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Introduction

A s the world faces unprecedented challenges related to climate change and en-
ergy sustainability, there is an increasing urgency to shift towards cleaner and

more sustainable energy sources. One promising pathway to achieve this transition
is through hydrogen production and carbon capture technologies, which offer the
potential to decarbonize various sectors of the economy, reduce greenhouse gas
emissions, and mitigate the adverse impacts of climate change.

Hydrogen, as a versatile and energy-dense fuel, has gained significant attention
as a key element in the transition to a low-carbon future. It can be produced from
a variety of sources, including renewable energy sources such as wind, solar, and
hydroelectric power, as well as from fossil fuels with Carbon Capture and Storage
(CCS) technologies. Hydrogen can be used as a clean fuel for transportation, power
generation, and industrial processes, and can also be used as a valuable chemical
feedstock in various industries [1–6].

Water electrolysis

Water electrolysis has recently gained significant attention as a reliable method for
hydrogen production. It offers several advantages for hydrogen production, includ-
ing its ability to utilize the power output of renewable energy resources such as solar
or wind power (figure 1), rendering it a potential tool for energy storage and grid
balancing [7–10]. Furthermore, water as an abundantly available resource makes
water electrolysis a sustainable and scalable method for hydrogen production. Yet,
there are still challenges to be addressed. This mostly pertains to the efficiency of
the electrolysis process, and the development of suitable catalysts and materials for
electrodes.

Mass transfer in water electrolysis is also a key factor that massively influences
the efficiency of the system. During water electrolysis, mass transfer refers to the

1
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Figure 1: ‘Green’ hydrogen production through water electrolysis by harnessing the energy
of renewable power sources. Image taken from [10].

movement of the reactants (water molecules and electrolyte) and products (hydro-
gen and oxygen gases) between the electrodes and at the electrodes interface. The
rate of mass transfer in these systems controls the the reaction rate on the electrodes
and ultimately the efficiency of the electrolyzer. Hence, it is crucial to maximize the
mass transfer rate at which the reactants are supplied to the electrode and prod-
ucts are transported away, to enhance the efficiency and scalability. Efficient mass
transfer can be achieved by utilization of various approaches such as optimizing the
design and configuration of the elctrolyzer (e.g, size and spacing of electrodes) the
flow rate of electrolyte and operating conditions including temperature and pres-
sure. Moreover, employing state-of-the-art methods to improve the surface prop-
erties of electrodes [11, 12] along with utilization of catalysts [13–15] can further
improve the efficiency by increasing the active sites for the electrochemical reaction
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to occur. Here, we briefly explain the electrochemistry involved in water electroly-
sis followed by mass transfer and hydrodynamics of the system which are strongly
coupled.

Electrochemistry
Transport of ions in the electrolyte solution occurs as a result of migration, diffu-
sion and convection. These processes collectively determine the net flux (Ṅk) of the
species (k) in the system given by Nernst-Planck equation as

Ṅk = −zk
F
RT

DkCk∇ϕ − Dk∇Ck + Cku, (1)

Where ϕ ,u, C and T are the electric potential, velocity, concentration and tempera-
ture fields respectively, D is mass diffusivity, F is Faraday constant, z is ionic valence
of the charged species, and R is the gas universal constant. Migration refers to the
transport of ions resulting from an electric field, represented by the first term on the
right-hand side of Equation (1). Diffusion, on the other hand, describes the move-
ment of species from regions of higher concentration to lower concentration, repre-
sented by the second term on the right-hand side of Equation (1). Lastly, convection
refers to the movement of substances caused by fluid flow, which is represented by
the last term of Equation (1). The current density (i) in the electrolyte solution is
caused by the motion of the charged species and can be expressed as [16]

i = F ∑
k

zkṄk, (2)

which together with (1) yields

i = −F2∇ϕ ∑
k

z2
k

Dk
RT

Ck − F ∑
k

zkDk∇Ck + Fu ∑
k

zkCk. (3)

Charge separation is not possible in electrolytic solutions and hence electroneutral-
ity condition

∑
k

zkCk = 0, (4)

holds throughout [17], leading the last term in (3) to be zero. Charge conservation
always requires that

∇ · i = 0, (5)
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which together with (3) gives an expression for electric potential, ϕ, as [16, 18]

∇ · (κ∇ϕ) + F ∑
k

zk∇ · (Dk∇Ck) = 0, with κ = F2 ∑
k

z2
k Dk

RT
Ck, (6)

where κ is the electric conductivity of the electrolyte solution and is dependant on
local temperature and concentrations. Based on the electroneutrality condition (4)
and in case of insignificant concentration gradients in the solution or equal diffu-
sivity of the ions, the last term of (6) can be neglected [16].

Mass transfer and hydrodynamics

The electrochemistry of the system (6) is coupled to the mass transfer problem and
hydrodynamics. Applying mass conservation to Nernst-Planck equation (1),

∂Ck
∂t

= −∇ · Ṅk, (7)

yields the equation of transport for species as follows

∂Ck
∂t

= zk
F
RT

∇ · (DkCk∇ϕ) +∇ · (Dk∇Ck)− u ·∇Ck, (8)

where the velocity field u is determined through the incompressible Navier-Stokes
equations for a Newtonian fluid,

∂u
∂t

+ u ·∇u = −∇P + ν∇2u + f, (9)

along with continuity equation

∇ · u = 0. (10)

Here, P and ν are kinematic pressure and viscosity, and f is the body force due to
buoyancy caused by slight density gradients as a result of concentration variation
in the electrolyte. Within the Buossinesq approximation it is then given by

f = ∑
∀ k

βk (Ck − Ck,0) g, (11)

where β is solutal volume expansion coefficient, Ck,0 is the initial concentration of
the species and g is gravitational acceleration.

Bubble evolution
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(a) (b)

Figure 2: Bubble evolution during water electrolysis with wire electrodes. (a) Image credit to
www.tudelft.nl (b) Image by Alexandr Bashkatov.

Gas-evolution on the electrodes in water electrolyzers adds to the complexities of
different processes as these systems are prone to formation of gas bubbles (figure 2).
Bubbles play a significant role in altering the system efficiency. First they reduce the
effective surface area of the electrode by reducing the actual contact area between
the electrode and electrolyte. This can leads to lower efficiency in the electrolysis
process due to the reduced electroactive area which limits the reaction rate. In the
other hand, bubble can also impact the cell overpotential, which is the extra energy
required to drive the electrolysis reaction beyond its thermodynamic potential. The
formation of gas bubbles increases the resistance to current flow (due to the nearly
zero electric conductivity of the gas), leading to higher overpotential. This means
that more energy may be required to continue the electrolysis which significantly
decreases the overall efficiency of the system.

Bubble evolution comprises several processes in sequence; nucleation, growth and
detachment. Nucleation happens as result of accumulation of the dissolved gas in the
electrode boundary layer and when a certain number of the gas molecules cluster in
nucleation spots such as crevices and cracks where the energy barrier is the lowest
(figure 3(a)). Once a stable nuclei is formed, diffusion of the dissolved gas to the
interface and its desorption to the gas phase will lead to bubble formation and its
further growth (figure 3(b)). Balancing the rate of the change of the molar amount of
gas inside the bubble with the diffusive flux of gas across the interface (determined
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H2SO4 → 2H+ + SO2−
4

H2 H2 H2
R

(a) Nucleation (b) Growth (c) Detachment

Electrode

Figure 3: Different stages of bubble evolution on a gas-evolving electrode (cathode) with
binary sulphuric acid solution as electrolyte. Hydrogen ion is reduced and hydrogen gas is
produced in hydrogen evolution reaction on the electrode. Blue and green colors indicate
the concentration of hydrogen and sulphuric acid in the electrolyte. As a result of diffusion,
hydrogen concentration reduces from the electrode (dark blue) to the bulk electrolyte (light
blue) and acid concentration increases from the electrode (light green) to the bulk electrolyte
(dark green) (a) Heterogeneous bubble nucleation in a crevice on the electrode surface. (b)
Bubble growth as a result of hydrogen diffusion to the gas-liquid interface and its desorption
to the gas phase. During this stage bubble is attached to the surface with interfacial tension
force, Fσ, and in the meantime electrode boundary layers diffusively grow into the bulk
electrolyte. (c) Bubble detachment as a result of buoyancy force, Fb, dominating over surface
tension. Generated convective flow, caused by bubble ascent, advects fresh electrolyte to the
electrode and enhance the mass transport (lower thickness of electrode boundary layers).

by Fick’s law) as

Ṅb =
RT0

P0
4πR2 dR

dt
=
∫

∂V
Dg∇Cg · n̂b dA, (12)

yields the bubble growth rate

dR
dt

=
RT0

P0

1
4πR2

∫
∂V

Dg∇Cg · n̂b dA, (13)

where T0 and P0 are ambient temperature and pressure respectively, R is the instan-
taneous radius of the bubble and n̂b is the unit normal vector at the surface ∂V of
the bubble. During this period the bubble is adhered to the electrode by surface ten-
sion forces and boundary layers on the electrode continuously grow (figure 3(b)).
After growth of the bubble to a certain size (so-called Fritz radius) beyond which
the forces assisting the detachment (buoyancy, pressure and inertial) predominates
over the surface tension and drag forces [19–21], it departs from the electrode sur-
face and rises in the solution (figure 3(c)).
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Governing mass transfer mechanisms

Understanding the mass transfer processes at gas-evolving electrodes has become
increasingly important as it helps optimize the cell design and tune the operating
condition to prevent undesirable effects of bubbles evolution and enhance the per-
formance of the system. Convection due to the fluid flow is one of the governing
mechanisms controlling the mass transfer in water electrolysis. Although bubbles
will negatively impact the system performance by blocking the active area of the
electrode, they also favorably influence the mass transfer at the electrode by induc-
ing convective flow in the solution. During the bubble growth, expanding boundary
of the bubble pushes the surrounding liquid away and induces micro-convection in
its proximity. It also induces a large-scale flow pattern (macro-convection) after the
departure from the electrode and rising in the electrolyte solution. The convective
flows induced by bubble evolution enhance the solution mixing, and therefore mass
transport, close to the electrode which ultimately favors the reaction rate (figure
3(c)). The macro-convection of rising bubbles in the electrolyte is also referred as
two-phase buoyancy-driven convection and is generated owing to the inhomoge-
neous distribution of bubble in the gas-in-liquid dispersion.

In addition to two-phase free convection, single-phase free convection can also
arise due to the density gradients in the electrolyte, which originates from temper-
ature and concentration variation of species in the electrolyte owing to the ongoing
reaction. Single-phase natural convection in electrolyzers had commonly been dis-
regarded until evidenced by recent works in the literature [22–28]. Although single-
phase natural convection has been identified in the electrochemical systems without
the bubble formation and its impact on reaction kinetics on the electrode has been
investigated, the role that it can indirectly have on mass transfer processes by chang-
ing the bubble dynamics at gas-evolving electrodes is unclear. In fact, single-phase
convection can enhance the efficiency of the system by promoting the bubbles re-
moval in addition to their positive effect on mass transport at the electrode.

Although, single-phase convection can control the rate of mass transfer under
certain conditions, especially at low values of current density where bubble growth
is slow and they adhere to the electrode surface for a long time, at high current
densities the two-phase buoyancy-driven convection is very likely to prevail. This
is corroborated by very high frequency of bubble generation and their detachment
from the electrode surface which cause a strong flow in the electrolyte. Such effects,
although known for several decades, have not been fully investigated and quantified
yet. In addition, the question of "which mechanism primarily control the transport
of chemical reagents and reaction products at the electrode" has not been clearly
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answered and the findings in this regards in the literature seem contradictory.
Given the preceding discussion, it is our aim in this thesis to unravel the intri-

cacies pertaining to the mass transfer at gas-evolving electrodes in which bubbles
form frequently. Hence, we employ high-fidelity direct numerical simulations to
mimic the most relevant physics governing the fluid flow and mass transfer in wa-
ter electrolysis. Our findings offer broader perspective over different mechanisms
concurrently playing a role in transport phenomena and hence help devise systems
with higher efficiencies addressing the mass transfer limitations.

Carbon capture and storage

Carbon capture involves the capture, utilization, or storage of carbon dioxide (CO2)
emissions from industrial processes, power plants, and other sources, to prevent
them from being released into the atmosphere. This technology can help to signifi-
cantly reduce CO2 emissions, which are one of the primary contributors to climate
change, and has the potential to play a critical role in the energy transition [29–35].
In large scales, storage of CO2 in geological formations such as deep saline aquifers
is projected to be a promising technology to reduce the on-earth emissions (figure 4).
However, a secure long-term dissolution of CO2 in the ambient brine has remained
a major challenge compromising the reliability of the technology. Hence, a thor-
ough understanding of the dissolution mechanism of CO2 is essential for designing
secure carbon storage systems which enables the selection of suitable storage sites
with sufficient capacity.

Once the carbon dioxide starts to dissolve into the water layer, a CO2-rich wa-
ter layer forms at the interface, which is denser in comparison to pure water.
While initially stable, the continued dissolution of CO2 into the water layer re-
sults in the CO2-rich fluid layer becoming gravitationally unstable, leading to the
onset of buoyancy driven convection and the formation of a buoyant plume (figure
4(B)), which greatly enhances the mass transfer of CO2 in the water layer [36, 37].
In literature, studies investigating the dissolution and density driven convection
in the CO2-water system have reported between two and four distinct transport
regimes [38–40]. These regimes are vaguely defined by their assumed dominant
driving mechanism and thus referred to as, for example, "purely diffusive", "early
convective", or "late convective" [38]. Moreover, in the regimes where convection
is contributing to the mass transport, apparent diffusive behaviour is observed, al-
beit with a much higher effective diffusion coefficient. However, little explanation
has been given as to what drives the different observed regimes, the transitions be-
tween the regimes and why the system still appears to behave in a diffusive manner.
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Figure 4: Schematic representation of CO2 storage with capillary trapping in the pore space
(A) and dissolution trapping (B) where the dense CO2-saturated brine sinks through the
plume emissions. Image taken from [10].

Therefore, it is our aim in this thesis to investigate the mass transport mechanisms
after the dissolution of CO2 into a liquid barrier under well-defined and controlled
condition to fully understand the governing mechanisms driving the dissolution of
CO2 into the liquids.

A guide through this thesis

The thesis is structured as follows. In chapter 1 we aim to investigate the effect
of single-phase natural convection, caused by concentration gradients of the elec-
trolyte and hydrogen gas, on the growth and dissolution of bubbles on electrodes.
By comparing our results to in-situ experimental measurements, we untangle the
effect of natural convection from pure diffusion and highlight its importance in the
bubble growth and dissolution dynamics. Additionally we vary the bubble spacing
and their arrangement in a clustered network on the electrode to investigate their
impact on the induced instabilities in the electrolyte solution as a result of density
gradients, the emerged convective pattern and the subsequent bubble dynamics.

In chapter 2, disregarding the single-phase natural convection we focus on bubble-
induced convection on mass transfer processes. This includes the flow caused by
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bubble growth (micro-convection) and more importantly by bubble motion after
their break-off from the electrode surface (macro-convection). Taking advantage of
numerical simulations, we independently vary our parameter space, which includes
current density, bubble size and bubble spacing. This allows the quantification of
mass transfer for the electrolyte as well as hydrogen gas at the electrode interface,
and therefore identification of the rate-controlling mechanism of mass transfer. Sub-
sequently, we aim to quantify the hydrogen transport to the bubble based on the
simulations input parameters and find its connection to the hydrogen transport at
the electrode. This further allows for establishment of a unique expression for gas-
evolution efficiency which is key in determining the bubble dynamics and, there-
fore, the overall mass transport rate at gas-evolving electrodes.

In chapter 3, we use direct numerical simulations to unravel the peculiar dy-
namics of CO2 downward dissolution in a cylindrical water barrier observed from
the experiments. The diffusive and convective dissolution of CO2 is first visualised
in the experiments from which a diffusion-controlled dynamic of the front is ob-
served even after transition to the convection. By replicating the results through the
numerical simulations and performing a detailed analysis on the front dynamics
(which cannot be achieved experimentally), the underlying physics governing the
relevant dynamics of the CO2 front is elucidated. Our results offer insight into the
capacity of the carbon storage systems.



1
The effect of buoyancy driven
convection on the growth and

dissolution of bubbles on
electrodes◦

Enhancing the efficiency of water electrolysis, which can be severely impacted by the nucle-
ation and growth of bubbles, is key in the energy transition. In this combined experimental
and numerical study, in-situ bubble evolution and dissolution processes are imaged and
compared to numerical simulations employing the immersed boundary method. We find that
it is crucial to include solutal driven natural convection in order to represent the experimen-
tally observed bubble behaviour even though such effects have commonly been neglected in
modelling efforts so far. We reveal how the convective patterns depend on current densities
and bubble spacings, leading to distinctively different bubble growth and shrinkage dynam-
ics. Bubbles are seen to promote the convective instability if their spacing is large (≥ 4mm
for the present conditions), whereas the onset of convection is delayed if the inter-bubble
distance is smaller. Our approach and our results can help devise efficient mass transfer
solutions for gas evolving electrodes.

◦Published as: Farzan Sepahi, Nakul Pande, Kai Leong Chong, Guido Mul, Roberto Verzicco, Detlef
Lohse, Bastian T. Mei, Dominik Krug, The effect of buoyancy driven convection on the growth and dissolution
of bubbles on electrodes, Electrochimica Acta 403, 139616 (2022).
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1.1 Introduction

T he process of bubble formation is of significant technological relevance [41].
This also holds in the context of industrial processes relevant for the energy

transition such as water electrolysis or electrochemical CO2 reduction [42–44]. Pro-
duction of ‘green’ hydrogen from water splitting is envisioned to be a major con-
tributor in the future energy mix [45]. However, current technologies suffer from
limited cell efficiencies or high costs [45, 46], rendering large scale operation un-
economical in many cases. It is well established that the presence of bubbles crit-
ically affects electrolyser efficiency [43, 46, 47], e.g by reducing the active electrode
area [48, 49] or by raising the cell resistance [50, 51]. This has sparked significant
interest in concepts to manage the bubble nucleation and growth and the gas flow
on gas-evolving electrodes [52–56]. For such approaches, it is crucial to understand
the mass transport phenomena, as they determine the bubble nucleation, growth
and detachment rates [20, 57, 58].

With the exception of recent work on local Marangoni convection [59–62], re-
lated studies are mostly performed assuming a stagnant electrolyte and focus on
diffusive transport [52, 55, 57, 58]. At the same time, the relevance of global con-
vective instabilities in electrochemical systems is now well documented. These can
originate from electric fields [63, 64], but predominantly also from buoyancy forces
resulting from the density gradients caused by electrode reactions and ion trans-
port [25, 28, 65, 66]. In particular, the simulations of Ngamchuea et al. [25] showed
that such solute driven natural convection can significantly enhance mass transport
during the oxidation of hexacyanoferrate, while later studies also accounted for
thermal forcing [26,27]. The presence of natural convection in water electrolysis has
also been demonstrated experimentally indirectly through pH-mapping [65] and
directly through velocity measurements [66].

The presence of convection over a wide parameter range strongly suggests that
this effect also plays a role in the bubble evolution. This is corroborated by the fact
that e.g. van der Linde et al. [58] had to scale the actual current densities down by
a factor of up to 10 in order to match experimentally measured electrolytic bubble
growth rates, as models assuming pure diffusion strongly overpredicted the bubble
growth. Given such inconsistencies, it is our goal here to systematically explore the
role of convective effects on the bubble evolution in electrochemical water splitting.
Moreover, this work provides insight into how the presence of bubbles in turn af-
fects the hydrodynamic instability. Our approach combines experiments with direct
numerical simulations (DNS) employing the immersed boundary method. Details
on both will be provided in the next section before we will present and discuss the
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Figure 1.1: (a) Schematic of the experimental setup. (b) Sample transmission image with
the red line indicating the extracted bubble size. (c) Measured current densities, i, for the
different pulses at varying constant potentials (ϕ = −1 V,−1.5 V,−2 V) and pulse times τp

(evident from the drop to 0 in i).

results and summarize our findings in the conclusion.

1.2 Experimental and numerical details

1.2.1 Experimental setup

The electrochemical cell (see figure 1.1(a)) is made of Teflon and houses a typical un-
divided 3-electrode configuration: A transparent platinum (Pt) working electrode, a
Pt mesh counter electrode shaped as a ring and placed at a distance of ≈ 4 cm from
the working electrode, and a Ag/AgCl (in 3M NaCl; BasiR) reference electrode. The
setup was mounted on the stage of a Nikon A1R confocal microscope and illumi-
nated from below with a 532 nm laser. Partial transparency of the working electrode
was achieved by evaporating 10 nm Pt on glass, with a 3 nm Chromium underlayer
(10 nm Pt roughly ≈ 30% transmittance [67]). In this way, bubbles appeared as
shadows in the transmission images as shown in figure 1.1(b). The cell was oper-
ated using a VersaStat (PAR) potentiostat with a sampling rate of 100 Hz. Sulfuric
acid (0.1 M H2SO4, Sigma Aldrich)) was used as electrolyte.

Simultaneous electrochemical and optical measurements were performed with
the following experimental protocol. First, a negative (reduction) potential pulse
was applied for a short time (60 s − 360 s depending on the experiment). The pulse
length and intensity was chosen such that a limited number of bubbles was nucle-
ated and started to grow on the electrode while avoiding disturbances by bubble
detachment. The current density was recorded (see figure 1.1(c)) and the micro-
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scope stage was slowly moved (about the electrode center) until a growing bubble
was encountered in the field of view of the camera (1.28 × 1.28 mm2). Hence, the
bubble measurements typically only start some time after the start of the current
pulse. We ensured that the measured bubble was the first bubble growing at that
location to avoid history effects due to depletion of the gas concentration and bub-
ble detachment [68, 69]. The microscope imaging was continued for approximately
10 min after the potential pulse to capture the evolution of the bubble size. The
open-circuit potential of the cell was measured simultaneously. Fresh electrolyte
was used for each individual experiment. Note that the bubbles are not isolated as
can be seen from figure 1.1(b) (here with center-to-center distance ≈ 0.6 mm) and
that we only track the size of the ‘main’ bubble in the field of view.

1.2.2 Simulations

The electrolyte consists of sulfuric acid which is assumed to fully dissociate in water
to hydrogen and sulfate ions as

H2SO4 → 2H+ + SO2−
4 , (1.1)

which greatly simplifies the numerical modelling. Additionally, it is assumed that
proton reduction to hydrogen is the only cathodic reaction occurring, i.e.

2H+ + 2e− → H2. (1.2)

Note that given the low current densities employed here, we have neglected the
bulk water dissociation reaction for simplicity.

To obtain the fluid velocity u field, we solve the Navier-Stokes equations

∂u
∂t

+ (u ·∇)u = −∇p + ν∇2u + f, (1.3)

along with continuity,
∇ · u = 0. (1.4)

Here, p and ν respectively denote the kinematic pressure and the kinematic vis-
cosity, and f is the body force due to buoyancy. Assuming electroneutrality in the
bulk of the solution [17] allows us to eliminate the migration terms [70] (see Ap-
pendix 1.5.1 for derivation), such that the transport of all species Cj is governed by
an effective advection diffusion equation

∂Cj

∂t
+ (u ·∇)Cj = Dj∇2Cj. (1.5)
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where the subscript j = (s, H2) refers to H2SO4 and H2, respectively. The diffusivity
of H2SO4 is related to the diffusivity of its ions and is calculated as [70]:

Ds =
D1D2 (z1 − z2)

z1D1 − z2D2
, (1.6)

where zk is the ionic valence and subscript k = (1, 2) refers to H+ and SO 2 –
4 ions,

respectively and the diffusion constants for the hydrogen and ionic species are given
in table 1.1 in Appendix 1.5.2.

We employ no slip at the electrode surface and the set of boundary conditions
for the scalar fields is (see Appendix 1.5.1 for the derivation of (1.7))

i
(ne/s1)F

= 2D1

(
1 − z1

z2

)(
∂Cs

∂z

)
z=0

, (1.7a)

i
(ne/sH2

)F
= DH2

(
∂CH2

∂z

)
z=0

, (1.7b)

where sj and ne refer to stoichiometric coefficients and the number of transferred
electrons in the cathodic reaction (1.2), respectively, and F = 96 485 C mol−1 is the
Faraday constant.

Thermal effects are expected to be small in the current system [71] and we there-
fore only consider solutal changes to the density field. Within the Boussinesq ap-
proximation of small density changes relative to the initial electrolyte density, the
buoyancy force in (1.3) is then given by

f = ∑
∀ j

β j
(
Cj − Cj,0

)
g, (1.8)

where β j is the (isothermal and isobaric) volume expansion coefficient of species j,
Cj,0 denotes the initial concentration, and g is the gravitational acceleration.

The shape of the bubbles is modelled using an immersed boundary method
(IBM), for which specifics are provided in the Appendix 1.5.2 along with further
details on the numerical method. By evaluating the flux DH2

∫
Σ ∇CH2

.n̂ dΣ of H2
over the bubble surface Σ with normal n̂ and using the ideal gas law, we find for
the radius R of the (spherical) bubble

dR
dt

=
RT∞

P0

1
4πR2

∫
Σ

DH2
∇CH2

· n̂ dΣ, (1.9)

with R, P0, and T∞ denoting the universal gas constant, ambient pressure, and
temperature, respectively. Further, the Laplace pressure is neglected since it is in-
significant (<1440 Pa while the ambient pressure p0 = 105 Pa) for the relatively
large bubble radii (simulations commence from R0 = 0.1 mm) considered here.
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Figure 1.2: Rendering of (a) the basic simulation setup with a single bubble in the center of
the domain and (b) a 3 × 3 bubble cluster with spacing Sc.

A fixed saturation concentration CH2,sat is enforced for H2 at the bubble bound-
ary, while a no flux condition is used for all other species. We further employ a no
slip condition at the bubble surface to mimic a fully contaminated bubble [72].

We refrain from modelling the intricacies of the bubble nucleation [73, 74], as
this is beyond the scope of the present study. Instead, we initiate bubbles 28 s af-
ter the start of the potential pulse with an initial radius R0 = 0.1 mm, which is
in accordance with the experiments (see section Experimental setup). Bubbles re-
main attached tangentially to the electrode surface (contact angle 0◦) throughout
the simulations. This choice well approximates experimental results [49, 75] and
conforms with earlier modelling approaches [76,77]. In the basic configuration (see
figure 1.2(a)), we consider a single bubble in the center of the domain and periodic
boundary conditions to represent an idealized, regular bubble array with spacing
S determined by the lateral dimension of the computational box. Additionally, we
perform simulations in which the single bubble is replaced by a 3 × 3 array of bub-
bles with interspacing Sc as shown in figure 1.2(b) in order to investigate collective
effects.

1.3 Results and discussion

The inset of figure 1.3(a) shows the temporal evolution of the bubble radius R(t)
for the different potential pulses displayed in figure 1.1(c) (with correspondences
indicated by matching line colors). The same data is re-plotted in the main panel
of figure 1.3(a). Shifting the time axis by the respective pulse duration τp and nor-
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Figure 1.3: (a) Bubble radius as function of time as obtained from the experiments. The
line colour indicates different shapes pulse lengths with the same colour code as in figure
1.1(c). (b) Comparison of experimentally measured bubble radius and those obtained from
numerical simulations of a single bubble with (“active scalar”) and without (“passive scalar”)
convection being considered.

malizing with the maximum radius Rmax, highlights the similarity of the bubble
behaviors in all cases. The most salient feature of this behaviour is the fact that the
initial fast bubble growth is followed by a dissolution phase already shortly after
the end of the potential pulse. Dissolution is more rapid initially and then reduces
to slightly lower rates of dissolution at later times.

In the following, we will focus on the experiment performed at ϕ = −2V and
τp = 60 s (black line in figures 1.1(c) and 1.3(a)). Here, a bubble happened to nucle-
ate within the initial field of view such that both, the bubble growth and dissolution
phases, were captured. In figure 1.3(b), we compare this bubble evolution to simu-
lation results. In the DNS, we used the experimentally determined current density
as an input and chose a box size of S = 4 mm, which corresponds to a rough esti-
mate of the typical bubble spacing in the experiments. The importance of convective
phenomena is highlighted through a simulation with pure diffusive transport only
(setting f = 0 in (1.3)). In that case, the bubble exhibits continued growth even at
late times. In contrast, the simulation with active scalars captures the actual bubble
behaviour much more faithfully as evidenced by a dissolution phase, i.e. a shrinking
of the bubble radius, that sets in shortly (≈ 100 s) after the current is stopped.

The mechanism behind the different behaviour is best illustrated by figure 1.4,
where the hydrogen oversaturation (ζH2

= CH2 /CH2,sat − 1) is depicted at several
instances in time (indicated as markers in figure 1.3(b)). Initially, for t ⪅ 80 s the
production of H2 at the electrode leads to a significant local oversaturation, which
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spreads by pure diffusion. In the case without buoyancy (figure 1.4(a)), this also
holds at later times. The bubble therefore remains in a boundary layer in which
ζH2

> 0 even after the potential pulse and therefore continues to grow throughout
the entire simulation. The case with buoyancy (figure 1.4(b)) starts to differ sig-
nificantly from this scenario beyond t ≈ 80 s. This is due to the emergence of a
downdraft onto the bubble, which is prominent at t = 120 s and even more pro-
nounced at t = 160 s. The effect of this downflow is to displace the H2 layer locally,
thereby exposing the bubble to undersaturated ( ζH2

< 0) electrolyte and leading to
its dissolution.

These observations lead to two relevant conclusions. Most importantly, they
show that the experimental findings cannot be explained by considering pure diffu-
sive transport, but are suitably described by including the effects of natural convec-
tion. A more subtle point is that the presence of the bubbles and in particular their
spacing in turn seems to have an impact on the convective pattern. After all, the
position of the plumes relative to the bubbles appears not to be random. The quick
dissolution of all experimentally studied bubbles (figure 1.3(a)) suggests that their
location in a downdraft with low gas content is a consistent feature. To investigate
how this pinning of the convective pattern to the bubble comes about, we show the
distribution of the density change ∆ρ relative to the background density ρ0 in figure
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Figure 1.5: Contribution of local concentration variation of (a) hydrogen and (b) sulfuric acid
to the (c) total density fluctuations inside the electrolyte at t = 80 s (right panels) and t = 120
s (left panels).

1.5. Variations in ∆ρ result from the depletion of H2SO4 as well as from the concen-
tration of H2. As figure 1.5 demonstrates, both of these effects act to decrease the
local density close to the electrode as a consequence of the reaction there. Further,
their contributions are of similar magnitudes for the present conditions. However,
due to the mass transfer into the bubble, the concentration of H2 in the vicinity
of the bubble is lower, such that the electrolyte density remains somewhat higher
there.⊙ The presence of the bubble further inhibits the diffusion of the sulfuric acid
away from the electrode, which has the same effect on ∆ρ. This results in a lateral
density gradient within the concentration boundary layers. The relatively denser

⊙Note that the effect can be opposite for other dissolved gases, e.g. CO2, for which β > 0, such that
depletion causes the local density to decrease [78].
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fluid around the bubble then favours a downdraft in this region and the emission
of lighter electrolyte in the form of plumes in the space between bubbles.

It is remarkable that ∆ρ/ρ0 remains below 0.05% in the simulations. Yet, consis-
tent with earlier studies [25], this is enough to drive a significant convective flow.
We further note that while there is qualitative agreement between experiment and
DNS in figure 1.3(b), quantitative differences remain. We will analyse the reasons
for these by exploring the parameter space of varying current densities i and bubble
spacings S next.

1.3.1 Effect of current density and bubble spacing

In the following, the pulse duration is kept fixed at 60 s as in the experiment,
while the current density and box size S are varied systematically. We start the
considerations from base case with |i| = 20 A/m2 and S = 6 mm (i20S6), for
which the bubble radius R(t) is shown as a green line in figure 1.6(a). Even though
the parameters of this case differ from those in figure 1.3(b), the bubble behaviour
appears qualitatively unchanged. However, at a slightly larger box size of S = 7 mm
(i20S7, orange line), significant differences arise in the bubble evolution at t ≈ 150 s,
where a secondary growth phase sets in. The reason for this difference is illustrated
by the flow patterns in figures 1.6(d, e). While the plumes rise at the edges of the
domain (i.e. halfway between adjacent bubbles) for i20S6 (figure 1.6(d)), the plumes
merge on top of the bubble for i20S7 (figure 1.6(e)). This implies that at later times,
the bubble is no longer surrounded by under-saturated ‘fresh’ electrolyte, but gets
exposed to a lateral influx of fluid with high oversaturation ζH2

, which leads to the
renewed growth phase after the initial dissolution. Given the transient driving, the
bubble will also dissolve eventually in this case once the initial boundary layers
are drained. Remarkably, also increasing the current from the base case to |i| =

24 A/m2 (i24S6) can induce the same phenomenon as shown by the red line in
figure 1.6(a). An overview over the full parameter space in the range 8 A/m2 ≤
|i| ≤ 32 A/m2 and 1 mm ≤ S ≤ 8 mm is shown in figure 1.6(b), where open (full)
symbols denote the mode where at later times the plumes merge in between (on
top of) the bubbles. From this, it becomes clear that the upward flow is located at
the bubble for large i and S. This behaviour is related to the lateral density gradient
induced by the presence of the bubble: The denser fluid close to the bubble creates a
disturbance in the boundary layer (figure 1.5) that travels outward and from which
eventually the plumes detach. If the disturbance has travelled close enough to, or
even reached the boundary at the onset of convection, the plumes will merge there
and rise half-way between the bubbles. If, on the other hand, convection sets in
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while the disturbance is still close to the bubble, the plumes will flap back and
merge over the bubble as seen in figure 1.6(e). Increasing the bubble spacing S
increases the distance the disturbance needs to travel before it can interact with the
one coming from the adjacent bubble. In contrast, increasing the current density i
shortens the time τc before convection occurs and hence also the time during which
the disturbance can travel before the plumes detach.

In order to confirm this picture, we determine τc as the time when the convective
transport first equals the diffusive flux. Further, we define the location xp of the
initial plume emission, based on the maximum in the vertical velocity at boundary
layer height at time t = τc. Details for this procedure are given in Appendix 1.5.3.
In figure 1.6(c), we present the results in the form of xp/S vs. i. These data show
that xp indeed tends to decrease with increasing current density. Most importantly,
we also find that the plume location at later times depends on xp/S as expected
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from the above argument. In particular, the criterion for the plumes to merge over
the bubbles is determined to be xp/S ⪅ 0.31 from figure 1.6(c).

Finally, when decreasing the bubble spacing drastically to S = 1 mm (i20S1), the
bubble size is seen to remain approximately constant after the end of the pulse (blue
line in figure 1.6(a)). As shown by the oversaturation contours in figure 1.6( f ), the
mass transfer to the bubble effectively balances the production of H2 in this case.
This limits the growth of the hydrogen boundary layer and reduces the buoyancy
force. Note that a density difference still arises from the depletion of H2SO4 (figure
1.7), but the onset of convection is further suppressed by the no-slip condition on
the bubble surface, reducing the effective length scale to the bubble spacing instead
of the height of the diffusive layer. We therefore observe no convective motion for
the cases marked with a cross in figure 1.6(b), which correspond to low S and low
i.

1.3.2 The onset of convection

Next, we will examine the onset of convection and study how this is influenced by
the presence of the bubbles. In order to render the considerations independent of
the pulse duration τp, a continuous current is applied in the simulations for this
purpose. In figure 1.8, we present results for the time of convection onset τc for
different bubble spacings S as a function of i. In addition, the plot also contains
data for a reference case without bubbles. Initially focusing on S ≥ 4 mm for which
a largely undisturbed region exists in between the bubbles, τc is seen to decrease
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with i according to roughly τc ∼ i−1/2. Moreover, τc at constant i is largest for the
case without bubbles and decreases as the bubble spacing S is reduced. To gain a
better insight into these trends, we define a Grashof number

Gr =
gδ3

ν2
−∆ρ(z = 0)

ρ0
, (1.10)

which compares buoyancy with viscous forces. Here, the height δ of the initial dif-
fusion boundary layer is defined based on the instantaneous density profile normal
to the electrode (see Appendix 1.5.4). (2.23) therefore encompasses the full density
difference, which originates to approximately equal parts from the distributions of
H2 and H2SO4 (see figure 1.5 and 1.13 in Supporting Infromation). The Grashof
number is closely related to the Rayleigh number, which is also frequently used
in this context [64, 79–82]. The use of Gr is preferred here since its definition is
independent of the mass diffusivities, which differ for H2 and H2SO4. Generally
speaking, Gr is an increasing function of time as both δ and ∆ρ increase with t.
In the inset of figure 1.8, we have plotted Grc(t = τc) at the onset of convection.
For S ≥ 4mm, the value of Grc is found to be independent of the current density
i. Still, the value of the critical Grashof number beyond which convection sets in,
Grc, depends on the precise bubble configuration and decreases from Grc ≈ 1 in
the absence of bubbles⊚ to Grc ≈ 0.75 for S = 4 mm. This gives evidence that the
presence of the bubbles destabilizes the boundary layer such that buoyancy driven

⊚Using the Schmidt number Sc = 404 of H2SO4, this is consistent with the range of critical Rayleigh
numbers 320 ≤ Rac = GrSc ≤ 817 reported for temperature [83] and gas diffusion [84] boundary layers.



1

1.3. Results and discussion 25

convective motion sets in earlier. Having established that Grc = const. for large
enough bubble spacings, we can also explain the scaling of τc: From the solution
of a constant flux diffusion problem [85], we get the scalings −∆ρ(z = 0) ∼ it1/2

and δ ∼ t1/2, such that the Grashof number grows according to Gr ∼ it2. The latter
results in tc ∼ i−1/2, exactly as observed in figure 1.8.

When decreasing the bubble spacing below S = 4 mm, we notice that τc does
not decrease further at S = 3 mm and eventually increases again for S = 2 mm.
Again, this is a combined effect of the H2 transfer into the bubbles and suppression
of flow by their presence. At lower i, the longer transition times render the mass
transfer into the bubble more relevant, which leads to a deviation from the τc ∼
i−1/2 scaling, especially at S = 2 mm. The same mechanism is also reflected in a
significant increase of Grc with decreasing i in the inset for S = 3 mm and even more
prominently for S = 2 mm. No convection was observed for the tightest spacing of
S = 1 mm even with continuous driving.

1.3.3 Effect of bubble clustering

The results so far present convincing evidence and insight into the role of convec-
tion in the evolution of the hydrogen bubbles on the electrode surface. Yet, single
bubble simulations fail to reproduce the experimental results quantitatively (see fig-
ure 1.3(b)). Further, these results also did not feature the change in dissolution rate,
which is evident to varying degrees for all of the experimental recordings in figure
1.3(a) at about 200 s after the end of the pulse. In the following, we will demonstrate
that collective effects of multiple interacting bubbles can explain these differences.

For this purpose, we consider the 3 × 3 cluster of bubbles as shown in figure
1.2(b). For all simulations with clusters, the box size is fixed to S = 4 mm (in all
three directions) and the experimentally measured current density during the 60 s
pulse is used (see figure 1.1 (c)). Thus, the only parameter which is varied is the
inter-bubble spacing Sc.

The time traces of R(t) in figure 1.9(a) display a behaviour that is consistent
with the convective pattern of plumes rising in between bubbles observed earlier.
As expected, there is no difference in the size of bubbles at different locations during
the growth period. However, such differences do arise during the dissolution stage,
where the central bubble starts dissolving the earliest and at the fastest rate. The
transition from growth to dissolution (and to a lesser extent also the final dissolution
rate) are progressively slower for the bubbles at the sides and in the corners. This
overall picture continues to apply also if the cluster spacing is reduced to Sc = 0.6
mm in figure 1.9(b). The decreased spacing does, however, lead to a fast onset of
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dissolution for all bubbles. Moreover, the evolution of the bubble radius with time
now also features the distinct change in slope at around t = 300 s, similar to the
experimental observations.

Contours plots of the hydrogen oversaturation ζH2
along with the convective

patterns in figure 1.10(a) help explain these findings. Since the plumes rise in be-
tween the clusters, the downward flow is consequently centered on the bubble in the
middle (bubble 1 in figure 1.10), which is therefore most exposed to the undersatu-
rated electrolyte compared to those further out (bubbles 2 and 3). This behaviour is
similar for Sc = 0.6 mm and Sc = 1 mm. There are significant differences however
at later times. At t = 480 s, an upward flow forms over the dissolving bubble cluster
with Sc = 0.6 mm, whereas such a pattern is entirely absent in the case with Sc = 1
mm in figure 1.10(b). An analysis of the corresponding density contours (figure
1.11) reveals that the upward flow is not predominantly driven by variations in the
H2 field resulting from the bubble dissolution. A decisive factor is rather that the
depletion of H2SO4 caused by the reaction cannot be ‘washed out’ effectively due
to the blockage by the tightly spaced bubbles. In this way, lower density electrolyte
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persists within the cluster and helps drive the observed upward convection at late
times. Once convection sets in, the well-known shielding effect [86–88] reduces the
dissolution rate of central bubble, while slightly increasing the dissolution rate of
the other bubbles (compare also figure 1.9(b) at later times).

The dependence of the general size of the central bubble on Sc is considerable,
as the data in figure 1.9(c) prove. An excellent match between the experimental
data and our modeling results is obtained for Sc = 0.7 mm, which is indeed very
close to the distance to the neighbouring bubble observed in figure 1.1(b). It there-
fore appears very likely that collective effects due to the inhomogeneous bubble
distribution play an important role in the experiment. This remains true, even if
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unaccounted effects, such as the presence of dissolved air, may alter the R(t) curves
slightly.

1.4 Conclusion

Our combined experimental and numerical analysis firmly established the relevance
of solutal convection for bubble evolution during water electrolysis. The experimen-
tally observed bubble behaviour was shown to be inconsistent with pure diffusive
transport, while experiments and simulations were in excellent agreement when
natural convection due to buoyancy effects was considered. While appropriate for
micro-electrodes [59,60,62], our results suggest that convective effects cannot be ne-
glected when larger electrodes are considered [58, 61, 89]. For example, estimating
based on the H2 concentration only, a critical value for the onset of convection of
Gr ≈ 1 should be reached after about 100 s for the conditions reported in van der
Linde et al. [58], while their experiments lasted for hours. Our results further show
that the presence of bubbles can decrease the stability threshold of the diffusive
boundary layers, rendering the system even more prone to convective effects. For
the present conditions, this destabilization occurs if S ≥ 4 mm, while the onset of
convection is delayed or even suppressed entirely if the distance between bubbles
is smaller than S ≤ 1 mm. We further demonstrated that convective patterns and
especially their impact on the bubble evolution vary significantly, depending on the
design parameters. This may open up avenues to control flow features to achieve
a desired bubble behaviour by providing nucleation sites with optimized spacings.
However, there still remain open questions. These pertain e.g. to the potential effect
of spatially varying current density due to the presence of the bubbles [51]. Fur-
ther, a more complete treatment of the problem especially at high values of i and
for tight bubble spacing should also include supporting electrolyte and the effect
of Marangoni convection [61, 90]. Finally, allowing for bubble detachment in the
simulations will enable accessing stages after the initial transient.
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1.5 Appendix

1.5.1 Electrolyte transport equation

Here the derivation of the advection-diffusion equation for H2SO4 (j=s in (1.5))
will be presented. We start from the mass-transport equations for dissolved ions
given by

∂C1

∂t
+ (u ·∇)C1 = D1∇2C1 + D1z1

F
RT

∇ · (C1∇ϕ) , (1.11)

and

∂C2

∂t
+ (u ·∇)C2 = D2∇2C2 + D2z2

F
RT

∇ · (C2∇ϕ) , (1.12)

where subscripts 1 and 2 denote H+ and SO 2 –
4 ions, respectively, ϕ refers to the

electric potential field and zk denotes the ionic valence i.e., z1 = +1 and z2 = −2.
Employing the electroneutrality condition

z1C1 = −z2C2, (1.13)

(1.12) can be expressed in terms of C1 as

− z1

z2

∂C1

∂t
− z1

z2
(u ·∇)C1 = − z1

z2
D2∇2C1 − D2z1

F
RT

∇ · (C1∇ϕ) . (1.14)

Multiplying (1.14) by D1 and subtracting it form (1.11) multiplied by D2 gives(
D2 − D1

z1

z2

)
∂C1

∂t
+

(
D2 − D1

z1

z2

)
(u ·∇)C1 = D1D2

(
1 − z1

z2

)
∇2C1. (1.15)

Rearrangement of the terms in (1.15) by taking into account that CH2SO4
= CH+/2

(according to the electroneutrality condition and full dissociation of sulfuric acid in
water) yields

∂Cs

∂t
+ (u ·∇)Cs = Ds∇2Cs, (1.16)

where the electrolyte diffusivity Ds is defined as

Ds =
D1D2 (z1 − z2)

z1D1 − z2D2
. (1.17)

Accordingly, equations (1.11) and (1.12) are simplified to the single equation (1.16)
thereby eliminating the migration terms.
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The proton is reduced at the electrode surface. Using the same steps as above
for (1.16), the associated flux of H+ at the boundary can be related to the current
density by

i
(ne/s1)F

= D1

(
∂C1

∂z
+ z1C1

F
RT

∂ϕ

∂z

)
z=0

. (1.18)

Since the anion is not consumed in the electrochemical reaction on the electrode
surface, its flux is zero there. Thus, we obtain(

∂C2

∂z

)
z=0

= −z2C2
F

RT

(
∂ϕ

∂z

)
z=0

, (1.19)

which along with electro-neutrality condition yields(
∂C2

∂z

)
z=0

= − z1

z2

(
∂C1

∂z

)
z=0

= z1C1
F

RT

(
∂ϕ

∂z
,
)

z=0
. (1.20)

Again taking into account that CH2SO4
= CH+/2, (1.20) is used to eliminate the

migration terms in (1.18) according to

i
(ne/s1)F

= 2D1

(
1 − z1

z2

)(
∂Cs

∂z

)
z=0

, (1.21)

which is used as boundary condition for (1.16).

1.5.2 Numerical methods

Direct numerical simulations are used to solve the system of equations (1.3) and
(1.4) in a three dimensional Cartesian domain as depicted in figure 1.2 in the main
text. Spatial terms are discretized using a second-order accurate finite difference
method on a staggered grid. A fractional-step third-order Runge-Kutta scheme, in
combination with a Crank-Nicolson scheme for the viscous terms are employed
to perform the time marching [91, 92]. Periodic boundary conditions for the ve-
locity components and scalar fields are employed at side walls of the Cartesian
domain in wall-parallel directions. An outflow boundary condition is applied at
the top boundary, through which the diffusive and advective fluxes of both veloc-
ity and scalar fields are conserved. The solver is coupled with a versatile moving
least squares (MLS) based immersed boundary method (IBM), [93,94] which uses a
triangulated grid network called Lagrangian markers (figure 1.2(a)) to enforce the
gas-liquid interfacial boundary conditions, including saturation concentration for
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hydrogen and no-flux for other species alongside no-slip and no-penetration condi-
tions for velocity field, and transfer these quantities back to the underlying Eulerian
mesh. Therefore, any flow field generated inside the bubble is disregarded as it is ir-
relevant to the flow physics outside the bubble. The no-slip boundary condition on
the bubble is chosen in order to represents a fully contaminated bubble surface [72].

Finally, the location of Lagrangian markers is updated in time based on (1.9).
It is further worth mentioning that the concentration gradient

(
∇Cj · n̂

) ∣∣
Σ at the

bubble interface is calculated through extending a probe normal to the barycentre
of each triangulated Lagrangian face and determining the scalar concentration at
the tip of the probe by an additional MLS interpolation.

The computational domain has a fixed height of 4 mm in all cases and has a
quadratic outline in the horizontal (parallel to the electrode) plane with varying
side length S. The initial bubble size is limited by resolution requirements. Here,
we have chosen the initial diameter of the bubble to be 1/20 of the domain height
and used ≈ 13 grid points to resolve the initial bubble diameter after checking grid
independence. This choice offered a reasonable compromise between starting with
the smallest bubble possible and keeping the computational cost at bay. The time
at which the bubble is initialized in the simulations (here 28.21 s) with diameter
of 0.2 mm has been chosen to match the experimental data (black curve in fig-
ure 1.1(c)). The initalization time was also kept constant when varying the current
density from the experimental value for consistency. We ran tests with an earlier
bubble injection at higher currents in order to confirm that the choice of the bubble
initialization time did not change our results significantly.

Physical properties of the analyzed electrochemical system are tabulated in table
1.1. The molar expansion coefficient of hydrogen in sulfuric acid varies depending
on the initial concentration of sulfuric acid in water and we have computed it using
the correlation proposed by Vogt [95]. The full set of numerical parameters is listed
in table 1.2.

1.5.3 Transition time and gas plumes location

We base the criterion for the onset of convection on the H2 distribution and define
the transition time τc as the time at which the averaged advective flux first exceeds
the diffusive transport, i.e.,

⟨uCH2⟩y,z ≥ ⟨DH2∇CH2⟩y,z, (1.22)

where ⟨⟩y,z denotes an average over the midplane of the domain. figure (1.12) dis-
plays samples of the ratio of the advective to diffusive fluxes for S = 6 mm at
different current densities, where τc is marked with crosses.
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Properties Unit(
CH2SO4

)
0 = 100 mol m−3

T∞ = 298 K

P0 = 1 bar

ρL = 1030 kg m−3

νL = 0.94 × 10−6 m2 s−1

DH+ = 9.308 × 10−9 m2 s−1

DSO 2−
4

= 1 × 10−9 m2 s−1

DH2
= 3.7 × 10−9 m2 s−1

kHH2
= 7.2 × 10−6 mol m−3 Pa−1

βH2
= +11.5 × 10−6 m3 mol−1

βH2SO4
= −62 × 10−6 m3 mol−1

Table 1.1: Physical properties of the analyzed system. kH2
is Henry’s constant such that

CH2,sat = kH2
P0.

Parameter Value Unit

Domain size 4 × S × S mm

Initial bubble diameter 0.2 mm

Grid No. per initial

bubble diameter 13

Time step 0.005 − 0.05 s

Bubble injection time 28.21 s

Table 1.2: Numerical setup information

We used the location of the gas plumes at transition time to distinguish two
different modes of the convective pattern, which can lead to either enhanced growth
or dissolution of the bubble. To determine the plume detachment position xp, we
consider the horizontal profile of the vertical velocity (uz) at z = δH2 as shown in
figure 1.12(b), where δH2 is the hydrogen boundary layer thickness sufficiently far
from the bubble. We then define xp as the location of the peaks in the velocity profile
as indicated figure 1.12(b).
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Figure 1.12: (a) Ratio of advective to diffusive fluxes of hydrogen at S = 6mm. Different linis
represent varying current density in the range from 8 A/m2 to 32 A/m2. Cross markers
indicate the transition time measured at the instants when the ratio of the fluxes is unity. (b)
horizontal profile of the vertical component of the velocity (uz) at the edge of the hydrogen
boundary layer (δH2 ) at transition times (τc) obtained from panel (a). Cross markers locate
the peaks in the profile based on which xp is determined. Current density is varied from 8
A/m2 to 32 A/m2.

1.5.4 Effective diffusion depth

Here, we explain the approach employed for measuring the instantaneous effec-
tive diffusion depth δ, which accounts for the density variations resulting from the
change in concentration of H2SO4 and hydrogen gas adjacent to the electrode. A
typical density profile and its constituents at t = 80 s are plotted in figure 1.13. As
the figure shows, both hydrogen enrichment and electrolyte depletion contribute
approximately equally to the total density variation. We define δ as used in the
definition of Gr in (2.23) based on the total density profile according to

δ =
∆ρ

∂z(∆ρ)
|z=0. (1.23)

This value is indicated by a black marker in figure 1.13. The ratio of the diffusivities
for hydrogen and the sulfuric acid is

√
DH2 /Ds ≈ 1.22, such that the effective

diffusion depths based on these profiles (also included in the figure) differ slightly.
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Figure 1.13: Total density variation profile and contributing components for a simulation
without bubble and |i| = 24 A/m2. Profiles are plotted in the centerline of the mid-plane
(x/S = 0) at t = 80 s. Dashed lines indicate the linear fit at the electrode surface (z = 0) to
each profile and crosses mark the corresponding locations of δ.
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Mass transport at gas-evolving

electrodes ◦

In this work, direct numerical simulations are employed to investigate multi-component
mass transfer processes at gas-evolving electrodes subjected to successive formation and de-
tachment of bubbles. The gas-liquid interface is modeled employing an Immersed Boundary
Method (IBM) coupled with a finite-difference solver for the carrier phase. We simulate the
growth phase of the bubbles followed by their departure from the electrode surface in order to
study the mixing induced by these processes. We find that the growth of the bubbles switches
from a diffusion-limited mode at low to moderate fractional bubble-coverages of the electrode
to reaction-limited growth dynamics at high coverages. Furthermore, our results indicate
that the net transport within the system is mainly governed by the effective buoyancy driv-
ing induced by the rising bubbles such that the resulting gas transport for different bubble
sizes, current densities and electrode coverages can be collapsed as a function of an effective
Grashof number. The same holds for the electrolyte mixing when additionally taking the the
effect of surface blockage by adhering bubbles into account. Next, gas transport to the bubble
is quantified and we find that the relevant Sherwood numbers collapse onto a single curve
when accounting for the driving force of bubble growth incorporated in an effective Jakob
number. Finally, connecting the hydrogen transfer rates at the electrode and bubble interface,
an approximate relation for the gas-evolution efficiency is established. Taken together, these
findings allow us to deduce parametrizations for all response parameters of the systems, for
which only theoretical results exist to date.

◦To be submitted as Farzan Sepahi, Roberto Verzicco, Detlef Lohse and Dominik Krug, Mass transport
at gas-evolving electrodes.
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2.1 Introduction

P roduction of green hydrogen through water electrolysis is projected to be an
important technology to cope with the volatile output from renewable power

sources in the future energy mix and as a sustainable feedstock in various industrial
processes [1, 3, 5, 6]. For the required upscaling of the production, the formation of
gas bubbles on the electrode surface plays a critical role. Attached bubbles lower the
efficiency of the electrolyser systems by blocking the active electrode area [49,96,97].
In addition, they increase the cell resistance by lowering the effective conductivity of
the electrolyte [47, 51, 98] which leads to cell overpotential. However, the formation
of bubbles is also beneficial as it enhances the mixing of the electrolyte and this
aspect will be the main focus of this work.

The evolution of bubbles comprises nucleation, growth and detachment from
the electrode surface. Bubble growth occurs due to the diffusive transport of dis-
solved hydrogen to the gas-liquid interface and its subsequent desorption to the
gas phase [43, 99]. The eventual detachment may be buoyancy driven [19, 100] but
can also be a consequence of coalescence events [101]. Bubble evolution can impact
mass transfer at the electrode in several ways. This includes local ‘micro-convection’
and diffusion processes induced by bubble growth and break-off from the electrode
surface [77, 102], and also macro-convection within the bulk electrolyte caused by
frequent detachment and rise of bubbles within the electrolyte solution [103–106].
The latter process is also referred as two-phase buoyancy-driven convection as it
is resulting from the density variations in gas-in-liquid dispersion, and enhances
the mass transport by mixing the electrolyte solution in electrode proximity via
the established macro-flow pattern. Similar to forced convection effects induced
by pressure gradient or magnetic field [107–111], such flow structure pumps the
fresh bulk electrolyte to the electrode surface replacing the reactant-depleted and
gas-enriched solution in the electrode boundary layer [112]. The significance of two-
phase buoyancy-driven convection is further emphasized by the fact that the effi-
ciency of electrochemcial systems reduced remarkably under microgravity condi-
tion. This adverse effect was attributed to the prolonged adherence of the bubbles
to the electrode, inhibiting proper mixing, as well as their growth to inordinate
sizes, which further impeded the mass transfer to the electrode [113–118].

These different mass transfer mechanisms were studied separately in the litera-
ture. Ibl et al. (1971) [119] established the first mass transfer relation for the diffusive
micro-processes associated with bubble evolution. This model neglected convection
and focused on reactant diffusion to a microarea on the electrode surface affected
during the waiting period after bubble detachment and nucleation of the subse-
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quent one. This relation was later modified by Roušar & Cenzer (1975) [99] and Vogt
& Stephan (2015) [77] to additionally account for diffusive transport during bubble
growth, when the size of the microarea shrinks over time and becomes fractionally
inactive under the bubble foot. Furthermore, the impact of micro-convection result-
ing from bubble growth on mass transfer at the microarea, was first quantified by
Stephan & Vogt 1979 [102]. Additionally, Vogt & Stephan 2015 [77] took into consid-
eration the impact of wake flow, which is induced by the bubble break-off, on mass
transfer at the microarea. Based on their considerations, these authors conclude that
micro-convection of bubble growth and detachment is the primary controlling fac-
tor for mass transfer when the gas-evolution rate is sufficiently high, particularly
at moderate and large current densities. This model is almost exclusively based on
theoretical considerations, but has extensively been used for practical applications
by other authors [11, 120].

In contrast to the the findings of Stephan & Vogt 1979 [102] and Vogt & Stephan
2015 [77], who identified the micro-convective processes of gas-evolution as the
dominant mechanism, Janssen & Hoogland (1970, 1973) [75, 121], Janssen (1978)
[122] and Janssen & Barendrecht (1979) [103] provided evidence that mass trans-
fer at the electrode was governed by two-phase free convection driven by rising
bubbles. This was corroborated by measurements conducted on hydrogen evolving
electrodes, with no coalescence of bubbles, where the boundary layer thickness, as
a function of volumetric gas evolution rate, exhibited a power law relationship with
an exponent of 1/3. This observation highlighted the analogy between such flows,
induced by density variations in gas-in-liquid dispersion, and single-phase natural
convection in heat and mass transfer problems [123,124]. These findings by different
authors are indeed contradictory, and as of our current knowledge, there is no con-
sensus on the rate-controlling mechanism, let alone a well-controlled quantification,
of mass transfer at gas-evolving electrodes.

Numerous attempts have been made in the literature to combine experiments
and numerical simulations to study the bubble-induced convection at gas-evolving
electrodes [125]. Hydrodynamics of two-phase flow and their influence on mass
transfer and reaction rate at the electrode have been modeled employing Euler-Euler
[65, 126–130], or Euler-Lagrange [125, 131–133] approaches, in neither of which the
gas-liquid interface of the bubble were resolved. However, only interface-resolved
simulations are capable of capturing the micro-convection as a result of bubble
growth and break-off. Several authors performed numerical simulations to study
the dynamics of bubble growth coupled with electrokinetics of gas-evolution reac-
tion at the electrode using immersed boundary method (IBM) [18] or body-fitted
grids [134, 135]. Other relevant dynamics of bubbles near the electrodes such as co-
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alescence, detachment and rising have separately been investigated with interface-
resolved simulations [136, 137]. However, none of these studies treats the effect of
bubble growth micro-convection and two-phase buoyancy-driven convection simul-
taneously.

Despite numerous studies targeting the interplay between two-phase hydro-
dynamics and electrochemical phenomena at gas-evolving electrodes, the ques-
tion of whether the primary mass transfer mechanism is attributed to the micro-
convective processes of bubble growth [77, 102] or two-phase free convection of
gas-in-liquid dispersion [103], remains unsettled. Therefore, we aim to perform
interface-resolved direct numerical simulations to account for various mechanisms
in play by electrolytically-generated gas bubbles. In particular, we look into the suc-
cessive processes of bubble growth and rise in the electrolyte solution [58,138] until
an equilibrium state is reached, i.e. the global statistics of the system no longer
varies in time. Our findings provides a broader perspective over different mass
transfer processes at the electrode and bubble interface by leveraging disentangled
parameters in the numerical simulations.

The remainder of this chapter is structured as follows; the problem set-up and
governing equations are discussed in § 2.2. The results for bubble dynamics and
mass transfer rates at the electrode are presented in § 2.3. Mass transfer to the
bubble and gas-evolution efficiency are quantified in § 2.4 and § 2.5. Finally, we
summarize and discuss our findings in § 2.6.

2.2 Configuration and numerical methods

2.2.1 Problem set-up

The electrochemical model considered here concerns a water-splitting system with
dilute sulfuric acid (H2SO4, 500 mol/m3) as electrolyte. A schematic is provided
in figure 2.1(a) demonstrating the chemical reactions at the cathodic part of the
cell. Full dissociation of sulfuric acid to sulphate (SO2−

4 ) and hydrogen (H+) ions is
assumed according to

H2SO4(aq) → 2H+
(aq) + SO2−

4(aq), (2.1)

and in order to avoid further complications, self-ionization of water is disregarded
due to its low equilibrium constant at room temperature. The cathodic reactions
solely comprise the Hydrogen Evolution Reaction (HER) as
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Figure 2.1: (a) Schematic representation of the two-phase electrochemical system with rel-
evant chemical reactions and boundary conditions at the cathode. (b) Sketch of the 3-
dimensional numerical setup with the applied boundary conditions for the velocity field
(periodic, no-slip (ns), no-penetration (np) and free-slip (fs)). The bubble is modeled with
IBM using a triangulated Lagrangian grid on the bubble interface (a sample is illustrated in
panel (b)). Current density is uniformly distributed on the electrode surface except for an
inactive (i = 0) circular part with an outer radius of Ra = 0.75R under the bubble.

2H+ + 2e− → H2, (2.2)

whereby the hydrogen enrichment and electrolyte depletion co-occur within a mass-
transfer boundary layer in the vicinity of the electrode as schematically illustrated
in figure 2.1(a).

The numerical set-up is a cuboid box as depicted in figure 2.1(b). The electrode
is oriented horizontally (x and y directions) such that the gravitational accelera-
tion g acts normal to it in the negative z direction. A fully spherical bubble is
initialized with a certain radius (R0 = 50 µm) and zero-degree contact angle on
the electrode. The bubble subsequently grows to a prescribed diameter, namely the
break-off diameter db, before it departs from the electrode surface and rises within
the electrolyte solution due to its buoyancy. This process then repeats with the next
bubble initialized at the same spot as soon as the previous bubble exits from the top
boundary. By applying periodicity in the lateral directions of the computational do-
main, the set-up replicates a system of monodisperse bubbles with uniform spacing
of S = Lx = Ly, which grow and rise in the medium simultaneously. The initializa-
tion, growth and rise of the bubbles in succession are modeled until an equilibrium
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Configuration |i| [A/m2]

Constant bubble spacing, Lx = Ly = 2 mm 101

No. db [mm] Θ Nx × Ny × Nz 1.7 × 101

1 0.3 0.018 1442 × 288 3.0 × 101

2 0.5 0.05 1442 × 288 5.4 × 101

3 0.7 0.10 1442 × 288 102

4 0.9 0.16 1442 × 288 1.7 × 102

Constant bubble size, db = 0.5 mm 3.0 × 102

No. Lx = Ly [mm] Θ Nx × Ny × Nz 5.4 × 102

5 3 0.021 2162 × 288 1.0 × 103

6 2 0.05 1442 × 288 1.7 × 103

7 1.33 0.11 962 × 288 3.0 × 103

8 0.89 0.25 642 × 288 5.4 × 103

9 0.70 0.40 482 × 288 104

10 0.59 0.60 422 × 288

Table 2.1: Simulation parameters for cases with varying bubble departure diameter at con-
stant bubble spacing, and with varying bubble spacing at a fixed bubble departure diameter.
The domain height is Lz = 4 mm for all the simulation cases. At each configuration, the sim-
ulations are performed at 13 different current densities as listed in the last column, leading
to 130 simulation cases in total.

state is attained, i.e. the averaged mass transfer statistics, which will be introduced
in § 2.2.3, remain constant in time.

The control parameters for the electrolytically-generated two-phase free convec-
tive flow are the cathodic current density i, the bubble break-off diameter db, and
the bubble spacing S. Simulations are performed with two different sets of con-
figuration as listed in table 2.1; in the first set the bubble spacing is kept constant
while the bubble break-off diameter is varied. In the second set, spacing between
the bubbles is varied at a constant break-off diameter of the bubbles to investigate
the effect of bubble population density on the mass transport at the electrode. An
auxiliary parameter for either set is the fractional bubble coverage of the electrode,
Θ, which refers to the fraction of the electrode area shadowed by the orthogonal
projection of the bubble surface. Therefore, it is formulated as Θ = πd2

b/4Ae, where
Ae = LxLy is the electrode area available for a single bubble. At each configuration,
13 current densities within the range 101 ≤ |i| ≤ 104 A/m2, as listed in table 2.1,
are simulated.
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Symbol Description Value Unit
Cs,0 H2SO4 initial concentration 500 mol/m3

CH2,0 H2 initial concentration 0 mol/m3

C H2,sat H2 saturation concentration 0.72 mol/m3

T0 Ambient temperature 298 K
P0 Ambient pressure 1 bar
R Gas universal constant 8.314 J/mol · K
ρL Electrolyte density 1030 kg/m3

ρG H2 density 1 kg/m3

µ Electrolyte dynamic viscosity 1.03 × 10−3 kg/s · m
ν Electrolyte kinematic viscosity 1.0 × 10−6 m2/s
DH+ H+ diffusivity 9.308 × 10−9 m2/s
DSO2−

4
SO2−

4 diffusivity 1.0 × 10−9 m2/s

Ds H2SO4 diffusivity 2.47 × 10−9 m2/s
DH2 H2 diffusivity 3.7 × 10−9 m2/s
kh,H2 H2 Henry’s constant 7.2 × 10−6 mol/m3 · Pa

Table 2.2: Physical properties of the analyzed system.

2.2.2 Governing equations

Carrier phase

Three-dimensional transient incompressible Navier-Stokes equations in Cartesian
coordinate system are adopted to solve for the velocity field, u, which include the
continuity and momentum equations as

∇ · u = 0, (2.3)

and

∂u
∂t

+∇ · (uu) = −∇P + ν∇2u + fu, (2.4)

where ∇ is the gradient operator vector, P and ν are the kinematic pressure and
viscosity of the solution and fu denotes the IBM direct forcing term used to enforce
the velocity boundary conditions on the bubble interface.

In the most general case, the distribution of the H2SO4 would need to be ob-
tained by solving the advection-diffusion-migration equation for its constituent ions



2

2.2. Configuration and numerical methods 43

(H+, SO2−
4 ). Yet, for a binary electolyte it is possible to simplify the problem by as-

suming electroneutrality throughout the electrolyte [17], thus eliminating the migra-
tion terms between the ions transport equations. Hence, a single transport equation
for H2SO4 with an effective diffusivity is obtained (see chapter 1 and [70]). Addi-
tionally accounting for H2, the transport of each substance, Cj, in the system can be
described by an effective advection-diffusion equation as

∂Cj

∂t
+∇ ·

(
uCj

)
= Dj∇2Cj + fCj , (2.5)

where the subscript j = (s, H2) refers to H2SO4 and H2 respectively. Here, fCj is the
IBM forcing term to enforce the respective gas-liquid interfacial condition for each
substance and will be explained in § 2.2.2. The effective diffusivity of H2SO4 can
be obtained from the diffusion coefficients, Dk, and ionic valences, zk, of the ions
(k = 1, 2 denotes H+ and SO2−

4 , see table 2.2 for ions diffusivity) as

Ds =
D1D2(z1 − z2)

z1D1 − z2D2
. (2.6)

The no-slip impermeable condition is applied on the electrode. A uniform cur-
rent density, i = I/Ae where I and Ae are respectively the overall electric current
and electrode surface area, is spread on the electrode surface except for an inactive
area with instantaneous radius of Ra = 0.75R [77] underneath the bubble where
zero current density is applied (see figure 2.1(b)). The current density in the outer
region is therefore corrected slightly as the bubble grows in order to keep the overall
electric current, I, constant throughout the simulations. The cathodic set of bound-
ary conditions for Cj reads (chapter 1 and [70])

i
(ne/s1)F

= 2D1

(
1 − z1

z2

)(
∂Cs

∂z

)
z=0

, (2.7)

− i
(ne/sH2)

F
= DH2

(
∂CH2

∂z

)
z=0

. (2.8)

Here, ne = 2 is the number of the transferred electrons in the cathodic reac-
tion (2.2), s1 = 2 and sH2 = 1 are the stoichiometric coefficients of the ions and
F = 96485 Cmol−1 is the Faraday constant. After simplification, the corresponding

cathodic flux Jj = Dj

(
∂Cj
∂z

)
z=0

, for each species can be related to the current density
via the Faraday constant as
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Js =
1
3

i
F

Ds

D1
, and JH2 = − i

2F
. (2.9)

While generally the boundary conditions at the top boundary are free-slip no-
penetration and constant concentrations for the velocity and scalar fields, respec-
tively, a remedy is required to allow the bubble pass the top boundary. For this pur-
pose, we momentarily change the boundary condition to an in-outflow condition
once the bubble arrives at the top boundary and revert back to the original bound-
ary conditions once the bubble has left the computational box. The bubble passes
through the top boundary with a constant velocity equal to its rise velocity before
the boundary condition switch. We ensured that the computational domain was
sufficiently high such that this procedure has negligible influence on mass transfer
processes at the electrode. Moreover, periodic boundary conditions for the velocity
and concentration fields are employed in the lateral directions of the computational
domain. The choice of these boundary conditions is such that the corresponding
pure-diffusion problem reaches a steady state for which an analytical self-similar
solution exists [58, 139]. Thus, the known mass transfer rate of the pure-diffusion
problem can be served as a base system for comparison of mass transfer change
resulting from the bubbly flows within the electrolyte (see § 2.3).

In order to numerically obtain the solution of (2.3), (2.4), and (2.5), a second-
order accurate central finite-difference scheme is employed for spatial discretization
and time-marching is performed with a fractional step third-order accurate Runge-
Kutta scheme [92, 140]. A multiple-resolution strategy [141], with refinement factor
of two for the scalar fields, is used to solve the momentum and scalar equations, to
cope with the fact that the mass diffusivity is several orders of magnitudes smaller
than momentum diffusivity. The grid is equally spaced in all directions. A grid
independence check has also been performed and is reported in Appendix 2.7.2.

Dispersed phase

Numerically, we represent the growth and rise phases of the bubbles but circumvent
the intricacies of the nucleation process by initializing the bubbles with a finite size
of R0 = 50 µm. During the growth phase, the expansion rate of the bubble is directly
related to the diffusive transport of the dissolved gas across the gas-liquid interface
which is determined by Fick’s law. Balancing the rate of the change of mass within
the bubble and the diffusive flux of hydrogen across the interface as

Ṅb =
RT0

P0
4πR2 dR

dt
=
∫

∂V
DH2∇CH2 · n̂b dA, (2.10)
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yields the bubble growth rate

dR
dt

=
RT0

P0

1
4πR2

∫
∂V

DH2∇CH2 · n̂b dA, (2.11)

where R, T0 and P0 are the gas universal constant, ambient temperature and pres-
sure respectively. R is the instantaneous radius of the bubble and n̂b is the unit
normal vector at the surface ∂V of the bubble. Here, we assume a constant pressure
inside the bubble throughout the growth phase, which is valid since for the range of
bubble sizes R ≥ 50 µm the Laplace pressure is negligible compared to the ambient
pressure of P0 = 1 bar. We further confirmed that inertial effects on the pressure
inside the bubble can be neglected by quantifying this effect for the largest bubble
growth rates encountered based on the Rayleigh-Plesset equation.

The bubble detaches and rises under the influence of buoyancy in the electrolyte
solution after growing to a prescribed departure diameter, db. Note that we do not
consider a potential bubble growth during the rise phase. Given the short rise times
(∼ 0.1 s) compared to the residence time of the bubble on the electrode (∼ 1 − 100
s) and the significantly lower hydrogen concentrations outside the boundary layer
at the electrode, this is has no sensible effect on our results. The bubble is treated as
a spherical rigid particle during the rising phase and its deformation is disregarded
due to its small size (db < 1 mm), i.e. surface tension forces, which maintain the
spherical form of the bubble, are predominant over inertia and drag forces in the
ascent (Weber and Capillary numbers are significantly lower than unity). We solve
for the translational velocity of the bubble, ub, which is governed by the Newton’s
second law of motion as

ρgVb
dub
dt

+ Fv =
∫

∂Vb

τ · n̂b dA + (ρG − ρL)Vbg + Fv, (2.12)

where

ub =
dxb
dt

, τ = −pI + µ
(
∇u +∇uT

)
and Fv = CvρL

dub
dt

. (2.13)

Here, xb is the bubble centroid position, ρG and ρL are the gas and fluid densities,
respectively, Vb is the bubble volume after detachment, and τ is the stress tensor
for Newtonian fluids. Following Schwarz et al. (2015) [142], the virtual mass term,
Fv with Cv > 0 is is added to both sides of (2.13) in order to stabilize the numerical
scheme in view of the very low gas-fluid density ratio. In the present work, the
latter is set to Gamma = ρG/ρL = 0.001 and the bubble motion equation is solved
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with Cv = 0.5. We resort to virtual mass method with standard IBM here due
to the rather simple wake flow of the light rising bubbles at low Reynolds num-
ber. A comparison between our simulation results and those of et al. (2015) [142],
presented in Appendix 2.7.1, demonstrates reasonable accuracy and reliability of
this method for the problem under investigation in this study. However, in case of
higher Reynolds in which wake instabilities lead to complex flow motion, one may
consider using more robust but computationally much more demanding methods
like IBM with strong coupling of fluid-structure interaction [143] or IBM projection
method [144, 145]. It is worth noting that the hydrodynamic force on the bubble is
related to the IBM forcing term, fu, as follows [146–148]

∫
∂Vb

τ · n̂b dA = −ρL

∫
Vb

fu dV + ρL
d
dt

(∫
Vb

u dV
)

. (2.14)

A set of the boundary conditions for the carrier phase on the bubble interface
is required for the concentration and velocity fields. Saturation concentration based
on Henry’s law (C H2,sat = khP0 with kh being the Henry’s constant) for H2 and zero
flux (∇Cs · n̂b = 0) for H2SO4 are applied on the bubble interface. Assuming a fully
contaminated bubble [72], the no-slip no-penetration condition is employed on the
bubble interface (| x − xb |= R) such that the velocity u|∂V of a point on the bubble
surface is given by

u|∂V = ub +
dR
dt

n̂b, (2.15)

which is coupled to the mass transfer via (2.11) to determine the bubble growth
rate dR/dt. To ensure continuity within the domain during the bubble growth,
the continuity equation needs to be revised by adding a source term in the bubble
interior according to

∇ · u = ϕ
3
R

dR
dt

, (2.16)

where ϕ is an indicator function which smoothly transitions from 0 to 1 based
on a cut-cell method [147] for the cells outside and inside the bubble respectively.
This amendment is necessary for modeling expanding/shrinking boundaries us-
ing an incompressible solver with IBM. The same approach has also been adopted
in the literature for simulation of the flows with evaporating droplets [149, 150].
The local velocity field is still entirely divergence free outside the bubble and the
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nonzero divergence inside the bubble is irrelevant to the flow physics outside due
the boundary conditions enforced on the gas-liquid interface. To ensure the global
conservation of the mass in the course of the bubble growth, a small but non-zero
uniform vertical velocity is prescribed at the top boundary such that the outflow
rate equals the expansion rate of the bubble, similar to the simulations of evaporat-
ing droplets in the wall-bounded turbulent flows using IBM [150].

The bubble interface is discretized using another triangulated Lagrangian grid
as depicted in figure 2.1(b). The IBM method here is based on moving least squares
(MLS) approach to conduct the interpolation and distribution of the direct forcing
terms between the Eulerian and Lagrangian grids [94, 151, 152]. The enforcement
of the Dirichlet and Neumann conditions on the interface for H2 and H2SO4 is
performed employing a ghost-cell based IBM to ensure the conservation of the
species [153]. To validate these procedures, we verified that mass conservation for
the hydrogen distribution is full-filled in our simulations (see Appendix 2.7.3).

2.2.3 Response parameters

The most basic response parameters relate to the transport of H2 away and H2SO4

towards the electrode. Since the respective rates of production and consumption at
the electrode, JH2 and Js, are constant in time, the effective transport is reflected
in difference between the surface averaged concentrations of hydrogen, ĈH2,e and
electrolyte, Ĉs,e, at the electrode surface and their respective initial values in the
bulk (CH2,0 and Cs,0). We can normalize these differences using the fluxes Jj and the
bubble diameter db as reference scales to yield the Sherwood numbers

Ŝh H2,e =
JH2 db

DH2

(
ĈH2,e − C H2,sat

) , and Ŝh s,e =
Jsdb

Ds
(
Cs,0 − Ĉs,e

) . (2.17)

Here and in the following the hat is used to indicate time-dependant response
parameters (ψ̂) and a time average over a bubble-period is implied otherwise. By
introducing the boundary layer thickness δ̂j = Dj∆Ĉj/Jj, this Sherwood number can
equivalently be expressed as Ŝh j,e = db/δ̂j. For pure diffusion, δ̂j ultimately reaches
the cell height irrespective of current density such that the same steady-state value
of Ŝh j,e would be obtained for all cases without the effect of the bubbles.

Analogously, we characterise the mass transfer of hydrogen into the bubble us-
ing the bubble Sherwood number

Ŝh H2,b =
2ṘR

RT0
P0

DH2

(
ĈH2,e − C H2,sat

) . (2.18)
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which employs the time-dependant bubble diameter, 2R, the instantaneous surface
area, 4πR2, and the concentration difference between the electrode and bubble in-
terface,

(
ĈH2,e − C H2,sat

)
, for normalization of the mass flux into the bubble given

by (2.10).
A final important output is the fraction of the total hydrogen produced that ends

up in gaseous form, i.e. gets desorbed into the bubble [76, 105, 154, 155]. Mathemat-
ically formulating this leads to an expression for the gas evolution efficiency

fG =

Vb
τc

RT0
P0

−i
ne F Ae

=
V̇G

RT0
P0

−i
ne F Ae

, (2.19)

where τc = τg + τr is the bubble life-time which comprises the bubble residence
(growth) time, τg, and the bubble rise time, τr. V̇G = Vb/τc is the volumetric gas
flux into the gas phase.

2.3 Bubble dynamics and mass transfer at the electrode

To begin with, we present the simulation results for a bubble departure diameter
of db = 0.5 mm and spacing S = 2 mm. The physical properties of the system are
set in accordance to table 2.2. Figure 2.2(a) shows the growth dynamics of succes-
sively generated bubbles on the electrode at four different current densities. At each
current density, the first few bubbles show a slower growth while the supersatura-
tion level of the gas in the electrode boundary layer is building up and the growth
pattern becomes more repetitive at later times. This is also reflected in the bubble
growth time, which drops initially, but remains constant for subsequent bubbles
later on (see inset of figure 2.2(b)). These observations are indicative of an equilib-
rium state, in which the time-averaged mass transport and gas production rates at
the electrode surface are balanced, leading to the repetition of the same growth dy-
namics for bubbles evolving in sequence. The bubble size evolution at statistically
steady-state is plotted and compared in figure 2.2(b) for different current densities.
These curves have been taken at times when the bubble residence time, τg, with
bubble number, n, no longer varies as depicted in the inset. Despite the fact that the
bubble growth time varies several order of magnitudes from 100 s to less than 0.1
s when increasing the current density from 101 to 104 A/m2, the growth dynamic
pertaining to diffusion-limited growth, i.e. R ∝ t1/2, is maintained [156, 157]. This
is evidenced by the double-logarithmic plot of the bubble size evolution in figure
2.2(c), where the time axis is normalized with τg. In this form, all cases approxi-
mately collapse onto a single curve that is in good agreement with the 1/2 power
law.
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Figure 2.2: (a) Radius of the successively growing bubbles as a function of time for current
densities |i|= 101, 102, 103 and 104 A/m2. The radius has been normalized with the initial
size of the bubble used for the simulations, R0 = 50 µm. (b) Temporal evolution of the
bubble radius at statistically steady-state for each current density in the range of 101 < |i|<
104 A/m2. The magnitude of the current density is illustrated with the colormap. t0 is the
start of the bubble life-time in each case and hence tg = t − t0 is the bubble age. The inset
shows the bubble growth time, τg, for the nth bubble. (c) double-logarithmic plot of the
bubble evolution curve for all the current densities. Time axis has been normalized with the
growth time in the steady state as shown in the inset of panel (b).
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Next, we look into the mass transfer rate at the electrode by tracking the spatially
averaged concentrations on the electrode surface in time, as shown in figures 2.3(a)
and 2.3(b) for H2 and H2SO4, respectively. As the reaction proceeds, the hydrogen
concentration increases in time in contrast to the electrolyte concentration, which
is depleted at the electrode. For the one-dimensional pure diffusion problem in
the absence of the bubbles (diffusion in a semi-infinite medium with constant flux
on the boundary) the analytical solution gives the time evolution of the cathodic
concentrations, C∗

j,e, as [85]

Ĉ∗
j,e(t)− Cj,0 = 2Jj

√
t

πDj
, (2.20)

which has been provided for comparison at each current density in the figure 2.3(a)
and 2.3(b). Small differences between this solution and the simulation results are
related to the presence of the adhering bubble on the electrode and the inactive
area underneath it, which alters the local concentrations slightly. Major deviations
from the analytical solution occur after the departure of the first bubble, which
leads to significantly enhanced mixing. As a result, fresh electrolyte is transported
to the electrode replacing the gas-enriched and electrolyte-depleted solution there.
Eventually, the system reaches an equilibrium in which the reaction and transport
rates are balanced, such that the cycle-averaged concentrations remain constant in
time.

A comparison of the behaviour for different current densities i is best done us-
ing the transient Sherwood numbers (2.17) plotted in figures 2.3(c) and 2.3(d) for H2

and H2SO4, respectively. Prior to the first bubble departure form the electrode sur-
face, time-dependent Sherwood numbers collapse to a single curve regardless of the
current density, as do those pertaining to the analytical solution of the pure diffu-
sion problem. The bifurcation from the main trend happens after the detachment of
the first bubble, i.e. transition to the convection, which takes place earlier at higher
current density due to the higher oversaturation of the dissolved gas in the elec-
trode boundary layer and faster bubble growth. Once the system is at equilibrium
and the bubble generation rate no longer changes, the Sherwood numbers also ap-
proach an equilibrium value. Small oscillations around this value occur within each
bubble cycle (see insets for the highest current density). For these, the minimums
of Ŝh j,e correspond to the detachment times after which the Sherwood numbers
immediately increase and the maximums are the instants when the bubble lifetime
starts followed by a slow decrease during the growth time. Furthermore, due to the
higher frequency of bubble generation and hence stronger mixing in the electrolyte,
the effective mass transfer rate at the electrode, reflected in the values of Ŝh j,e in
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Figure 2.3: Temporal evolution of hydrogen (a) and electrolyte (b) averaged concentrations at
the electrode surface for bubble departure diameter of db = 0.5 mm and spacing of S = 2 mm
for all the investigated current densities. Broken black lines represent the solution of the pure
diffusion problem in a semi-infinite medium with constant flux condition at the boundary,
calculated using (2.20). Corresponding Sherwood numbers of simulations and pure-diffusion
problem for hydrogen (c) and electrolyte (d) transport, computed based on (2.17). Insets in
panels (c) and (d) show a closer view of Sherwood variation for the highest current density
in statistically steady state. Current density at each case is distinguished using the colormap
whose range is shown in the colorbar.
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equilibrium, is significantly enhanced at higher current densities.

In order to provide insights into flow structure and scalar distribution in the
equilibrium state, figure 2.4 displays snapshots of the hydrogen supersaturation,
ζH2 = CH2 /C H2,sat − 1, overlaid with velocity vectors at different stages of the bub-
ble evolution and for varying current densities. For the case with |i| = 103 A/m2,
corresponding plots for the electrolyte concentration distribution are provided in
figure 2.5. At this current density, a maximum electrolyte depletion of ≈ 15% occurs
at the electrode and even in the most extreme case with |i| = 104 A/m2, this value
does not exceed ≈ 70%, meaning that the electrolyte concentration remains finite in
all cases even though the diffusion limited current density, |i|diff = neFDsCs,0/H =

59.7 A/m2, is exceeded significantly. The associated transport enhancement is due
to a large-scale convective pattern that is established during the rise stage, with an
up-draught stream in bubble column, downwelling flow along the (periodic) side-
walls, and wall-parallel flow close to the electrode. At low current density (figure
2.4(a)), the bubble driving is highly intermittent as the convective motion dissipates
during the long growth period. However, as the latter becomes shorter for larger i
(figures 2.4(b) and 2.4(c)), the flow becomes more and more continuous and a strong
circulation is visible throughout the entire bubble cycle at |i| = 104 A/m2 in figure
2.4(d). The convective pattern counteracts the penetration of the electrode bound-
ary layer into the bulk by advecting the fresh electrolyte towards the electrode. This
effect is stronger at higher currents due to the higher frequency of bubble forma-
tion driving a stronger flow. This can be also appreciated from figure 2.6(a) and
2.6(b), which compares the vertical profiles of normalized H2 and H2SO4 at loca-
tion halfway between adjacent bubbles, where an appreciable drop in the electrode
boundary layer thickness with increasing current density is observed, consistent
with an enhanced mass transport.

Figure 2.4 (following page): Snapshots of the hydrogen and velocity distributions in the equi-
librium state at different stages of the bubble lifetime for current densities of (a) 101, (b) 102,
(c) 103 and (d) 104 A/m2. Bubble break-off diameter is db = 0.5 mm and spacing is set at
S = 2 mm. In all cases, the first three panels cover the bubble growth and the last three the
bubble rise time. The supersaturation level, ζH2 , is shown using the colorbar. The superim-
posed vectors represent the induced velocity field by the growth and rise of the bubbles in
the electrolyte. The velocity scale provided at the right of the figure applies to all panels.
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Figure 2.5: Snapshots of the electrolyte distribution for the case (|i| = 103 A/m2) shown in
figure 2.4(c).
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Figure 2.6: Vertical profiles of normalized hydrogen (a) and electrolyte (b) concentration half-
way between adjacent bubbles (see the sketch in panel (a)) at the instant of bubble break-off.
The profiles are captured at statistically steady state for different current densities.
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Figure 2.7: Sherwood number of (a) hydrogen and (b) electrolyte transport averaged over
an entire bubble lifetime in the statistically steady state, as a function of current density
for different bubble break-off diameter, db. The broken lines indicate the power law relation
Shj ∼ i1/3 for reference. (c) Ratio of electrolyte to hydrogen Sherwood numbers versus the
current density at different bubble diameters. Dashed and dashed-dotted lines correspond to
(DH2 /Ds)1/3 and (DH2 /Ds)1/2, respectively, for comparison.

2.3.1 Current dependence of the Sherwood number and bubble
size effect

Next, we consider the current dependence of the Sherwood numbers of hydrogen
and electrolyte transport, averaged over an entire bubble lifetime in the statistically
steady state, which are plotted in figure 2.7(a, b), respectively. Apart from the case
with db = 0.5 mm considered so far, these figures also include results for other
bubble departure diameters. The trend of increasing Sh j,e with increasing i, which
was already evident in figures 2.3(c, d) for db = 0.5 mm, is consistently observed
for all these cases. The current dependence approximates a power law scaling of
Sh j,e ∼ i1/3 especially for larger bubbles, but deviations occur for smaller bubbles
at high current densities, where Sh j,e increases significantly slower. It is further
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Figure 2.8: (a) Gas-evolution efficiency, fG as a function of current density for different bubble
break-off diameter, db. (b) Bubble residence time, τg, compensated with bubble departure vol-
ume, Vb, as a function of current density for different values of db. The broken line indicates
the power law of τg ∼ i−1.

interesting to examine how Sh H2,e and Sh s,e relate to each other, which we do by
plotting the ratio Sh s,e/Sh H2,e in figure 2.7(c). Given that Sh s,e/Sh H2,e = δH2 /δs, one

expects this ratio to yield a constant of either
(

DH2 /Ds
)1/2 (for diffusive transport)

or
(

DH2 /Ds
)1/3 (for convection given that the Schmidt number Sc j = Dj/ν is large)

for a single-phase flow. In the present simulations, DH2 /Ds = 1.5, such that the
resulting values (1.22 and 1.14) do not differ significantly. In our results in figure
2.7(c), a ratio of comparable magnitude is attained for the smallest bubbles and
similar values are also approached for the cases with larger db at successively larger
magnitudes of i. The deviation from the single-phase value is related to the fact that
the electrolyte is only transported in solution while hydrogen is also carried inside
the bubble. It is therefore most pronounced at low current densities and for large
bubble sizes since for these cases the fraction of gas transported in the bubbles
is largest as the plot of fG in figure 2.8(a) confirms. The gas efficiency decreases
significantly with decreasing bubble size, but is only a weak function of the current
density especially for |i| ⪅ 103A/m2. From gas-evolution efficiency relation, (2.19),
it is deduced that τg ∼ Vb ( fG i)−1, considering a constant rise time (τc) for the
bubbles with the same size. Given the weak dependence of fG on i, the scaling of
τg/Vb ∼ i−1 holds reasonably well for all the cases shown here as can be seen from
figure 2.8(b).
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2.3.2 Effect of bubble spacing

Changing the bubble departure size, as was done in § 2.3.1, has multiple effects
since it affects bubble growth times and the flow, but also alters the effective bubble
coverage θ. To disentangle these, we now fix the departure diameter of the bubble
at db = 0.5 mm and vary the box size S to explore a range of 0.02 ≤ Θ ≤ 0.56. This
resembles a change in the bubble population density, which in practice is tied to
the current density and typically increases when i is increased [49, 158]. Taking the
advantage of the numerical simulations, we can explore the effect of this parameter
independently here.

Figures 2.9 and 2.10 offer insight into how changing θ affects the mass transport
processes at the electrode by showing snapshots of the distributions of H2 and
H2SO4, respectively, taken in the instant of bubble detachment after the system
has reached a steady state. Figure 2.9(a) displays data for H2 at the lowest current
density investigated (|i| = 101 A/m2). For this case, the boundary layers are thick
due to the weak convective transport at low θ. However, as the bubble coverage is
increased, the amount of dissolved hydrogen decreases and almost all the produced
gas is contained in the bubble at θ = 0.56. This implies very efficient transport for
H2 via the gas phase, but since the detachment frequency is low, the same does not
hold for H2SO4 as can be seen from figure 2.10(a). Here, the depletion boundary
layer is very thick with almost a linear gradient across the domain height. At the
highest current density of |i| = 104 A/m2, the significantly shorter detachment
period leads to a much stronger driving of the flow. Convective transport therefore
prevails even at high θ, where τc tends to increase as the amount of hydrogen
produced per bubble decreases for smaller bubble spacings (see figure 2.12(c)). As
a consequence, not only the hydrogen boundary layer (figure 2.9(b)) but also that
for the electrolyte concentration (figure 2.10) remain thin even at θ = 0.56.
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Figure 2.11: Sherwood number of (a) hydrogen and (b) electrolyte transport averaged over
one bubble life-time in the statistically steady state, as a function of current density for
different bubble spacings. The bubble departure diameter is fixed at db = 0.5 mm and the
range of fractional bubble coverage is 0.02 ≤ Θ ≤ 0.56 as specified in the legend.

The trends observed in figures 2.9 and 2.10 are also reflected in the Sherwood
numbers of H2 and H2SO4 plotted in figure 2.11(a) and 2.11(b). Sh H2,e increases
with Θ throughout the whole range of current densities investigated. Again, the
data generally approximate an i1/3 scaling albeit with significant deviations at low
i and high θ where the results significantly exceed this trend. Additionally, Sh H2,e

falls below the 1/3-scaling line for large current densities and low bubble coverage,
which is in accordance with the trend observed in figure 2.7(a) for smaller db for
which the value of θ is also reduced. For these higher currents, Sh s,e behaves similar
to Sh H2,e and this is also reflected in the ratio Sh s,e/Sh H2,e (figure 2.11(c)) being
close to those expected for single-phase transport. Interestingly, Sh s,e/Sh H2,e attains
values even slightly larger than 1.22 for larger θ. Presumably, this is caused by the
lower H2 concentration in the dissolved phase, which dominates the transport for
these cases. Remarkably, the θ trend of Sh s,e at current densities |i| ⪅ 103 A/m2

is opposite to that observed for the hydrogen transport in this regime with Sh s,e
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decreasing for larger θ. The ratio Sh s,e/Sh H2,e drops to values as low as 0.1 for
the most extreme case confirming that the gas is predominantly carried in bubbles
whose rise triggers no significant convection as the detachment frequency is low.

Corresponding results for the gas evolution efficiency, fG, are presented in figure
2.12(a). As expected, fG increases significantly with fractional bubble coverage, Θ.
It approaches unity at lower currents and for the tightest spacings consistent with
the observations in figures 2.9(a) and 2.11(c). Furthermore, fG, generally decreases
at higher current densities because the more frequent detachment events drive an
increasingly stronger convection. As a result, the bulk of the gas is transported in
dissolved form at |i| = 104 A/m2 even at the highest coverage of θ = 0.56. When
comparing our data to the empirical relation provided by Vogt 2011 [105], it is
important to keep in mind that in practice increasing current density generally leads
to higher Θ. To identify realistic combinations of i and Θ in the simulations, we
compare the parameter space to the Θ(i)-relation given by Vogt & Balzer (2005) [49]
in figure 2.12(c). Simulations lying close to this line are marked with filled symbols
in figures 2.12(a-c). If focusing on these points, our results for fG in figure 2.12(a)
approximately agree with the empirical relation for |i| ∼ 103, but differences arise
for higher and in particular for low current densities |i| ≤ 102 A/m2.

The results for fG are replotted in figure 2.9(b), but this time as a function of
Θ since this is the practically more relevant form. It also allows for a comparison
to the relations provided by Vogt (2011,2013,2015,2017) [77, 105, 158, 159] based on
theoretical considerations (see dashed gray and green lines in figure 2.9(b)). An
obvious difference is that empirical relations are independent of i, whereas the data
at any given Θ exhibit a significant variation depending on the current density. This
difference is significantly less prominent when considering only the ‘realistic’ cases,
which are also reasonably well approximated by the expression of Vogt (2017) [159]
at least up to Θ ≈ 0.3.

Figure 2.12(c) also includes results for the hydrogen supersaturation on the elec-
trode in the steady state, ζH2,e, which are shown as colour contours interpolated
between the simulation data points. Remarkably, the ‘realistic’ cases close to the re-
lation of Vogt & Balzer (2005) [49] are seen to cover a very wide range of ζH2,e ≈ 10
up to very high values exceeding 103. It should be noted, however, that for the latter
cases, the boundary layers are very thin (see figure 2.9(b)), such that the effective
supersaturation on the scale of the bubble will be significantly lower.

As a final point, we plot the bubble lifetime, τc, in figure 2.9(c). The data is pre-
multiplied with i to compensate for the 1/i-dependence, which leads to variations
in τc over 4 orders of magnitude. For fG = const., all curves in the presented form
would be expected to collapse onto a single line with linear dependence on Θ based
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Figure 2.12: (a) Gas-evolution efficiency, fG, as a function of current density for varying bub-
ble spacing (specified in terms of the fractional bubble coverage, Θ). The bubble departure
diameter has been fixed at db = 0.5 mm. (b) Gas-evolution efficiency versus bubble coverage
for varying current densities. (c) Hydrogen supersaturation on the electrode surface, ζH2,e, for
all the simulation cases with varying current density and bubble spacing. (d) Bubble lifetime,
τc, premultiplied with current density as a function of bubble coverage for varying current
densities. The relevant empirical relations by Vogt et al. are provided with broken lines in the
panels. The filled markers in panels (a) and (b) show the closest data to the empirical relation
Θ = 0.023|i|0.3 [49] in panel (c), to highlight the more realistic cases.
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on (2.19). While the linear trend is approximately preserved for all but the highest
current density, the variations in fG lead to an increase in iτc with i that is most
pronounced for the highest current densities.

2.3.3 Relating the electrode mass transfer to the effective buoyancy
driving

The goal of this section is to provide scaling relations for the mass transport at
the electrode based on the relevant physical transport mechanism. Our results so
far have already highlighted the relevance of the convective flow driven by the de-
parting bubbles. There is an analogy between the present configuration and single-
phase buoyancy-driven convection in the sense that the detaching bubbles resemble
the plumes of buoyant liquid in the latter case. Analyses based on boundary layer
theory for convective heat transfer along vertical plates yield the power-law depen-
dence on the Rayleigh number Ram, where the exponent m asymptotically varies
form 1/4 for laminar flows to 1/3 for turbulent flows at high Ra [123]. The same
power laws have empirically been shown to be valid for the convective heat transfer
over horizontal plates and in particular for single-phase free-convective mass trans-
fer over upward-facing horizontal electrodes by Wragg (1968) [124]. Beyond the
laminar regime featuring an exponent of 0.25, these authors provided the relation

Sh = 0.16 (GrSc)0.33 , (2.21)

for the mass transport in the turbulent regime, where the Grashof number Gr cap-
tures the buoyancy driving and Schmidt number is given by Sc = ν/D. For two-
phase buoyancy-driven convection, Gr can be defined to account for the effective
buoyancy provided by the bubbles according to

Gr =
gd3

b
ν2

ρL − ρe

ρe
=

gd3
b

ν2
ρL − [(1 − ϵ)ρL + ϵρG]

(1 − ϵ)ρL + ϵρG
, (2.22)

where ρL is the density of the bulk electrolyte, ρe is the mixture density at the
electrode surface, ρG is the gas density and ϵ is the gas volume fraction. Considering
ρG ≪ ρL yields the simplified expression

Gr =
gd3

b
ν2

ϵ

1 − ϵ
. (2.23)

Based on the fact that a single bubble is contained in a box with base area Ae

and height ubτc, where ub denotes the bubble rise velocity, ϵ can be related to the
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volumetric flow rate of the gas, V̇G = Vb/τc, by [112]

ϵ =
V̇G

Aeub
. (2.24)

For all cases investigated here we find that ϵ ≪ 1. Assuming Stokes drag for the
bubbles yields the terminal velocity

ub =
1
12

gd2
b

ν

ρL − ρG
ρL

, (2.25)

which along with (2.19) leads to the final expression for Gr as

Gr = 12 fGdb
−i
neF

RT0

P0ν
. (2.26)

The ratio of buoyancy to viscous forces therefore depends linearly on the input
parameters db, fG, and in particular on i. The experimentally reported scaling of
Sh ∼ i1/3 [75, 103, 122, 160] is therefore equivalent to Sh ∼ Gr1/3 provided that the
dependence of db fG on i remains relatively weak.

Next, we consider the dependence of the Sherwood numbers for the mass trans-
port at the electrode as a function of Gr. Figure 2.13(a) presents a plot of Sh H2,e vs.
Gr for all data presented in § 2.3.1 and § 2.3.2. In this form, the results very con-
vincingly collapse onto a line indicating the power law of Sh H2,e ∼ Gr1/3, which
validates adopting the single phase concept to the present configuration. Remark-
ably, the ‘turbulent’ scaling exponent of 1/3 applies to the full range of Gr studied
here even though the flow is relatively weak and only intermittent in some cases
(see figures 2.4 and 2.9). The data in figure 2.13(a) is well described by the fit

Sh H2,e = 1.0
(
GrSc H2

)1/3 , (2.27)

where the difference in the prefactor compared to the single-phase equivalent (2.21)
is related to the multiphase nature of the present flow but also to the fact that
a different length scale of bubble diameter is used here instead of lateral length
scale of the electrode by Wrag (1968) [124]. The only significant deviation from
(2.27) occurs for the ‘slow’ (in terms of τc) cases featuring a high fG, for which the
gas transport (carried almost exclusively inside the bubbles) is more efficient than
buoyancy driving would suggest.

It is important to note that here Sh H2,e and therefore (2.27) accounts for both the
transport of gaseous and dissolved hydrogen. We can focus on the dissolved trans-
port specifically by multiplying Sh H2,e with (1− fG), as is done in figure 2.13(b). For
reference, a plot of fG for all data vs. Gr is also included in figure 2.13(c). Consistent
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Figure 2.13: (a) Sherwood number of hydrogen transport, Sh H2,e (2.17), averaged over one
bubble lifetime in the statistically steady state, versus Gr for all cases studied in this work.
(b) Fractional Sherwood number of hydrogen transport as dissolved gas in the liquid phase,
(1 − fG)Sh H2,e. (c) Corresponding values of fG vs. Gr.

with the fact that there is a wide spread in fG at any given Gr, there is no col-
lapse of the data in figure 2.13(b) underlining that the analogy between single and
multiphase buoyancy driven flows is applicable at the level of the total transport
only.

The transport of the electrolyte, which entirely acts as a passive scalar here, for
the most part falls in line with the trends discussed for Sh H2,e. In particular, Sh s,e

primarily follows the power law of Sh s,e ∼ Gr1/3 even with the same prefactor
when accounting for the difference in Sc as shown in figure 2.14(a). However, in
accordance with figures 2.7(c) and 2.11(c), Sh s,e drops below this scaling at low Gr
and high Θ. This means that electrolyte transport from the bulk to the electrode
surface is limited when the bubbles highly cover the electrode surface and adhere
to it for a long period during their lifetime. According to Vogt (1989,2012) [161,162]
a factor contributing to the lower transport of the electrolyte is the blockage effect
due to the presence of the bubble as can be seen from the snapshots in figure
2.10(a). To account for this, we divide Sh s,e by the factor

(
1 − Θτg/τc

)
in figure
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Figure 2.14: (a) Sherwood number of electrolyte transport, Sh s,e (2.17), averaged over one
bubble lifetime in the statistically steady state, versus Gr (2.22) for all cases studied in this
work. (b) Sh s,e compensated for net blockage effect, Θτg/τc, caused by bubbles adhering to
the electrode surface in the residence time. The legend specifies cases simulated for different
bubble diameter and spacing using the corresponding fractional bubble coverage of the elec-
trode, Θ. The broken lines indicates the fitted power law, Sh s,e = 1.0 (GrSc s)

1/3, in which
Sc s = ν/Ds.

2.14(b). Here, 1 − Θ is the fraction of the electrode not covered by the bubble and
the additional timescale ratio accounts for the fact that the blockage applies only
during the growth time τg. Introducing this correction in fact reduces the deviations
at lower Gr somewhat (but not fully) and the effect may therefore be relevant in this
regime. However, the data for Gr ⪆ 1 is overcompensated. In summary, it therefore
appears that the fact that no sustained convection exists at high bubble coverages if
Gr is low plays the most important role leading to the lower electrolyte transport.
This leads to limitation in the applicability of the single-phase analogy for this case.
Nevertheless, it is worth noticing that the agreement with the 1/3 scaling law is
much better for Sh s,e (figure 2.14(a)) than for dissolved H2 (figure 2.13(b)) even
though transport is exclusively within the electrolyte in both cases.
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2.4 Mass transfer to the bubble

2.4.1 Bubble growth regimes

We now consider the dynamics of bubble growth and mass transfer into the
bubble in more detail. The growth of the electrolytically generated gas bubbles can
be described by the power law of R(t) = Btx. During the very initial stage, when the
growth of the bubble is strongly influenced by the inertia forces from the liquid [19],
an exponent of x = 1 has been reported [163–166]. Later on, depending on whether
the bubble growth is limited by the diffusive mass transfer of dissolved gas to the
interface [156,157,163] or by the gas production rate in the reaction [57,135,166–168],
exponents of x = 1/2 or x = 1/3 have been identified, respectively. Effective power
laws in electrolysis may deviate from these values due to the interplay between
diffusion and reaction rates.

Figure 2.15 presents different growth dynamics in the statistically steady state
depending on current density and bubble coverage. Plotting the bubble radius ver-
sus the number of hydrogen moles, nH2 , produced in the reaction from the be-
ginning of bubble’s lifetime, tg, allows for easy comparison of the bubble growth
dynamics over time for the full range of the current density. It is worth noting that
nH2 = JH2 Aetg and therefore nH2 ∼ itg. Power laws with exponent 1/3 and 1/2
have been added for comparison in figure 2.15 at different bubble coverages. Here,
corrections are fitted to the prefactor β =

(
3RT0/4πR3

0P0
)1/3, which represents the

value for purely reaction-limited growth (i.e. fG = 1). For the lowest bubble cov-
erage in figure 2.15(a), the growth dynamics are best described by the exponent of
x = 1/2 at all current densities. This indicates that the rate of mass transfer to the
bubble is controlled by the diffusive transfer of dissolved hydrogen to the bubble
interface for these cases. However, a switch from x = 1/2 to 1/3 is appreciable
as the current density increases at higher bubble coverages of Θ = 0.25, 0.40 pre-
sented in figure 2.15(b) and 2.15(c). At first sight, it may seem counter-intuitive that
the reaction rate becomes more relevant as a limiting factor when it is increased.
However, as discussed in the previous section, an increase in current density also
significantly intensifies the convective transport which is then predominantly in the
dissolved phase even at high Θ. This reduces the boundary layer thickness and the
amount of dissolved H2 (see figures 2.4 and 2.9), such that diffusive transport be-
comes increasingly less relevant compared to the faster reaction rate. Therefore, the
exponent approaches x = 1/3 and the prefactor approaches β, as observable form
figure 2.15(b) and 2.15(c) where the bubble size evolution is better described by such
power law at higher bubble coverages and current densities.
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Figure 2.15: Temporal evolution of normalized bubble radius, R/R0, versus the molar amount
of hydrogen produced in the cathodic reaction, nH2 = JH2 Aetg, where tg is the time elapsed
from the start of bubble lifetime in the stationary steady state. The results are for all the inves-
tigated current densities (distinguished with the colormap) at bubble coverages of Θ = 0.05
(a) 0.25 (b) and 0.40 (c). The second row (d-e) shows the same data as (a-c) respectively with
logarithmic scaling. The green and black broken lines show the power laws with exponent of
1/3 and 1/2, respectively. Prefactors for 1/3 power law are adjusted relative to the growth
constant purely reaction-limited bubble growth, β = 3.6 nmol−1/3.

2.4.2 Quantification of mass transport to the bubble

Figure 2.16(a) shows the transient behavior of Sh H2,b according to (2.18) over one
bubble lifetime in the statistically steady state for varying current densities. Since
bubble growth is neglected during the rise stage (see § 2.2.2 for further details)
Sh H2,b becomes equal to zero after the bubble break-off from the electrode surface.
In figure 2.16(a), it can be observed that at low current densities, an equilibrated
mass transfer rate to the bubble is established towards the end of bubble residence
time. This is evident from nearly constant values of Sh H2,b at late stages of the
growth phase, for current densities |i| < 103 A/m2 . In contrast, at higher current
densities, Sh H2,b remains in a transient all the way until the departure of the bubble.
To study the mass transport to the bubble, the instantaneous Sh H2,b, is averaged over
the bubble residence time, τg. The corresponding results for the data presented in
figure 2.16(a) are shown in figure 2.16(b) and indicate an increase of Sh H2,b with
increasing current density.
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Figure 2.16: (a) Temporal evolution of the Sherwood number for the bubble, Ŝh H2,b (2.18),
during the entire bubble lifetime, τc, in the statistically steady state and across the entire
range of current density distinguished using the colormap. The data correspond the case
with bubble departure diameter of db = 0.5 mm and a bubble spacing of S = 2 mm, which
leads to bubble coverage of Θ = 0.1104. (b) The corresponding averaged Sherwood number
of the bubble, Sh H2,b, over the residence time, τg, plotted against the current density.

To gain a broader understanding of hydrogen transport to the bubble and fa-
cilitate its quantification, we have plotted Sh H2,b against current density in figure
2.17(a) for all the simulation cases, including those with variable bubble size or spac-
ing. It is evident that at low current densities Sh H2,b is nearly constant and then it
starts to ramp up with current density at all of the simulated cases. Furthermore,
the normalized mass transfer to the bubble tends to decrease with bubble coverage
as the lower values of Sh H2,b at higher Θ suggests.

The current density is not directly related to the mass transfer into the bubble.
In fact, the driving force for bubble growth is the concentration difference across
the boundary layer developing at the bubble interface. The latter can be normalised
with the gas concentration inside the bubble to yield the Jakob number, Ja [76, 155,
168]

Ja =
MG
ρG

∆C =
RT0

P0

(
CH2,e − C H2,sat

)
, (2.28)

where MG is hydrogen molar mass and CH2,e is employed to estimate the concentra-
tion difference ∆C across the bubble boundary layer. At low Ja radial convection is
negligible, such that Sh H2,b remains constant. At moderate (Ja ≈ 1) values and be-
yond, theoretical considerations predict that the bubble Sherwood number becomes
dependent on Ja as the only parameter [76,156,157,168]. However, the plot of Sh H2,b

vs Ja for our results in figure 2.17(b) fails to collapse all the data onto a single curve.
The reason for this is that theoretical derivations do not account for the confinement



2

70 Chapter 2. Mass transport at gas-evolving electrodes

101 102 103 104

2]

100

101

H
2,

b

10−1 100 101 102100

101

H
2,

b

10−1 100 101 102 103

H2,b = 2

2 + 0.5 ∗0.8

1.84 ∗0.45

∗ =

Θ = 0.018
Θ = 0.05
Θ = 0.10
Θ = 0.16

Θ = 0.11
Θ = 0.25
Θ = 0.40
Θ = 0.56

Θ = 0.022

Constant diameter
Variable spacing

Variable diameter
Constant spacing

(a)

(b) (c)

Figure 2.17: (a) Sherwood number of hydrogen transport to the bubble, Sh H2,b, averaged over
bubble residence time, τg, in the statistically steady state, as a function of current density for
all the simulation cases with varying bubble size or spacing. (b) ShH2,b versus Jakob number,
Ja, computed according to (2.28). (c) Sh H2,b versus Ja∗, i.e., the Jakob number corrected with
Θ0.5 ≈ db/S to account for the interference of mass transfer boundary layer on bubbles with
each other. Approximate fit to the data and asymptotes have been shown with black and blue
broken lines respectively. The legend specifies cases simulated for different bubble diameter,
db, and spacing, S, using the corresponding fractional bubble coverage of the electrode, Θ.

and assume a bubble in an infinitely large medium. However, especially for large
Θ the growing bubbles interact and thereby enhance the effect of radial convection.
This interaction becomes more prominent the smaller the bubble spacing S is rel-
ative to the bubble diameter db. It therefore seems useful to define a compensated
Jakob number which additionally depends on the ratio Θ1/2 ≈ db/S. Figure 2.17(c)
reports the results of Sh H2,b versus compensated Jakob number, Ja∗ = Ja/Θ1/2, in
which a reasonable collapse of the data has been achieved. An approximated fitting
to the data has been performed and shown with the black broken line in figure
2.17(c) which follows

Sh H2,b = 2 + 0.5Ja∗0.8. (2.29)
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It is worth noting that for very low values of bubble coverage, particularly at Θ =

0.018 and 0.022, once again a nearly constant Sh H2,b can be observed towards the
upper limit of Ja∗ (as shown in figure 2.17(c)) where deviation from (2.29) occurs.
This is related to the very short residence time of the bubble at high current densities
for these cases. As seen in transient Sh H2,b in figure 2.16(a), as the current density
increases, the bubble departs from the electrode at increasingly earlier times before
an equilibrated mass transfer to the bubble can be established. This leads to nearly
constant averaged Sh H2,b for such cases in figure 2.17(c), where a deviation from
(2.29) occurs.

The relation (2.29) for the mass transfer to the bubble is consistent with the
classical theories of Epstein & Plesset (1950) [156] and Scriven (1959) [157] for bub-
ble growth in an infinitely large and uniformly supersaturated solution. The prob-
lem was later modified by Verhaart et al. (1980) [168] to account for bubble growth
over electrodes with non-uniform supersaturation around the bubble. The theories
show a constant bubble Sherwood number of Sh H2,b = 2 for small values of Jakob
number, Ja → 0. Such condition is maintained in our simulations for high bubble
coverages and low current densities where the concentration variation within the
boundary layer is relatively low. The functional form used to represent the increase
of Sh H2,b for larger Ja∗ in (2.29) follows that suggested by Vogt 2011 [76] to approx-
imate the exact solution of Verhaart et al. (1980) [168].

It is useful to reformulate the definition of the Jakob number in terms of the
Peclet number of mass transfer at the electrode, Pe∗ (defined as the ratio of reaction
to diffusion rates), and Sh H2,e, as

Ja∗ =
Pe∗

Θ1/2Sh H2,e
, with Pe∗ =

−i
2F

RT0

P0

db
DH2

. (2.30)

Substituting the empirical fit (2.27) for Sh H2,e together with (2.29) leads to

Sh H2,b = 2 + 0.5

[
Pe∗

Θ1/2
(
GrSc H2

)1/3

]0.8

. (2.31)

The Grashof number can be expressed as Gr = 12 fGPe∗/Sc H2 (see (2.26)) such that
the final mass transfer relation for the bubble is given by

Sh H2,b = 2 + 0.258

(
Pe∗2/3

Θ1/2 f 1/3
G

)0.8

. (2.32)

Since Pe∗ and Θ only depend on input parameters, the only previously unknown
variable in (2.32), just as in (2.27), is fG. In order to enable prediction solely based
on input parameters, we will establish a suitable relation for fG, in the next section.
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2.5 Gas-evolution efficiency

In steady-state conditions, we can restate the definition of fG in (2.19) in terms of
the cycle averaged molar fluxes into the bubble and at the electrode according to

fG =

∫
τc

0

∫
∂V

DH2∇CH2 · n̂b dAbdt∫
τc

0

∫
Ae

DH2∇CH2 · n̂e dAedt
∼

DH2

(CH2,e−C H2,sat)
δb

d2
b

DH2

(CH2,e−CH2,0)
δe

Ae

, (2.33)

where δb and δe are the boundary layer thickness normal to the bubble interface and
electrode surface, respectively. Using Sh∗H2,b ∼ db/δb, Sh H2,e ∼ db/δe, Θ ∼ d2

b/Ae

and noting that
(
CH2,e − C H2,sat

)
/
(
CH2,e − CH2,0

)
≈ 1, this leads to the expression

fG = αΘ
Sh∗H2,b

Sh H2,e
, (2.34)

where the prefactor α is to be determined from the data. The difference between
Sh H2,b and Sh∗H2,b is that the former is averaged over the bubble residence time,
τg, whereas the latter is averaged over the entire bubble lifetime, τc, consistent
with definition of fG (2.19). Since bubble growth is disregarded during rise stage,
Sh H2,b(t) = 0 during this period such that the different definitions are related by
Sh∗H2,b =

(
τg/τc

)
Sh H2,b.

Next, fG for all of the cases simulated here is plotted as a function of the
dimensionless group, ΘSh∗H2,bSh−1

H2,e, in figure 2.18. All data collapse to a single

line for ΘSh∗H2,bSh−1
H2,e < 0.375 consistent with (2.34) and the slope is obtained

as α = 2.65 based on the linear fit indicated as dashed line in the figure. For
ΘSh∗H2,bSh−1

H2,e > 0.375, the gas-evolution efficiency approaches its upper limit
fG → 1 and the data level off close to this value.

Inserting Sh H2,e from (2.27) and Sh H2,b from (2.32) into (2.34) results in an im-
plicit expression for fG that cannot be solved explicitly (see Appendix 2.7.4). Instead,
we resort to piecewise solutions for fG by inserting the asymptotes of Sh H2,b indi-
cated by dashed blue lines in figure 2.17(c), into (2.34). Doing so yields the explicit
expressions

fG = 1.877Θ3/4Pe∗−1/4 , for Ja∗ ⪅ 1, (2.35)

fG = 1.295Θ0.522Pe∗−0.0225, for Ja∗ ⪆ 1. (2.36)

It should be noted that in the derivation of (2.35) and (2.36), we have taken Sh H2,b =

Sh∗H2,b presuming that τg/τc ≈ 1, i.e. the bubble rise time is negligible. This is valid
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Figure 2.18: Gas-evolution efficiency, fG, versus the dimensionless group ΘSh∗H2,bSh−1
H2,e. The

broken line shows the linear fit with slope α = 2.65 for ΘSh∗H2,bSh−1
H2,e < 0.375, highlighted

with green. For ΘSh∗H2,bSh−1
H2,e > 0.375, highlighted with red, gas-evolution efficiency ap-

proaches its upper bound, fG → 1.

for our simulations at low and moderate current densities, whereas at high current
densities τg ultimately becomes even smaller than the bubble rise time, τr, violating
this assumption (e.g. see figure 2.4(d)). This can be considered an artifact of the sim-
ulations in which there is always a single bubble inside the computational box and
the next bubble is initialized once the previous one has left the domain from the top
boundary. Therefore the waiting time is equal to the bubble rise time, τr, whereas
experiments have revealed that the waiting time is extremely short especially at
high current densities where the supersaturation level adjacent to the nucleation
spot is very high [21, 53, 57]. Therefore, the waiting time is insignificant and it can
be safely considered that Sh∗H2,b = Sh H2,b for practical applications.

For reference, we have included explicit relations for Sh H2,e and Sh H2,b, resulting
from combining (2.35) and (2.36) with (2.27) and (2.32), in Appendix 2.7.4.

2.6 Discussion and conclusions

In this work, we set out to identify and quantify the governing mass transfer mech-
anism at gas-evolving electrodes by means of direct numerical simulations. Our
work provides details on the mass transfer processes on a horizontal electrode sub-
jected to successive growth and rise of electrolytically-generated gas bubbles. We
employed immersed boundary method to enforce the mass and momentum inter-
facial conditions on the bubble surface, and therefore, to solve for its growth rate as
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well as translational motion employing Fick’s law and particle equations of motion,
respectively. To elucidate the main effects, we varied the current density within the
range of 10 ≤ |i| ≤ 104 A/m2 for different prescribed bubble size and spacing,
incorporated in fractional bubble coverage of the electrode surface, Θ.

We quantified the cumulative hydrogen transport from the electrode surface (as
dissolved gas and within the gas bubble) in figure 2.13 and that of electrolyte trans-
port to the electrode in figure 2.14. By drawing an analogy to single-phase heat
and mass transfer problems, the buoyancy-driven convection induced by consecu-
tively departing bubbles from the electrode surface was identified as the governing
mass transfer mechanism. This finding was corroborated by a unique power law of
Sh j,e = 1.0

(
GrSc j

)1/3, which was found to describe the hydrogen, and to a large
part also the electrolyte, transport at the electrode. For the electrolyte, a factor of
(1 − Θ) to compensate for the surface blockage effect reduces, yet does not fully
eliminate, deviations from the power law at low Gr. No such deviations occur at
high Gr, at which also most of the gas transport is in the dissolved state.

Furthermore, we found a connection between bubble growth dynamics and hy-
drogen transport rate from the electrode. Specifically, as Gr ramps up with increas-
ing current density and bubble coverage of the electrode, the growth dynamics
of the bubble switch from diffusion-controlled, R = Bt1/2, to reaction-controlled,
R = Bt1/3, regime (see figure 2.15). This transition was attributed to the high trans-
port rate of hydrogen from electrode surface at large Gr which prevailed over the
gas production rate thereby limiting the available oversaturation that would favour
diffusive growth. Next, we quantified the hydrogen transport to the bubble as a
function of the Jakob number Ja. Our data showed no collapse when plotted against
the conventional definition of Ja. The agreement was much better, when addition-
ally incorporating the ratio db/S ∼ Θ1/2 into the definition of a modified Jakob
number, Ja∗, to account for the effect of neighbouring bubbles. With this modified
definition, the resulting expression for mass transfer into the bubble is given by
(2.32).

Finally, we established a semi-empirical relation between the dimensionless mass
transfer rates at the electrode and bubble interface and the gas-evolution efficiency,
fG. Ultimately, this allowed us to provide explicit (i.e. depending on input param-
eters only) expressions for fG given by (2.35) and (2.36) and consequently also for
the other response parameters Sh H2,e and Sh H2,b (see Appendix 2.7.4). These find-
ings can help quantify mass transfer rates in practical applications provided typical
bubble sizes and spacing on the electrode can be quantified.

Our findings reveal different governing physics of mass transfer at gas-evolving
electrodes than what was envisioned by Stephan & Vogt (1979), Vogt (2011) and
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Vogt & Stephan (2015) [77,102,105], who attributed the rate-controlling mechanism
of mass transfer to micro-processes induced by bubble growth and break-off from
the electrode. As briefly introduced in § 2.1, these micro-processes originate from
three different sources: pure diffusion of fresh electrolyte to the electrode surface
in the small region previously occupied by the bubble, convective flow induced
by the expanding boundary of the bubble, and wake-flow after its break-off from
the electrode. These processes impact the mass transfer in a microarea surround-
ing the nucleation spot whose size declines in time due to the bubble growth. For
pure-diffusion transport of the reactant to the electrode during bubble growth, the
authors [77] modified the mass transfer relations established by by Roušar & Cenzer
(1975) [99]. To account for microconvection of bubble growth and break-off, the au-
thors considered an analogy of the flow pattern around a growing bubble to lateral
plug flow [102], which was later modified with a boundary layer flow [77]. This ap-
proach allowed them to employ the mass transfer relations developed for such flows
over flat plate to quantify the averaged transport of reagent to the microarea within
the time interval of bubble growth and break-off. The authors concluded that micro-
processes in the small region surrounding the bubble were the rate-determining
mechanism of mass transfer and prevailed over single-phase and two-phase free
convection at moderate and high values of current density [105]. Our results are
inconsistent with these considerations due to several reasons. The authors assumed
that the space previously occupied by the bubble was fully replenished with fresh
electrolyte immediately after bubble break-off, and hence they employed Cottrell’s
relationship to predict the pure-diffusion mass transfer at the microarea. While this
assumption holds true to some extent for high current densities, it is violated at
low currents where the electrode boundary layer is much larger than the bubble
break-off diameter (the bubble is fully immersed in the boundary layer, see figure
2.4). In such cases, stirring the solution in a region that is already depleted of reac-
tant fails to fully replace the bubble volume with fresh bulk electrolyte. Likewise,
the employed analogy to plug/boundary-layer flow over flat plate is questionable
because the predominantly wall-parallel advection of a depleted boundary layer
caused by bubble growth does not affect the wall-normal mass transfer signifi-
cantly. Consequently, we fail to observe enhanced mixing during growth periods
in or simulations.

In contrast, our findings provide evidence that the flow pattern established by
two-phase buoyancy-driven convection (see figure 2.4) is key in setting the mass
transfer rate at the electrode. It is clearly visible from the H2 and H2SO4 snapshots
in figures 2.4 and figure 2.5 that the concentration fields are changed in accordance
with the flow pattern induced by bubble motion; i.e., an up-drought in bubble
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column, descent of the solution mixture between the bubbles and a roughly wall-
parallel flow adjacent to the electrodes. Such flow pattern is analogous to those
induced by plume emissions in single-phase free convection. In fact, the similarity
of the mass transfer relations established in this work (2.27) to those of single-
phase free convection [123, 124] proves that two-phase buoyancy-driven convection
of departing bubbles is the rate-controlling mechanism of mass transfer at gas-
evolving electrodes. This is further consistent with experimental measurements by
Janssen & Hoogland (1973) [75], Janssen (1978) [122] and Janssen & Barendrecht
(1979) [103] where the thickness of boundary layer on hydrogen-evolving electrodes
followed the same power law as (2.27) when the bubble coalescence did not happen
frequently. In summary, it therefore does not appear necessary to account for micro-
processes, such as bubble growth, specifically when considering mass transfer.

There remain some limitations that apply to this work. To avoid additional com-
plications, we did not take into account the potential contribution of single-phase
free convection, which arises from density gradients in the solution caused by con-
centration variations in the electrode and bubble boundary layers [25, 28]. Single-
phase free convection might be of some influence at low current densities, where
the bubbles adhere to the electrode for long period of time and allow the density
gradients in the electrode boundary layer to develop to a sufficient extent necessary
for triggering the instabilities [169]. However, we found in the cahpter 1 that these
instabilities are suppressed for bubble spacing of less than ≈ 2 mm, which is the
case for most of the simulation cases here except those with the least bubble cov-
erage of the electrode. At higher values of the current density where the frequency
of bubble generation is relatively high, the induced flow of departing bubbles is
very likely to suppress the single-phase free convection by reducing the density
gradients in the cell or prevails over it if both mechanisms coexist. Furthermore,
the Marangoni convection arising from surface tension gradients along the inter-
face due to the temperature increase or electrolyte depletion in bubbles proximity
might play a role. Thermal Marangoni is mostly playing a role in electrolytically-
generated gas bubbles on microelectrodes where the current density can easily sur-
pass 106 A/m2 in the bubble foot area and increase the temperature remarkably by
ohmic heating [59, 60, 170, 171]. However, thermal Marangoni is likely less of a fac-
tor in the present configuration, as our current density does not exceed 104 A/m2,
which is not sufficient to increase the temperature considerably. However, solutal
Marangoni as a result of electrolyte depletion [172] might play a role which needs
further investigation in future works. Eventually, as our numerical solver treats the
full 3-dimensional problem, we are able to extend this work to a set-up in which
several bubbles are generated in a asymmetrical network of nucleation spots to
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study the collective effects of bubbles and replicate a system which mimics the rel-
evant physics more accurately for practical applications.
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2.7 Appendix

2.7.1 Validation of bubble motion with IBM

As discussed in § 2.2.2, a remedy is required to solve for the bubble motion with
IBM due to stability issues that arise at low gas to liquid density ratios. To mitigate
this, the virtual mass approach by Schwarz et al. (2015) [142] is employed here and
a virtual force, Fv (2.13), is added to both sides of (2.25). To check the reliability of
this method, we simulate the test case of Schwarz et al. (2015) [142] using our code.
The ascending motion of a light particle with a density ratios of Γ = 0.5 and 0.001 in
a quiescent viscous fluid is considered. Such flows are characterized by the Galileo
number defined as

Ga =

√
| Γ − 1 | gd3

b

ν
. (2.37)

Additionally, the gravitational velocity and time scales read

uG =
√
| Γ − 1 | gdb, tG =

√
db

|Γ − 1|g (2.38)

respectively and are utilized as reference values. The related parameters considered
here are Ga = 170, g = ∥g∥ = 10, db = 1 and ρL = 1. The size of the computational
box is set to L = (6.4, 6.4, 12.8) db and is discretized with N = (256, 256, 512) cells
in x, y and z directions, respectively. The sphere is initially at rest and released at
xb,0 = (3.2, 3.2, 0.6) db. Periodic boundary conditions are applied in all directions
and time marching is performed with steps of ∆t = 1× 10−3 to exactly replicate the
test case in Schwarz et al. (2015) [142]. The simulation for Γ = 0.5 is stable without
modification of the original equation and is therefor run with Cv = 0. Stability for
Γ = 0.001 is ensured by setting Cv = 0.5. Figure 2.19(a) presents the results for the
time-evolution of the particle rise velocity up along with the corresponding data
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Figure 2.19: (a) Temporal evolution of normalized particle rise velocity for Galilei number
Ga = 170 at density ratios Gamma = 0.001 and 0.5, obtained from present work (solid
lines) and comparison to data from Schwarz et al. (2015) [142] (broken lines). Virtual mass
coefficients of Cv = 0.5 and 0 have respectively been used for density ratios Γ = 0.001 and
0.5. (b) Sensitivity of rise velocity to virtual mass coefficient for Γ = 0.001.

from Schwarz et al. (2015) [142], with which excellent agreement is observed. Fur-
thermore, we have performed the simulations for Γ = 0.001 using different values
of Cv to check the sensitivity of results to the artificial virtual force. Figure 2.19(b)
shows that the particle rise velocity is quite insensitive to virtual mass. Hence, we
conclude that this method can safely be employed to simulate the rising motion of
electrolytically-generated gas bubbles with Γ = 0.001 in this work.

2.7.2 Grid-independence check

To ensure the accuracy of the simulations, a grid-independence check has been
performed on the case presented in § 2.3 with db = 0.5 mm and S = 2 mm. The
highest current density of |i| = 104 A/m2 featuring the thinnest boundary layer on
the electrode (cf. figure 2.4) is selected for this purpose. Figure 2.20(a) and 2.20(b)
show the time-evolution of H2 and H2SO4 Sherwood numbers on the electrode
surface for three grids with increasing resolution confirming that the results are
independent of the grid size in the investigated range. The base-grids are refined
by a factor of two for H2 using a multiple resolution strategy as explained in §
2.2.2. This strategy ensures the hydrogen conservation in the system by sufficiently
resolving the boundary layer thickness on the bubble interface (see Appendix 2.7.3
). Grid refinement is only applied for H2 transport, as dissolved hydrogen and
its diffusion into the bubble determine the bubble dynamics and hence the whole
hydrodynamics and mass transfer in the system. Based on the results in figure 2.20,
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Figure 2.20: Grid independence check based on the on temporal evolution of H2 (a) and
H2SO4 (b) Sherwood numbers on the electrode surface for the case presented in § 2.3, i.e.,
db = 0.5 mm and S = 2 mm at the highest current density of |i| = 104 A/m2. Base-grid sizes,
introduced in panel (a), are refined by factor of 2 for H2 transport. Grid-independent results
have been achieved for both species.

the base grid resolution of N = (144, 144, 288) is selected for the reference case and
grid sizes for other cases with varying lateral size of the computational box have
been adjusted to keep the spatial resolution constant. This results in 36 grid cells
across the bubble diameter if db = 0.5 mm, whereas this value is 21 if db = 0.3 mm.

2.7.3 Hydrogen conservation

It is crucial to assure that the fluxes of dissolved hydrogen into the bubble inter-
face, yielding the bubble growth rate, are calculated accurately with IBM. To this
end, we perform an analysis to check the conservation of hydrogen in the system.
This requires that the rate of change of H2 moles dissolved in the bulk electrolyte
should be balanced with the net of H2 interfacial fluxes. The latter include the H2

production rate on the electrode surface (JH2,e), the desorption rate at the bubble
interface (JH2,b), and the outflux at the top boundary (JH2,top). Figure 2.21 compares
the net interfacial fluxes with the rate of change of H2 in solution during bubble
growth. This analysis concerns the reference case presented in § 2.3 (db = 0.5 mm
and S = 2 mm) in the statistically steady state. It is evidenced by figure 2.21 that
our numerical scheme is conservative for hydrogen gas within the studied range
of current density. However, higher current densities most likely demand finer spa-
tial and temporal resolutions in order to capture the extremely thin mass boundary
layers developed on the bubble and electrode interfaces.
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Figure 2.21: Hydrogen conservation check during the bubble residence time on the electrode
at statistically steady state, performed for the case presented in § 2.3, i.e., db = 0.5 mm and
S = 2 mm at current densities |i| = 54 (a) 540 (b) 5400 A/m2(c). tg is the age of the bubble
generated in the statistically steady state. Black solid lines are the rate of change of H2 moles
in the solution mixture. Red broken lines are the summation of H2 production rate on the
electrode (JH2,e), desorption rate into the bubble (JH2,b), and loss rate from the top boundary
(JH2,top).

2.7.4 Additional expressions

Implicit expression for fG, after insertion of (2.27) and (2.32) into (2.34), reads

fG = 2.65Θ
2 + 0.258

(
Pe∗2/3

Θ1/2 f 1/3
G

)0.8

(12 fGPe∗)1/3 . (2.39)

which only has a piecewise solution. Inserting the expression for fG given by (2.35)
and (2.36) into the fit of Sh H2,e given by (2.27) leads to an expression for Sh H2,e

solely based on input parameters as

Sh H2,e = 2.83 (ΘPe∗)1/4 , for Ja∗ ⪅ 1, (2.40)

Sh H2,e = 2.50Θ0.174Pe∗0.326, for Ja∗ ⪆ 1. (2.41)

Similarly, inserting (2.35) and (2.36) into (2.32) yields an expression for Sh H2,b based
on input parameters as

Sh H2,b = 2 + 0.218
(

Pe∗

Θ

)0.6
, for Ja∗ ⪅ 1, (2.42)

Sh H2,b = 2 + 0.241
(

Pe∗

Θ

)0.54
, for Ja∗ ⪆ 1. (2.43)
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Diffusive and convective

dissolution of carbon dioxide in
a vertical cylindrical cell ◦

The dissolution and subsequent mass transfer of carbon dioxide into liquid barriers play
a vital role in many environmental and industrial applications. In this work, we study
the downward dissolution and propagation dynamics of CO2 into a vertical water barrier
confined to a narrow vertical glass cylinder, using both experiments and direct numerical
simulations. Initially, the dissolution of CO2 results in the formation of a CO2-rich water
layer, which is denser in comparison to pure water, at the top gas-liquid interface. Continued
dissolution of CO2 into the water barrier results in the layer becoming gravitationally unsta-
ble, leading to the onset of buoyancy driven convection and, consequently, the shedding of a
buoyant plume. By adding sodium fluorescein, a pH-sensitive fluorophore, we directly visu-
alise the dissolution and propagation of the CO2 across the liquid barrier. Tracking the CO2

front propagation in time results in the discovery of two distinct transport regimes, a purely
diffusive regime and an enhanced diffusive regime. Using direct numerical simulations, we
explain the propagation dynamics of these two transport regimes in this laterally strongly
confined geometry, namely by disentangling the contributions of diffusion and convection
to the propagation of the CO2 front.

◦Submitted as Daniel P. Faasen, Farzan Sepahi, Dominik Krug, Roberto Verzicco, Pablo Peñas, Detlef
Lohse and Deveraj van der Meer, Diffusive and convective dissolution of carbon dioxide in a vertical cylindrical
cell. Experiments by D. P. Faasen, simulations by F. Sepahi, analyses and writing by D. P. Faasen, F. Sepahi
and D. Krug, supervision by P. Peñas, D. Krug, R. Verzicco, D. Lohse and D. van der Meer, proofread by
everyone. D. P. Faasen and F. Sepahi contributed equally to this work.
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3.1 Introduction

D issolution and subsequent mass transfer of carbon dioxide gas into liquid bar-
riers plays a vital role in many environmental and industrial applications.

In microfluidics for example, Taylor flow, a segmented flow of alternating gas and
liquid plugs, is utilised in microreactor designs to increase heat and mass transfer
rates, resulting in higher reactor performance [173–175]. On a larger scale, carbon
capture and sequestration is often based on injecting CO2 into deep saline aquifers,
trapping the CO2 between a layer of cap rock and a liquid reservoir, which results
in the long term, stable storage of CO2 in the aquifer [176–178].

Once the carbon dioxide starts to dissolve into the water layer, a CO2-rich water
layer forms at the interface, which is denser in comparison to pure water. While
initially stable, the continued dissolution of CO2 into the water layer results in
the CO2-rich fluid layer becoming gravitationally unstable, leading to the onset of
buoyancy driven convection and the formation of a buoyant plume, which greatly
enhances the mass transfer of CO2 in the water layer [36, 37]. Furthermore, den-
sity driven convection can also occur as a result of buoyancy generating chemical
reactions [169, 179–181], droplet dissolution [88, 182] and bubble growth [78, 183].

In literature, studies investigating the dissolution and density driven convection
in the CO2–water system have reported between two and four distinct transport
regimes [38–40]. These regimes are vaguely defined by their assumed dominant
driving mechanism and thus referred to as, for example, "purely diffusive", "early
convective", or "late convective" [38]. Moreover, in the regimes where convection is
contributing to the mass transport, apparent diffusive behaviour is observed, albeit
with a much higher effective diffusion coefficient. Depending on the experimental
conditions, this effective diffusion coefficient can be several orders of magnitude
bigger in comparison to the expected diffusive counterpart under similar experi-
mental conditions [120, 184–187]. However, little explanation has been given as to
what drives the different observed regimes, the transitions between the regimes and
why the system still appears to behave in a diffusive manner.

This is precisely the focus of our work. We study the dissolution and downward
propagation of CO2 into a vertical water barrier confined to a narrow cylindrical
cell either above a trapped air bubble, an alkane layer or directly on top of a solid
silicon plate, as shown in figure 3.1. We replace the ambient air atmosphere with
a CO2 atmosphere at the same pressure and by adding sodium fluorescein, a pH-
sensitive fluorophore, to the liquid barrier, we can directly visualise the propagation
of CO2 [188–190]. We compare the experimental results to those obtained by 3D di-
rect numerical simulations, in order to elucidate the relevant transport mechanisms.



3

84 Chapter 3. Diffusive and convective dissolution of carbon-dioxide

In a nutshell, our aim is to investigate the mass transport mechanisms in a later-
ally strongly confined system after the dissolution of CO2 into a liquid barrier. We
will identify two different regimes, namely: a purely diffusive regime and an en-
hanced diffusive regime. The direct numerical simulations allow us to disentangle
the contributions of the buoyancy driven convection and diffusion towards the front
propagation velocity. We will show that the onset of convection leads to a distor-
tion of the propagation front surface, resulting in the increase of the concentration
gradients which in turn leads to enhanced diffusive fluxes. As a result, the over-
all behaviour remains diffusive, although with an increased diffusion coefficient.
The diffusive propagation acts to flatten the interfacial area, which over time leads
to an equilibrium with the convective bulging of the front, after which the front
propagates at an almost constant velocity.

This paper is organised as follows. The experimental setup and procedure are
described in § 3.2. Section 3.3 presents the results of our visualisation experiments.
In § 3.4 the amount of CO2 in the liquid barrier over time is investigated by first ob-
taining the intensity profiles from the visualisation experiments and subsequently
converting them to concentration profiles. In § 3.5 we study the front propagation
dynamics of the CO2 layer and identify two distinct propagation regimes. In § 3.6
we provide the details on the numerical model we us to study the physics behind
the front propagation dynamics and provide a comparison between the numerical
model and the experiments. The paper ends with a summary of the main findings
and an outlook in § 3.7.

3.2 Experimental procedure

A schematic overview of our experimental setup is shown in figure 3.1(a). The
experiments are conducted inside a sealed chamber which can be flushed with CO2

gas. The inlet pressure is fixed to 1.0 bar using the pressure regulator PR1, whereas
pressure regulator PR2 prevents over-pressurisation of the experimental tank. A
more detailed description of the experimental chamber and pressure control system
can be found elsewhere [191].

A single borosilicate glass (Duran) cylinder (28 mm in length, inner diameter d
= 3.0 mm, outer diameter of 5.0 mm) is attached on one end to a silicon wafer plate
using Loctite 4305 (Farnell), in an almost perfectly vertical manner, while the other
end is left open. Before use, the cylinder is rinsed using ethanol (Boom, technical
grade) followed by Milli-Q water (resistivity = 18.2 MΩ cm) and finally dried in a
nitrogen stream.

We prepare the cylinder in one of three different configurations, a liquid–solid,



3

3.2. Experimental procedure 85

Experiment
tank

LED

P sensor

Camera

Exhaust

Exhaust

PR2

CO2

PR1

V2

T sensor

V1

H

d = 3 mm

H
cy

l =
 2

8 
m

m Fluorescein
solution

Air

Ambient
P0

Filter

(a) (b)

θ
êθ
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Figure 3.1: (a) Schematic overview of the experimental setup. (b) Sketch of the cylinder con-
taining the liquid–air setup. The cylinder is placed inside the experimental chamber, which
is subsequently flushed with CO2 gas. (c) Schematic overview of the numerical setup.

liquid–liquid, or a liquid–air configuration, as depicted in figure 3.1(b). In all config-
urations, a layer of a 10−4 M aqueous fluoroscein solution is injected into the cylin-
der, at a volume of V = 120 µL (or H ≈ 18 mm), which acts as the liquid barrier. This
solution is freshly prepared prior to the experiments by adding sodium fluorescein
salt (Fisher Scientific, general purpose grade) to Milli-Q water. Fluoroscein is a well
known fluorophore often used in biological application, with its main absorbance
peak at 490 nm and main emission peak at 513 nm [188–190]. More importantly,
the emission intensity of fluorescein has a (non-linear) dependency on the pH level
of the liquid, allowing us to follow the dissolution and propagation of the CO2 in
the liquid. Furthermore, the presence of the sodium fluorescein in the barrier does
not affect the diffusive and convective behaviour of the CO2, as we have ∼ 4.4 µg
sodium fluorescein in the 120 µL barrier to achieve the desired concentration.

For the liquid–air configuration, the fluorescein layer is placed in the cylinder
such that a bubble of arbitrary height spanning the entire width of the cylinder, is
trapped underneath the liquid. The liquid barrier remains in place due to a stable
balance between the surface tension of the liquid–air interface, the weight of the
liquid barrier, and the differences in gas pressures. Since the surface tensions of
CO2 and air above water are almost identical, the force balance persists throughout
our experiments [192]. For the liquid–solid configuration, the fluoroscein solution
is injected into the cylinder such that no air is trapped between the liquid barrier
and the silicon wafer plate. During this process, special attention is paid to ensure
no small bubbles are entrained at the liquid–solid interface. Finally, for the liquid–
liquid interface, 60 µL n-hexadecane (VWR, 99% purity) is injected first into the
cylinder. On top of this liquid layer, the fluorescein solution is carefully injected,
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again to prevent the entrapment of bubbles. Despite the density of n-hexadecane
being lower compared to the density of water, this configuration remains stable
during our experiments, again due to a stable balance between the surface tensions
at the interface and the weight of the top liquid column.

Inside the tank, a LED (Thorlabs, λcentre = 470 nm) is located to illuminate the
cylinder, while the pressure and temperature sensors in the chamber record the
pressure P0 and temperature T in time respectively (1 acquisition per second). The
average temperature during our experiments is determined to be T = 22.3 ± 0.4
◦C. We use a Nikon D850 camera in silent interval timer shooting mode (1 fps) in
combination with a Zeiss Makro Planar T 100 mm lens to achieve a mean optical
resolution of 10.4 µm/pixel. In the optical path between the cylinder and the cam-
era, a bandpass filter (Thorlabs, λcentre = 530 nm, BW = 43 nm) is located to block
out the LED light.

After preparation, the cylinder is placed inside the experimental chamber. The
inlet pressure is fixed to 1.0 bar using PR1 while valve V1 remains closed. Valve V2
is opened to allow the experimental tank to be flushed during the flushing stage.
The LED inside the chamber is turned on and 5 seconds later the interval timer
shooting mode on the camera is activated. 15 seconds after camera activation, the
pressure and temperature sensor data starts being recorded. Finally, 35 seconds
after turning on the LED inside the chamber, valve V1 is opened and the system is
flushed with CO2 gas in order to fully replace the ambient air inside the tank. The
time at the start of the flushing stage is t = 0 seconds and marks the start of the
"experiment" stage. After flushing for 60 seconds, valves V1 and V2 are closed in
quick succession, with the former being closed first to prevent pressurisation of the
experimental tank. At the end of the experiment (typically at t = 15 minutes), the
experimental tank is opened and flushed using a nitrogen spray gun to prepare the
experimental chamber for the next experiment.

Based on the aforementioned experimental conditions, we can calculate the rel-
evant dimensionless numbers. Our Schmidt number is found to be Sc =ν/D = 515.
Since the maximum CO2 concentration difference in the barrier is ∆C = Csat, we
find our maximum Rayleigh number to be:

RaH ≡ βCsatgH3

νD
, (3.1)

where g is the acceleration due to gravity, β = (8.2 ± 0.03) cm3/mol the solutal
expansion coefficient of CO2, the saturation concentration Csat = kH P0, with kH =
(3.53 ± 0.04) × 10−4 mol/m3Pa and P0 = 1.0 bar, D = (1.85 ± 0.02) × 10−9 m2/s the
diffusion coefficient of CO2 in water, H = 17.6 ± 0.35 mm the height of the liquid
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barrier, and ν = 9.5 × 10−7 m2/s the kinematic viscosity of water [37, 193, 194]. We
obtain RaH ≈ (8.8 ± 0.5) × 106 , which is well above the critical Rayleigh number,
RaH,c = 1.29 × 106, based on the minimal aspect ratio (Γmax = d/H = 0.17) of our
experimental setup [195].

3.3 Experimental observations

We begin by analysing a series of liquid–air experiments, (i), (iii), and (iv) in figure
3.2, and a liquid–solid experiment, (ii) in figure 3.2. Snapshots of additional exper-
iments can be found in the Appendix 3.8.2 in figures 3.15 and 3.16. As the CO2

starts dissolving into the liquid barrier, the pH of the CO2 imbued liquid starts to
decrease. Since fluorescein is a pH sensitive fluorophore in the range 5 ≲ pH ≲ 10,
the emission intensity of the fluorescein dye starts to decrease, resulting in a colour
change of the dye from bright green to black in the images [196].

At the beginning of the experiments, t = 0 s, we start replacing the air atmo-
sphere with a CO2 atmosphere. Almost immediately, CO2 starts dissolving into the
liquid barrier, forming a CO2-rich water layer just below the gas–liquid interface.
While initially stable, the continued dissolution of CO2 into the water barrier results
in the layer becoming gravitationally unstable, as the CO2-rich water is denser in
comparison to the pure water underneath. Once this happens, a convective plume is
shed from the CO2-rich boundary layer which starts propagating downwards into
the liquid barrier. In the experiments shown, the shedding of the buoyant plume
occurs around t ∼ 1 minute.

After shedding the convective plume, differences in the CO2 front propagation
dynamics can be observed. In (i) and (ii) the front appears to propagate axisym-

Figure 3.2 (following page): Fluorescence images of the initial dissolution process of CO2 in
a vertical liquid column within a cylindrical cell. The fluorescence intensity decays with
pH or increasing CO2 concentration. At t = 0, the upper interface is exposed to a CO2

gas ambient. Subsequently, a CO2-containing layer (dark region) propagates downwards.
The bottom liquid interface for (i, iii, iv) is liquid–air; for (ii) it is liquid–solid. The type of
boundary has no impact on the propagation dynamics of the CO2 front. In (i) and (ii) the
front propagates axisymmetrically throughout the entire water depth. In (iv), axisymmetry
is broken at t ≈ 12 min with the shedding of a lateral buoyant upwelling plume. A similar
symmetry-breaking upwelling plume occurs in (iii) at t ≈ 5 min, yet the plume appears
visually centred due to the planar visualisation of the 3D system. Such an event causes the
front to accelerate towards a higher velocity. Coordinate z denotes the depth from the apex
of the top meniscus; the horizontal ticks are 2 mm apart.
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metrically throughout the water barrier. As a result, the CO2 front does not quite
reach the lower liquid–gas, (i), or liquid–solid, (ii), interface. In contrast, the appar-
ent axisymmetry observed in (i) and (ii) is seemingly broken in (iii) and (iv) at t =
5 minutes and t = 12 minutes, respectively. In (iv) the shedding of a lateral buoyant
upwelling plume can be observed at the right side of the cylinder at the interface
of the denser CO2-rich liquid and the pure bulk liquid. In (iii), the plume appears
visually centred due to the planar visualisation of the 3D system. Regardless, in
both cases the CO2 front accelerates towards a higher velocity, leading to the front
reaching the bottom liquid–air interface around t ∼ 10 min in experiment (iii) and t
∼ 15 min in experiment (iv). It therefore appears that the type of bottom boundary
does not affect the CO2 propagation dynamics, but the occurrence of the shedding
of a secondary plume does.

To further study the propagation dynamics, we track the progression of the
CO2 front in the liquid barrier over time. We define 20 equispaced bins along the
cylinders diameter for which the vertical intensity profiles are calculated. The ob-
tained intensity profiles are normalised with respect to the intensity profiles at t =
0s, in order to account for variations in illumination. The CO2 front is defined as
the iso-concentration contour z f = z f (x, t) corresponding to a normalised intensity
I∗(x, z, t) value of 60%. For experiments (i-iv), the obtained projected front sur-
faces are shown in figure 3.3. The time step between the contour lines is ∆t = 20s.
The front profiles of the additional experiments can be found in Appendix 3.8.2 in
figures 3.17 and 3.18.

The shown front contours emphasise that the initial behaviour for the four ex-
periments is very similar. After the shedding of the buoyant plume by the diffusive
boundary layer, the front initially rapidly accelerates, and then slows down again
as time progresses. As mentioned, in experiments (i) and (ii), the front reaches a
stable velocity, indicated by the front contours becoming equidistant in space. For
experiments (iii) and (iv), the arrows indicate the depth at which we observe the
shedding of a lateral buoyant plume. After this event, the spatial distance between
the lines increases again, indicating the acceleration of the front to a higher veloc-
ity. This is very similar to the initial shedding event observed from the diffusive
boundary layer. The secondary plume shedding is not observed in all cases and
is therefore likely related to uncontrolled noise in the experiments, such as small,
local deviations in CO2 concentration or the small inclination of the cylinder with
respect to the base plate.
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Figure 3.3: Propagation of the projected front surface for experiments (i–iv) shown in figure
3.2 during 0 < t < 15 min. The front is defined as the iso-concentration contour z f = z f (x, t)
corresponding to a normalised intensity I∗(x, z, t) value of 60 %. The front is computed
from the vertical intensity profiles computed across 20 equispaced positions in x. The time
step between contour lines is ∆t = 20 s. In (iii) and (iv), the arrows denote the front positions
at which lateral plume shedding occurs, i.e., when the axisymmetric propagation is broken.

3.4 Intensity and concentration profiles

We continue our analysis by investigating the amount of CO2 absorbed in the liq-
uid barrier over time. In order to do so, we first have to obtain the intensity profiles
of the fluorescein solution in the barrier and convert these to the corresponding
CO2 concentration profiles. Therefore, we start by computing the horizontally av-
eraged intensities G(z, t) which are then a function of depth z and time t only.
We normalise the obtained intensities with respect to the initial intensity profile
in order to account for spatial inhomogeneity of the LED lighting, defined as the
normalised intensity I = G(z, t)/G(z, 0). Additionally, we correct these intensity
profiles for the decay in intensity due to photobleaching of the fluoroscein solu-
tion. This is achieved by measuring the decay due to photobleaching over time in a
by CO2 unaffected segment of the cylinder and correcting the measured intensities
correspondingly. Finally, we once more normalise the obtained intensities by the
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maximum and minimum obtained intensities of the experiment which are found to
be quite close for all experiments, resulting in I∗(z, t).

For experiments (i-iv), the obtained intensity profiles are shown in figure 3.4(a).
As before, the time step between consecutive profiles is ∆t = 20s and the profiles
are shown for the entire experiment, i.e. between 0 < t < 15 min. The vertical
dotted lines indicate the depth of the top (z = 0) and bottom boundaries of the
liquid barrier. For experiments (i) and (ii), the steady propagation discussed before
is clearly reflected in the intensity profiles. As the front propagates through the
barrier, the intensity drops rapidly, as expected based on the snapshots from figure
3.2. Moreover, the decrease in propagation velocity is again reflected in the intensity
profiles, as the spacing between the profiles decreases as time progresses. For ex-
periments (iii) and (iv), the shedding of the lateral buoyant upwelling plume causes
the intensity at certain depth to increase, resulting in overlapping intensity profiles.

As mentioned before, the emission intensity of fluorescein has a non-linear de-
pendency on the pH level of the liquid. Therefore, we need to obtain a calibration
curve before we can convert the measured intensities to the CO2 concentration in
the barrier. To achieve this, we performed a set of experiments in which the cylin-
der is placed in an inverted configuration. When inverted, the CO2-liquid mixture
is stably stratified and therefore the CO2 can only be transported up the barrier
by diffusion. We obtain the intensity profiles of these experiments and use these to
obtain a calibration function C/Csat = F(1 − I∗), linking the dimensionless concen-
tration in the barrier to a measured intensity by means of the self-similar solution
of the pure diffusion problem. A more detailed description of this process can be
found in Appendix 3.8.1.

Figure 3.4(b) shows the resulting CO2 concentration profiles for experiments (i-
iv). Similarly, for experiments (v-xii), the intensity and concentration profiles can be
found in Appendix 3.8.2 in figures 3.19 and 3.20. Note that we show the CO2 concen-
tration C(z, t) as a fraction of the saturation concentration Csat, with C/Csat < 0.6,
which corresponds to the lower bound of the pH-sensitive range of sodium fluo-
rescein. As a result, we cannot differentiate concentration levels C/Csat > 0.6. The
concentration values close to the boundaries of the liquid column are tainted by the
presence of a meniscus (or a solid interface).

As expected, the concentration profiles of experiments (i) and (ii) show a steady
progression of the CO2 concentration in the liquid barrier. In experiments (iii) and
(iv), the shedding of the lateral buoyant upwelling plume causes additional CO2-
rich liquid to be propagated downwards, while additional pure liquid is propagated
upward by the plume. This is reflected by the concentration profiles, as we observe
a sudden increase in concentration near the bottom of the cylinder, while the con-
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Figure 3.4: (a) Normalised intensity profiles for experiments (i–iv) from figure 3.2 and figure
3.3. The intensity profiles have been been horizontally-averaged over the entire cell diameter
(−d/2 < x < d/2) at every depth z. The time step between consecutive profiles is ∆t = 20 s
for 0 < t < 15 min. (b) Tentative concentration profiles directly obtained from I∗ after calibra-
tion; Csat refers to the saturation concentration. Concentration values close to the boundaries
of the liquid column are tainted by the presence of a meniscus (or a solid interface) and are
limited to C/Csat < 0.6, which corresponds to the lower bound of the pH-sensitive range of
sodium fluorescein. The vertical dotted lines indicate the depth of the top (z = 0) and bottom
boundaries of the liquid barrier.
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Figure 3.5: Mass m of CO2 absorbed by the liquid column as a function of time, averaged
across all 12 experiments; m is normalised by the maximum dissolution capacity CsatV, where
V ≡ πd2H/4 is the liquid volume and Csat the saturation density (or concentration) of CO2

in water. The dissolution fraction is estimated from the 1D axial concentration profiles as
m(t)/(CsatV) = H−1 ∫ H

0 C(z, t)/Csat dz. The wide error bars reflect the variability between
experiments and the uncertainties in concentration calibration. The dissolution curve initially
follows the self-similar solution for pure diffusion (dotted line): m = 2Csat A

√
Dt/π, where

A = πd2/4. At the onset of convection it starts to deviate from the purely diffusive behaviour
due to the contribution of convection. In that regime the curve can be described by an effec-
tive diffusive behaviour m = 2Csat A

√
Dc(t − tc)/π (dashed line), with the fit Dc = 30D as

the effective diffusion coefficient and tc = 160 s as the virtual time origin.

centration decreases sharply at the top. Furthermore, an increase in mass transfer
can also be observed after the shedding event, as the spatial spacing between the
profile increases after shedding the buoyant plume.

Finally, we use the obtained CO2 concentration profiles to calculate the total
mass m of CO2 absorbed by the liquid barrier as a fraction of the maximum dis-
solution capacity. We obtain the dissolution fraction from the CO2 concentration
profiles as:

m(t)
CsatV

= H−1
∫ H

0
C(z, t)/Csat dz, (3.2)

where m(t) is the total mass of CO2 in the liquid phase, Csat the saturation con-
centration of CO2 in water, and V ≡ πd2H/4 the volume of the liquid barrier. As
mentioned before, we can only measure the concentration up to C/Csat < 0.6, as
higher concentrations are outside the pH sensitive range of the fluorescein. Fig-
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ure 3.5 shows the obtained dissolution fraction m(t)/(CsatV) versus time, averaged
over all 12 experiments. The wide error bars reflect the variability among exper-
iments, such as the occurrence of the shedding of a lateral buoyant upwelling
plume, and the uncertainties in the concentration calibration. Initially, the disso-
lution curve follows the self-similar solution for pure diffusion (dotted line), where
m = 2Csat A

√
Dt/π and A = πd2/4. However, after the onset of convection, the

curve deviates, resulting in m = 2Csat A
√

Dc(t − tc)/π (dashed line) to be the best
fit, with an effective diffusion coefficient of Dc = 30D and tc = 160 s as the virtual
time origin. Compared to other authors, who report finding Dc/D ∼ 102 or 103 for
experiments conducted in varying PVT or Hele-Shaw cells, this seems reasonable
as variations in experimental conditions and cell configuration differences appear
to severely affect the obtained effective diffusion coefficients [120, 184–187].

3.5 Front propagation dynamics

We carry on our analysis by focusing on the propagation dynamics of the CO2

front in the liquid barrier. We define the position of the CO2 front, z f (t), which we
arbitrarily set to the 60%-intensity threshold of the horizontally averaged intensity
profiles, I∗(z f , t) = 0.6 (cf. figure 3.4). Tracing this position in time yields figure 3.6,
which shows the front trajectories of all 12 experiments versus time. The trajectories
are offset by the (fitted) virtual origin z0 = −0.3± 0.06 mm and t0 = 5.5± 2.2 s of the
diffusive regime. Correcting for the virtual origin absorbs the influence of the finite
curvature of the top meniscus and the typical flushing response time required for
full exposure to the CO2. Furthermore, the front trajectories in figure 3.6 have been
colour coded based on the absence (green) or the occurrence (red) of the shedding
of an upwelling plume.

As explained before, the dissolution of CO2 into the liquid barrier results in the
formation of a boundary layer at the top interface. The mass transport in this layer
is driven purely by diffusion and it is therefore unsurprising that the propagation
of the front z f (t) follows the self-similar solution for pure diffusion:

C(z, t)
Csat

= erfc

(
z − z0√

4D(t − t0)

)
. (3.3)

The front trajectory associated to concentration C f is thus

z f − z0 = K f

√
D(t − t0), (3.4)
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Figure 3.6: Front trajectory z f (t) corresponding to the 60 %-intensity threshold of the
horizontally-averaged intensity profiles (cf. figure 3.4), namely, I∗(z f , t) = 0.6. The front tra-
jectory of all 12 experiments is plotted, which are colour-coded based on the absence (greens)
or the occurrence (reds) of the shedding of the upwelling plume. The time t and front posi-
tion z f (the latter defined as the distance to the apex of the top meniscus) have been offset
by the (fitted) virtual origin of the diffusive regime (t0 = 5.5 ± 2.2 s and z0 = −0.3 ± 0.06
mm), which absorb the influence of the finite curvature of the top meniscus and the typical
flushing response time required for full exposure to the CO2 ambient. Initially, z f (t) follows
the self-similar solution for pure diffusion (dotted line), taking K f ≡ 2erfc−1(C f /Csat) = 4.27
corresponding to C f /Csat = 2.5 × 10−3 (I∗ = 0.6). The onset of the convective instability
(diamond markers) occurs at t = t1, z1 = z f (t1), when the front acceleration (d2z f /dt2) is
maximum. A zoom-in is provided in the inset, which highlights the reproducibility of the
time onset: t1 − t0 = 67.6 ± 2.4 s. Thereafter, z f (t) evolves in an enhanced diffusive man-
ner (dashed line), with an effective fitted diffusivity Deff = 8.25D, which implies that the
convective velocity of the front decays in time. At approximately t = t2 (circular markers),
when d2z f /dt2 = 0 for the first time, the front velocity stabilises and the front propagates as
expected for late stage enhanced diffusive behaviour. For experiments in which a upwelling
plume is shed, t = t2 marks this moment and the velocity shoots off towards a higher velocity.
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where growth prefactor K f depends on the concentration

K f ≡ 2erfc−1(C f /Csat). (3.5)

In figure 3.6, the dotted line follows from (3.4) and (3.5), taking K f = 4.27 cor-
responding to C f /Csat = 2.5 × 10−3 (I∗ = 0.6). We see that z f (t) follows the
self-similar solution up to time t1. We therefore define this first regime between
t0 < t < t1 as the purely diffusive regime. In figure 3.7(a), we show a rescaled
plot of the purely diffusive regime on a double logarithmic scale, magnifying the
z f (t) ∼

√
t − t0 scaling relation.

At time t1, we observe a sharp acceleration of the CO2 front position, due to the
onset of the convective instability. Therefore, we can find t1 and correspondingly
z f (t1) = z1 by finding the point in time at which the front acceleration, d2z f /dt2,
is maximum, indicated in figure 3.6 with the diamond markers. The inset shows a
zoom-in around t1 to show the reproducibility of the onset time t1 − t0 = 67.6 ± 2.4
s, and corresponding front depth z1 = 1.26 ± 0.08 mm.

At the onset of convection, the Rayleigh number based on the thickness δ(t) of
the boundary layer is given by

Raδ(t) ≡
βCsatgδ3(t)

νD
. (3.6)

The height of the liquid barrier H does not influence the onset. Taking the boundary
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layer thickness equal to the position of the front at the time we observe the onset
of convection, i.e. δ = z f (t1) = z1, we obtain a critical value of Raz1 = (3.30 ±
0.6) × 103, by taking the average critical value for the twelve experiments shown
in figure 3.6. We compare this value to the critical Rayleigh number from Ahlers et
al. for Rayleigh-Bénard convection in a cylinder with adiabatic sidewalls, which we
believe to be the closest available approximation to our system [195]:

Rac ≡ 1708
(

1 +
0.77

Γ(t1)2

)2
, (3.7)

where the local aspect ratio is defined as Γ(t1) = d/z f (t1). However, we have to
emphasise the differences between our system and the systems usually described
in Rayleigh-Bénard convection studies, for which (with constant Γ) equation (3.7)
holds. First of all, in those systems, it is assumed that at the onset of convection, a
linear concentration (or temperature) profile exists as the base state which subse-
quently becomes unstable. Secondly, Rayleigh-Bénard setups have reached a steady
state (or are very close to such), while in our experiment the system has not and
never will reach a steady state during our experimental time frame. Finally, a con-
stant aspect ratio is assumed, while in our experiment the aspect ratio continuously
decreases with time, since the front position z f (t) increases in time.

In our experiments, it is clear from figure 3.4(b) that we have non-linear concen-
tration profiles in the boundary layer. As a result, the thickness of the self-similar
diffusion boundary layer is not easy to define. If we use δ to denote the effec-
tive thickness of the boundary layer, then δ = Kδ

√
D(t − t0), where the growth

prefactor Kδ ≡ 2erfc−1(Cδ/Csat) depends on the choice of the concentration cut-
off Cδ, and hence δ may differ from the depth z f = K f

√
D(t − t0) of our chosen

iso-concentration contour C f /Csat = 2.5 × 10−3. For example, when we calculate
Rac from (3.7), using Γ(t1) = d/z f (t1) ≈ 2.4, we find Rac = 2.20 × 103, which is
smaller than Raz1 . The value of δ that satisfies Raδ = Rac, i.e. for which (3.6) and
3.7 intersect, is exactly δ = δ∗ = 1.06 mm, which is reasonably close to z1, with a
corresponding Raδ∗ = Rac = 2.05 × 103. This further emphasises the difficulty in
defining the thickness for the self-similar diffusion boundary layer, as by selecting a
lower intensity threshold, and thus higher concentration cut-off Cδ, we could have
reproduced the prediction from Ahlers et al. [195].

In addition, we compared our findings with the work of Tan & Thorpe (1992,
1999), who also studied the dissolution of CO2 in water [84, 197] and transient heat
conduction in deep fluids [79]. In their works, they try to account for the non-linear
profile in the boundary layer within a theoretical framework which is compared
with the experimental data. Using a PVT cell, they report an onset time of t = 100
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s for CO2 dissolution in water. Deriving an expression for the maximum transient
Rayleigh number, Ramax, and taking Rac = 1100 (which holds for Rayleigh-Bénard
setups with a linear profile and upper free-surface [83]), yielded the transition times
with close agreement with experiments [84]. When we enter the onset time obtained
from our experiments, we find Ramax = 336. This Ramax is much lower than Rac =
1100, even though their setup is significantly wider than ours (d = 90 mm compared
to our d = 3mm), which suggests that our critical Rayleigh number should be even
higher than 1100.

We conclude that applying the method from Tan & Thorpe (1992, 1999) [84,197]
to obtain the onset time leads to a severe and unrealistic overestimation for our
experiments, which could be connected to the fact that in [84, 197] the pressure
response of the system was studied instead of directly comparing to the concen-
tration profile. The plot reporting the onset time in Ref. [84] comes with significant
uncertainty. We note that adopting t = 64s instead of t = 100s, which still seems
consistent with the data in [84], would result in similar findings to ours. Tan &
Thorpe (1992) [84], however, does indicate that it is quite difficult to define a precise
critical Rayleigh number for experiments with a non-linear profile, as we also dis-
cussed above. We therefore conclude that our method of finding the critical critical
Rayleigh number using (3.6) and the boundary layer thickness at the onset gives the
best approximation of the critical Rayleigh number for the chosen iso-concentration
contour, which in our case is C f /Csat = 2.5 × 10−3.

After the onset of convection, the front propagates seemingly in a diffusive man-
ner, however with an increased effective diffusion coefficient. By fitting all 12 ex-
periments (dashed line in figure 3.6) we find that z f (t) evolves with an effective
fitted diffusivity De f f = 8.25D. For comparison, Karimaie and Lindeberg report
De f f = 5.8D for transport of CO2 in water confined in porous media [185]. More-
over, figure 3.7(b) shows the same regime on a double logarithmic scale, highlight-
ing the z f (t)− z1 ∼

√
t − t1 scaling relation. As a result, we define this regime as

the enhanced diffusive regime.

Eventually, the system appears to stabilise, leading to the front propagating at a
seemingly stable terminal velocity. This moment, defined as the first time at which
d2z f /dt2 = 0, is referred to as t = t2, marked with circular markers in figure 3.6(b).
While one could see this as a separate regime, it is in fact the late stage behaviour
of the second regime. A more detailed explanation will be given in the next sec-
tion. For experiments in which the shedding of an upwelling plume occurs, t = t2

also happens to mark the moment at which this shoot off occurs. As mentioned
before, if this event occurs, the front accelerates and propagates with a higher ve-
locity in comparison to the experiments in which axisymmetry is not broken. As
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a result, curves with a second shedding event shoot off in figure 3.6 (red curves),
although their scaling behaviour remains consistent with the experiments in which
the shedding of the upwelling plume does not occur.

3.6 Numerical model

3.6.1 Setup and governing equations

We continue our analysis by employing Direct Numerical Simulations (DNS) to un-
ravel the physics governing the plume dynamics observed in the experiments. The
numerical set-up, shown in figure 3.1(b), is a single-phase buoyancy-driven flow
confined in a cylinder with an adiabatic sidewall and free-shear surfaces at top
and bottom. The system is subjected to constant saturation concentration of carbon
dioxide at the upper plate and zero concentration at the bottom. The dimension-
less form of the advection-diffusion equation coupled with the three dimensional
Navier-Stokes equations are employed under the incomprehensibility condition and
the Oberbeck-Boussinesq approximation (in order to account for buoyancy forces
caused by the (small) density variations);

∂C̃
∂t̃

+ ũ ·∇C̃ =
1√

RaSc
∇2C̃, (3.8a)

∂ũ
∂t̃

+ ũ ·∇ũ = −∇P̃ +

√
Sc
Ra

∇2ũ + C̃êg · êk, (3.8b)

∇ · ũ = 0. (3.8c)

Here, C̃, ũ and P̃ denote the dimensionless concentration, velocity, and pressure
respectively. The height of the cylinder H, the carbon dioxide saturation concentra-
tion Cs, and the free fall velocity

√
gβCsH have been used for normalisation of the

equations, where g is the gravitational acceleration and β the (isobaric and isother-
mal) volumetric concentration expansion coefficient. ∇ is the gradient operator in
cylindrical coordinates, êg is the unit normal vector in direction of the gravitational
acceleration and êk(k = z, r, θ) are the unit normal vectors pointing toward the axial,
radial or azimuthal directions as shown in figure 3.1(c). The control parameters of
the numerical model are the Rayleigh number RaH and the Schmidt number Sc as
defined in § 3.3.

The governing (3.8) have been solved using a second-order accurate finite-difference
scheme on a staggered grid and a fractional-step time-marching approach, the detail
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of which can be found in [92]. Introducing a disturbance to the system is necessary
to trigger the instabilities arising from the buoyancy driven convection. Hence, three
different sources of disturbance are tested in the numerical simulations in order to
find the most appropriate set-up which reasonably replicates the experimental ob-
servation. These are:

(A) a perturbed initial concentration field with a random positive noise throughout
the system, whose amplitude varies between zero and 1% of the carbon dioxide
saturation concentration;

(B) a meniscus liquid-gas interface at the top rather than a flat interfacial boundary.
The meniscus shape was approximated by a cosine profile with a maximum
depth of 0.01H at the centre of the domain. Saturation concentration and no-slip
velocity conditions are enforced at the interface using an immersed boundary
method based on linear interpolations as developed in [198];

(C) a slight tilt of the container relative to the direction of gravity, see figure 3.1(c).
The tilting has been performed by rotating the gravitational acceleration vec-
tor g by the angle of ϕ with respect to the negative axial direction in θ = 0
plane. The inclination angles of ϕ = 0.5◦, 1◦, 1.5◦ and 2◦ have been tested in the
numerical simulations.

Simulations have been conducted for the aforementioned cases (A)-(C) with
different sources of disturbance. The grid resolution of 32 × 192 × 256 in radial,
azimuthal, and axial directions respectively, similar to that of confined-rotating
Rayleigh-Bénard convection [199], have been used after a grid independence check
has been performed. Time marching has been achieved with variable times steps
with a maximum of dt̃ = 2 × 10−3 and CFL = 5 × 10−1. The input of the simula-
tions are the aspect ratio of the setup Γ = d/H, the height-based Rayleigh number
RaH , and the Schmidt number Sc which have been chosen as 0.1704, 8.8 × 106, and
515, in accordance with the experiments.

3.6.2 Numerical results

The vertical location of the front corresponding to C(z)/Csat = 2.5 × 10−3, consis-
tent with the analysis of the experimental results, has been plotted as a function of
time in figure 3.8 and compared to the experiments. The front location follows that
of the pure diffusion problem in all cases up to the moment when convection sets
in. Looking into the transition time, a remarkable discrepancy exists between the
experiments and case (A) where the initial concentration field is perturbed. On the
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Figure 3.8: Front trajectory z f (t) corresponding to C(z)/Csat = 2.5 × 10−3 obtained via nu-
merical simulations performed under different conditions, namely cases (A)-(C) as explained
in the main text. The analytical solution of the purely diffusive problem (dotted black line)
and the experimentally averaged trajectory after the onset of convection (dashed black line)
have been provided for comparison.

other hand, the agreement is reasonable for cases (B) and (C). For case (B), in which
the top interface is modelled as a meniscus, it can be seen that, despite an accurate
prediction of the onset time, the front velocity after the onset of convection is under-
estimated. Only the simulations from case (C), in which the setup is tilted and the
shedding of the plume is therefore asymmetric, can reproduce the transient front
location obtained in the experiments reasonably well. On this basis, we conclude
that the dynamics are very sensitive to small tilt angles and that likely such a small
misalignment also exists in the present experiments. Accordingly, we continue by
analysing the results obtained by numerical modelling for case (C), specifically with
an inclination angle of ϕ = 1.5◦, which shows the best agreement with the experi-
ments. For reference, the carbon dioxide concentration profile for case (B) with the
meniscus interface can be found in Appendix 3.8.2.

Figure 3.9 shows the simulation snapshots for the carbon dioxide concentra-
tion profile superimposed with the front isocontour corresponding to C f /Csat =

2.5 × 10−3 and vectors representing the velocity field. The shown slices correspond
to the inclination plane θ = 0, the plane in which also the gravity vector is tilted.
Initially, the front isocontour propagates as a horizontal line, following the analyt-
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Figure 3.9: Time evolution of carbon dioxide concentration obtained by numerical simulations
for case (C) with inclination angle of ϕ = 1.5◦. The setup has been tilted in the θ = 0◦ plane
from which the snapshots have been taken. The white contour-lines show the front profile
associated with C f /Csat = 2.5 × 10−3. Vectors denote the velocity field, the scaling of which
has been provided in the figure.
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Figure 3.10: Propagation of the front isosurface obtained from numerical simulations for
case (C) with inclination angle of ϕ = 1.5◦. The front isosurfaces correspond to C f /Csat =

2.5 × 10−3 and have been taken at (a) θ = 0, i.e., the inclination plane of gravity and (b)
θ = 90◦ plane. Note that the propagation appears to be axisymmetric in the latter.

ical solution of the pure diffusion problem as shown in figure 3.8. Around t ∼ 1
minute, as observed in figure 3.8, convection sets in and as a result a vortex forms
above the front whose direction is clockwise and consistent with the tilting direc-
tion of the setup. Therefore, the front shape gets distorted complying with the flow
structure forming behind. The generated convective flow remains active behind the
front during its entire evolution from top to the lower boundary of the setup and its
deformed shape at very low concentrations, suggests a complex concentration field
in the solution. Remarkable asymmetry in the front profile, particularly at the tran-
sition time, is observed from the simulations result as opposed to the experimental
measurements. However, this also strongly depends on the angle of the view. The
shape evolution of the front isocontour, shown in figure 3.10 for two different 2-
dimensional slices corresponding to θ = 0◦ and θ = 90◦, indicates axisymmetric or
asymmetric profiles depending on the frame of reference chosen. The 3D shape of
the front isosurface has also been plotted in time in figure 3.12, which will be dis-
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Figure 3.11: Graphical representation of the local propagation velocity of the front isosurface.

cussed in more detail in the next section in order to clarify the physical mechanisms
governing the interface dynamics.

3.6.3 Front local propagation velocity

Next, we consider the propagation of the front in more detail. As shown schemati-
cally in figure 3.11, the velocity (uiso) of an interface element dA of the front can be
decomposed into a component due to the advection of the underlying fluid element
and a propagation relative to the latter (V), such that uiso = u f + V. By definition,
the interface propagation is normal to the iso-surface such that V = vnn̂, with
the surface unit normal vector n̂ = ∇C/ | ∇C |. Following an approach previously
employed for enstrophy iso-surfaces in turbulent flows [200,201], iso-scalar surfaces
in turbulent scalar mixing with chemical reactions [202] and flame propagation in
combustion problems [203], we can derive an expression for the interface propaga-
tion velocity vn by noting that in a frame of reference moving with the iso-surface
element, the total rate of change of concentration is zero. This leads to

DsC
Dst

=
∂C
∂t

+ uiso ·∇C =
∂C
∂t

+
(

vnn̂ + u f

)
·∇C = 0, (3.9)

which can be solved for vn to yield

vn = −
∂C
∂t + u f ·∇C

| ∇C | = −
DC
Dt

| ∇C | = −D∇2C
| ∇C | . (3.10)
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Given the incompressibility of the fluid, advection does not affect the mean in-
terface position. The front propagation is therefore solely related to vn and therefore
diffusive in nature at all times. A quantitative relation can be obtained by equating
the volume flux across the convoluted interface to that through the mean interface
according to [204, 205]

Q ≡
∫

Aiso

vndA = A0
dzm

dt
, (3.11)

where the integration is over the surface area Aiso of the iso-contour. Using an
average of vn across Aiso denoted by the overbar, this leads to

dzm

dt
=

Aiso
A0

vn, (3.12)

which now expresses the mean front propagation as diffusive propagation (vn) am-
plified by interface convolutions. Note that here we use zm to denote the mean
position of the isosurface instead of z f in order to distinguish the volume average
implied by (3.11) from the 2D average used for z f .
Figure 3.12 shows the front corresponding to the isosurface at C/Csat = 2.5 × 10−3

at different moments in time and color-coded with the local magnitude of vn. From
these snapshots it becomes clear how convection significantly enhances the interfa-
cial surface area, which is then decreased again as a result of the interface propa-
gation. Convection is also seen to increase vn locally, in particular around t = 100s,
which is due to a steepening of the scalar gradients close to the front (see also fig-
ure 3.9). Here it should be noted that n̂ = ∇C/ | ∇C | always points toward the
region with higher concentrations, i.e., the region above the front iso-surface, such
that negative values of vn correspond to an outward propagation of the interface.

Results for computing the volume flux across the interface from integrating vn

(Q) and based on evaluating A0dzm/dt are compared in figure 3.13(a). As can be
seen the agreement is very good as expected, apart from a short period around
t ≈ 150 s. During this time, the wall-parallel part of the iso-surface reaches the wall
(see figure 3.12), leading to a sudden decrease in the front surface area as well as
in its mean location, which is not captured sufficiently accurately by our method to
extract the isosurface.

The panel in figure 3.13(b) presents the same data as figure 3.13(a), only this time
expressed as effective mean front velocities according to (3.12). This form enables a
direct comparison to the front velocity based on z f , previously shown in figure 3.8.
For most times the agreement between dz f /dt and dzm/dt is good, but significant
difference arise for the peak following the onset of convection. This highlights that
especially during this period (70 ⪅ t ⪅ 200) it is important to account for the three-
dimensionality of the flow.
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Figure 3.13: (a) Volumetric flux Q of the local propagation velocity vn across the front iso-
surface, compared to the rate of change in the mean volume above the iso-surface, A0dzm/dt.
(b) Front propagation velocity computed from the time evolution of the cross-sectional av-
erage of the 3D iso-surface, dzm/dt, and from the product of the relative surface area and
averaged local propagation velocity. dz f /dt is provided where z f is the front trajectory ob-
tained from the horizontally-averaged concentration profile in 2D slices, in accordance with
the front tracking approach in experiments. (c) Relative surface area of the iso-surface with
respect to the cross sectional area of the cylinder, A0. (d) Temporal evolution of the averaged
local propagation velocity, vn, of the iso-surface. vn for the iso-surface in pure-diffusion prob-
lem, compared to the pure diffusive case, vn,d, where it equals the front propagation velocity
dzm/dt = K f [D(t − t0)]

−1/2, with K f defined in (3.5). The ratio vn/vn,d, is shown in the
inset.
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The volumetric fluxes and propagation velocity of the front are similarly calcu-
lated for the simulations in case (B), where the top boundary is modelled with the
meniscus interface, and have been compared in figures S8a and b in the supporting
materials. The agreement at the times when the iso-surface attains its maximum
surface area is better for that case, due to less interaction of the iso-surface with the
wall (see figure S7 in the supporting materials).

For a closer analysis we disentangle the effects leading to diffusion enhance-
ment, followed by faster propagation of the front after transition to convection.
Equation 3.12 encompasses the two key parameters contributing to the front dy-
namics; the relative area of the iso-surface, Aiso/A0, multiplied by the averaged
local propagation velocity, vn, which together define the rate of diffusive transport
across the front interface. Any changes in the front surface area or the concentra-
tion gradients (diffusive fluxes) in its vicinity can ultimately alter the diffusion rate
across the front iso-surface and impact the propagation velocity. Therefore, we plot
the time evolution of Aiso/A0 and vn in figures 3.13(c) and (d), respectively. The
front velocity in the pure diffusion problem, which is solely equivalent to vn (the
front remains always flat and thus the relative surface area is unity in equation
3.12), has analytically been obtained from equation 3.4 as vn,d = K f D(t − t0)

−1/2

and plotted in figure 3.13d. The relative local propagation velocity of the front with
respect to that of the pure diffusion problem, i.e., vn/vn,d, is also shown in the inset.

Up to transition time, the front iso-surface remains flat, meaning that the rela-
tive surface area does not change in this period and thus remains equal to unity.
Similarly, the local propagation velocity follows that of the pure diffusion problem
as they are essentially the same before the onset of convection, which leads to a rel-
ative local propagation velocity equal to unity, as indicated in the inset. The value
of vn decreases within this period, complying to the front dynamics governed by
diffusion regime, i.e. dzm/dt ∼ t−1/2.

Once convection sets in, the underlying flow field distorts the front intensely, as
demonstrated in figures 3.9 and 3.12 around t ≈ 1 min. This leads to a significant
increase in the surface area of the front, see figure 3.13(c), as well as the adjacent
concentration gradients, ∇C. The latter is reflected in local propagation velocity
when it increases after t ≈ 1 min in figure 3.13d (vn ∼ ∇2C and ∇2C is higher in
the vicinity of a stretched interface since ∇C has non-zero components in lateral
directions). As a result, lateral diffusive fluxes across the interface intensify, which
act against the further convolution of the front and lead to a re-flattening process,
once a maximum surface area is reached. Consequently, the front surface area and
local propagation velocity drop after the maximum distortion until a “steady state"
is reached (figures 3.13(c) and (d)). They determine the trend of the total propaga-
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tion velocity shown in figure 3.13(b). At this point, the advective fluxes causing the
front distortion approximately equal the lateral diffusive fluxes across the interface
which leads to much lower temporal variations afterwards.

The equilibrium state is even more evident in the simulations for case (B), with
the meniscus interface at the top boundary. In these simulations, the distortion of
the front is less pronounced and therefore the front interface has enough time to
almost completely go through the re-flattening process, as shown in figure 3.21 at
t=1737 s. Moreover, the relative front surface area and local propagation velocity,
depicted in figures 3.22(c) and (d), approach the values close to unity, meaning that
the dynamics pertinent to the pure-diffusion regime are almost recovered and the
front interface propagates with a nearly constant velocity at late times.

Therefore, although the emerged flow field after the onset of convection does
not directly impact the mean location of the front, it does play a significant role
in amplifying the carbon dioxide diffusion rate across the front interface through
increasing the front interface surface area and local concentration gradients. The
front iso-surface accelerates remarkably after the onset of convection and the front
trajectory after the onset can still be described approximately with a relation similar
to the analytical solution of a pure-diffusion problem as described in equation 3.4,
albeit with an effective diffusion constant Deff, which accounts for the enhanced
diffusion observed in the convective regime. For the case specifically studied here,
the post-transition front trajectory, namely the enhanced diffusive regime, can be
approximated with Deff = 8.25D, plotted for comparison with the data obtained
via experiments and numerical simulations in figures 3.6 and 3.8, respectively.

3.7 Conclusions

We have investigated the dissolution and subsequent propagation dynamics of car-
bon dioxide gas into a liquid barrier confined to a vertical glass cylinder, both ex-
perimentally and through direct numerical simulations. Replacing the ambient air
above the cylinder with a CO2 atmosphere, induces the dissolution of CO2 into the
liquid barrier. Initially, the dissolution of CO2 results in the formation of a CO2-
rich water layer, which is denser in comparison to pure water, at the top gas-liquid
interface. While initially stable, continued dissolution of CO2 into the water bar-
rier results in the layer becoming gravitationally unstable, leading to the onset of
buoyancy driven convection and, consequently, the shedding of a buoyant plume.
By adding sodium fluorescein, a pH-sensitive fluorophore, we directly visualise the
dissolution and propagation of the CO2 across the liquid barrier. Tracking the CO2

front propagation in time allows us to define two clear propagation regimes.
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At first, before the onset of convection, the growth dynamics of the bound-
ary layer are purely governed by diffusion (the diffusive regime). The Rayleigh
number continues to increase until it reaches the critical value of our system of
Raz1 = (3.30 ± 0.6)× 103 and convection starts. After the onset of convection, the
propagation dynamics of the CO2 front appear to also behave diffusively, albeit
with an effective diffusion coefficient 8.5 times larger than expected for CO2 in wa-
ter. This enhanced diffusive regime remains throughout the experiments, until the
system either reaches a “steady state", at which point the front propagates at a con-
stant velocity until it reaches the bottom interface, or becomes unstable, leading to
the shedding of an upwelling plume and accelerating towards a higher velocity.

Using direct numerical simulations, we have uncovered the roots of the observed
propagation mechanics. Initially, before the onset of convection, the simulations
show that the relative surface area of the CO2 front does not increase and the lo-
cal propagation velocity follows the expected trend for a purely diffusive problem.
After the onset of convection, first the relative surface area and local concentration
gradients incorporated in the averaged local propagation velocity on the front, vn,
concurrently increase due to the emerging local fluid flow. As a result the diffu-
sive transport rate across the front interface is remarkably amplified, leading to
much faster propagation velocity of the CO2 front. In the meantime, increased lat-
eral diffusive fluxes across the distorted interface act as a competing mechanism
against the advective fluxes and further convolution of the front. This triggers the
re-flattening process of the CO2 front as a result of which the front surface area
and local propagation velocity drop and a “steady state is reached. At this point,
the advective effects causing the front distortion approximately equal the diffusive
flattening of the interface, resulting in the front propagating at a seemingly constant
velocity. Therefore, the front trajectory after the onset can still be described with a
relation similar to the analytical solution of a pure-diffusion problem, albeit with
an effective diffusion 8.5 times higher than expected for CO2 in water.

Our findings offer insight into the mass-transfer effects encountered in laterally
confined CO2 sequestration operations, as well as microfluidic or microreactor de-
vices comprising segmented gas-liquid systems or density-changing solutes. Such a
better understanding of the formation and propagation dynamics of the convective
plume can uncover previously undiscovered mechanics pertaining to the dissolu-
tion and mixing off chemical species in a variety of applications. An interesting and
relevant route to follow is the extension of our work to vessels with larger lateral ex-
tension (larger aspect ratio), where many plumes drive the downwards transport of
the flow. Based on the results of Shishkina [206], we expect a strong increase of the
transport with increasing aspect ratio. For very large aspect ratios, the unconfined
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limit of CO2 sequestration will be approximated [178].

3.8 Appendix

3.8.1 Intensity profile normalisation and concentration calibration

The grayvalue (green channel value) profile G(z, t) of the raw fluorescence images
is first normalized by the initial profile, i.e. without significant amounts of CO2

present in the liquid, to correct for the spatial inhomogeneity of the LED lighting.
Thus, I = G(z, t)/G(z, 0) is the normalized apparent intensity. However, I decays
exponentially in time due to photobleaching. We assume that rate of change of the
I is the sum of the rate of change due to CO2-quenching (pH change) and the rate
of change imposed by photobleaching:

dI
dt

=
d Î
dt

− β Î, (3.13)

where Î denotes the true intensity (corrected for photobleaching) and β is the pho-
tobleaching rate constant. It follows that β is in fact pH-dependent, i.e., β = β( Î∗).
We approximate the dependence to be linear as β = aÎ + b, where coefficients a and
b are obtained experimentally, e.g. from the intensity decay rate within the CO2-free
region in the water column in combination with measurements from purely diffu-
sive experiments (where the cell is inverted). We find a = −5.0± 0.2× 10−4 s−1 and
b = 6.8 ± 0.3 × 10−4 s−1 across the 12 experiments. The corrected intensity at any
location z can be solved for iteratively by linearising (3.13) as follows:

Î(z)n+1 − Î(z)n = In+1(z)− In(z) + βn(z) În(z)∆t, (3.14)

where subscript n refers to the current time step or image frame and ∆t is the time
difference between consecutive time steps. Finally, the corrected intensity is then
renormalised by the maximum and minimum intensity values (within the central
region far from the shadowing effect of the meniscii or solid boundaries). Thus,

I∗(z, t) =
Î(z, t)− min( Î)
max( Î)− min( Î)

, (3.15)

keeping in mind that max( Î) ≈ 1.0 and min( Î) ≈ 0.4 are quite close (ideally identi-
cal) for all experiments.

For the concentration calibration, we relate the intensity profile of a diffusive
experiment to the self-similar profile C/Csat = erfc(η), with η = z/

√
4Dt. Con-

sequently, the intensity profiles evolves self-similarly too: I∗(z, t) collapse into the
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C
Csat

1 − I*

Figure 3.14: Calibration curve (dotted line), which relates the normalised intensity I∗ to the
dimensionless concentration, C/Csat under our particular experimental conditions. The blue
data points are measurements of the self-similar intensity profile I∗(η) of the calibration
(pure diffusion) experiment, for which C(η)/Csat = erfc(η). Inset: same calibration curve
plotted in semi-logarithmic axes.

same curve I∗(η). Thus, the calibration function C/Csat = F(1− I∗) can be obtained
by a monotonic fit on a plot of erfc(η) vs. 1− I∗(η), which is provided in figure 3.14.

3.8.2 Supporting material
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Figure 3.15: Snapshots of experiments (v–ix) where no mode transition is observed. Note that
the bottom interface of experiments (v–vii) is liquid–gas, for (viii) it is liquid–solid, and for
(ix) it is liquid–liquid (water–n-hexadecane). See caption of figure 3.2 for more details.
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Figure 3.16: Snapshots of experiments (x-xii) where mode transition is present. Note that the
bottom interface of experiments (x, xi) is liquid–gas, for (xii) it is liquid–solid. See caption of
figure 3.2 for more details.
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Figure 3.17: Propagation of the projected front surface corresponding for experiments (v–ix)].
See caption of figure 3.3 for details.
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Figure 3.18: Propagation of the projected front surface of experiments (x–xii). See caption of
figure 3.3 for details.
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Figure 3.19: (a) Normalised intensity profiles (left panels) and corresponding tentative con-
centration profiles (right panels) for experiments (v–ix). See caption of figures 3.4 for details.
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Figure 3.20: (a) Normalised intensity profiles (left panels) and corresponding tentative con-
centration profiles (right panels) for experiments (x–xii). See caption of figures 3.4 for details.



3

3.8. Appendix 117

Figure 3.21: Time evolution of carbon dioxide concentration obtained from numerical simu-
lations for case (B) where the top boundary is modelled as a meniscus interface. The white
contour-lines show the front profile associated with C f /Csat = 0.25%. Vectors denote the
velocity field, the scaling of which has been provided in the figure.
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Figure 3.22: For case (B). (a) Volumetric flux Q of the local propagation velocity vn across
the front iso-surface, compared to the rate of change in the mean volume above the iso-
surface, A0dzm/dt. (b) Front propagation velocity computed from the time evolution of the
cross-sectional average of the 3D iso-surface, dzm/dt, and from the product of the relative
surface area and averaged local propagation velocity. dz f /dt is provided where z f is the
front trajectory obtained from the horizontally-averaged concentration profile in 2D slices, in
accordance with the front tracking approach in experiments. (c) Relative surface area of the
iso-surface with respect to the cross sectional area of the cylinder, A0. (d) Temporal evolution
of the averaged local propagation velocity, vn, of the iso-surface. vn for the iso-surface in
pure-diffusion problem, compared to the pure diffusive case, vn,d, where it equals the front
propagation velocity dzm/dt = K f [D(t − t0)]

−1/2, with K f defined in (3.5). The ratio vn/vn,d,
is shown in the inset.



Conclusions

G iven the increasing urge for energy transition from carbon-intensive, non-
renewable and finite fossil fuels to sustainable power resources, it is indis-

pensable to devise reliable ’green’ and yet scalable technologies to slow down the
unprecedented effects of climate change. Hydrogen production through water elec-
trolysis and Carbon Capture and Storage (CCS) in geological formations are envi-
sioned as promising technologies to reduce anthropogenic emissions. Yet challenges
remain to increase the scalability of these technologies for utilization in different en-
ergy sectors.

In this thesis we aim to understand and unravell new physics which vigorously
control/limit the performance of such systems. The shortcomings of water elec-
trolyzers highly pertains to the formation of gas bubbles which limits the reaction
rate and causes cell overpotential, i.e., the required energy for continuing the elec-
trolysis process is increased. In the other hand, secure and long-term storage of car-
bon dioxide in geological reservoirs is a difficult task given the complicated mass
transfer processes involved in the CO2 dissolution into the brine. Therefore, our
goal is to identify and quantify the controlling mass transfer mechanisms in water
electrolyzers subjected to bubble formation and evolution and reveal the intricate
dynamics of CO2 penetrative dissolution in water.

In chapter 1, our comprehensive experimental and numerical analysis defini-
tively confirmed the significance of solutal convection in the evolution of bubbles
during water electrolysis. This was corroborated by excellent agreement of bub-
ble growth and dissolution rate obtained from experiments and numerical simu-
lations, when the natural convection due to density gradients in the solution was
considered in addition to diffusion. We further observe that the presence of the bub-
bles promotes the instabilities of the diffusion boundary layer. Defining a transient
Gr based on the boundary layer thickness on the electrode, the critical threshold
of transition to convection is lowered form Grc ≈ 1 for the cases w/o bubble to
Grc ≈ 0.75 for a set-up with bubble spacing of S = 3 mm. In setups with tighter
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spacing between the bubbles the critical Grashof number increases again signalling
the overkilling effects of bubble on natural convection emergence. We also revealed
the strong dependance of flow patterns on the bubble spacing and their arrange-
ment in clustered netweork on the electrode. Different flow patterns caused by the
design parameters remarkably impact the growth and dissolution dynamics of the
bubbles. Single-phase convection can only be the rate-controlling mechanism at low
values of current density where the fractional bubble coverage of the electrode is
not so high and bubble growth is very slow. This allows the density gradients in the
electrode boundary layer to develop to a sufficient extent necessary for triggering
the instabilities. However at high values of current density a strong flow is estab-
lished in the solution as a result of microconvection induced by bubble growth as
well as two-phase buoyancy-driven convection owing to the density variations of
gas-in-liquid dispersion. Such flows relax the density gradients in the liquid phase
close to the electrode by enhancing the mixing in the electrolyte solution and, there-
fore, suppress the single-phase convection. In case that all mechanism can coexist,
the strong flow caused by bubble rise in the electrolyte will most likely prevail the
single-phase natural convection.

In chapter 2, overlooking solutal or thermal natural convection we aim to iden-
tify the mass transfer mechanism which controls the transport rate at gas-evolving
electrodes subjected to consecutive growth and ascent of the bubbles. Using a fi-
nite difference solver for the carrier phase and Immersed Boundary Method for the
bubble we attempt to numerically mimic the relevant physics in such system and
quantify the mass transfer rate at the electrode. Since the transport of hydrogen
from the electrode occurs within two different mechanisms, namely the transfer
of the dissolved gas to the dispersed phase and bulk electrolyte, we additionally
account for this and quantify the mass transfer rate to the bubble under various
operating conditions. To elucidate the main effects, we varied the current density 3
order of magnitudes for different prescribed bubble size and spacing, incorporated
in fractional bubble coverage of the electrode surface, Θ.

We quantified the cumulative hydrogen transport from the electrode surface
(via solution mixture as dissolved gas and within the gas bubble) in figure 2.13
and that of electrolyte transport to the electrode in figure 2.14. Drawing an analogy
to single-phase heat and mass transfer problems, the buoyancy-driven convection
induced by consecutively departing bubbles from the electrode surface was iden-
tified as the governing mass transfer mechanism. This finding was corroborated
by a unique power law of Shj,e = 1.0

(
GrSc j

)1/3 found to be descriptive for both
hydrogen and electrolyte transport at the electrode. For the electrolyte, a factor of
(1 − Θ) to compensate for the surface blockage effect reduces, yet does not fully
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eliminate, deviations from the power law at low Gr. No such deviations occur at
high Gr, at which also most of the gas transport is in the dissolved state. Further-
more, we found that the bubble growth dynamics are connected to the hydrogen
transport rate from the electrode, such that it switches from diffusion-controlled,
R = Bt1/2, to reaction-controlled, R = Bt1/3, regime as Gr ramps up with in-
creasing current density and bubble coverage of the electrode (figure 2.15). This
transition was attributed to the high transport rate of the hydrogen from electrode
surface at large Gr which prevailed over the gas production rate in the reaction,
forcing the Faraday’s law to control the bubble growth [99]. Next, we quantified the
hydrogen transport to the bubble by taking into account the driving force of the
bubble growth, namely Jakob number Ja (2.28). This parameter was reformulated
based on the simulation inputs and gas-evolution efficiency, resulting in a unique
expression for mass transfer into the bubble given by (2.32). Eventually, preforming
a scaling analysis on mass transfer rates at the electrode and bubble interface we
found the connection between gas-evolution efficiency, fG, and these processes and
ultimately established an asymptotic solution for fG given by (2.35) and (2.36). Our
findings can provide insight into the mass transfer rates at gas-evolving electrodes
mostly prevalent in water-electrolyzers by knowing the current density and typical
size and inter-spacing of the bubbles, i.e. bubble coverage of the electrode, from the
in-situ measurements.

In chapter 3, we conducted an investigation on the dissolution and propagation
dynamics of carbon dioxide gas in a liquid barrier confined to a vertical glass cylin-
der. This was done through experimental observations and direct numerical sim-
ulations. By replacing the ambient air above the cylinder with a CO2 atmosphere,
we induced the dissolution of CO2 into the liquid barrier. Initially, the dissolution
resulted in the formation of a dense CO2-rich water layer at the top gas-liquid in-
terface. However, as the dissolution continued, this layer became gravitationally
unstable, leading to buoyancy-driven convection and the eventual shedding of a
buoyant plume. To visualize the dissolution and propagation of CO2 across the liq-
uid barrier, we added sodium fluorescein, a pH-sensitive fluorophore. Tracking the
time-dependent propagation of the CO2 front allowed us to identify two distinct
propagation regimes. Initially, before convection begins, the boundary layer grows
diffusively. Convection starts when the Rayleigh number reaches a critical value
of Raz1 = (3.30 ± 0.6)× 103 for our system. After convection starts, the CO2 front
propagates diffusively with an effective diffusion coefficient 8.5 times larger than
expected for CO2 in water. This enhanced diffusive behavior persists until the sys-
tem reaches a steady state or becomes unstable and accelerates with an upwelling
plume.
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Our findings from direct numerical simulations shed light on the underlying
mechanics of CO2 front propagation. Initially, prior to convection, the simulations
reveal that the relative surface area of the front remains constant and the local
propagation velocity follows a diffusive trend. However, once convection begins,
the local fluid flow causes concurrent increases in the relative surface area and lo-
cal concentration gradients, leading to a significant amplification of the diffusive
transport rate across the front interface. As a result, the CO2 front propagates at
a much faster velocity. Meanwhile, increased lateral diffusive fluxes counteract the
advective fluxes, further distorting the front. This triggers a re-flattening process, re-
sulting in a drop in surface area and local propagation velocity, eventually reaching
a "steady state". At this point, the advective effects causing front distortion roughly
balance the diffusive flattening of the interface, resulting in the front propagating at
an apparently constant velocity. Therefore, the post-onset trajectory of the front can
still be described by a relation similar to the analytical solution of a pure-diffusion
problem, but with an effective diffusion coefficient approximately 8.5 times higher
than expected for CO2 in water. Our findings provide valuable insights into the
mass-transfer effects that are encountered in laterally confined CO2 sequestration
operations, as well as in microfluidic or microreactor devices that involve segmented
gas-liquid systems or density-changing solutes.
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Summary

B ubbles in electrolysis exhibit significant complexities that greatly affect mass
transport at gas-evolving electrodes. They directly impact different mass trans-

fer mechanisms including diffusion, convection and migration. This renders disen-
tangling the relevant effects through experiments an extremely tedious, if not im-
possible, task. Therefore, we take advantage of highly-accurate three-dimensional
numerical simulations to unravel the controlling mechanisms of mass transfer at
gas-evolving electrodes. We simplify the system to a certain extent such that the
influence of undesirable parameters is suppressed and yet the main effects are out-
standingly revealed.

In particular, we combine the in-situ experiments with numerical simulations
to study the effect of single-phase convection on the growth and dissolution dy-
namics of bubbles adhering to the electrode in chapter 1. Such flows originate from
density gradients in the solution mixture caused by concentration variations in the
electrode boundary layer. Untangling the effect of diffusion and natural convection,
we observe that the experimentally measured bubble evolution can only be accu-
rately described once the flow induced by buoyancy forces is taken into account
in addition to the diffusive transport. Furthermore, we study the transition time to
the convection in the course of ongoing reaction on the electrode surface and ob-
serve that bubbles promote the instabilities in the system before overkilling it in a
tightly-spaced configuration of the bubbles. Such effects are carefully examined and
a criterion for transition to convection is established. We also investigate the bubble
clustering in a regular network on the electrode surface and succeed to accurately
reproduce the experimental measurements after adjusting for the inter-spacing of
the bubbles in the cluster in accordance with the experiments.

Single-phase convection can only be the rate-controlling mechanism at low val-
ues of current density where the fractional bubble coverage of the electrode is not
so high and bubble growth is very slow. This allows the density gradients in the
electrode boundary layer to develop to a sufficient extent necessary for triggering
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the instabilities. However at high values of current density a strong flow is estab-
lished in the solution as a result of microconvection induced by bubble growth as
well as two-phase buoyancy-driven convection owing to the density variations of
gas-in-liquid dispersion. Such flows relax the density gradients in the liquid phase
close to the electrode by enhancing the mixing in the electrolyte solution and, there-
fore, suppress the single-phase convection. In case that all mechanism can coexist,
the strong flow caused by bubble rise in the electrolyte will most likely prevail the
single-phase natural convection.

Hence, in chapter 2, we solely investigate bubble-induced convection by bubble
growth and ascent in the cathodic part of a water electrolyzer. We establish a unique
expression for hydrogen transport at the electrode by defining an effective Grashof
number, Gr, which accounts for buoyancy forces of gas-in-liquid dispersion. The
expression is analogous to those developed for single-phase buoyancy-driven con-
vection in heat and mass transfer problems highlighting the analogy between these
systems. Additionally compensating for surface blockage effects of bubbles, same
expression can quantify the electrolyte transport from the electrode. These findings
corroborate the predominance of two-phase buoyancy-driven convection over other
mass transfer mechanisms including microcenvection caused by bubble growth,
which is known as the prevailing mechanism in the literature. Next, we quantify the
mass transfer to the bubble by taking into account the driving force of the bubble
growth incorporated in an effective Jakob number, Ja. Finally an expression based
on input parameters for gas-evolution efficiency (the fraction of total gas desorbed
into the bubbles) is established which is key in determining the bubbles evolution
and hence the following mass transfer processes in such systems.

Finally, in chapter 3 we look into the downward dissolution dynamics of CO2

in a cylindrical water barrier employing experiments and simulations. We see that
although the penetration rate of the CO2 front is enhanced after the transition to
convection, it still follows the dynamics of diffusion regime with a higher effective
diffusivity. Performing an analysis on transient local fluxes across the front iso-
surface, it is revealed that convection causes front convolutions and steepens the
gradients nearby. As a result the diffusive flux across the interface intensifies leading
to faster propagation of the front. Yet the propagation dynamics concerning the
diffusion regime, i.e. z ∝ t1/2, maintains. Our findings offer broader insight into
the stable dissolution dynamics of CO2 which is of crucial importance in devising
carbon capture and storage technologies.



Samenvatting

B ellen in elektrolyse zijn van aanzienlijke complexiteit, zodanig dat ze de mas-
satransport bij gas-evoluerende elektroden enorm beïnvloeden. Ze hebben

rechtstreeks invloed op verschillende massatransportmechanismen, waaronder dif-
fusie, convectie en migratie. Dit maakt het ontrafelen van de relevante effecten
door middel van experimenten een uiterst tijdrovende, zo niet onmogelijke taak.
Daarom maken we gebruik van zeer nauwkeurige driedimensionale numerieke
simulaties om de mechanismen die de massatransport bij gas-evoluerende elektro-
den beheersen te onthullen. We vereenvoudigen het systeem tot op zekere hoogte
zodat de invloed van ongewenste parameters wordt onderdrukt en de belangrijkste
effecten duidelijk naar voren komen.

In het bijzonder combineren we in-situ experimenten met numerieke simulaties
om het effect van enkelfasige convectie op de groei- en oplossingsdynamiek van
bellen die zich hechten aan de elektrode te bestuderen in hoofdstuk 1. Dergeli-
jke stromingen ontstaan door dichtheidsgradiënten in de mengoplossing veroorza-
akt door concentratievariaties in de grenslaag van de elektrode. Door het effect
van diffusie en natuurlijke convectie te ontwarren, observeren we dat de experi-
menteel gemeten evolutie van de bellen alleen nauwkeurig kan worden beschreven
wanneer de stroming veroorzaakt door drijfkrachten in rekening wordt gebracht
samen met de diffusieve transport. Bovendien bestuderen we de overgangstijd naar
convectie tijdens de voortgaande reactie op het elektrodeoppervlak en observeren
we dat bellen de instabiliteiten in het systeem bevorderen voordat ze het systeem
overbelasten in een dicht opeengepakte configuratie van de bellen. Dergelijke ef-
fecten worden zorgvuldig onderzocht en er wordt een criterium voor de overgang
naar convectie vastgesteld. We onderzoeken ook de clustering van bellen in een
regelmatig netwerk op het elektrodeoppervlak en slagen erin om de experimentele
metingen nauwkeurig te reproduceren na aanpassing van de onderlinge afstand
tussen de bellen in de cluster in overeenstemming met de experimenten.

Enkelfasige convectie overheerst bij lage stroomdichtheid, waarbij de bellenbe-
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dekking van de elektrode laag is en de groei van bellen traag verloopt. Bij hoge
stroomdichtheid ontstaat er een sterke stroming door microconvectie door bellen-
groei en tweefasige convectie gedreven door dichtheidsvariaties van gas-in-vloeistof
dispersie. De stromingen verminderen de dichtheidsgradiënten dichtbij de elek-
trode en onderdrukken enkelfasige convectie. Sterke stroming door bel-opstijging
zal waarschijnlijk de enkelfasige convectie overheersen als alle mechanismen samenkomen.

Daarom onderzoeken we in hoofdstuk 2 uitsluitend de door bellen veroorza-
akte convectie door groei en stijging van bellen in het kathodische deel van een
water elektrolyseapparaat. We stellen een unieke uitdrukking op voor waterstof-
transport aan de elektrode door een effectief Grashof-getal, Gr, te definiëren, dat
rekening houdt met de drijfkrachten van gas-in-vloeistof dispersie. De uitdrukking
is analoog aan die ontwikkeld voor enkelfasige opwaartse convectie gedreven door
dichtheidsvariaties in warmte- en massatransportproblemen, waarbij de analogie
tussen deze systemen wordt benadrukt. Door ook compensatie toe te passen voor
oppervlakteblokkeringseffecten van bellen, kan dezelfde uitdrukking het elektroly-
tentransport vanaf de elektrode kwantificeren. Deze bevindingen bevestigen de
overheersing van tweefasige opwaartse convectie gedreven door dichtheidsvariaties
van gas-in-vloeistof dispersie boven andere massatransportmechanismen, inclusief
microconvectie veroorzaakt door de groei van bellen, wat bekend staat als het
overheersende mechanisme in de literatuur. Vervolgens kwantificeren we het mas-
satransport naar de bel door rekening te houden met de drijvende kracht van de
belgroei, opgenomen in een effectief Jakob-getal, Ja. Tot slot wordt een uitdrukking
op basis van invoerparameters voor de efficiëntie van gasvorming (de fractie van
totaal gas dat in de bellen wordt drijfkrachten) vastgesteld, wat essentieel is voor
het bepalen van de evolutie van de bellen en daarmee de daaropvolgende mas-
satransportprocessen in dergelijke systemen.

In hoofdstuk 3 onderzoeken we de neerwaartse oplossingsdynamiek van CO2

in een cilindrische waterbarrière aan de hand van experimenten en simulaties. We
constateren dat hoewel de penetratiesnelheid het de CO2-front wordt versterkt na
de overgang naar convectie, het nog steeds de dynamiek van het diffusieregime
volgt, zij het met een hogere effectieve diffusiviteit. Door een analyse uit te voeren
van de tijdsafhankelijke lokale fluxen over het front-iso-oppervlak, wordt onthuld
dat convectie leidt tot frontconvoluties en steilere gradiënten in de nabije omgeving.
Als gevolg daarvan neemt de diffusieve flux over het raakvlak toe, wat leidt tot
een snellere verspreiding van het front. Toch blijft de voortplantingsdynamiek met
betrekking tot het diffusieregime, d.w.z. z ∝ t1/2, behouden. Onze bevindingen
bieden breder inzicht in de stabiele oplossingsdynamiek van CO2, wat van cruciaal
belang is bij het ontwikkelen van technologieën voor koolstofafvang en -opslag.
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