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A B S T R A C T

The Bias Extension test is commonly used for material characterisation in shear, providing essential input to
composites forming simulations. Specimens of different sizes are used, with some preference for the minimum
length-to-width ratio of 2. A static equilibrium analysis is presented to derive the forces and stress distribution
in a test specimen of this minimum aspect ratio. The stress distribution is shown to depend on two variables,
while usually only one (the pulling force) is measured.

The central region of relatively longer specimens is generally subject to non-homogeneous boundary
conditions, causing non-uniform deformations which can hamper accurate material characterisation. In
addition, the analysis demonstrates that the major part of the pulling force is carried by the outer fibres,
further emphasising the need for critical preparation and evaluation of bias extension testing if high accuracy
characterisation is needed.
1. Introduction

Accurate material characterisation is key to reliable numerical pre-
dictions of material behaviour, certainly to textile and composite form-
ing process simulations. The high anisotropy of these materials induces
a range of different deformation mechanisms, each with their specific
and material dependent response. For composite preforms, in-plane
shear is probably the most researched deformation mechanism, fol-
lowed by friction and out-of-plane bending. Standard in-plane shear
tests include Picture Frame (PF) and Bias Extension (BE) experiments
as benchmarked by Cao et al. [1].

In a PF test, a square piece of composite or fibre reinforcement
is clamped to four hinged rigid bars with the fibres aligned with
the frame. Pulling two opposite corners of the frame leads, ideally,
to uniform trellis shear in the test specimen. The test is particularly
sensitive to clamping and alignment errors. Careful specimen clamping
makes this test a time consuming effort, especially for high temperature
testing as is needed for thermoforming simulations of thermoplastic
composites.

The uniaxial BE test involves extension of a rectangular fibrous
specimen, with initial ±45◦ fibre orientation, of initial width 𝑊0 and
length 𝐿0 = 𝛬 ⋅ 𝑊0 (where the aspect ratio 𝛬≥ 2 [2]), by a pulling
force 𝐹 . As a result, three regions can be distinguished in the deformed
specimen (A, B and C in Fig. 1) with different, but ideally homogeneous
deformations per region.

The BE test can be performed more easily than the PF test, with
the advantage that the fibres are not loaded in tension along the free
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edges of the specimen such that fibre tension does not corrupt the
intended shear load. Proper interpretation of the test results is not
straightforward, partially because of the heterogeneous deformations
over the specimen area. Care must be taken to prevent slip in the
clamps and resulting inhomogeneous strains in BE specimens, e.g. by
means of specimen tabbing or the use of dog-bone shapes. Currently
the test is frequently used for in-plane shear characterisation, not only
for balanced woven fabrics and their thermoset or thermoplastic com-
posites, but also for laminates of unidirectional plies [3–5], non-crimp
fabrics [6] and 3D interlock fabrics [7].

Due to the heterogeneous deformations in the BE specimen, it not a
trivial task to translate the test results (here, usually, force versus shear
angle data) to geometry independent material property data that can
be used in composites forming simulations. For this purpose, a model
is needed which incorporates the evolving specimen geometry and
deformation field, as well as the evolving stress distribution. Preferably,
such a model is in a clear and intuitive closed form, but also parameter
identification procedures may be used for this purpose, in which FE
simulations of the BE test are performed iteratively until the predicted
force-shear angle data approximate the measurements with sufficient
accuracy. The latter, more or less black box, approach may lead to
non-unique results or overfitting. This is less likely with the former
approach, which may be subject to oversimplification, however, as
certain assumptions need to be made to reach a sufficiently simple
closed form expression. Full understanding of the measurement and
the interpretation of the measurement results is crucial to material rep-
resentations of high accuracy in simulations with optimum predictive
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Nomenclature

Roman symbols

A, B, C Deformation regions in BE specimen (Fig. 1)
𝐹 Pulling force (N)
𝐹𝐴, 𝐹𝐶 Pulling force acting on region A and C (N)
𝐿0 Initial specimen length (m)
𝐿k Length of the kink lines (m)
𝑁𝐴, 𝑁𝐶 Transverse force in region A and C (N)
𝑁𝑖𝑗 Internal normal force between regions 𝑖 and

𝑗 (N)
𝑆𝑖𝑗 Internal shear force between regions 𝑖 and 𝑗

(N)
𝑇𝑖 Fibre tension on kink line segments

(𝑖 =1 … 4, see Fig. 4) (N)
𝑢 Clamp displacement (m)
𝑊0 Initial specimen width (m)

Greek symbols

𝜀 Strain (-)
𝛾 Central shear angle (rad)
𝛬 Specimen aspect ratio (𝐿0∕𝑊0) (-)
𝜙 Local stress power per unit area (= 𝜏�̇�) (W)
𝜑 Fibre angle in region A (rad)
𝜏 Equivalent stress resultant (N/m)

Super and subscripts

A, B, C Deformation regions in specimen (Fig. 1)
𝑥, 𝑦 Global coordinate directions, with 𝑦 aligned

with the pulling direction
𝐼 , 𝐼𝐼 First and second principal stress directions
□ Rectangular section in region A in case

specimen is extended (Fig. 6)
▵ Triangular section in region A in case

specimen is extended (Fig. 6)

apabilities. Apart from this, fully closed form solutions for non-trivial
oad cases are instrumental (or even essential) for validation purposes
f the same simulation methods. In this respect, closed form expressions
or the heterogeneous stresses and deformations in a bias extension
pecimen can be most useful to identify potential deficiencies of the
pplied discretised solution method.

Shear testing of textiles and fibre reinforcements received growing
cientific attention since the late 1940s. One of the first images of bias
xtension testing was shown by Weissenberg [8] while also describing
rellis shear in terms of what is now known as the pin-jointed net as-
umptions. Chadwick [9] addressed solutions to enable uniform lateral
eformations during pulling tests in the bias directions, using roller
rips on an endless belt specimen or alternative clamping systems,
oting issues with wrinkling, particularly in long specimens. Early
ias extension measurement results were published by Cooper [10].
ilby [11] introduced an anisotropic linear elastic model to use such
easurement results for mechanical characterisation of woven fabrics.

Skelton published an early overview of fabric shear in 1976 [12],
tating that (at the time) ‘‘it is probable that shear is the least under-
tood mode of the various modes of fabric deformation’’. Noteworthy
bservations include that the number of yarn cross-over points is more
ignificant than the thickness of a fabric, and that side-by-side contact
etween consecutive fibres causes a limit to shear deformation, now
nown as the ’locking angle’. Bassett and Postle reviewed the tests
2

Fig. 1. Schematic representation of a uniaxial bias extension test of specimen with
aspect ratio 𝛬 = 2.

to measure fabric mechanical properties (in particular in shear) in
1999 [13], while the BE test was thoroughly reviewed by Boisse et al.
in 2017 [14].

In the past fifty years, many authors have studied the analogies and
differences between PF and BE testing. Spivak and Treloar [15] found
a different resistance to shearing in both tests, concluding that ‘‘one
may not simply and directly, either theoretically or empirically, obtain
the complete stress–strain properties from a fabric in shear from a test
in bias extension’’. With the development of composites forming sim-
ulations, shear characterisation of fibrous materials became of larger
interest, in search of a true stress–strain relationship. Wang et al. [2]
noted the minimum length for a bias extension specimen (at least twice
the width) to guarantee minimum fibre tension in the central region
with maximum shear. Lebrun et al. [16] derived equations to describe
the kinematics of the BE test, based on the pin-jointed net assumptions
and attributed differences with PF results to parasitic fibre tensions
with the latter. Harrison et al. [17] introduced a power equilibrium
analysis to normalise the force-shear angle data (further elaborated
in [18]) and found reasonable agreement between the results of PF
and BE tests. Inter-yarn slip was noted to occur at higher shear angles,
not in agreement with the pin-jointed net assumptions and hence not
following the ideal kinematics, leading to the recommendation of a
direct measurement of the local shear angle. Launay et al. [19] derived
a similar power equilibrium relation and experimentally showed that
PF and BE results are very close when the tension in the picture frame
is kept zero during the test. Komeili and Milani [20] confirmed the
necessity of accurate shear angle measurements for a proper evaluation
of the test results. Apart from inter-tow slip, Haghi Kashani et al. [21]
emphasised the effect of intra-yarn shear, combined with compaction
as also addressed by Xiao et al. [22].

Meso scale considerations of woven fabrics have indicated physical
limits to the pin-jointed net assumptions, partially because rotation
around cross-over points is hampered once the gaps between the yarns
close with ongoing trellis shear, leading to yarn slip, intra-yarn shear
and lateral (in-plane) yarn compression [21]. The increased resistance
to shearing after reaching the locking angle leads to wrinkling [23]
for both PF and BE tests, although for different global shear angles.
Modifications have been proposed to extend the applicability of the
kinematic model [22].
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Fig. 2. Shear angle distributions in simulated bias extension specimens with a nominal shear angle of 45◦ for two aspect ratios (2 and 3); a) over the full strain range from 0◦

to 50◦; b) within a limited strain window from 40◦ to 50◦ (shear angles outside the range are plotted in grey). The material properties and boundary conditions are as specified
in Tables 1 and 2.
Also on the macroscopic scale not all earlier doubts and questions
have been fully resolved to date, for instance as addressed in [24], mak-
ing it difficult to interpret the measurement results unambiguously. The
solution for specimens of very long length [25] was found for specimens
of finite length (2<𝛬<∞) when elaborating stress equilibrium with free
boundary conditions along the specimen’s edges [24,26]. This differs
from the commonly accepted power equilibrium solution [1,18,19,27].

In addition to these contradicting observations, numerical simula-
tions of BE experiments show specimen size dependent strain gradients.
Only for the minimum length-to-width ratio (𝛬=2) the predicted shear
angles are piecewise uniform, which is not the case for larger aspect
ratios. Fig. 2 shows the predicted shear angle distribution for 𝛬=2 and
3 for a biaxially reinforced carbon/PEEK material for equal nominal
strain and strain rate (ideally leading to 45◦ shear), simulated using
the Aniform implicit Finite Element (FE) software [28]. The specimens,
with an initial width of 100 mm and initial lengths of 200 mm and
300 mm, respectively, were modelled with a regular grid of fibre
aligned linear triangular elements with shortest edge lengths of 2.5 mm.
The deformations shown here were found to be converged with mesh
refinement. Strain gradients become apparent for the larger aspect ratio
when a sufficiently narrow window is chosen for the displayed strain
levels (Fig. 2b). Nonetheless, the deformations of the elements were
as to be expected for trellis shear, with negligible fibre strains (less
than 0.008%). Varying the specimen’s aspect ratio from 2 to 5 leads
to further shear variations along the specimen’s longitudinal axis of
symmetry, as illustrated in Fig. 3. Such strain variations complicate
the use of the test for accurate material characterisation. The results
presented here will be addressed in more detail in the later part of this
paper.

To clarify the effects of specimen sizes and boundary conditions, a
macroscopic equilibrium analysis of a BE specimen will be elaborated,
firstly for 𝛬 = 2. All forces and stress resultants are mutually related
by means of the equilibrium equations. It will be shown that, for a
given deformation field, two of the independent variables must be
known (which can be any pair) to determine all other variables, while
usually only one of those is measured during the test (the pulling
force exerted on the specimen). This confirms the need for additional
assumptions or instrumentation to permit quantitative interpretation
of the measurements. The power equilibrium solution can be derived
from this analysis, also for specimens of larger aspect ratios. Not only
the pulling force, but also all other forces can be expressed in terms of
the equivalent stress resultants in region A and B. These results serve
a proper understanding of the limitations of the simple theories for BE
specimens of intermediate length and promote awareness of the pitfalls
in translation of BE test results to material property data for constitutive
models in process simulations.
3

Fig. 3. Shear angle distributions in simulated bias extension specimens of initial
width 𝑊0=100 mm with a nominal shear angle of 45◦ for aspect ratios from 2 to
5, plotted versus the initial coordinates along the longitudinal axis from centre (𝑦=0)
to edge (𝑦 = 𝐿∕2). The vertical lines mark the transition from the central region A
to the undeformed region C. The material properties and boundary conditions are in
conformance with Tables 1 and 2, respectively.

2. Theory

After a summary of the kinematics of the BE test, a system of
equilibrium equations will be derived, from which the internal forces
in a BE specimen of minimum length can be solved. These forces will
be translated to the stress resultants in the three distinct regions of the
specimen. The results will then be further elaborated for specimens of
a larger aspect ratio.

2.1. Kinematic relations and their limitations

Before going into details, the kinematics of the BE test will be
briefly recapitulated, which are the basis for the common theories used
for analyses of the test results to obtain material property data. The
common underlying simplifications and assumptions are:

1. The fibres are inextensible;
2. There is no slip between the fibres and the clamping is perfect;
3. The bending stiffness of the fibres is negligible;
4. The deformations are uniform within all three distinct regions of

the BE specimen;

which imply pure trellis shear deformations without slippage. As a
result of these assumptions, region C cannot be deformed and the initial
length-to-width ratio must satisfy 𝛬 ≥ 2. The fibre angle 𝜑 in the
central region A, with respect to the longitudinal axis of the specimen,
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is related to the central shear angle 𝛾 by
1
2𝜋 = 2𝜑 + 𝛾. (1)

In the absence of slip, the clamp displacement 𝑢 (and elongation of
region A) is related to the fibre angle by
𝑢
𝑊0

= (𝛬 − 1) ⋅
(
√

2 cos𝜑 − 1
)

, (2)

leading to the shear rate in region A equal to

�̇� = −2�̇� =

√

2
(𝛬 − 1) sin𝜑

⋅
�̇�
𝑊0

. (3)

The shear angle and shear rate in region B are half of their respective
counterparts in region A, while both are equal to zero in region C.

This kinematic model of pure trellis shear or the pin-jointed net
approach is known to have practical limitations. Tow-tow slippage may
occur at the free edges of a BE specimen [2]. The small but finite
bending rigidity of the fibres prevents a discrete step in shear defor-
mation between two regions, although in-plane bending is negligible if
the specimen size is large enough [29]. Slip between the clamps and
the specimen occurs easily during BE testing. All these effects lead to
inhomogeneous deformations which need to be eliminated or corrected
for to make the test results suitable for interpretation using the standard
kinematics, for instance by directly measuring the local shear angle. In
addition to this we have shown an effect of the specimen’s aspect ratio,
which can be explained from a basic equilibrium analysis.

2.2. Equilibrium of forces and moments

The equilibrium analysis (neglecting inertial effects) starts from
the common assumptions, mentioned above. Thus, a BE specimen can
be subdivided into triangular or quadrilateral areas of homogeneous
deformation, separated by individual fibres between different regions.
Here we will analyse the limit case 𝛬 = 2 such that region A is fully
surrounded by regions B.

Consider a quarter of the Bias Extension specimen, see Fig. 4. The
three regions A, B and C are represented, together with the fibres on
the lines separating the three areas, denoted as the kink lines. Here,
these kink lines are considered to be straight wires under non-uniform
tension. We will address each region and kink line one by one.

Region A: The shear forces on the legs of the right triangle in region
A must be zero due to symmetry conditions. As a result, equilibrium
of moments taken around the centre of the hypotenuse is satisfied
automatically for all values of 𝐹𝐴, 𝑁𝐴, 𝑁𝐴𝐵 and 𝑆𝐴𝐵 . In other words,
equilibrium of moments does not add any other constraint than already
implied by force equilibrium,

𝛴𝐹𝑥 = 0 ⇒ 𝑁𝐴 = 𝑁𝐴𝐵 ⋅ cos𝜑 − 𝑆𝐴𝐵 ⋅ sin𝜑,

𝛴𝐹𝑦 = 0 ⇒ 1
2𝐹𝐴 = 𝑁𝐴𝐵 ⋅ sin𝜑 + 𝑆𝐴𝐵 ⋅ cos𝜑.

(4)

The legs of the triangle coincide with the principal stress directions
in this region. In the absence of tension in the outer end of the yarn
corresponding to kink line A/B (𝑇1 = 0), the pulling force on region A
equals the external force, 𝐹𝐴 = 𝐹 .

Region B : The base of this isosceles triangle is the free edge of
the BE specimen, with zero shear and normal forces. The equilibrium
equations read (considering moment equilibrium around the top of the
triangle):

𝛴𝐹𝑥 = 0 ⇒ 1
2

√

2 ⋅
(

−𝑁𝐵𝐶 + 𝑆𝐵𝐶
)

= 𝑁𝐵𝐴 ⋅ cos𝜑 − 𝑆𝐵𝐴 ⋅ sin𝜑,

𝛴𝐹𝑦 = 0 ⇒ 1
2

√

2 ⋅
(

𝑁𝐵𝐶 + 𝑆𝐵𝐶
)

= 𝑁𝐵𝐴 ⋅ sin𝜑 + 𝑆𝐵𝐴 ⋅ cos𝜑,

𝛴𝑀 = 0 ⇒ 𝑁𝐵𝐶 = 𝑁𝐵𝐴.

(5)

Region C : As for Region A, the shear forces on the legs of triangle
C must be zero due to symmetry conditions. Similarly, equilibrium of
4

Fig. 4. Free Body Diagrams of the separated regions and lines of discontinuity,
illustrating the internal normal forces 𝑁𝑖𝑗 , internal shear forces 𝑆𝑖𝑗 , external forces
𝐹𝑖 and fibre tensions 𝑇𝑖.

moments is satisfied automatically for all values of 𝐹𝐶 , 𝑁𝐶 , 𝑁𝐶𝐵 and
𝑆𝐶𝐵 .

𝛴𝐹𝑥 = 0 ⇒ 𝑁𝐶 = 1
2

√

2 ⋅
(

𝑁𝐶𝐵 − 𝑆𝐶𝐵
)

,

𝛴𝐹𝑦 = 0 ⇒ 1
2𝐹𝐶 = 1

2

√

2 ⋅
(

𝑁𝐶𝐵 + 𝑆𝐶𝐵
)

.
(6)

Kink line A/B : Tension can build up in the yarn on this kink line,
due to the discontinuous shear when crossing this line. The tension
must be zero at the free edge of the specimen, 𝑇1 = 0. This yarn has
zero resistance against normal forces, such that force equilibrium in
tangential and normal directions read, respectively,

𝛴𝐹𝑡 = 0 ⇒ 𝑇2 = 𝑆𝐴𝐵 − 𝑆𝐵𝐴,

𝛴𝐹𝑛 = 0 ⇒ 𝑁𝐴𝐵 = 𝑁𝐵𝐴.
(7)

Kink line B/C : Similar arguments as above, now with a clamp-
ing condition at the edge of the specimen, lead to force equilibrium
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𝜏

𝜏

conditions in tangential and normal directions, respectively,

𝛴𝐹𝑡 = 0 ⇒ 𝑇4 − 𝑇3 = 𝑆𝐵𝐶 − 𝑆𝐶𝐵 ,

𝛴𝐹𝑛 = 0 ⇒ 𝑁𝐵𝐶 = 𝑁𝐶𝐵 .
(8)

At the cross-over point the fibres on both kink lines can transfer
their tension mutually, subject to force equilibrium. Equilibrium in the
𝑥-direction is secured by symmetry conditions, whereas kink line force
equilibrium in the 𝑦-direction implies

𝛴𝐹𝑦 = 0 ⇒ 1
2

√

2 ⋅ 𝑇3 = 𝑇2 ⋅ cos𝜑. (9)

It can be shown that the combination of the foregoing 12 equations
(including 𝑇1 = 0 and hence 𝐹𝐴 = 𝐹 , the known externally applied
force) satisfies force and moment equilibrium (around the triple point)
of the entire system of elements,

𝛴𝐹𝑥 = 0 ⇒ 1
2

√

2 ⋅ 𝑇4 + 𝑇1 sin𝜑 =

= 𝑁𝐶 + 1
2

√

2 ⋅ 𝑇3 + 𝑇2 ⋅ sin𝜑 +𝑁𝐴,

𝛴𝐹𝑦 = 0 ⇒ 1
2𝐹𝐶 + 1

2

√

2 ⋅ 𝑇4 =
1
2𝐹 ,

𝛴𝑀 = 0 ⇒ 1
2𝐹𝐶 +𝑁𝐶 =

√

2𝑁𝐴 cos𝜑 + 1
2

√

2𝐹 sin𝜑.

(10)

These do not add any further constraints to the overall solution, leaving
two of the 14 variables (𝑁𝐴𝐵 , 𝑁𝐵𝐴, 𝑁𝐵𝐶 , 𝑁𝐶𝐵 , 𝑆𝐴𝐵 , 𝑆𝐵𝐴, 𝑆𝐵𝐶 , 𝑆𝐶𝐵 , 𝑁𝐴,
𝑁𝐶 , 𝐹𝐶 , 𝑇2, 𝑇3, 𝑇4) as unknowns. Observing the linearity of the system
of equations, it is legitimate to choose various combinations of two
driving forces, as long as these are mutually independent. Here, we
leave 𝑆𝐶𝐵 and 𝑁𝐴 as unknowns when solving for the other 12 below.

2.3. Solutions of the forces

Solving the total system of Eqs. (4)–(9) leads to the following results.
Normal forces between the regions:

𝑁𝐴𝐵 = 𝑁𝐵𝐴 = 𝑁𝐵𝐶 = 𝑁𝐶𝐵 = sin𝜑 ⋅ 1
2𝐹 + cos𝜑 ⋅𝑁𝐴, (11)

Observing that region B is an isosceles triangle with zero shear and
normal force on the base edge it can be confirmed that both the shear
and normal forces on the legs must be symmetric.

Shear forces between the regions:

𝑆𝐴𝐵 = cos𝜑 ⋅ 1
2𝐹 − sin𝜑 ⋅𝑁𝐴, (12)

𝑆𝐵𝐶 = 𝑆𝐵𝐴 =

√

2 + cos𝜑 − sin𝜑
cos𝜑 + sin𝜑

(

sin𝜑 ⋅ 1
2𝐹 + cos𝜑 ⋅𝑁𝐴

)

, (13)

with the latter being proportional to the previously solved normal
forces 𝑁𝐴𝐵=𝑁𝐵𝐴=𝑁𝐵𝐶 =𝑁𝐶𝐵 , for a given fibre angle 𝜑.

Kink line tensions:

𝑇2 =
1

cos𝜑 + sin𝜑

(

(1 −
√

2 sin𝜑) ⋅ 1
2𝐹 − (1 +

√

2 cos𝜑) ⋅𝑁𝐴

)

, (14)

𝑇3 =
cos𝜑

cos𝜑 + sin𝜑

(

(
√

2 − 2 sin𝜑) ⋅ 1
2𝐹 − (

√

2 + 2 cos𝜑) ⋅𝑁𝐴

)

, (15)

𝑇4 = (
√

2 − sin𝜑) ⋅ 1
2𝐹 − cos𝜑 ⋅𝑁𝐴 − 𝑆𝐶𝐵 . (16)

Loads on Region C :

𝑁𝐶 = 1
2

√

2
(

sin𝜑 ⋅ 1
2𝐹 + cos𝜑 ⋅𝑁𝐴 − 𝑆𝐶𝐵

)

, (17)

𝐹𝐶 =
√

2
(

sin𝜑 ⋅ 1
2𝐹 + cos𝜑 ⋅𝑁𝐴 + 𝑆𝐶𝐵

)

. (18)

The resulting expressions (11)–(18) show that only the forces re-
lated to region C and kink line B/C (i.e. 𝑁𝐶 , 𝐹𝐶 and 𝑇4) are dependent
on the shear force 𝑆𝐶𝐵 . All other variables can be expressed in only
the external force 𝐹 and normal force 𝑁𝐴, related to, respectively,
the longitudinal and transverse stress in region A. Strictly, there is no
prior knowledge on the value of 𝑆𝐶𝐵 . It can be argued, however, that
with zero shear and a zero shear rate in region C also the shear stress
(and thus the shear force 𝑆𝐶𝐵) must be zero, leaving also the three
mentioned forces a function of 𝐹 and 𝑁𝐴 only, i.e.

𝐹𝐶 = 2𝑁𝐶 =
√

2𝑁𝐴𝐵 , (19)

which further simplifies the solution of the system of equations.
5

Fig. 5. Force in the principal stress direction of Region B.

2.4. Stress resultants

The piecewise uniform shear and shear rates lead to a uniform
state of stress and stress resultants for each of the three regions.
Consequently, the stress resultants (or: ‘‘thickness integrated stresses’’
or ‘‘forces per unit width’’) in each region are directly related to the
forces considered above. Using the notation and dimensions introduced
in [24], we can derive the following results. The side lengths of the
regions are proportional to the initial width of the specimen 𝑊0, as
both kink lines have a constant length

𝐿k = 1
2

√

2 𝑊0. (20)

The principal directions 𝐼 and 𝐼𝐼 of the stress resultant 𝝉 in region A
coincide with the global 𝑥− and 𝑦−coordinate system. This implies that

𝜏𝖠𝐼 = 𝜏𝖠𝑦 =
1
2𝐹

𝐿k sin𝜑
=

√

2
sin𝜑

1
2𝐹

𝑊0
,

𝜏𝖠𝐼𝐼 = 𝜏𝖠𝑥 =
𝑁𝐴

𝐿k cos𝜑
=

√

2
cos𝜑

𝑁𝐴
𝑊0

.

(21)

Hence, the forces 𝐹 and 𝑁𝐴 are proportional to the principal stress
resultants in the central region A and thus fully define the local
stress resultant state in this region. Note the difference with the result
obtained earlier in [24] as now a non zero transverse stress is permitted.
The equivalent stress resultant, following from the local stress power
per unit area 𝜙 (𝜏 = 𝜙∕�̇�), can be expressed as (according to Eq. (34)
in [24])

̃𝖠 = 1
2

(

𝜏𝖠𝐼 tan𝜑 −
𝜏𝖠𝐼𝐼
tan𝜑

)

, (22)

which now leads to

̃𝖠 =

√

2
2𝑊0

⎛

⎜

⎜

⎝

1
2𝐹

cos𝜑
−

𝑁𝐴
sin𝜑

⎞

⎟

⎟

⎠

. (23)

Region B is in a state of uniaxial stress, with the principal stress
directions parallel and normal to the free edge. Considering the upper
half of this triangle (see Fig. 5), it is found straightforwardly that the
normal force acting on the axis of symmetry equals

𝐹𝐵 = sin 𝛼 ⋅𝑁𝐵𝐶 + cos 𝛼 ⋅ 𝑆𝐵𝐶 . (24)

With zero forces acting on the free edge, the forces on edge 𝐵𝐶 must
satisfy

cos 𝛼 ⋅𝑁𝐵𝐶 − sin 𝛼 ⋅ 𝑆𝐵𝐶 = 0, (25)

such that 𝐹𝐵 can also be expressed as

𝐹 =
𝑆𝐵𝐶 . (26)
𝐵 cos 𝛼
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𝜏

𝜏

The first principal stress resultant in region B follows as

𝜏𝖡𝐼 =
𝐹𝐵

𝐿k sin 𝛼
=

√

2
sin 𝛼

𝐹𝐵
𝑊0

=

√

2
sin 𝛼 cos 𝛼

𝑆𝐵𝐶
𝑊0

. (27)

As the second principal stress 𝜏𝖡𝐼𝐼 = 0, the equivalent stress resultant is
found as

𝜏𝖡 = 1
2 𝜏

𝖡
𝐼 tan 𝛼 =

√

2
2 cos2 𝛼

𝑆𝐵𝐶
𝑊0

= 2
√

2 + cos𝜑 − sin𝜑

𝑆𝐵𝐶
𝑊0

. (28)

Using the results of the previous section we may substitute (13) into
(28), leading to

̃𝖡 = 2
(cos𝜑 + sin𝜑) ⋅𝑊0

(

sin𝜑 ⋅ 1
2𝐹 + cos𝜑 ⋅𝑁𝐴

)

(29)

and conclude that also the equivalent stress resultants 𝜏𝖠 and 𝜏𝖡

can be expressed in terms of 𝐹 and 𝑁𝐴 (or the corresponding stress
components).

2.5. Forces in terms of stress resultants

Instead of a system of equations in terms of forces, we can formulate
these relations in terms of the equivalent stress resultants 𝜏𝖠 and 𝜏𝖡

as the independent variables. The full response of a BE specimen can
be described explicitly once a constitutive equation 𝜏(𝛾, �̇�) has been
specified, given the earlier assumed shear angles (𝛾𝖠 = 𝛾, 𝛾𝖡 = 1

2 𝛾)
and shear rates (�̇�𝖠 = �̇� , �̇�𝖡 = 1

2 �̇�).
Linear combination of the earlier results, in particular the equivalent

stress resultants (23), (29) and the solutions (11)–(19), leads to

𝐹 =
(
√

2 cos𝜑 ⋅ 𝜏𝖠 + 1
2

(

1 + 1
tan𝜑

)

⋅ 𝜏𝖡
)

⋅𝑊0,

𝑁𝐴 =
(

−
√

2 sin𝜑 ⋅ 𝜏𝖠 + 1
2 (1 + tan𝜑) ⋅ 𝜏𝖡

)

⋅ 1
2𝑊0,

𝐹𝐶 = 1
2

√

2 (cos𝜑 + sin𝜑) 𝜏𝖡 ⋅𝑊0,

𝑆𝐵𝐶 = 1
2

(
√

2 + cos𝜑 − sin𝜑
)

𝜏𝖡 ⋅𝑊0,

𝑇4 = cos𝜑 ⋅𝑊0𝜏
𝖠 + 1

4

√

2 (sin𝜑 + cos𝜑)
(

1
sin𝜑 −

√

2
)

⋅𝑊0𝜏
𝖡.

(30)

These equations show that a constitutive relation or assumption is
needed to determine the internal forces if only the pulling force 𝐹 and
the fibre angle 𝜑 are known. Also the remaining terms of the full field
solution of the stress resultants in all three regions can be expressed in
terms of 𝜏𝐴 and 𝜏𝐵 , as addressed in the Appendix.

2.6. Power equilibrium for minimum and longer length specimens

The relation between the pulling force 𝐹 , the central fibre angle 𝜑,
and the equivalent stress resultants 𝜏 in region A and B given in (30)
can be reformulated as
√

2 sin𝜑 ⋅
𝐹
𝑊0

= sin 2𝜑 ⋅ 𝜏𝖠 + 1
2

√

2 (cos𝜑 + sin𝜑) ⋅ 𝜏𝖡. (31)

This is consistent with the earlier mentioned result of the power
equilibrium approach [1,24,26,27],

(𝛬 − 1)
√

2 sin𝜑 ⋅
𝐹
𝑊0

= (2𝛬 − 3) sin 2𝜑 ⋅𝜏𝖠+ 1
2

√

2 (cos𝜑 + sin𝜑) ⋅𝜏𝖡, (32)

or, when expressed in terms of the shear angle 𝛾 (where it may be
noted that the ‘‘shear force per unit length’’ and the ‘‘equivalent stress
resultant’’ are interchangeable, see [24]),

(𝛬 − 1)
(

cos 1
2 𝛾 + sin 1

2 𝛾
)

⋅
𝐹
𝑊0

= (2𝛬 − 3) cos 𝛾 ⋅ 𝜏𝖠 + cos 1
2 𝛾 ⋅ 𝜏

𝖡, (33)

where in the current case the aspect ratio equals 𝛬=2. With the force
equilibrium analysis, we now also have the expressions for all other
forces and stress resultants available. This can be most useful for a
better understanding and validation of numerical simulation results,
but also highlights and explains other phenomena, as will be shown
below.
6

Fig. 6. Extension of the length of a BE specimen by adding Region 𝖠□ in the centre.

Considering specimens of longer length (i.e. 𝛬 > 2), the central
region may be artificially extended with a rectangular region 𝖠□

(see Fig. 6), with initial length (𝛬 − 2)𝑊0. According to the original
assumptions, the deformation in the added region 𝖠□ is supposed to be
equal to the deformation in the neighbouring triangle 𝖠▵. The loading
condition may well be different, however, as 𝖠□ is subjected to only
the uniaxial pulling load 𝐹 as elaborated previously [24,26].

Taking the area average of the equivalent stress resultant in Region
A under these assumptions, we find

̄̃𝐴 = 𝐴▵

𝐴▵ + 𝐴□
⋅ 𝜏▵ + 𝐴□

𝐴▵ + 𝐴□
⋅ 𝜏□ =

=
1
8𝑊

2
0

1
8 (2𝛬 − 3)𝑊 2

0

⋅

√

2
2𝑊0

⎛

⎜

⎜

⎝

1
2𝐹

cos𝜑
−

𝑁𝐴
sin𝜑

⎞

⎟

⎟

⎠

+

+
1
4 (𝛬 − 2)𝑊 2

0
1
8 (2𝛬 − 3)𝑊 2

0

⋅

√

2
2𝑊0

⎛

⎜

⎜

⎝

1
2𝐹

cos𝜑

⎞

⎟

⎟

⎠

=

=

√

2
2𝑊0

⎛

⎜

⎜

⎝

1
2𝐹

cos𝜑
−

𝑁𝐴
(2𝛬 − 3) sin𝜑

⎞

⎟

⎟

⎠

.

(34)

Combining (34) with (29) and eliminating 𝑁𝐴 now leads to the original
power equilibrium result (32) for arbitrary specimen length. This is
not surprising, as both elaborations are based on the same assump-
tions. Note that the current result is not restricted to rate independent
behaviour, as indicated earlier for the power equilibrium result [25].

Now, we have more detailed background information to the pre-
vious power-based analyses. In the general case transverse stresses
are generated between the regions A and B (𝑁𝐴 ≠ 0) such that
the central area A of a longer specimen (𝛬 > 2) is subject to non
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uniform boundary conditions. This was overlooked in previous publica-
tions [24,26] where homogeneous boundary conditions were assumed.
The final result derived there hence only applies to very long specimens
(𝛬 → ∞). Revisiting the original assumptions of both analyses, it is
counterintuitive to assume equal deformations between the two sub
regions subject to a different transverse load. Depending on the sign of
the transverse force 𝑁𝐴, the free section is expected to become wider
r narrower than the triangle between regions B. This also explains the
train gradients in numerical simulations of longer length specimens.
or a compressive transverse load, the shear angle will be highest in
▵ and decrease towards 𝖠□.

. Application of the theoretical results

Reviewing the results derived so far, it is obvious that in-plane shear
haracterisation by means of BE tests on minimum length specimens
equires more than only measuring the pulling force versus the shear
ngle data. This can be resolved by proposing additional assumptions,
uch as rate independent material behaviour, leading to a relation
etween the equivalent stress resultants in regions A and B. If this
elation is specified by e.g. 𝜏(𝛾) = ∑𝑛

𝑖 𝑐𝑖𝑁𝑖(𝛾) with shear angle 𝛾, using
onstants 𝑐𝑖 and shape functions 𝑁𝑖(𝛾) (polynomials, for instance), then
hese constants can be determined by direct linear least squares fitting
f the force versus shear angle data (33), without having to use iterative
echniques as described previously [18,26,29]. The assumption of rate
ndependency is not applicable to prepregs and laminates in general,
ith the viscous matrix inducing a rate dependent response during the

orming stage.
Measuring other forces would complicate the experiment, although

t could be attempted to mount the specimen in segmented clamps
y which the tension in the outer fibres at the clamped edge 𝑇4
nd the remaining pulling force in the clamped region 𝐹𝐶 could be

distinguished and thus provide the missing information. Certainly for
high temperature measurements such clamping would seem highly
impractical, however.

Nonetheless, the findings above can be exploited in alternative
manners. We will discuss the assumption of initial material linearity
and the combination of measurement results for different specimen
lengths. The latter will be validated against numerical simulations and
evaluated for their applicability in experimental practice.

3.1. Linearity

Many materials, whether of an elastic, viscous or viscoelastic nature,
behave in a linear fashion for small deformations (i.e. the force or stress
as a function of the displacement, strain, velocity or strain rate). In this
case, we could expect the force to depend linearly on the crosshead
displacement and/or velocity, or respectively on the shear angle and/or
shear rate. Observing that the shear angle and the shear rate in region
B are half of their respective counterparts in region A, we can explore
the effect of such linearity. The effect that fibre tension might have
on the shear response of the material under consideration is neglected
here, noting that fibre tension is relatively low for uniaxial BE testing.
In case the onset (i.e. when 𝜑 = 1

4𝜋) of the material response to loading
is linear in the sense that lim𝜑→ 𝜋

4
𝜏𝖡 = 1

2 𝜏
𝖠, then with (30) the pulling

force 𝐹 and the central equivalent stress resultant 𝜏𝖠 initially relate
according to

lim
𝜑→ 𝜋

4

𝑊0𝜏𝖠

𝐹
= lim

𝜑→ 𝜋
4

1
√

2 cos𝜑 + 1
4

(

1 + 1
tan𝜑

) = 2
3 , (35)

which provides a simple first estimate of the underlying material re-
sponse (i.e. the equivalent stress resultant) to shear deformation. The
7

ratios between the other forces and 𝐹 for small shear angles then
straightforwardly follow as

lim
𝜑→ 𝜋

4

𝑁𝐴
𝐹

= lim
𝜑→ 𝜋

4

1 − 4
√

2 sin𝜑 + tan𝜑

2 + 8
√

2 cos𝜑 + 2 1
tan𝜑

= − 1
6 ,

lim
𝜑→ 𝜋

4

𝐹𝐶
𝐹

= lim
𝜑→ 𝜋

4

1
2

√

2 (cos𝜑 + sin𝜑) ⋅ 1
3 = 1

3 ,

lim
→ 𝜋

4

𝑆𝐵𝐶
𝐹

= lim
𝜑→ 𝜋

4

1
2

(
√

2 + cos𝜑 − sin𝜑
)

⋅ 1
3 = 1

6

√

2,

lim
𝜑→ 𝜋

4

𝑇4
𝐹

= lim
𝜑→ 𝜋

4

√

2 + 6 cos𝜑 +
√

2
tan𝜑 − 2 sin𝜑

2 + 8
√

2 cos𝜑 + 2 1
tan𝜑

= 1
3

√

2,

(36)

hich shows initial transverse compression in region A (i.e. 𝑁𝐴 < 0).
urther, the second relation shows that the pulling force on region C is
nly 1

3 of the applied pulling force 𝐹 , which means that 2
3 of the pulling

force is transferred to the clamps by the outer fibres by means of 𝑇4,
clearly explaining the issues with proper clamping during a BE test.

Further, using (21) this translates to

lim
𝜑→ 𝜋

4

𝜏𝖠𝑥
𝜏𝖠𝑦

= − 1
3 , (37)

implying that the stress state in region A is biaxial (longitudinal tension
transverse compression) from the beginning for initially linear mate-

ial behaviour. This ratio between the normal stresses can be observed
o be different for other loading conditions: for PF specimens it is -1
24,30] while it is 0 for the BE long length solution (𝛬 → ∞) [24],
n this respect confirming the earlier quoted statement of Spivak and
reloar on the difference between (PF) shear and bias extension.

.2. Exploiting different length solutions

Noting that the relation between the pulling force and the equiva-
ent stress resultant depends on the aspect ratio 𝛬, see (31) and (32),
he pulling force may be measured for e.g. 𝛬=2 and 𝛬=3, leading to,
espectively,
√

2 sin𝜑 ⋅
𝐹(2)

𝑊0
= sin 2𝜑 ⋅ 𝜏𝖠 + 1

2

√

2 (cos𝜑 + sin𝜑) ⋅ 𝜏𝖡,

2
√

2 sin𝜑 ⋅
𝐹(3)

𝑊0
= 3 sin 2𝜑 ⋅ 𝜏𝖠 + 1

2

√

2 (cos𝜑 + sin𝜑) ⋅ 𝜏𝖡.
(38)

If the equivalent stress resultants are equal in both cases (i.e. the
relevant state variables such as 𝛾, �̇� are equal for both tests), then
subtraction leads to
√

2 sin𝜑 ⋅
(

2
𝐹(3)

𝑊0
−

𝐹(2)

𝑊0

)

= 2 sin 2𝜑 ⋅ 𝜏𝖠, (39)

which gives an explicit expression for the central stress resultant as
a function of the fibre angle 𝜑 and the forces measured on the two
different specimens,

̃𝖠 =

√

2
4 cos𝜑

⋅
(

2
𝐹(3)

𝑊0
−

𝐹(2)

𝑊0

)

. (40)

his approach bears clear similarity to the approach proposed in [20],
ut now including rate dependent materials. A similar procedure can
e used for all other dependent variables. For example, by means of
23) the transverse force for the minimum length solution follows as

𝐴 (2) = tan𝜑
(

𝐹(2) − 𝐹(3)
)

(41)

nd the corresponding principal stress resultants in the central region,
sing (21),

𝜏𝖠𝐼 =
1
2

√

2

sin𝜑
⋅
𝐹(2)

𝑊0
,

𝜏𝖠 =

√

2 sin𝜑
⋅
𝐹(2) − 𝐹(3) .

(42)
𝐼𝐼 cos2 𝜑 𝑊0
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𝑢
𝑢

Fig. 7. FE simulation results for bias extension specimens with aspect ratios 𝛬 of 2
and 3, plotted against the area averaged shear angle �̄� in region A: (a) predicted
pulling forces; (b) principal stress resultants averaged over all elements in region A
for 𝛬 = 2 versus the values predicted from the pulling forces using Eq. (42); (c) area
averaged equivalent stress resultants in region A, following from the principal values
in all finite elements in this region, versus the values predicted from the pulling forces
using Eq. (40).

3.3. Numerical validation

Numerical simulations (in which ideal trellis shear deformations
can be guaranteed) were used to validate the closed form relations
derived in the previous sections, thereby avoiding potential discrepan-
cies due to slip in BE experiments. As introduced earlier, the implicit
Aniform Finite Element software [28] was used to simulate BE testing
of specimens with aspect ratios 𝛬 of 2 and 3, a rate dependent material
(see Table 1 for the relevant material property data) and boundary
conditions such that the nominal strains and longitudinal strain rates
̇∕(𝐿0 −𝑊0) in the central region A, with crosshead displacement rate
̇ , were synchronised and equal in both cases (see Table 2).

The area averaged shear angles were found to be equal to the
values described by the kinematic relations ((1), (2)). The predicted
pulling forces were slightly affected by the aspect ratio, see Fig. 7a. The
principal stress resultants can be calculated from these forces according
to (42), and practically coincide with the area averaged values of the FE
results as shown in Fig. 7b. The underlying principal stress distributions
are depicted in Fig. 8, confirming the earlier observations on non-
uniformity for the larger aspect ratio. The predicted transverse stresses
8

Table 1
Material property data for Finite Element simulations using the Aniform
composites forming software. The corresponding constitutive equations
for fabric reinforcement are reported in [31].

Trade name Toray TC1225 (T300J-5HS-PAEK)

Mooney–Rivlin parameters 𝐶10 [MPa] 0
𝐶01 [MPa] 0.0076

Viscous Cross parameters 𝜂0 [MPa s] 0.15
𝜂∞ [MPa s] 0.05
𝑚 [s1−𝑛] 2.6
𝑛 [–] 0

Elastic fibre modulus 𝐸𝑓 [GPa] 100

Fig. 8. First (top) and second (bottom) principal stress distributions resulting from
the FE simulations for bias extension specimens with aspect ratios 𝛬 of 2 and 3. The
arrows indicate the corresponding orientation per region. The orientation is undefined
in region C which has a hydrostatic membrane stress distribution.

are an order of magnitude smaller than the longitudinal stresses in
region A, but non-zero between regions B. The simulations clearly
show the effect of the boundary conditions on the transverse stresses,
which are uniform for the minimum aspect ratio but zero at the free
edges for larger aspect ratios. Multiplication of these membrane stresses
with the local thickness leads to the principal FE stress resultants.
The orientation of the principal stresses is indicated with the arrows,
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Fig. 9. Local width, plotted against the initial longitudinal coordinates 𝑦0 (both in mm) of simulated bias extension specimens with a nominal shear angle of 45◦ for aspect ratios
𝛬 from 2 to 5. Top: equidistant scaling of the full specimen lengths, bottom: scaled detail of the central regions.
Table 2
Input data for Finite Element simulations using the Aniform composites
forming software. The crosshead velocities were chosen such that the
nominal shear rates in the central regions A (according to the kinematic
model) are equal for both cases.

Aspect ratio 2 3

length [mm] 200 300
width [mm] 100 100
number of LTR elements 6400 9600
initial fibre orientation ±45◦ ±45◦

total displacement [mm] 30.66 61.31
crosshead velocity [mm/min] 400 800

which are seen to coincide with the bias directions as expected from
theory [24]. These principal directions are undefined in region C, given
the locally hydrostatic stress resultant state in this region. Also the
equivalent stress resultant in (40) and its FE counterparts. calculated
from the simulated principal stress resultants, are practically identical,
as seen in Fig. 7c. Notably, this procedure requires no additional as-
sumptions concerning the constitutive behaviour of the material under
consideration, as long as the relevant state variables are kept equal for
both aspect ratios.

The FE results also provide detailed information about the local
deformations and strain field. The local width 𝑊 of the simulated
specimens is seen to vary along the length of region A for further
variations of 𝛬 > 2 (Fig. 9) and is logically related to the distribution
of the shear angle over the width, as could be expressed by means of
the linear transverse strain 𝜀𝑥 = cos 1

2 𝛾 − sin 1
2 𝛾 =

√

1 − sin 𝛾. Although
the global averaged linear strain �̄�𝑥 = 𝑊 ∕𝑊0 − 1 cannot be translated
directly to the local shear angle distribution, this information may be
used to validate a constitutive model.

To explore the strain field, the definition of the Green–Lagrange
strain 𝑬𝐺𝐿 = 1

2

(

𝑭 𝑇 ⋅𝑭 − 𝑰
)

, with deformation gradient 𝑭 and unit
tensor 𝑰 , is generally considered to be more suitable as it cannot be
corrupted by rigid body rotations. Fig. 10 shows the inplane compo-
nents of 𝑬𝐺𝐿 in the global 𝑥𝑦 coordinates (coinciding with the original
bias directions) on the deformed geometry of a simulated BE specimen
with aspect ratio 𝛬 = 3. The full field solution shows a distribution
9

directly related to the shear angles seen earlier in Fig. 2. The normal
Green–Lagrange strains in 𝑥 and 𝑦 directions are equal but of opposite
sign (𝐸𝐺𝐿

𝑥𝑥 = −𝐸𝐺𝐿
𝑦𝑦 = − sin 𝛾 for trellis shear), while the bias directions

remain orthogonal such that the corresponding shear strain 𝐸𝐺𝐿
𝑥𝑦 = 0

throughout the domain. The predicted normal strains are maximum in
absolute sense near the triple point where the regions A, B and C meet,
and minimum in the centre of region A, corresponding to the shear
angle distribution.

Also the predicted shear rate is non-uniform in region A, as illus-
trated in Fig. 11, with values close, but not identical, to the result of the
kinematic model (3), �̇� = 0.24641/s for the values used here (Table 2).
This particular distribution is dependent on the constitutive model
applied here (a nonlinearly elastic and viscous element connected in
parallel [31]) and the accompanying material property data, where
it should be noted that this holds for all distributions of strains and
stresses in longer length specimens (𝛬 > 2).

Returning to the overall deformed shape of the specimen, variations
in width along the length of the specimen are indisputable evidence
for non-uniform shear angles. The outer contours of the specimen may
also be recorded experimentally, although it will be challenging to
measure such variations in specimen width with sufficient accuracy.
Further, as demonstrated in [29,32,33], the effect of in-plane bending
rigidity on the in-plane shear distribution in region A is opposite to the
effect of compressive stresses between regions B as observed here. This
implies that difficulties to show the shear gradients predicted here in
an experimental setting will only increase if in-plane bending effects
influence the shape of the specimen as well.

4. Discussion

The foregoing analysis confirms earlier findings that the stress states
in the three regions of a uniaxial bias extension specimen of mini-
mum length (𝛬 = 2) depend on two variables, although the idealised
deformations can be expressed in only a single degree of freedom
(e.g. clamp displacement, fibre angle or shear angle). Only measuring a
single physical quantity (the externally applied pulling force) provides
insufficient information to fully resolve the distribution of forces and
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Fig. 10. Green–Lagrange strains in the original 𝑥𝑦-coordinates and represented on the
deformed geometry, from left to right: 𝐸𝐺𝐿

𝑥𝑥 , 𝐸𝐺𝐿

𝑦𝑦 , 𝐸𝐺𝐿

𝑥𝑦 , resulting from the FE simulations
for a bias extension specimen with aspect ratio 𝛬 = 3. Top row: contours over the full
strain range, bottom row: contours of the normal strain components in a limited strain
window (shear angles outside the range are plotted in grey).

Fig. 11. Inplane shear rate �̇� [1/s], resulting from the FE simulation for a bias
extension specimen with aspect ratio 𝛬 = 3 and conditions specified in Table 2. Left:
full range of shear rates, right: limited window of shear rates (shear rates outside the
range are plotted in grey).

stress resultants. This requires additional information or assumptions,
e.g. by measuring specimens of different lengths or any of the other
10
forces (complicating the experiment) or by assuming the functional
relation between the equivalent stress resultant and selected state
variables (such as assuming independency of rate and fibre tension,
thereby limiting the applicability of the result).

In general, the minimum length solution (i.e. 𝛬 = 2) of the equiv-
alent stress resultant 𝜏𝖠 involves non-zero transverse stresses in the
central region A (in our experience generally compressive) such that
the equivalent stress resultant cannot be determined directly from the
pulling force data and differs from the long length solution (𝛬 → ∞)
of purely uniaxial tension. The exception to the rule is the artificial
constitutive equation 𝜏 = 𝑐

cos 𝛾 with 𝑐 as an arbitrary constant which
may be interpreted as the yield parameter in a rigid plastic model with
strain hardening, for which the transverse force 𝑁𝐴 = 0 throughout the
test, as can be found from (30). For specimens of intermediate length,
these different boundary conditions must lead to non-uniform stresses
and strains in region A, which disqualifies List 4 and makes such sizes
less attractive for material characterisation purposes. However, when
the long length solution applies and the central zone deforms uniformly
(e.g. without wrinkling and gravitational effects), then 𝜏𝖠 follows di-
rectly from the pulling force, leading to an unambiguous relation with
the strain and strain rate, without the need for further measurements or
assumptions. Slip boundary conditions [34], alternative clamping [9]
and wrinkle mitigation [35] may be instrumental to achieve a workable
solution.

The discrete step in shear stresses between the regions, follow-
ing from the ideal kinematics, leads to localised high fibre tension,
being maximum at the clamped edge (𝑇4). In practice, small but fi-
nite in-plane bending rigidity of the reinforcement will distribute the
shear difference and this tension over a larger area than one infinitely
thin fibre. Nonetheless, this is an obvious cause for the experimental
problems with specimen clamping as reported by different authors.
Numerical simulations employing continuum models without discrete
fibres (e.g. truss elements) will show concentrated stresses on these
boundaries, not converging with mesh refinement unless in-plane bend-
ing rigidity (or another mechanism causing smoothening) is included in
these models, smearing out the discrete step in shear stress over these
boundaries.

Reviewing the analysis presented here, it appears that one single as-
sumption, which was usually taken implicitly, has led to confusion as its
consequence was usually overlooked. The deformations of the central
region A cannot be assumed to be homogeneous for arbitrary length-to-
width ratios, which needs to be taken into account for accurate material
characterisation experiments.

As a final remark, also the term ‘‘uniaxial bias extension’’ can easily
lead to confusion and should be used with care. Although the external
loading is indeed uniaxial for this test, the stress state in the central
region is mostly biaxial instead, starting at 𝜏𝖠𝑥 = − 1

3 𝜏
𝖠
𝑦 in the limit of

linear material behaviour for small deformations.

5. Conclusion

A static equilibrium analysis was presented to clarify the effect
of specimen length on the results of the bias extension test. It was
demonstrated that uniform deformations are to be expected in each
region for minimum length specimens (𝛬 = 2), but also that non-
homogeneous boundary conditions are imposed on the central region in
specimens of a longer length, due to which the deformations in this cen-
tral region should not be assumed to be uniform. The minimum length
solution of the forces and stress resultants depends on two variables of
which usually only one is measured (the pulling force) while e.g. the
transverse force is unknown. Additional information is required to fully
resolve the stress state for this case, e.g. by assuming pre-selected
constitutive behaviour, or with further experimental data: for other
aspect ratios, with extra instrumentation or other boundary conditions.
The problem of unknown transverse stresses is avoided by using very
long specimens (𝛬 → ∞), but these are subject to wrinkling and
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possibly slumping of the specimen under its own gravitational loading.
Specimens of intermediate length exhibit strain gradients in the central
region, inherently hampering high precision material characterisation.

Finally, the analysis results show that the major part of the pulling
load is carried by the outer fibres, explaining the clamping issues
experienced during testing. These conclusions emphasise the need for
critical preparation, execution and interpretation of bias extension ex-
periments if highly accurate material property data are to be extracted
from the measurement results.
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ppendix

Explicit relations for the full field stress resultants are useful for val-
dation of numerical simulations of the BE test. As shown earlier [24],
he stress resultant tensor 𝝉 at any point in a thin fabric material
an be decomposed into three physically relevant components: the
onstitutively determined equivalent stress resultant 𝜏 and two stress
esultants in the fibre directions 𝑖 = 𝝉 ∶ 𝑨𝑖 (𝑖 = 1, 2) which do not
epend on elongation as the fibres are considered inextensible, and
ence can only be determined based on equilibrium considerations. In
ach of the regions of the BE specimen the fibres tensions are equal in
oth directions so 1 = 2 ≡  , with which the stress resultant tensor
an be decomposed (using the bias directions as the coordinate axes)
nto

𝝉] = 
1 + sin2 𝜃

[

1 + sin 𝜃 0
0 1 − sin 𝜃

]

+

+ 𝜏 cos 𝜃
1 + sin2 𝜃

[

1 − sin 𝜃 0
0 −1 − sin 𝜃

]

,
(43)

ith 𝜃 as the local shear angle (different for the three regions in this
articular case).

The equivalent stress resultant in region C is zero. The remaining
elevant stress resultant terms can be expressed as a linear combination
f the equivalent stress resultants in regions A and B,

 𝖠 = 2 tan 𝛾 ⋅ 𝜏𝖠 + cos 1
2 𝛾 ⋅

1 + sin2 𝛾
cos2 𝛾

⋅ 𝜏𝖡,

 𝖡 =
(1 + sin 1

2 𝛾)
(

(
√

2 − 1) cos 1
2 𝛾 − sin 1

2 𝛾
)

1 − (
√

2 − 1) cos 1
2 𝛾 − sin 1

2 𝛾
⋅ 𝜏𝖡,

𝖢 1 𝖡

(44)
11

 = cos 2 𝛾 ⋅ 𝜏 ,
ndicating proportionality between  𝖡,  𝖢 and 𝜏𝖡 at a given shear
ngle.
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