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Abstract

Controlling tsetse flies is critical for effective management of African trypanosomiasis in

Sub-Saharan Africa. To enhance timely and targeted deployment of tsetse control strate-

gies a better understanding of their temporal dynamics is paramount. A few empirical stud-

ies have explained and predicted tsetse numbers across space and time, but the resulting

models may not easily scale to other areas. We used tsetse catches from 160 traps moni-

tored between 2017 and 2019 around Shimba Hills National Reserve in Kenya, a known

tsetse and trypanosomiasis hotspot. Traps were divided into two groups: proximal (<1.0

km)) to and distant (> 1.0 km) from the outer edge of the reserve boundary. We fitted zero-

inflated Poisson and generalized linear regression models for each group using as temporal

predictors rainfall, NDVI (Normalized Difference Vegetation Index), and LST (land surface

temperature). For each predictor, we assessed their relationship with tsetse abundance

using time lags from 10 days up to 60 days before the last tsetse collection date of each

trap. Tsetse numbers decreased as distance from the outside of reserve increased. Proxim-

ity to croplands, grasslands, woodlands, and the reserve boundary were the key predictors

for proximal traps. Tsetse numbers rose after a month of increased rainfall and the following

increase in NDVI values but started to decline if the rains persisted beyond a month for dis-

tant traps. Specifically, tsetse flies were more abundant in areas with NDVI values greater

than 0.7 for the distant group. The study suggests that tsetse control efforts beyond 1.0 km

of the reserve boundary should be implemented after a month of increased rains in areas

having NDVI values greater than 0.7. To manage tsetse flies effectively within a 1.0 km

radius of the reserve boundary, continuous measures such as establishing an insecticide-

treated trap or target barrier around the reserve boundary are needed.

Author summary

To control African trypanosomiasis, tsetse populations must be reduced to levels that

impede disease transmission. Limited reliable information on tsetse temporal dynamics
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hinders the implementation of effective control strategies. We used two empirical model-

ling strategies (zero-inflated Poisson and generalized linear Poisson) to link tsetse abun-

dance with environmental and weather data, to understand and explain tsetse temporal

dynamics in a heterogeneous environment. Tsetse numbers were consistently high within

1.0 km of the reserve outer boundary due to favorable breeding sites, resting sites, and

host availability. Beyond 1.0 km of the reserve boundary, tsetse numbers increased after a

month of increased rainfall, but started to decline if rainfall persisted beyond a month.

For these localities, higher tsetse numbers were also found in areas with NDVI values

above 0.7. These insights provide valuable guidance for the timing and location of tsetse

control strategies around Shimba Hills National Reserve, particularly considering the lim-

ited resources available.

Introduction

Tsetse flies are the sole biological vector of both human and animal African Trypanosomiasis

(AT) in 38 Sub-Saharan African (SSA) countries at locations where its suitable habitats are pre-

dicted to occur [1,2]. The interaction between tsetse flies, wild and domesticated hosts, and the

trypanosome pathogens determines the epidemiology of cyclic trypanosomiasis. Although vac-

cines do not exist for either of the diseases, the number of human AT cases have fallen signifi-

cantly in the last decade. Recently, the T. b. gambiense form of human AT has been eliminated

in Benin, Uganda and Rwanda [3]. However, progress on animal AT control is much slower

[4]. Chemotherapy and the use of trypanocide drugs are widely used to control trypanosomia-

sis in infected livestock [5], but the emergence of drug-resistant trypanosome pathogens has

rendered current drugs less effective [5,6], with over three million cattle heads dying each year

globally [7–10]. As a result, the most effective way to control the disease is to reduce tsetse

numbers to a level that decreases or inhibits disease transmission [11].

Several factors are known to influence tsetse abundance. Temperature is one of the major

factors controlling the physiological processes of tsetse flies [12,13] and thus most of its popu-

lation dynamics. Increases in temperature increase adult mortality rates, which lowers the pop-

ulation, while at the same time increasing tsetse reproduction rate and declining the time

taken for pupae to emerge [13,14] increasing the population. On the other hand, low body

temperatures of tsetse are likely to induce chill coma in adult flies [15], lengthen the time taken

for eggs to develop in the female ovaries as well as the time taken for pupae to emerge

[13,16,17], lowering populations. In Zimbabwe increases in temperature over time have been

linked to a significant decrease in tsetse fly numbers [11,12], and increase in their reproductive

rates [17]. However, as temperatures continue to rise, the reproductive rates of tsetse flies

begin to decline due to increased pupal mortality rates [17]. Although there is no known direct

relationship between rainfall and tsetse fly numbers, moist conditions are essential for bur-

rowed tsetse pupae to emerge [18]. Nevertheless, periods of heavy rainfall can have detrimental

effects on tsetse numbers. For example, a) when flooding occurs, pupae (6-7mm length) buried

in loose soil may be washed away; b) rainfall periods could lower mean temperatures thereby

reducing female reproduction rates or c) high humidity levels can saturate the atmosphere and

cause low evaporation rates which could result in increased soil moisture reducing the survival

rate of larvae [19,20]. Variations in rainfall can also explain changes in the Normalized Differ-

ence Vegetation Index (NDVI—a measure of green biomass; [21,22]) which has been widely

used to explain the spatial presence of tsetse flies [23–26]. Green vegetation is likely to provide

better shaded and cool conditions for tsetse flies to rest and breed, but no studies have been

conducted that use NDVI to explain temporal variation in tsetse densities.
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In Kenya, there is a positive correlation between the occurrence of tsetse flies and the loca-

tions of protected areas (Kenya Tsetse and Trypanosomiasis Eradication Council). Although

protected areas serve as breeding hotspots for tsetse flies, these flies are found to be distributed

extensively beyond the boundaries of these protected areas [27,28]. The Kenya Wildlife Service

(KWS) manages these protected areas and prohibits the control of tsetse flies within them, as

part of its duty to protect all animals, thereby preventing the deployment of odour-baited tar-

gets at any density within the national reserve. In Kenya, Glossina pallidipes is the most com-

mon and widely spread tsetse species [29] making it the most significant in the transmission of

animal trypanosomiasis. Despite its significance, information on its abundance is limited to a

few locations that have been targeted for monitoring. Even in areas where these data are avail-

able, there is still a lack of understanding of how tsetse numbers change over time and the role

that environmental and weather variability play. This could be because the adaptability of G.

pallidipes under diverse environmental conditions [30], poses a challenge in pinpointing the

primary environmental factors that govern its dynamics in natural habitat. Given the difficulty

for collecting in-situ data on tsetse abundance for large areas and longer time frames, satellite

data can be a useful tool to predict densities by deriving environmental and weather variables

that influence the development and behaviour of disease vectors such as tsetse flies. The pur-

pose of this study was to determine if satellite-derived environmental factors and weather data

can be used to explain the abundance of G. pallidipes around the Shimba Hills National

Reserve. Specifically, we aimed to 1) analyze where and when G. pallidipes numbers were high

based on trapping data; 2) assess the environmental and weather conditions that may explain

the observed temporal abundance dynamics; and 3) use the evidence obtained to discuss a

management strategy for tsetse control.

Data and methods

Study area

Our study area was the area surrounding Shimba Hills National Reserve (SHNR; 235 km2) in

Kwale County of Kenya (Fig 1). The reserve is one of Kenya’s 65 protected areas, with a hot

and humid climate and annual rainfall ranging from 900 to 1500 mm. SHNR is covered with

patches of natural forest, dense thickets, and grasslands with scattered shrubs. The reserve also

serves as a haven for a diverse range of wild animals, including warthogs (Phacochoerus africa-
nus) and bush pigs (Potamochoerus porcus), which are among the most preferred hosts for G.

pallidipes to feed on [31]. Farmers that cultivate crops and keep livestock (cattle, goats,

chicken, etc) populate the communities surrounding SHNR. The main crops for subsistence

farming include maize and cassava, while the main cash crops are coconuts, mangoes, oranges,

and cashew nuts. Frequent encounters occur between livestock and wildlife near the reserve,

increasing the transmission of trypanosomiasis from wildlife (trypanosomes reservoirs) to live-

stock [32]. As a result, animal AT continues to be a significant constraint to cattle production

in the SHNR area despite the continued efforts of control programs [27,33].

Tsetse fly count data

Between 2017 and 2019, 230 biconical traps that were baited with cow urine and acetone were

used to monitor tsetse flies. These traps were deployed at random locations within a 1km grid,

extending up to 5km from the reserve boundary. The number of traps monitored varied across

different months (Table 1 and Fig 1 coloured dots). A total of 9,060 tsetse flies were captured

during this period, with G. pallidipes comprising 98% of the catch. The remaining flies

belonged to G. austeni and G. brevipalpis but were only collected in five traps. In every period

that the data were collected, traps were emptied every two days for four repeats. At the end of
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the fourth collection, the traps were removed and installed again during the next field cam-

paign. Out of a total of 230 monitored traps, 70 traps were removed from further analysis as

they did not capture any flies during the monitoring period. For this study, for each trap, data

Fig 1. Location of the study area. a) Kwale county boundary, the background shows the 30m-resolution digital elevation

model from the Shuttle Radar Topography Mission (SRTM) as provided by United States Geological Survey (USGS; https://

cmr.earthdata.nasa.gov/search/concepts/C1000000240-LPDAAC_ECS.html). b) Kwale county location within Kenya

(source; https://africaopendata.org/dataset/kenya-counties-shapefile). c) Shimba Hills National Reserve (source; https://

geoportal.icpac.net/layers/geonode:ken_protected_areas), the dots are the tsetse trapping locations and are color-coded

based on the period they were monitored.

https://doi.org/10.1371/journal.pntd.0011398.g001
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that were collected within the same period were combined and are referred to as a single col-

lection. Since all traps were monitored for the same period (8 days) there was no need for fur-

ther standardization.

Environmental and climatic variables

Tsetse fly population density is influenced by host availability, temperature, and moisture

[34,35]. Spatial data for host abundance is hard to obtain, and while other factors like

Table 1. The temporal availability of tsetse count data in Shimba Hills.

Trap setting date Last Collection Year No. of traps Total catches

27-May 03-Jun 2017 126 166

20-Jul 27-Jul 2017 126 144

26-Aug 02-Sep 2017 126 137

18-Oct 23-Oct 2017 126 302

21-Nov 28-Nov 2017 126 984

02-Feb 09-Feb 2018 126 285

07-Mar 14-Mar 2018 126 342

11-Apr 18-Apr 2018 126 435

30-Apr 07-May 2018 126 405

15-Jun 22-Jun 2018 126 206

08-Jul 15-Jul 2018 126 181

20-Feb 27-Feb 2019 55 1056

11-Apr 18-Apr 2019 55 244

21-Jun 28-Jun 2019 160 2130

01-Sep 08-Sep 2019 160 1923

Initial analysis indicated a decrease in tsetse numbers with increasing distance from the outside of the reserve

boundary, with most captures occurring within 1km of the boundary (Fig 2). To further investigate this trend, we

divided the trapping locations into two groups: <1.0 km (proximal group) and >1.0 km (distant group). Each group

was linked to the various environmental datasets separately.

https://doi.org/10.1371/journal.pntd.0011398.t001

Fig 2. The natural logarithmic scale (base 10) of the number of G. pallidipes per trap per day for each observation

(i.e., trap per period) plotted against their distance from the reserve boundary. The dotted line shows the threshold

distance from the reserve outer boundary used to group the proximal (<1.0 km) and the distant traps (>1.0 km).

https://doi.org/10.1371/journal.pntd.0011398.g002
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temperature and moisture can be monitored using satellite sensors, optical sensors are con-

strained by cloud cover. Moreover, finer spatial resolution observations are generally made

less frequent, which affects their timelines and availability throughout the season. We focused

on freely available environmental and weather factors that did not require pre-processing.

These factors included 10-day NDVI composites produced by BOKU (University of Natural

Resources and Life Sciences, Vienna) for the JRC-ASAP (Joint Research Centre–Anomaly

Hotspots of Agricultural Production) at 1km, derived 10-day Land Surface Temperature (LST)

composites provided by Meteosat Third Generation at ~5km and daily Climate Hazards

Group InfraRed Precipitation with Station data (CHIRPS) data with a spatial resolution of

5km. For NDVI and LST, we used composites that covered 60 days before the last day of tsetse

collection for each trap in steps of 10 days and a total of six composites (t1-t6, whereby t1 was

1–10 days before tsetse collection, t2 was 11–20 days, t3 was 21–30 days, t4 was 31–40 days, t5

was 41–50 days, and t6 was 51–60 days). For the daily CHIRPS data, we generated 10-daily

sums (i.e., total rainfall within the 10 days for every pixel) also going back to 60 days before the

last date that tsetse was monitored. For readability, precipitation was annotated with P, and

the time lag variables were renamed as Pt1 to Pt6. Besides the temporal-varying variables, we

also used the distance of each trap to the reserve boundary, and to the nearest woodland, crop-

land, and grassland land cover (Dpark, Dwood, Dcrop, and Dgrass, respectively) to help explain

spatial variability in tsetse abundance. Table 2 details the predictor variables used and the

rationale for including them.

Our dataset of predictors comprised all six 10-day composites for NDVI, LST, and rainfall

(P); we refer to this dataset as D1. In addition, we generated two alternative predictor datasets:

• D2: we kept the “current conditions” t1, but averaged NDVIt2-t6, maximum LSTt2-t6, and

total Pt2-t6;

• D3: we averaged NDVIt1-t3 and NDVIt4-t6, and took maximum LSTt1-t3 and LSTt4-t6 and

total P t1-t3 and P t4-t6.

Table 2. Environmental variables used to relate with tsetse fly numbers.

Data Spatial

resolution (m)

Temporal

resolution (days)

Source/

reference

Hypothesis

NDVI 1000 10 MODIS We hypothesize that tsetse abundance will increase as NDVI values rise. This is

because high NDVI values indicate high vegetation greenness, which could indicate the

presence of cool shaded areas that encourage tsetse fly breeding [36] and thus

population growth.

Precipitation (P) 5000 10 CHIRPS Tsetse abundance is expected to decrease due to flooding if heavy rainfall occurs close

to periods when tsetse was monitored [18], but an increase in rainfall one to two

months before tsetse collection will increase abundance [37].

LST 5000 10 LSA SAF Temperatures above 32˚C or below 16˚C are expected to result in fewer tsetse flies

being trapped [13,38,39].

Distance to the

reserve (Dpark)

- - Tsetse fly localities in Kenya are positively correlated with protected areas that have

abundant wild hosts and shading, so we expected tsetse numbers to decrease when

moving away from the reserve.

Distance to

woodlands (Dwood)

- - Gachoki et al.
[24]

Tsetse abundance will decline when moving away from the woodlands because G.

pallidipes prefer woody vegetation that provides sufficient shade for resting and

breeding.

Distance to croplands

(Dcrop)

- - Gachoki et al.
[24]

Human interference, such as cropping, negatively affects tsetse habitat. Therefore, we

expected a higher abundance further from the croplands.

Distance to

grasslands (Dgrass)

- - Gachoki et al.
[24]

We hypothesized that for traps closer to the reserve, tsetse numbers would rise near the

grasslands because these could be potential grazing zones resulting in host availability,

whereas for traps further away, tsetse numbers would decline because these could have

been vegetated cropland fields.

https://doi.org/10.1371/journal.pntd.0011398.t002
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To better understand the interaction between the predictor variables, we plotted a correla-

tion matrix for the predictors that were used together in each dataset (Fig 3). Most observed

correlations were of the same variables at different time lags, which was to be expected. We

also found negative correlations between NDVI and LST time lags. Because the strong correla-

tions between NDVI and LST could affect modelling results, we fitted models that included

both variables as well as models that excluded LST. We decided to exclude LST, rather than

NDVI because it had a lower spatial resolution (5 km) than NDVI (1 km).

Statistical models

We organized the data such that each record consisted of a single trap monitored during one

of the collection periods in Table 1. To further clarify; if a trap was monitored in all 15 periods,

this resulted in 15 records. In total, we had 1815 observations (n = 1001 for distant and n = 814

for proximal). For each of these records, we extracted the predictor variables described in

Table 2. Given that the tsetse data was over-dispersed and contained high numbers of zeros

(80% in distant group and 34% in proximal group), we tested two modelling techniques to fit

empirical relationships: 1) the Zero-inflated Poisson (ZIP) regression model [40], which effec-

tively deals with overdispersion in data and 2) the Generalized Linear regression Modelling

(GLM) with Poisson family [41,42], which assumes that the data mean equals the variance. We

used the pscl package [43] to fit a ZIP model across all datasets (D1, D2, D3) for both groups

and the mpath package [44] to run a backward stepwise regression, while the Poisson GLM

was fitted using both using the MASS package [45] in R programming. We started the model-

ling by fitting Poisson GLM and ZIP models with all the predictor variables, i.e., including the

correlated LST and NDVI variables and also without the LST (the coarser-resolution variable

of the two) across the three datasets (D1, D2, D3). To assess the models’ performance, we com-

pared the absolute Root Mean Squared Error (aRMSE), relative RMSE (rRMSE; mean/

aRMSE), and the McFadden’s pseudo R2 for predicted versus observed plots across all models

from various datasets. To test the robustness of the identified variables, we also assessed the

contribution of variables in explaining variation in tsetse abundance by applying a randomisa-

tion procedure. Specifically, we fitted 100 models on a random subset of 700 observations

every time a model was fitted, similar to the approach used by Bautista-Cespedes et al. [46].

The routine is only available routine single models and does not support “dual model”

Fig 3. Correlation matrix of the predictor variables for the different datasets (D1 = 10-day variables of t1-t6; D2 = t1 and averaged t2-t6; D3 = averages

of t1-t3 and t4-t6). Blue colours represent positive collinearity, while red colours represent negative collinearity. The size of the symbol indicates the strength

of the correlation.

https://doi.org/10.1371/journal.pntd.0011398.g003
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structure of ZIP model and thus we only applied it to Poisson GLM. Apart from identifying

the contributing variables, we determined their importance by calculating the average p-values

of the model coefficients from the 100 randomized models: low p-value indicate more signifi-

cant variable. To determine the relationship between the predictor variables and the tsetse fly

count observations, we examined the sign of the fitted regression coefficient.

Results

Model performance

The explanatory variables used to predict tsetse numbers in both proximal and distant traps

explained only a small portion of the temporal fluctuations in tsetse numbers, which was evi-

dent from the low McFadden R2 values obtained from the models (Table 3). Even so, the ran-

domised GLM modelling strategies exhibited higher R2 values compared to ZIP models where

R2 values obtained using GLM for distant traps varied between 0.16 and 0.37, depending on

the dataset used (D1, D2, D3 with (a) or without (b) LST) and 0.34 to 0.53 for proximal traps

(Table 3). For this modelling strategy, incorporating 10-day time-varying variables with LST

(D1 (a)) resulted in lower AIC values (1.14*103). This indicates that this model has a better

ability to capture the goodness of fit and complexity when compared to the models that uti-

lized averaged datasets. The aRMSE values exceeded the mean tsetse count in both groups

(Table 3), implying overestimation by the models. A greater precision of the models was

exhibited in proximal traps as the lower rRMSE values (Table 3) correspond to lower residual

variance.

As the R2 values were found to be low, the 1:1 scatter plot appeared visually unappealing.

Consequently, to compare the predicted tsetse count with the actual count, we adopted a bin-

ning approach that was based on the observed tsetse counts rather than individual observa-

tions. We grouped the data into four bins based on observed count for distant traps (0, 1–2,

3–5, and >5 per 8-day trapping period) and for proximal traps (0, 1–20, 21–50, and>50 per

8-day trapping period) and generated double boxplots [47] across the different datasets. The

Table 3. Model evaluation statistics for distant and proximal traps across the three modelling strategies. D1 includes t1-t6, D2 includes t1 and averaged t2-t6, and D3

includes averaged t1-t3 and t4-t6. The models labeled with (a) are those with LST and (b) those without LST. The bold figures represent the least rRMSE values, indicating

lower residual variance. The AIC values are divided by 1000.

ZIP Single 100

Distant traps: mean count = 0.5

AIC R2 aRMSE rRMSE AIC R2 aRMSE rRMSE AIC R2 aRMSE rRMSE

D1 (a) 1.48 0.40 1.48 2.96 1.67 0.35 1.56 3.12 1.14 0.37 1.37 2.74

D1 (b) 1.55 0.30 1.97 3.94 1.80 0.30 1.89 3.72 1.33 0.27 1.88 3.76

D2 (a) 1.67 0.14 2.13 4.26 2.01 0.21 2.01 4.02 1.39 0.24 1.84 3.68

D2 (b) 1.72 0.08 2.18 4.36 2.13 0.16 2.16 4.32 1.47 0.16 1.97 3.94

D3 (a) 1.64 0.19 2.07 4.14 1.91 0.25 1.9 3.8 1.30 0.30 1.7 3.4

D3 (b) 1.68 0.18 2.09 4.18 1.96 0.23 2.01 4.02 1.36 0.25 2.0 4.0

Proximal traps: mean count = 10.4

R2 aRMSE rRMSE R2 aRMSE rRMSE R2 aRMSE rRMSE

D1 (a) 11.56 0.37 26.57 2.55 13.10 0.52 26.87 2.58 11.07 0.53 26.24 2.52

D1 (b) 13.62 0.27 28.49 2.74 15.40 0.44 28.65 2.75 13.23 0.44 28.69 2.76

D2 (a) 14.99 0.21 29.55 2.84 17.04 0.38 29.57 2.84 14.52 0.38 29.15 2.80

D2 (b) 15.85 0.17 30.33 2.92 18.14 0.34 30.32 2.92 15.40 0.34 29.44 2.83

D3 (a) 15.26 0.17 30.15 2.90 17.29 0.37 30.11 2.90 14.59 0.38 29.49 2.84

D3 (b) 15.95 0.16 30.44 2.93 18.17 0.40 30.42 2.93 15.57 0.34 30.28 2.91

https://doi.org/10.1371/journal.pntd.0011398.t003
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double boxplots (Fig 4) show that the predicted values were closer to observed values (i.e.,

close to the one-to-one line) for low tsetse numbers, but as observed numbers increased the

predicted values were lower.

Factors influencing the temporal dynamics of tsetse numbers over time

Although the models had limited success in explaining tsetse number fluctuations, they offer

valuable insights for deploying tsetse control strategies based on identified important variables.

Models incorporating 10-day variables (D1) performed better, but highly correlated variables

could obscure individual effects, making it difficult to determine important variables. There-

fore, the findings discussed hereafter are based on various modelling strategies fitted using

Fig 4. Double boxplots showing the predicted tsetse counts verses the observed tsetse count for the distant (A) and proximal (B) traps. The dashed black line is

the 1:1 line where a closer alignment to the center of the box-whisker indicates a better model fit. The circles are the observations that fall outside 1.5 times the

interquartile range. D1 represents 10-day time-varying variables (t1 to t6), D2 represents t1 and averaged t2-t6 variables, and D3 represents averaged t1-t3 and

t4-t6 variables. The (a) next to the dataset are models with LST while (b) are those without.

https://doi.org/10.1371/journal.pntd.0011398.g004
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datasets D2 and D3, which were constructed with less correlated variables. The total previous

precipitation (31–60 days and 1–30 days) and the succeeding NDVI values (1–30 days), were

consistently identified by all modelling strategies as the most significant temporal varying vari-

ables in explaining changes in tsetse flies (Figs 5, S1, and S2) for distant group. Total precipita-

tion 31–60 days (Pt4-t6) and average NDVI 1–30 days (NDVIt1-t30) positively related to tsetse,

while total precipitation 1–30 days (Pt1-t3) showed a negative correlation.

The found relationships between tsetse numbers and NDVI or precipitation for the distant

traps were to some extent visible when plotting the explanatory variables against the tsetse

observation data. After a month of increased rainfall, tsetse populations tended to rise, even in

areas and periods with more than 500 mm of rain (Fig 6A). However, if the rain persisted for

longer than a month, tsetse numbers began to decline in locations and times with over 500mm

of total rainfall (Fig 6B). As for NDVI, it was observed that high tsetse numbers occurred at

times and locations where NDVI values exceeded 0.7 (Fig 6C).

Fig 5. The significance of predictor variables from the randomised (100) Poisson GLM models for distant trap groups. Dark green indicates variables

added with p-value< 0.05, light green indicates p-value 0.05–0.1, and red indicates p-value> 0.1. Bold italic variables are the top 4 temporal varying variables

explaining tsetse numbers. Green bars with a—sign indicate variables with a negative relationship while the rest have a positive relationship. D1 includes t1-t6,

D2 includes t1 and averaged t2-t6, and D3 includes averaged t1-t3 and t4-t6. The models labelled with (a) are those with LST and (b) those without LST.

https://doi.org/10.1371/journal.pntd.0011398.g005
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In all the modelling strategies applied to proximal traps, almost all variables were consis-

tently deemed important, indicating that it was difficult to differentiate which variables

explained the changes in tsetse numbers near the reserve boundary (Figs 7, S3, and S4). How-

ever, static variables such as distances to various landcovers and the reserve boundary were

repeatedly identified as significant, suggesting that they were more effective in explaining the

temporal dynamics of tsetse than the temporally varying variables.

Discussion

This study aimed to analyse the spatial and temporal abundance dynamics of G. pallidipes
using trapping data and investigate potential environmental and weather factors that explain

these patterns. Our findings showed that tsetse fly numbers decreased with increasing distance

from the reserve boundary, with most captures occurring within a 1.0 km radius of the reserve.

However, the models could not identify crucial variables that explain tsetse numbers in traps

within 1.0 km of the reserve because all variables were deemed important. For traps located

further away (>1.0 km), the most significant variables in explaining the temporal dynamics of

tsetse numbers were total precipitation and average NDVI values. An increase in rainfall for a

month resulted in increased tsetse numbers, but prolonged rainfall for more than a month led

to a decline. For NDVI, tsetse numbers increased with increasing NDVI values a month after

the onset of increased rains.

While rainfall may not have a direct impact on certain aspects of tsetse activities, such as lar-

val development or production rate, it can indirectly affect the dynamics of tsetse populations.

For example, rainfall often leads to an increase in vegetation cover, which is crucial for tsetse

breeding and resting [12,24]. This might explain why tsetse numbers in distant traps rose in

tandem with increasing NDVI values shortly after the start of the rainy season. The amount of

rainfall is also a significant determinant of the spatial and temporal variability of soil moisture

[48]. Moist soil provides an ideal location for the deposition of larvae, making it essential for

their survival [24,36,49]. In instances where rainfall is light and soil can quickly absorb the

water, the soil moisture content increases rapidly, providing a suitable environment for depos-

ited pupae. However, heavy rainfall or already saturated soil can result in surface run-off or

flooding, which may lead to the submersion and death of burrowed pupae [17,50–52]. These

two scenarios could explain the increase in tsetse fly populations at the onset of the rainy sea-

son, followed by a decline as the rains persisted. Additionally, studies conducted in various

Fig 6. Scatterplots showing the relationship between observed tsetse numbers and the two most important variables for the distant traps: a) = Pt3-t6; b) = Pt1-t3

and c) = NDVIt1-t3.

https://doi.org/10.1371/journal.pntd.0011398.g006
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locations have reported higher numbers of tsetse flies caught during the dry season than the

wet season [17,20], which could be due to pupae loss because of flooding.

Ambient temperature plays an important role in shaping the temporal dynamics of tsetse

flies, as it influences their physiological processes [12,13,53]. The mortality rates of adult tsetse

increase as temperatures rise [13,14,54], while the overall survival rate of tsetse decreases at

higher temperatures [14,55,56] lowering tsetse numbers. Also, elevated temperatures enhance

larval production rates and accelerate the emergence of pupae [13], potentially resulting in a

greater number of tsetse. When the temperature drops below a certain threshold, adult tsetse

flies may experience chill coma [15], female flies’ ovaries may develop eggs at a slower rate

[17], and pupae may take longer to emerge [16,17], resulting in reduced tsetse populations.

Fig 7. The significance of predictor variables from the randomised (100) Poisson GLM models for the proximal group. Dark green indicates variables

added with p-value< 0.05, light green indicates p-value 0.05–0.1, and red indicates p-value> 0.1. Bold italic variables are the top 4 temporal varying variables

explaining tsetse numbers. D1 includes t1-t6, D2 includes t1 and averaged t2-t6, and D3 includes averaged t1-t3 and t4-t6. The models labeled with (a) are

those with LST and (b) those without LST.

https://doi.org/10.1371/journal.pntd.0011398.g007
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Although we utilized LST as a proxy for ambient temperature in our study, it was not found to

be a significant factor. However, Lin et al. [15] highlighted that caution should be taken when

using LST as a substitute for ambient temperature since daytime air temperature has been

reported to be lower than the estimated LST due to the high influence of small variations in

heat fluxes.

Although the explanatory variables used in our models had some predictive power, predic-

tion of the fluctuations in tsetse populations over time could not be generated with a high per-

centage of explained model variance. Given the different modelling approaches tested, this

suggests that the three time-varying predictors used—NDVI, LST, and precipitation—could

insufficiently represent the dynamics of tsetse fly populations. For instance, LST cannot accu-

rately represent the ambient temperature [15], which is thought to be more important for

tsetse flies [13,38] and this could have impacted the accuracy of our models. Future studies can

obtain finer estimates of ambient temperature by building predictive models that can be fitted

with LST and elevation as predictor variables [15]. Alternatively, data from several weather sta-

tions in the region can be combined with relevant satellite-based information to predict ambi-

ent temperature over large areas.

Tsetse flies need adequate blood meals to breed, and therefore, the presence and abundance

of host animals is crucial in determining tsetse fly populations. Ngonyoka et al [57] found a

positive correlation between tsetse species (including G. pallidipes) and animal host abundance

in Maasai Steppe and they suggest that animal host information can explain seasonal changes

in tsetse fly population. Notably, the availability of information on blood-hosts for tsetse to

feed on was not included in our study. Therefore, in future studies, it would be beneficial to

integrate host availability data. To collect host data, one can observe their relative abundance

and activities, including tracks, droppings, burrows, and shelters during trap visits [57]. Alter-

natively, tracking livestock and wildlife using Global Positioning Satellite (GPS) tags, camera

traps, or GPS fixes from herders could be useful.

Despite the low model performances, important factors were identified for traps beyond 1.0

km of the reserve boundary, providing information for targeted tsetse control strategies

around Shimba Hills National Reserve. Our results suggest deploying tsetse control within one

month of increased rain in areas with NDVI values greater than 0.7 in these localities. Previous

studies suggest using insecticide-treated traps, targets, and livestock to increase adult mortality

rates [58–61]. Continuous management within 1.0 km of the reserve boundary is necessary

due to high tsetse numbers. The KWS prohibits tsetse management within the reserve since

their primary mandate is to protect wild animals whether good or bad. A potential strategy for

managing tsetse in the surrounding areas is to install insecticide-treated targets or traps at reg-

ular intervals along the perimeter, creating a tsetse barrier. The employment of an odour-

baited target for minimizing the tsetse population and thwarting re-infestation has proven

effective in Zimbabwe [62,63]. Similarly, this strategy has demonstrated success in reducing

tsetse populations in the Shimba Hills National Reserve, but it necessitates consistent funding

to be sustainable.

Conclusion

Tsetse fly abundance varied greatly across space and time. Beyond 1.0 km of the reserve

boundary, our findings indicate that increases in rainfall one month prior to sampling, as well

as subsequent NDVI values, increased the likelihood of high abundance. As such, spatial-tem-

poral information on rainfall and NDVI can help to assess when to expect seasonal increases

in tsetse abundance and the timing and location of control efforts. This information can be

used as a decision-support tool for improved and effective intervention strategies.
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Supporting information

S1 Fig. Slope coefficient plots for the single GLM models for the distant traps. D1 (a 10-day

variable), D2 (t1 and the averaged t2-t6), or D3 (the averaged t1-t3 and t4-t6). (a) and (b) next

to the various dataset is models that included LST and those that did not. The red values repre-

sent variables with a negative relationship, while the blue values indicate a positive relation-

ship. Significant relationships are denoted by an asterisk symbol. The variables av1, av2, and

av3 correspond to the averaged t2-t6, averaged t1-t3, and averaged t4-t6, respectively.

(TIF)

S2 Fig. Slope coefficient plots for the ZIP models for the distant traps. D1 = 10-day variable,

D2 = t1 and averaged t2-t6, D3 = averaged t1-t3 and t4-t6. (a) and (b) next to the various data-

set is models that included LST and those that did not. The red color value shows variables

with negative relationship while the blue values show a positive relationship. The * symbol

indicate the level of significance. av1 = averaged t2-t6; av2 = averaged t1-t3 and av3 = averaged

t4-t6.

(TIF)

S3 Fig. Slope coefficient plots for the single GLM models for the proximal traps.

D1 = 10-day variable, D2 = t1 and averaged t2-t6, D3 = averaged t1-t3 and t4-t6. (a) and (b)

next to the various dataset is models that included LST and those that did not. The red color

value shows variables with negative relationship while the blue values show a positive relation-

ship. The * symbol indicate the level of significance. av1 = averaged t2-t6; av2 = averaged t1-t3

and av3 = averaged t4-t6.

(TIF)

S4 Fig. Slope coefficient plots for the ZIP models for the proximal traps. D1 = 10-day vari-

able, D2 = t1 and averaged t2-t6, D3 = averaged t1-t3 and t4-t6. (a) and (b) next to the various

dataset is models that included LST and those that did not. The red color value shows variables

with negative relationship while the blue values show a positive relationship. The * symbol

indicate the level of significance. av1 = averaged t2-t6; av2 = averaged t1-t3 and av3 = averaged

t4-t6.

(TIF)
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