at that time step, which is
proportional to the value of the entanglement witness. A higher saturation indi-
cates a stronger presence of multi-photon entanglement.
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Methods
Photon source and input state preparation
Distinguishable and indistinguishable photonic quantum state vectors
of the form ∣ψ

�
= ∣1, 1, 1, 0i are generated by a multi-photon source

consisting of two free-space Type-II SPDC sources. Two non-linear
2mm length ppKTP crystals (Raicol Crystals) are pumped by a Ti:Sa
mode-locked laser (Tsunami, Spectra-Physics) at 775 nm with a spec-
tral bandwidth of 5.4 nmFWHM. Pulses are generatedwith a repetition
frequency of 80MHz and 150 fs pulse duration. Each crystal is pumped
by approximately 10mW pump power, generating degenerate signal-
idler pairs at 1550 nm with a generation probability <1% per pulse.
Typical heralding efficiencies for individual crystals are around
40–45%, while typical two-photon event rates are ~0.20MHz coin-
cidence counts at 40mWpumppower.While the source is designed to
produce as pure photons as possible, residual energy and momentum
conservation result in spectral signal-idler correlations. These corre-
lations are attributable to the periodically poled structure of the non-
linear crystals. We suppress these correlations by using a spectral
bandpass filter of Δλ = 25 nm. Halfwave plates are used to remove the
distinguishability in photon polarization and to match the TE mode
supported by our quantum photonic processor. Three motorized lin-
ear stages (SLC-2475, Smaract GmbH) are used to control relative
photon arrival times used to switch the distinguishability of the
photons.

Quantum photonic processor
Our quantum photonic processor consists of a photonic chip, the
control electronics which actuate this chip, and peripheral systems
such as cooling. The photonic chip implements arbitrary linear
optical transformations on 12 waveguides. The waveguides are
implemented as stoichiometric silicon nitride (Si3N4) asymmetric
double-stripe (ADS) waveguides with the TriPleX technology56. The
waveguides are optimized for light of a wavelength of 1550 nm and
have propagation loss of <0.1 dB/cm. The waveguides have a mini-
mum bending radius of 100 µm. Coupling on and off the chip is
achieved by adiabatic mode converters, which are implemented by
removing the top layers of the ADS stack. These converters have
coupling losses down to 0.9 dB/facet. The overall measured loss
budget of the processor is 2.5 ± 0.2 dB, with roughly 1.8 dB attribu-
table to the two adiabatic couplers and 0.7 dB to propagation losses
on the chip.

The universality of the optical transformation is achieved by a
network of beam splitters in a checkerboard geometry. Each tunable
beam splitter is implemented as aMach-Zehnder interferometer (MZI)
with two static 50/50 directional couplers. To tune the MZI, two
thermo-optical phase shifters are used, one inside the MZI, which
enables shifting of light amplitude between adjacent optical modes,
and one external to the MZI, which allows for a relative phase shift
between the two modes. The thermo-optic phase shifters are imple-
mented as 1 mm long platinum heaters, have Vπ = 10 V, and dissipate
roughly 400mW of power each. This power is carried off the chip
through a Peltier element which is itself actively cooled with water
cooling. A bank of 132 digital-to-analog converters converts signals
from a control computer to voltages over the heaters. A dedicated
software package is used for communication and to compute the
required voltages. Control over the processor to the precision
required in this experiment requires an understanding of the crosstalk
between these control channels, which is achieved in a dedicated
software package.

Photon detection system
A suite of 13 superconducting nanowire single-photon detectors
(SNSPDs) is used for photon detection. These detectors are biased
close to their critical current (8–22 μA range), operating at quantum
efficiencies of around 90% for 1550 nm photons with typical 200Hz

dark counts. Fourfold coincidence rates within a 750 ps window are
monitored by a time tagger device (Timetagger Ultra, Swabian).
From the combination of photon generation rates and dark count
rates, we estimate that less than one in a million measured four-fold
coincidence events are expected to be triggered by a dark count.
Polarization-maintaining fibers are used in combination with
polarization controllers to optimize and stabilize output counts in
each channel. Pseudo-number resolution detection is realized by
multiplexing detectors in a 1-to-3 quasi-photon number resolving
detector (q3PNRD) configuration by fiber-beam-splitters on the four
optical modes of interest, with the thirteenth detector used as a
herald.

Photon detection calibration
In order to sample from μ↦ P(μ) in an unbiased way, as required in
this work, it is important to characterize the relative output losses
from the different detectors. The SNSPDs have variations in their
detection efficiency, and the same holds for the output coupling of
the various optical modes of the photonic processor. Non-uniformity
in the overall detection efficiency of our experiment biases the
sampling of P(μ) since it will suppress someoutcomeswhile relatively
enhancing others. Note that this does not hold for any inhomo-
geneities in the in-coupling due to post-selection. Furthermore, we
assume that on-chip losses are reasonably uniform, which is evi-
denced by the high matrix amplitude fidelities. Furthermore, note
that an absolute detection calibration (a notoriously difficult pro-
blem at the single-photon level) is not necessary, only a relative one
between the 12 detectors of interest.

Non-uniform detection channel losses are characterized by
directly transmitting heralded single photons from input mode 1 to all
fouroutputmodes consecutively; theseoptical transformations canbe
performed with high fidelity. In each of these four consecutive
experiments, the heralded singles count rate of each detector in the
q3PNRDbehind the outputmodeof interest ismeasured. Allmeasured
heralded singles count rates Si originate from the same on-chip uni-
formheralded single-photon rateR1. Therefore, it is convenient topool
all other losses such asout-coupling efficiencies, detection efficiencies,
and splitting ratios for each detection channel i in a lumped factor pi,
to get

Si =piR1: ð7Þ

Since we are only interested in relative efficiencies, we introduce
relative weight factors for each detection channel, which are then
normalized with respect to the maximum measured heralded singles
rate and defined by

wi =
Si

Smax
: ð8Þ

In our experiments, we achieved excellent weight factor stability.
Typically, we observed less than 1% relative fluctuations over more
than 15 h time span.

Similar to nonuniform detection efficiency, the fact that each
q3PNRD is effectively less efficient when detecting multiple pho-
tons as opposed to a single photon biases the output distribution
and must be corrected. Experimentally, we measure heralded
threefold coincidence rates CCp,q,r, which denote the rate at which
detectors p–r and the herald detector fire simultaneously, normal-
ized to the overall frequency of successful experiments. The chal-
lenge is then to convert these probabilities into an unbiased
estimate of P(μ).

To compensate for q3PNRD effects, we enumerate all combina-
tions of threefold detection events which would give rise to a parti-
cular output pattern μ. For probabilistic multi-photon detection, the
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probability of measuring j photons behind mode iwhen k photons are
injected is denoted Pi( j∣k). We note that for Pi(1∣1) and Pi(2∣2), there are
three possible permutations, while for Pi(3∣3), there is just one per-
mutation. More explicitly, we find

Pið0∣0Þ= 1, ð9Þ

Pið1∣1Þ=wpi
+wqi

+wri
, ð10Þ

Pið2∣2Þ= 2!ðwpi
wqi

+wqi
wri

+wpi
wri

Þ, ð11Þ

Pið3∣3Þ=3!wpi
wqi

wri
, ð12Þ

wherew are theweight factors determined above andwpi
+wqi

+wri
≤ 1

due to incorporated losses. Since all Pi( j∣k) are independent prob-
ability events, we find an estimate for P(μ)

PðμÞ=
P

ðp,q,rÞ2μCCp,q,r

P1ðn1∣n1ÞP2ðn2∣n2ÞP3ðn3∣n3ÞP4ðn4∣n4Þ
, ð13Þ

where μ = (p, q, r) denotes all combinations of detection events con-
tributing to the same μ and ni is the number of photons detected in a
mode i for a given μ. These results are used to correct raw
measurement data.

Data availability
All experimental and simulated data used in this study are available in
the 4TU.ResearchData database65.

Code availability
All data post-processing and simulation codes used in this study are
available in the 4TU.ResearchData database65.
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