
7 Memory Awareness
Due to the involvement of massive data and the growing size of trained models, most
machine learning techniques are memory intensive. As one of essential components
in the von Neumann architectures widely used nowadays, memory is a well-known
bottleneck on the execution time, particularly due to the “Memory Wall” problem. That
is to say, the access time of memory is way larger than the processor cycle time. In
addition, the energy and power consumption required by the memory are known to be
significant in the overall system. On embedded systems, which is the focus of this book,
such design constraints are amplified and impose great challenges formachine learning
techniques. Although the emerging non-volatile memories appear to be promising
because of their attractive features, e.g., low leakage power, high density, and low
unit costs, they also bring up new design constraints like higher error rates, which
might degrade the performance of machine learning techniques. To this end, several
optimization and architecture-aware approaches have been proposed to improve the
usage of memory and enhance the reliability of learning algorithms.

In this chapter, several techniques are briefly introduced to tackle some of the afore-
mentioned issues related to memory. By leveraging the application-specific knowledge,
we demonstrate that the memory footprint can be effectively reduced (see Section 7.1).
Given learning models, we can further optimize the memory layout proactively in the
model implementation to favor the underlying cache memories with a probabilistic
perspective (see Section 7.3). Last but not the least, learningmodels can be reliable with
unreliable memories if we take bit errors into account during the training phase (see
Section 7.2). Overall, this chapter tends to suggest that the design constraints of underly-
ing memory can be handled in a post-optimization fashion, within the implementation
of learning models, or even earlier at the training phase. The insights presented in this
chapter should remain highly relevant in upcoming years, and become more important
for future applications along with emerging memory technologies and their new design
constraints.
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7.1 Efficient Memory Footprint Reduction
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Abstract: This section discusses optimization approaches for the efficient memory
footprint reduction of machine learning algorithms that are written in the GNU R pro-
gramming language. The presented optimization strategies target the memory manage-
ment layer between the R interpreter and the operating system and reduce the memory
overhead for large data structures by ensuring that memory will only be allocated for
memory pages that are definitely required. The proposed approaches use additional
information from the runtime environment, e.g., the short-term usage pattern of a
memory block, to guide optimization. The evaluation is based on statistical machine
learning algorithms. When the memory consumption hits the point that the OS starts to
swap out memory, optimization strategies are able to speed up computation by several
orders of magnitude.

7.1.1 Motivation

In order to execute machine learning algorithms on resource-constrained devices, it is
important to make efficient use of the available resources. These resources include pro-
cessors (including runtime), memories, communication bandwidth, and energy. This
book includes sample optimization algorithms aiming to achieve resource efficiency.
In particular, Chapters 6 to 9 present such sample optimizations. The current section
demonstrates the optimization potential memories as resources. Ideally, memories
have an infinite capacity, but their size can have a relevant impact on the applicabil-
ity of certain techniques. This is especially true for resource-constrained embedded
systems. The current section focuses on the efficient use of memories for machine learn-
ing algorithms written in the R language. The R language is used for many machine
learning applications and, therefore, it is considered here. As shown in [387, 503], the
R environment has several drawbacks leading to slow and memory-inefficient program
execution. In R programs, most data structures are vectors. When the size of a vector
is above a certain threshold, the R interpreter allocates a large vector. For each large
vector, a dedicated block of memory is allocated, potentially spanning multiple pages.
These pages, even when unused, take up memory. When the amount of memory re-
quired for computations exceeds the physical memory available to the application, the
execution is drastically slowed by frequent page swaps that require I/O, a phenomenon
also known as “thrashing”. The performance penalty due to thrashing might render
complex computations entirely infeasible.
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The current contribution is based on the work of Kotthaus et al. [383, 385, 386]. Sec-
tion 7.1.2 provides a survey of relatedwork and explains the fundamentals of R’smemory
management. Section 7.1.3 discusses the page-sharing strategies for efficient memory
utilization of R machine learning algorithms. Finally, Section 7.1.4 presents the evalua-
tion results and concludes with a summary.

7.1.2 Related Work and Fundamentals: Memory Footprint Reduction and the R
Environment

RelatedWork -Memory Footprint Reduction Thememory optimizations presented
in Section 7.1.3 work on a layer between the R interpreter environment and the OS.
This enables the optimization of arbitrary R applications, especially memory-hungry
machine learning applications, with only small modifications to the R interpreter and
without requiring application changes. Thus in the following, the related system-level
approaches for reducing memory utilization will be discussed.

In general, related work on utilizing main memory more efficiently can be catego-
rized into two groups:memory compression approaches, often influenced by embedded
systems resource constraints, and memory deduplication, which is mostly used in vir-
tualization.

Memory compression tries to reduce the swapping activity of a system by compress-
ing memory contents instead of swapping pages to the secondary storage. Compression
approaches share the drawback that a significant amount of processor time is spent on
compressing and decompressing memory contents.

By contrast, memory deduplication reduces the memory overhead by mapping
virtual pages with identical contents to a single physical page. This is often beneficial
in virtualized environments where large amounts of read-only memory, such as shared
libraries, are used in multiple virtual machines [626]. However, deduplication can
introduce significant computational overhead, since the contents of pages have to be
scanned periodically in order to identify pages with identical content. An often used
implementation of deduplication that has been the subject of multiple improvements
is available in Linux as the Kernel Samepage Merging (KSM) [22]. KSM has also been
optimized in [133] by introducing a classification schemebasedonaccess characteristics,
comparing only pages within the same class to reduce the overhead of page scanning. A
memory trace-based evaluation of different deduplication and compression approaches
is presented by Deng et al. [169], showing that deduplication yields better results than
memory compression.

Sharing memory pages within a single process appears to be a rarely-used concept:
on Linux, it is automatically used to map a set of newly allocated virtual pages to a
single physical page filled with null bytes. This can cause performance issues in high-
performance environments since each write to any newly allocated page will trigger
a page fault. Here, an enhancement by Valat et al. [678] was proposed that avoids
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unnecessary page removal when the application knows that it will overwrite a page in
the near future. A language-level version of this copy-on-write technique, operating on
objects instead of memory pages, is sometimes implemented using reference counters
[665]. The R language also implements a copy-on-write scheme. Here, the complete
object (potentially spanning multiple pages) is copied when it is modified, resulting in
page duplications for partial modifications.

OS level optimizations lack knowledge about the specific memory behavior of the
runtime environment. Although some information can be used to improve the time
needed to detect duplicates, the application-specific knowledge of why the data was
copied in the first place is ignored. By contrast, the memory optimization presented
in Section 7.1.3 employs specific knowledge about the interpreter state to reduce the
number of pages that need to be scanned for identical content and proactively avoids
the main sources of identical-content pages from object allocation and duplication by
optimizing the copy-on-write mechanism for partial object modification.

Fundamentals – The R Environment The lifecycle of an object, (e.g., a vector data
structure) in the R runtime environment starts with its allocation. In R, vectors are
assumed to consist of a contiguous block of (virtual) memory. Depending on the size of
the object, the R interpreter uses a system of multiple memory pools for vector objects
with a data size of up to 128 B. For larger vectors, memory is allocated directly via the
malloc C library function instead of pooling the allocations. This reduces the memory
fragmentation whenmany small objects are created and some of them are released. The
R language does not require the programmer to explicitly manage memory; a garbage
collection is needed to automatically free memory. The garbage collector in R is a mark-
and-sweep, non-moving, generational collector. It can be manually triggered, but it
also starts automatically when the interpreter is in danger of running out of heap space.

The R interpreter ensures that an allocated object is always initialized—either by
explicit initialization or implicitly by writing the results of a computation to it. After
the object is allocated and initialized, it can be used as input for various R functions
such as the plus operator. The fact that functions can modify an object, in conjunction
with R implementing call-by-value semantics, means that objects need to be copied
when being passed to a function. However, at this point a copy-on-write optimization
is triggered: copying an object is done by merely sharing the reference; the actual copy
is delayed until the object is modified (if at all). The interpreter now has two references
to the same object, which may be modified later. When this modification happens, the
copy process is triggered and a full copy of the affected object, potentially spanning
multiple pages, is created using the interpreter-internal duplicate function. This is
illustrated in Figure 7.1.

On the left-hand side, a large R vector object consisting of a headerH and four pages
A to D is shown both in virtual memory on the top (marked with dotted lines) and its
corresponding allocated physical memory on the bottom (solid lines). On the right-hand
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Fig. 7.1: Example of the copy-on-write mechanism in the R interpreter. R copies (duplicates) at object
level instead of page level granularity [385].

side, the situation after a duplication that was triggered by a write access is shown. Now
there are two R objects, shown in the virtual memory on top and their corresponding
physical memory on the bottom. In one of the copies, page C was modified and is
now marked as X, and the copy has its own header H’. Although unmodified, the R
interpreter needs to use additional memory to create duplicates of pages A, B, and D
(marked in gray) since it assumes that objects are organized as contiguous blocks of
memory and thus it has to duplicate at object-level granularity.

The memory optimization presented in this contribution has the goal of reducing
this memory overhead by copying only parts of the object, sharing the same mem-
ory pages between multiple objects as long as they are not modified. This scheme is
transparent to the interpreter’s memory management including the garbage collec-
tion, requiring only small changes in memory allocation and freeing, as well as in the
duplicate function. This optimization will be presented in the next section.

7.1.3 Memory Footprint Reduction via Page Sharing Strategies

Different optimization strategies are combined for the efficient memory footprint reduc-
tion of machine learning algorithms implemented in the R language. The first strategy
that proactively avoids the duplication of memory pages is based on optimizing the
allocation and duplication mechanisms of the R interpreter. This approach is further
refined by a second strategy using static annotations to reduce the optimization over-
head and by dynamic refinement using a page content analysis for page deduplication
to increase the amount of shared memory.

Page Duplication Avoidance As shown in the previous section, the R interpreter can
only allocate complete objects that potentially span multiple pages. The first part of the
memory optimization is based on the object allocation mechanism of R. To enable the
allocation and thus the sharing of memory at page-level granularity instead of object
granularity, a custom memory allocator is employed when a large vector has to be allo-
cated, as shown in Figure 7.2. When the internal function of the R interpreter allocVector
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is called to allocate a large vector, the optimized interpreter selects between the custom
allocator to share memory on page granularity or the default malloc function if this
is not required. In both cases, the allocated memory is accessible within the address
space of the R interpreter. The custom allocator uses a memory management scheme
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Fig. 7.2:Memory allocation scheme for dynamic page sharing [385].

similar to standard virtual memory schemes commonly used in Operating System (OS)
kernels. For ease of implementation, it is completely implemented in the user space.
The downside of such a user-space implementation is that it needs to replicate certain
data structures that are already present in the OS (e.g., for mapping virtual to physical
memory) because those OS kernel data structures are not sufficiently exposed to user
space. This replication could be avoided by implementing the optimization in the Oper-
ating system kernel (cf. [383]), but this is significantly more invasive and not applicable
in many environments where the user has no control over the Operating system kernel.
Since the user space has no direct access to physical memory, a single file located on a
RAM disk (see custom heap in Figure 7.2) is used.

The allocation of physical memory from this file is realized via a simple free-bitmap
based allocator. The file can be dynamically enlarged if needed.Mapping physical pages
into the virtual address space of the R interpreter can be accomplished by utilizing
the mmap Unix system call. For changing the access permissions of these physical
pages, the mprotect system call that modifies the settings of the memory management
unit of the processor is employed. Besides these system calls, an additional page table
is needed to enable the mapping from a virtual address to a physical address. For
simplicity reasons a hierarchical page table with the same four-level structure as used
by the processor is implemented. To enable the sharing of pages, the user spacememory
management system needs to map the same physical page to multiple locations in
virtual memory. Therefore, a reference counter is required for each physical page. A
reference counter greater than 1 indicates that the page is shared between multiple
objects or multiple times within one object.

To avoid the zero-initialization of allocated large vector objects, a global shared
zeroed page is utilized. This also ensures that memory is only allocated for pages that
are actually written to at a later time. Figure 7.3 illustrates an example for this optimized
R object allocation. Here, the custom memory allocator was asked to allocate an object
with a total size of five pages. While the object has the requested size of five pages in
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Fig. 7.3: Optimized object allocation via sharing a global zeroed page [385].

virtual memory (dotted, left upper part), physically it only consists of two pages (left
lower part). Those two pages are a single non-shared page, marked with H for header
in the beginning, followed by a shared page, marked with 0, called the global zeroed
page. The numbers in small print below the physical pages are the reference counters.
The zeroed page has a reference counter of 4 since it is shared four times within the
allocated object (mapped four times into virtual memory). The shared zeroed page is
filled with zero-bytes. The concept of prepared zeroed pages is already implemented in
OS kernels. However, the standard R interpreter does not benefit from this concept since
it immediately writes to all memory that it allocates for initialization. The non-shared
initial page H is required as it will contain not just data but also the object header. The
R interpreter writes this object header to the front of the allocation area. Since it will be
updated frequently (e.g., during garbage collection), it is not shared between multiple
objects. Since the header page H is mapped only once, its reference count is 1.

The R interpreter now has the illusion that it has allocated five pages of memory,
even though only two pages are allocated physically. To sustain this illusion, the op-
timized allocation mechanism has to ensure that any write access to a virtual page
that points to a shared physical page can be detected and handled. If such a write
access is not handled correctly, it affects not only the intended virtual page but also all
virtual addresses where the same physical page is shared. Therefore, all pages with a
reference counter greater than 1 are marked as read-only, ensuring that a write access
triggers a segmentation fault. This fault is caught by a signal handler that performs the
unsharing of the affected page. To determine the affected physical page the handler
uses the virtual address of the write access. It then allocates a new page, copies the
contents of the original page to it, and replaces the page that caused the segmentation
fault with the new one. The resulting situation is shown on the right side of Figure 7.3:
one of the instances of the zeroed page that was written to was replaced with a new
page marked with X. This updates the reference count of both the zeroed page and the
newly allocated page. Since the new page is only mapped once, it can now be marked
as read-write so that further access no longer requires special handling.

As noted, the R interpreter can only copy on the object level. Thus, if an object
consists of multiple pages, parts of the copy may end up with the same content as
the original (see Figure 7.1). To avoid this, the duplicate mechanism of the interpreter
is optimized by improving the granularity of the copy from object level to page level.
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While the allocation optimization avoids the immediate allocation of pages by using
the global zeroed page, the duplicate optimization allows the reuse of already-allocated
pages of the original object instead of allocating newpages. An example of the duplicate
optimization is shown in Figure 7.4.

H A B 00 . . .. . .

H A 0B . . .. . .

H A B 00 . . .. . .

H’ A B 00 . . .. . .

virtual
memory

virtual
memory

physical
memory

duplicate

HH’ A 0B . . .. . .

1 1 1 2 11 2 2 4

original

copy

Fig. 7.4: Optimized copy mechanism on page-level instead of object-level granularity via page
sharing [385].

The left side shows the situation before the duplication is shown: an object occupies
five virtual pages, two of which reference the global zeroed page. Unlike the original R
interpreter that would need to allocate five new pages for the copy of this object, the
optimized version reduces this to a single allocated physical page. This is shown on
the right side with the original object at the top and its copy at the bottom. Here, a
virtual-only copy of the first page that contains the object header is not created, since
the header of the copy is updated immediately by the R interpreter after the duplication.
This would otherwise trigger an unsharing of this page. To avoid the overhead of this
event, the optimized duplication immediately creates a physical copy of the header
page. Most of the pages of the original object are now mapped twice in virtual memory
and their reference counters are updated. Both the original and copy are marked as
read-only to allow for unsharing on write access.

Overall, the finer copy granularity of the optimization enables storing both the
original and copied objects from the example in just five pages of memory. By contrast,
the original R interpreter would need ten pages of memory to store the same objects.
Although themechanisms of sharing pages during allocation and duplication described
above always result in a valid view onmemory for the interpreter, there are cases where
additional overhead is caused that can be avoided by further refinements described in
the next subsection.

Static Refinement via Annotations To reduce the runtime overhead caused by
proactively avoiding page duplications, a static refinement consisting of two kinds of
annotations is applied. The first annotation is based on the expected utilization of an
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object immediately after allocation and the second annotation is based on the size of
the allocated object.

The optimized memory allocation (see Figure 7.3) reduces the memory footprint
by using a global zeroed page, assuming that not all pages of the allocated object will
be written to immediately. However, this assumption is not always valid. For instance,
(built-in) vector arithmetic functions in the R interpreter allocate a new object and
immediatelywrite to all pages of it to store their results. Thiswould cause a segmentation
fault for the first write of every page, triggering the memory allocation for all pages of
the object. These segmentation faults cause runtime overhead that would not occur
when allocating an object with non-shared pages.

To avoid this overhead, annotations are placed in the C source code of the R in-
terpreter built-in functions where newly allocated memory is completely overwritten
directly after allocation. Here, the custom allocator returns an object where every virtual
page references a new physical page, so no segmentation faults will be triggered by
write accesses. Although these R objects do not save memory on allocation, they still
have the opportunity for later optimizations, e.g., when they are duplicated. Currently,
the annotations for these “full-overwrite” functions need to be manually placed in the
R interpreter’s C source code by locating calls to allocVector, followed by loop struc-
tures that write to every element of the newly-allocated object. Those manually placed
annotations could also be automated by a static code analysis checking for allocation
calls followed by loops writing to the newly-allocated object.

The second annotation for reducing the runtime overhead incurred by the optimiza-
tion relates to the size of the allocated object. The R interpreter can allocate objects with
a variety of sizes, not all of which span multiple pages. The optimized custom allocator
is therefore enabled only for object sizes that indicate a potential for page sharing. Here,
the potential is limited for smaller objects. The first page of an object stores not just
data but also the frequently modified object header that is therefore never shared. Thus
R objects smaller than two pages of memory are passed to the standard, non-sharing
memory allocator. This size limit could also be used as a tunable parameter to select a
trade-off between memory savings and runtime overhead.

Dynamic Refinement via Page Contents In addition to the above-described static
refinements, an additional dynamic refinement for increasing the number of shared
pages is applied. During the execution of an R program, allocated objects are updated
with the results of calculations. Those updates can result in multiple distinct pages
with the same contents, which opens up the opportunity for sharing those pages. The
general idea of locating identical objects in a system and saving memory footprint by
reducing them to a single object is known as deduplication.

The memory optimization employs a restricted version of locating identical con-
tents. Here, the content scan only checks for pages identical to the already existing
global zeroed page. The deduplication of zeroed pages is illustrated in Figure 7.5. On the
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Fig. 7.5: Deduplication optimization for zeroed pages [385].

left side, the situation before the page content scan is shown where an object contains
two identical zero pages. One of those pages is already mapped to the global zeroed
page (shown in bold), while the other uses a separate physical page. On the right side,
the situation after deduplication is shown. Here, the content check has detected the sep-
arate copy and mapped its virtual page to the global zeroed page, freeing the memory
used for the unnecessary duplicate.

Although a general scan that is able to detect duplicated pages with arbitrary
content could be applied, such a scan would incur a significant runtime overhead (e.g.,
due to the calculation of hash values) compared to scanning just for zeroed pages.
While a scan for zeroed pages can use an early abort condition as soon as a non-zero
element is found, a scan for arbitrary content would need to check the full content of
all pages in the system. The overhead incurred by deduplication of zeroed pages is
influenced by the frequency of the content check and by the number of pages that need
to be scanned. To reduce this overhead, the scan is only activated after the completion
of a garbage collection in the interpreter. This avoids scanning the pages that would
soon be discarded and also provides a natural regulation mechanism for the frequency
of content checks, as the frequency of garbage collection depends on the memory
requirements of the executed program.

With the deduplication optimization, pages that were previously excluded from
sharing the global zeroed page, in arithmetic vector operations, say, can now be dy-
namically shared. Thus, both the static and the dynamic refinements of the memory
optimization complement each other. Details on the interaction of the refinement strate-
gies and the general page duplication avoidance strategy can be found in a separate
publication [384].

7.1.4 Evaluation: Memory Footprint Reduction Strategies

The results obtained by applying the proposed memory optimization strategies for R
to real-world machine learning benchmarks are presented in this section. Both, the
evaluation results related to the memory consumption and the runtime effects of the
page sharing optimization strategies will be discussed.
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Experimental Setup For the following experiments, a computer equipped with a
2.67 GHz Intel Core i5 M480 CPU and 6GB of RAM, using a 64-bit version of Debian
Linux 7.0 as the operating system is used. On this system, memory pages have a size
of 4096 bytes. Although a larger page size than the system page size could be used
for the memory optimization, the same size was chosen as it is expected to maximize
the amount of memory that can be shared (using a smaller page size than the system
size is inefficient since the optimization relies on the hardware Memory Management
Unit (MMU) for efficient page access protection). To evaluate the proposed memory
optimization approach, the memory usage and runtime of the R interpreter including
the described optimizations is compared to the standard GNU R interpreter. Both the
standard as well as the optimized interpreter are compiled using GCC version 4.7.2 with
the default flags (-O2) selected by the build system of R version 3.1.0.

The standard memory measurement functions for user space functions in Linux
measure only the virtual memory of a process. Since the optimization approach maps
the same physical page multiple times into virtual memory, these functions are not
sufficient for the evaluation. They are not able to measure the amount of physical
memory saved since they only count every virtual instance of a shared physical page.
Therefore, a separate memory measurement function was created. To measure the
amount of memory allocated by the default allocator, the standard allocation functions
such as malloc are overwritten with versions that track the current total amount of
memory allocated and the original functions are called afterwards. For the optimized
custom allocator, the number of physical pages that need to be reserved is directly
tracked along with the size of the memory management data structures. With these
mechanisms, the allocated physical memory can be measured accurately.

For the evaluation of the optimization, two different benchmark sets are applied.
The first set is a shorter-running set of benchmarks, selected from the R benchmark
2.5 suite [274], which was originally developed to measure the performance of various
configurations of the R interpreter (in the following denoted by GU) plus one additional
benchmark, as listed in Table 7.1. The R benchmark 2.5 suite was also applied in other
optimization approaches that focus on dynamic compilation for R [353]. To analyze if
the memory optimization is also beneficial for algorithms that already try to reduce the
memory footprint by using application-specific knowledge, the additional benchmark
glmnet is included. This benchmark utilizes an existing sparse matrix optimization
implemented as an R package. For accurate measurements, the iteration counts for the
outer loop of each benchmark were scaled to result in a runtime of approximately 1
minute with the standard R interpreter.

The second set of benchmarks is based on a set of publicly available long-running
real-world machine learning benchmarks [384], listed in Table 7.2. The choice of these
classification algorithms is based on the method’s popularity and the availability of its
implementation. The default parameters or, if available, the implementation’s internal
auto-tuning process was used to configure the algorithm parameters. The input dataset
is a 2-class classification problem and has a sufficiently large number of observations
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Tab. 7.1:Misc Benchmark Set.

Benchmark Description

GU/08a-1 Linear regression over a 3000 × 3000matrix
GU/08a-2 FFT of 2 400 000 random values
GU/08a-3 Inverse of a 1600 × 1600 random matrix
GU/08a-4 Greatest common divisors of 400 000 pairs (recursive)
glmnet Regression using glmnet on a sparse 20 000 × 1000matrix

Tab. 7.2:Machine learning benchmark set.

Benchmark Description

ada Boosting of classification trees
gbm Gradient boosting machine
kknn k-nearest neighbour classification
lda Linear discriminant analysis
logreg Logistic regression (binary classification

decision derived using a probability cutpoint of 0.5)
lssvm Least-squares support vector machine
naiveBayes Naive Bayes classification
randomForest Random classification forest
rda Regularized discriminant analysis
rpart Recursive partitioning for classification trees

to achieve accurate results. The machine learning benchmarks were configured to
use a 20-fold cross-validation. The size of the input dataset (15 000 samples with 200
numeric features) was chosen to ensure that the runtime of the fastest algorithms is
approximately one minute on the standard interpreter. To allow for a better comparison
of the memory requirements, the same dataset was applied to all machine learning
algorithms.

Each benchmark was executed 10 times with the standard and the optimized
version of the R interpreter. The results are given as the arithmetic mean of these 10
executions. To make the results reproducible, the random number seed is selected as a
fixed value placed as the first statement in each of the benchmarks. Each repetition
was started in a fresh interpreter process; hence initialization costs are included in
the measurements (an expected overhead on the order of one second or less). The R
interpreter does not use adaptive optimizations. All system services that might interfere
with themeasurements were disabled. Both runtime andmemory usage were measured
simultaneously. For these measurements, we calculated a 95% confidence interval and
the ratio of the means using the percentile bootstrap method. We use geometric means
here to reduce the influence of outliers.
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Memory Consumption To analyze the benefits of the page sharing optimization tech-
niques with regard to the memory consumption we evaluate the global peak memory
usage and the average memory usage of each benchmarks. The Peak usage represents
the maximum amount of memory that was consumed during execution of a bench-
mark. However, the peak memory consumption does not represent information about
changing memory usage over time, since the peak memory usage may occur only for an
instant of time depending on the benchmark. To gain a complete view of the memory
consumption the short-term peak usage is measured in intervals of 1 second, resulting
in a memory-over-time profile. The Average usage of memory is calculated as the arith-
metic mean of these 1 second measurements and used as a second indicator to allow
easier comparisons of the memory behavior.

Figure 7.6 shows the peak (Peak usage) and average (Average usage) memory con-
sumption of each benchmark running with the page-sharing optimization. The 100%
baseline represents the standard R interpreter without optimizations. Values below
this baseline indicate relative memory savings realized by the page sharing strategies.
Error bars have been omitted as the confidence intervals were smaller than 0.5% for all
values. The detailed values are presented in Table 7.3, including the number of pages
identified as shareable by the content check. They indicate the optimization potential
of the dynamic refinement (deduplication of zero pages).
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Fig. 7.6: Relative memory usage with page-sharing optimization compared with standard R (lower is
better). The 100% baseline represents the standard R interpreter without optimizations. Geometric
means for the memory savings are 13.6% for peak and 18.0% for average memory usage [385].

The gain for reducing the peak memory usage (GainP) of the standard R interpreter
(StdPeak) ranges from−0.9% for gbm to 53.8% for lssvm.However, the negative values in
the columns GainP and GainA of Table 7.3 indicate that the page-sharing optimizations
do not gain memory savings for three of the benchmarks. Here, the peak memory
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Tab. 7.3:Memory Optimization Results: StdPeak – peak memory usage by the standard R interpreter;
OptPeak – peak memory usage by optimized interpreter; GainP – relative peak memory reduction
achieved by optimization; StdAvg – average memory usage by the standard interpreter; OptAvg
– average memory usage by optimized interpreter; GainA – relative average memory reduction
achieved by optimization; ZPG – number of zero pages found by the content check [385].

Benchmark StdPeak OptPeak GainP StdAvg OptAvg GainA ZPG
[MB] [MB] [%] [MB] [MB] [%] [#]

GU/08a-1 296.2 228.1 23.0 259.6 192.2 25.9 13
GU/08a-2 131.1 131.4 -0.2 128.8 128.0 0.6 13
GU/08a-3 197.2 164.8 16.4 157.7 112.6 28.6 37919
GU/08a-4 134.2 119.7 10.8 127.2 114.6 9.9 194892
glmnet 354.9 332.8 6.2 249.5 246.0 1.4 46877
ada 187.2 170.1 9.1 156.0 126.2 19.1 2 031992
gbm 191.5 193.2 -0.9 147.7 136.0 7.9 464
kknn 316.5 287.6 9.1 274.0 231.0 15.7 421
lda 216.2 208.2 3.7 184.8 175.1 5.3 20447
logreg 213.0 186.7 12.3 184.7 162.8 11.9 955
lssvm 1365.1 631.0 53.8 820.2 381.1 53.5 3 972699
naiveBayes 143.6 126.2 12.1 80.8 81.3 -0.6 78
randomForest 565.5 520.4 8.0 390.8 242.7 37.9 1 130650
rda 254.1 227.7 10.4 197.0 177.3 10.0 707
rpart 144.5 125.8 12.9 130.7 103.3 20.9 56214

consumption for two of the benchmarks (gbm, GU/08a-2) and the average memory
consumption for one benchmark (naiveBayes) increase slightly. This is caused by the
additional data structures that are needed for the internal handling of memory pages.

For gbm, a reduction of the average memory usage by 7.9% (GainA) is achieved. For
naiveBayes the situation is reversed: the optimization saves 12.1% of its peak memory
usage while its average memory usage (−0.6%) is slightly increased. Since the number
of pages recovered by deduplication (see column ZPG) is low (78), the savings of the
peak memory usage are assumed to be induced by the proactive avoidance of page
duplicates via the optimized allocation and duplication strategies. For GU/08a-2, the
optimization was not able to save memory for peak memory usage and no meaningful
amount for the average memory usage was saved (GainA). The reason why GU/08a-2
does not gain from the optimization is that even though it uses large vectors with 2.4
million elements, it allocates a vector that is immediately filled with random numbers.
Thus, it does not profit from the optimized allocation and the content check can only
recover a low number of zero pages as shown column ZPG (13). GU/08a-2 does not use
any object duplication. Therefore, the optimized duplication has no potential for saving
memory.

Even though the page-sharing optimization results in a slight increase of peak or
average memory usage for the three benchmarks described above, all of the twelve
other benchmarks benefit from the optimization with savings in both peak and aver-
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age memory usage. We compute the geometric mean over all 15 benchmarks, thereby
avoiding the impact of outliers on the geometric mean. The result is a reduction of peak
memory usage by 13.6% and a reduction of average memory usage by 18.0%. Here,
the highest amount of memory that could be saved occurs in the lssvm benchmark
with 53.8% for peak usage and in randomForest with 37.9% for the average memory
usage. Both of these benchmarks have a high number of zero pages recovered by the
content check. Thus for those benchmarks, the reduction of the memory footprint is not
just triggered by the allocation and duplication optimization but also by the dynamic
refinement that deduplicates zero pages.

Table 7.3 shows summarized values for thememory consumption over the complete
runtimes of all benchmarks. To gain additional insights into the memory consumption
behavior, the complete profile of the memory usage over runtime will be also analyzed.
The four most interesting memory consumption profiles for the benchmarks (glmnet,
gbm, randomForest, and naiveBayes) are shown in Figure 7.7. For each benchmark, the
run with the execution time closest to the average of its 10 executions is selected. The
confidence intervals over all 10 runs of each benchmark are less than 1%, thus the
figure shows only the data from a single run. The x-axis represents the runtime in
seconds while the y-axis represents the corresponding memory consumption of the
benchmark. Both the profile for the standard R interpreter (yellow curves) and the
interpreter including the page-sharing optimizations (green curves) are presented. The
straight lines at the top indicate the peak memory usage, while the dotted lines mark
the average memory usage.
glmnet As mentioned, the glmnet benchmark utilizes an already-existing memory

optimization for sparse matrices. It is included in the evaluation to determine if the
page-sharing optimization can offer additional memory savings in the presence of
an optimization that applies specialized application knowledge. In the top left of
Figure 7.7 the memory-over-time behavior of this benchmark is illustrated. While
there is only a small improvement for the average memory usage (see dotted green
line), 6.2% of the peak memory consumption is saved (see lines on the top). The
memory consumption curves show that at all local memory peaks the optimized
version of the R interpreter saves a small amount of memory while the memory
consumption during the remaining parts of the execution is largely unaffected.
This results in only a minor reduction of the average memory consumption. Still,
even in the presence of a very specific optimization for sparse matrices the page
sharing optimization can offer additional memory savings. As can be seen from
column ZPG (Table 7.3), savings are triggered by a large number of pages recovered
by deduplication (46 877).

gbm Not all benchmarks benefit from the content checks, though. For example, Ta-
ble 7.3 shows that in gbm only 464 zero pages are recovered. This benchmark bene-
fits more from the optimizations in allocation and duplication. The corresponding
memory-over-time behavior is shown in the top right of Figure 7.7. Here, the op-
timization does not reduce the peaks of the memory consumption, but there is a
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Fig. 7.7:Memory consumption over time profiles for benchmarks with different memory behavior for
the standard R interpreter vs. the interpreter with the page-sharing optimization. Lines at the top
indicate the peak memory usage; dotted lines mark the average memory usage [385].

marked reduction of memory usage in the valleys between the peaks, reducing the
average memory consumption by 7.9%.

naiveBayes Another benchmark that does not benefit from the content checks is
naiveBayes with just 78 zeroed pages recovered. Its memory-over-time profile is
illustrated in the bottom left of Figure 7.7. In naiveBayes only the peak memory
usage is reduced by the optimization (large distance between the straight lines at
the top), but the average memory usage (small distance between the dotted lines)
is not affected. The profile also shows that naiveBayes has much smaller peaks
compared with gbm. Thus, the large reduction of memory usage at those peaks
results only in a small effect on the average memory consumption.

randomForest Finally, randomForest in the bottom right of Figure 7.7 represents one
of the benchmarkswhere the recovery of zeroed pages triggers highmemory savings.
Here, the content checking reclaims 1 130 650 pages, which corresponds to slightly
more than 4GB of memory. The randomForest profile shows a saw-tooth curve for
the optimized interpreter (see green curve). This indicates that the benchmark uses
large blocks of memory that are slowly written to. For the page sharing optimiza-
tions, this represents an ideal memory usage pattern, as the allocation ofmemory is
delayed until the benchmark writes data to it. This results in a 37.9% improvement
of the average memory consumption (large distance between dotted lines)—the
average time during which the benchmark has a high memory consumption is thus
reduced.
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Looking back at the profile of glmnet (top left), the green curve that shows the profile for
the optimized interpreter is longer than the yellow curve for the standard interpreter and
there is an increasing shift between the peaks of both curves over time. The reason for
this lies in the additional CPU time needed to provide the page-sharing optimizations.
The runtime overhead induced by the memory optimization will be referred to in the
next paragraph.

Runtime Overhead There are multiple reasons for the runtime overhead caused by
the optimizations. For the 15 benchmarks shown so far, 4 have a runtime overhead of ≤
1%, an additional 6 have an overhead ≤ 5%, an additional 2 have an overhead around
8%, and the remaining 3 have an overhead between 13% and 17%. More details on
the overhead are available in a separate publication [385].

Runtime Reduction In all previous measurements, the RAM available in the system
was sufficient to hold all data used by the benchmark. If this is not the case, runtime
overhead can become insignificant. This will be illustrated in the following. When the
amount of RAM in the system is too small to hold all data required, there are situations
where the proposed memory optimization is also able to reduce the runtime of the
benchmark instead of adding overhead. This is due to frequent page swaps requiring
I/O when the total capacity of RAM is exceeded, also known as “thrashing”. To analyze
this situation, two benchmarks are considered. The first one is the lssvm benchmark
where the optimization provides a large reduction in memory consumption. The second
benchmark is an instance of logreg where the optimization provides only smaller
memory gains.

For the analysis, the memory requirements of the benchmarks need to be increased
beyond the capacity of the RAM in the system. Instead of increasing the dataset size
of both benchmarks, the system is limited to just 1 GB of RAM, since the runtimes of
the benchmarks do not scale linearly with the dataset size, leading to excessively high
execution times. However, since the logreg benchmark has a much smaller memory
consumption than 1GB, the dataset size for logreg is increased to 70 000 samples with
300 numeric features. This increases the memory requirements of this benchmark to
approximately the same level as lssvm. This still results in acceptable execution times
for logreg.

Table 7.4 shows the results for the previous 6GB system configuration and the
limited 1 GB RAM configuration for both benchmarks. The logreg benchmark is now
shown as logreg-2 because it was executed with the previously described larger dataset.
In the 1 GB configuration, the system had to swap for both the standard and optimized
interpreters, resulting in a large increase in runtime compared with the 6 GB configura-
tion. The peak memory usage for the interpreters is identical in both configurations
while the average memory usage differs because this value is time-dependent and thus
influenced by swapping. This swapping also increases the variability in the runtime
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Tab. 7.4: Evaluation results with two configurations of RAM; Std – standard R interpreter; Opt – opti-
mized R interpreter; Gain – relative gain; Speedup: runtime speedup factor (Std / Opt). Confidence
intervals (C) for runtime are shown; others are ≤ 0.8% [385].

Benchmark Std Opt Gain Std Opt Gain
Peak [MB] Peak [MB] Peak [%] Avg [MB] Avg [MB] Avg [%]

logreg-2, 1GB 1228.2 1094.8 10.9 965.7 789.6 18.2
logreg-2, 6GB 1228.2 1094.8 10.9 967.8 823.2 14.9
lssvm, 1GB 1365.1 631.1 53.8 970.0 381.3 60.7
lssvm, 6GB 1365.1 631.0 53.8 820.2 381.1 53.5

Benchmark Std [s] Opt [s] Speedup (CI)

logreg-2 1GB 6395.5 5785.6 1.1051.1441.071

logreg-2, 6GB 579.8 598.5 0.9690.9710.967

lssvm, 1GB 3080.3 593.8 5.1885.3505.029

lssvm, 6GB 530.5 601.2 0.8820.8850.880

measurements, thus the confidence intervals for the speedup factors are also included
(see lower part of Table 7.4).

Reducing the available memory from 6GB to 1 GB drastically increases the runtime
for both versions, the standard R interpreter (Std) and the interpreter including the
memory optimization (Opt). Still, the reduction in memory consumption for logreg-2
has turned the slowdown (factor 0.969) in its 6 GB configuration into a small speedup
(factor 1.105) when the RAM is limited to 1 GB. Depending on the benchmark and its
memory usage pattern, a different situation could also happen. In the worst case, the
content check of the optimized interpreter touches a large number of pages, forcing
them to be swapped in. This additional swap activity can increase the runtime so
that the gains from a reduced memory footprint may become irrelevant. The second
benchmark lssvm shows something closer to the best case for the optimization: Here,
the page-sharing optimization manages to save enough memory to avoid swapping. In
this case, significant speedups are gained, as shown in the lower part of Table 7.4 for
the 1 GB configuration of lssvm.

Similar to logreg-2, memory usage does not vary much between both configu-
rations (see upper part of Table 7.4). Considering the runtime results, the optimized
interpreter Opt only needs 593.8 seconds to run the lssvm benchmark. This is almost
unchanged from the 6GB configuration (601.2 seconds). By contrast, the standard
interpreter Std has now increased its runtime to 3080.3 seconds (51.3 min.) when
limited to 1 GB of RAM. This makes the overhead of the memory optimization irrelevant
because the time gained by avoiding page I/Os is much larger. The page-sharing opti-
mization enables a speed up by a factor of 5.2 for llsvm by reducing the peak memory
consumption by 53.8%. This speed up is also illustrated in Figure 7.8. It shows the
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Fig. 7.8:Memory consumption over time profile for the lssvm benchmark. Speed-up reaches a factor
of 5.2 on a system with 1GB of RAM. Solid lines indicate the peak memory and dotted lines mark the
average memory usage [385].

memory consumption profile for one exemplary execution of the lssvm benchmark.
This demonstrates that reducing the memory consumption with the page-sharing opti-
mization can significantly improve the runtime for memory-hungry benchmarks if the
available RAM is constrained. In turn, this can enable the processing of larger datasets.

7.1.5 Summary

The R interpreter induces a large memory overhead in the machine learning appli-
cations, due to wasteful memory allocation [387]. The goal of the presented memory
optimizations was to enable efficient memory utilization, especially for memory-hungry
R applications like machine learning algorithms. To accomplish this goal, this contri-
bution presented an application-transparent memory optimization employing page
sharing at a memory management layer between the R interpreter and the operating
system’s memory management. The optimization benefits a large number of applica-
tions since it preserves compatibility with the available software libraries that most R
programs are based on, and covers one of the most important resource bottlenecks of
machine learning algorithms. By concentrating on the most rewarding optimizations—
the sharing of zero-filled pages and deduplicating at the page level instead of the object
level—the overhead of more general OS level memory optimization approaches such as
deduplication and compression is avoided. With the proposed optimization, consider-
able reductions of the memory consumption for a large number of typical real-world
benchmarks have been achieved. This is an important step towards processing larger
input sizes. It also significantly speeds up the computation in cases where previously
pages had to be swapped out due to insufficient main memory.
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7.1.6 Conclusion

Designers of machine learning applications should be allowed to focus on the function-
ality of their algorithms. In order to execute these on resource-constrained embedded
systems, possible optimizations of the implementation should be performed. The pre-
sented work demonstrates the benefits of such optimizations for the case of memory
resources. In addition to the other optimizations in this contribution, we conjecture that
more memory-oriented optimizations exist and propose that they should be exploited
in order to execute machine learning algorithms in particular on hardware with limited
amounts of memory.
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Abstract: Due to the exceptional recent developments in deep learning, many fields
have benefited from the application of Artificial Neural Networks (ANNs). One of the
biggest challenges in ANNs, however, is the resource demand. To achieve high accuracy,
ANNs rely on deep architectures and a massive amount of parameters. Due to this, the
memory sub-system is one of the most significant bottlenecks in ANNs.
Toovercome thememorybottleneck, recent studies haveproposedusing approximate

memory in which the supply voltage and access latency parameters are tuned for lower
energy consumption and for faster access times. However, these approximate memories
frequently exhibit bit errors during the read process. Typical software solutions that
monitor and correct these errors require a large processing overhead that can negate the
performance gains of executing ANNs on these devices. Hence, error-tolerant ANNs that
work well under uncorrected errors are required to prevent performance degradation
in terms of accuracy and processing speed.
In this contribution, we review the available and emerging memories that can be

used with ANNs, with a focus on approximate memories, and then present methods
to optimize ANNs for error tolerance. For memories, we survey existing memory tech-
nologies such as Static Random-Access Memory (SRAM) and Dynamic Random Access
Memory (DRAM), but also present emerging memory technologies such as Ferroelectric
FET (FeFET), and explain how the modeling on the device level needs to be performed
for error tolerance evaluations with ANNs. Since most approximate memories have
similar error models, we assume a general error model and use it for the optimization
and evaluation of the error tolerance in ANNs. We use a novel hinge loss based on
margins in ANNs for error tolerance optimization and compare it with the traditional
flip regularization. We focus on Binarized Neural Networks (BNNs), which are one of
the most resource-efficient variants of ANNs.

7.2.1 Introduction

Artificial neural networks have been applied successfully in numerous fields, and are
being executed on a variety of systems ranging from large computing clusters to small,
battery-driven embedded systems. In most cases, state-of-the-art neural network mod-
els rely on a large number of parameters to achieve high performance. This leads to an
expensive, slow, and energy-consumingmemory bottleneck. On neural network acceler-
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atorswith SRAM, the energy consumption of the memory makes up the largest fraction
of system energy, while advances in memory bandwidth are significantly slower than
processing speed. Hence, improving the memory consumption of ANNs and improving
the memory sub-systems is imperative to further push the applications of ANNs. One
design paradigm to improve the memory sub-system is to use approximate memory in
which resource efficiency is achieved by allowing for bit errors during the read and/or
write process. Likewise, reducing the memory consumption of ANNs is an established
part of deep learning research. Here, arguably, the most extreme form is to use Bina-
rized Neural Networks (BNNs) that only use binary weights {0, 1} leading to a potential
32 times memory reduction as high as 32 times that of their floating-point siblings.
Interestingly, it has been shown that BNNs can be trained to tolerate bit errors by bit
flip injections during training. However, this method has a large overhead and does
not scale well with model size and higher bit error rates .

In this contribution, we first summarize the currently available and emerging
memories that are possible to be used with neural network inference systems. Here,
we focus on approximate memories, which are unreliable due to bit errors and for
which countermeasures are necessary. One of the most promising emerging memory
components is the FeFET, which has high speed, and low energy consumption, but
faces reliability issues. We explain how FeFET can be used as approximate memory
for neural networks despite the bit errors caused by temperature and read voltage.
Finally, we present results on how bit error tolerance in ANNs is achieved without
bit flip injections based on margin-maximization and compare it to the traditional
methods for bit error tolerance optimization of ANNs. This contribution was previously
published as a conference paper in [113].

7.2.2 Emerging Memories

Recent studies on efficient ANN-based inference systems have explored the use of
approximate memory, which has been realized by reducing the memory supply voltage
and tuning latency parameters with the goal of lower power consumption and faster
access. If these methods are pushed to the limit, high Bit Error Rates (BERs) can occur.
Before discussing bit errors and how to deal with them in more detail we will quickly
survey volatile memories (SRAM, DRAM) and other emerging non-volatile memories
(FeFET, Resistive Random Access Memory (RRAM), Spin Transfer Torque Random
Access Memory (STT-RAM) or Magnetoresistive Random Access Memory (MRAM)) here.

SRAM For ANN inference systems using on-chip SRAM, the works in the literature
mainly employ scaling of various device parameters. To reduce energy consumption,
the SRAM voltage is scaled in [306, 652]. Yang et al. [717] separately tune the weight and
activation values of BNNs to achieve fine-grained control over the energy consumption.
Sun et al. [652] propose similar techniques for ternary ANNs. A similar approach is
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employed by Henwood et al. [306], in which layer-wise the best energy-accuracy trade-
off for SRAM is chosen.

DRAM For DRAM, the study by Koppula et al. [381] provides an overview of studies
related to ANNs that use different DRAM technologies and proposes a framework for
evaluating ANN accuracy when using approximate DRAM in various different settings
and inference systems. Specifically, the study shows that DRAM parameters can be
tuned such that energy and performance are optimized to achieve significant improve-
ments, whereas the ANN accuracy drop stays negligible due to the ANNs’ adaptations
in retraining. Other studies, e.g. [532, 672], also optimize the refresh rate of DRAM to
achieve energy savings.

RRAM Hirtzlin et al. [316] propose computing BNN operations with RRAM that fea-
tures in-memory processing capabilities. They set the write energy of RRAM low and
show that BNNs can tolerate the resulting errors by error tolerance training. This low-
energy setting also increases the RRAM cell lifetime since low-energy writes stress the
cells less. The work by Yu et al. [727] also uses RRAM to implement on-chip BNNs. They
show that under limited bit yield, BNNs can still operate with satisfying accuracy. Sun et
al. [651] propose an RRAM synaptic array to deploy BNNs. They investigate the accuracy
impact of errors from sense amplifiers that have offsets due to process variation.

MRAM or STT-RAM Another branch in the literature is about ANNs on STT-RAM
or MRAM. Hirtzlin et al. [315] propose deploying BNNs on MRAM with a low-energy
programming setting that causes relatively low error rates, and no significant accuracy
drop, but decreases write energy by a factor of two. Tzoufras et al. [675] also propose
operating BNNs on MRAM with reduced voltage with similar results. They test a wide
range of error rates and discuss the implications of BNN bit error tolerance on the
lifetime, performance, and density of MRAM. Pan et al. [549] take a different approach
for energy reduction and investigate the benefits of multi-level cell MRAM for the in-
memory acceleration of BNNs. For more general ANN models, Vincent et al. [686]
propose tunable STT-RAM to save resources.

FeFET FeFET is considered to be one of the most promising memory technologies.
The reason why FeFET store logic ‘0’ and logic ‘1’ lies in the available dipoles inside
the FE. The directions of these dipoles can switch if a sufficiently strong electric field is
applied. This state is non-volatile because the dipoles retain their direction when the
field is turned off. The logic ‘0’ and logic ‘1’ can be read out from the FeFET based on
the intensity of the current returned (e.g. high or low), which can be converted into the
digital domain with sensing circuits.
The three main advantages of FeFET over other non-volatile memories are as follows:
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Fig. 7.9: Errors due to temperature, stemming from underlying FeFET devices, are modeled and then
injected during the ANN inference [720].

1. FeFET is fully CMOS-compatible, which means that it can be fabricated us-
ing current manufacturing processes. This has been demonstrated by Global-
Foundries [668].

2. FeFET-based memories can perform read operations within 1ns latency. This re-
duces the differences to traditional SRAM technology, while the energy usage of
FeFET is significantly lower [668].

3. FeFET memory has the potential to enable extremely low-density memory since
the core cell consists merely of a single transistor.

One of themajor disadvantages of FeFETs is error susceptibility. Manufacturing variabil-
ity (i.e. process variation during production) and temperature fluctuations at run-time
can cause variations in the FeFET properties. This shrinks available noise margins and
may cause errors. To still employ FeFETs despite the errors in, say, on-chip memory for
Binarized Neural Networks (BNNs) inference systems, it is necessary to extract the error
models for the stored bits. With the error model, the impact of the temperature-induced
bit errors on the inference accuracy of BNNs can be evaluated.

In Figure 7.9, the steps for extracting the temperature-dependent error model of
FeFET transistors are shown. The entire FeFET device has been implemented and
modeled in the Technology CAD (TCAD) framework (Synopsys Sentaurus [656]). The
variation in the underlying transistor and the added ferroelectric layer are considered.
After incorporating the temperature and variation effects in the calibrated TCADmodels,
Monte-Carlo simulations for the entire FeFET device are performed. Then the probability
of error is extracted for a certain read voltage, i.e. the probability that logic ‘0’ is read
as logic ‘1’ and a logic ‘1’ is read as logic ‘0’. Details on device physics modeling and
reliability analysis for FeFET under the effects of temperature variability (runtime) and
manufacturing (design-time) variability can be found in [280] and [534], respectively.

7.2.3 Binarized Neural Networks

Traditional neural networks use floating-point (e.g., 32 bits) or integer values (e.g., 8
bits) to represent the ANN parameters (i.e., weights, activations, inputs, etc.) . In such
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a case, the position of the occurred bit error (i.e., the bit flip in the value) does matter.
Specifically, in floating-point ANNs, a one-bit error in one weight can cause the pre-
diction of the ANN to become useless (see e.g. [381]). This typically occurs when a bit
flip in the exponent of the floating-point representation occurs leading to an error with
an unacceptable magnitude. As mentioned before, BNNs are resource-efficient neural
networks that are ideally suited for small devices. Additionally, they can be trained
to be resilient against bit errors, which makes them ideal candidates for approximate
memories. In BNNs each weight (and possibly each activation) is stored in a single
bit {0, 1}. Hence, a bit error in a binary weight or binary input causes a change of the
computation result by merely 1, reducing its overall impact. In addition to the reduced
impact of bit errors and reducedmemory footprint due to smaller weights the execution
of BNNs also becomes simpler. Consider, for example, the output of the fully connected
l-layer with activation σ and weightsW l

f l(X) = σ(W lX) (7.1)

In regular floating-point neural networks, the execution of this layer requires the re-
peated computation of matrix-vector productsW lX as well as the application of σ. In a
BNN this operation becomes

2popcount(XNOR(W l , X)) − B > T (7.2)

where popcount counts the number of 1s in the XNOR-result, B is the number of bits in
the XNOR operands, and T is a learnable threshold parameter if batch normalization
layers are used, whose comparison produces binary values (representing a shifted
binarization function) [325, 609].

A common method of training ANNs is to apply stochastic gradient descent (SGD)
with mini-batches. LetD = {(x1, y1), . . . , (xI , yI)} be the training data with xi ∈ X as
the inputs, yi ∈ Y as the labels, and ℓ : Y×Y → R as the loss function.W = (W1, . . . ,WL)
are the weight tensors of layer 1 . . . L and fW (x) is the output of the ANN. The goal is to
find a solution for the optimization problem

argmin
W

1
I
∑︁

(x,y)∈D

ℓ(fW (x), y) (7.3)

with a mini-batch SGD strategy that computes gradients using backpropagation.
To train BNNs, Hubara et al. [325] proposes to deterministically binarize the weights

and activations during the forward pass. For backpropagation, the floating-point num-
bers are used for parameter updates. This leads to training times similar regular ANNs
but assumes binary values during the forward pass. More formally, let b : R → {−1, +1}
be a binarization function with

b(x) =
{︃
1 x > 0
−1 else

(7.4)



330 | 7 Memory Awareness

and let B(W) denote the element-wise application of b to a tensorW. Now we simply
apply B during the forward pass to each weight tensor. During the backward pass,
the authors propose using full floating point precision, whereas during the backward-
pass they replace the gradient of b with the straight-through estimator. Consider the
forward computation Y = B(X). Let ∇Yℓ denote the gradient with respect to Y. The
straight-through estimator approximates

∇Xℓ := ∇Yℓ, (7.5)

essentially pretending that B is the identity function. Algorithm 5 summarizes this
approach.

Algorithm 5: Binarized forward pass for a network with L layers, each with
weight tensorsW l performing a generic operation ∘l (e.g. a convolution).
1 for l ∈ {1, . . . , L} do
2 x ← B(B(W l) ∘l x)

7.2.3.1 Flip Regularization
To make BNNs bit error-tolerant, the state-of-the-art method is bit flip injections in
the binarized values during the forward pass, as proposed by Hirtzlin et al. [316]. The
idea is simple: To make BNNs robust against bit errors, we simulate the errors already
during training time. During each forward pass computation, we generate a random
bit-flip mask and apply it to the binary weights.

Let M denote a random bit-flip mask with entries ±1 of the same size asW that we
multiply component-wise to the binarized weights. We first consider computing the
bit-flip operation as H = (B(W) · M) ∘ X where ∘ denotes the application of the ANN
to the input X. Standard backpropagation on a loss ℓ that is a function of H yields the
following gradient of ℓ with respect to B(W)

∇B(W)ℓ = M ·∇B(W)·Mℓ (7.6)

which for fully connected layers amounts to a gradient update

∇B(W)ℓ = M · (∇Hℓ XT). (7.7)

We see that an update computed this way accounts for the bit-flips that were performed.
We propose instead using a special flip-operator with straight-through gradient approx-
imation. We denote by ep the bit error function that flips its input with probability p
and let Ep denote its component-wise version. During training, we change the forward
pass such that it computes

Xl+1 := B(Ep(B(W l)) ∘ Xl). (7.8)
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We replace the gradient of Ep with a straight-through approximation. This way, in
the example above we now have H = Ep(B(W)) ∘ X with gradient updates ∇B(W)ℓ =
∇Ep(B(W))ℓ which for fully connected layers yields the update

∇B(W)ℓ = ∇Hℓ XT (7.9)

which is unaware of bit flips and just uses the corrupted outputs H.
The original bit-flip regularization proposed in [316] reports extreme overfitting to

the flip probability used during training. As we will see later in the experiments, we
do not report such an overfitting. We believe that the approach using straight-through
gradient approximation is superior and that the extreme overfitting is attributable to
the use of the naive gradient.

7.2.3.2 Margin-Maximization for Bit Error Tolerance Optimization
Bit-flip regularization improves the error tolerance of the network by simulating bit
errors during the forward pass. This introduces two objectives to the training: Given a
set of labeled input data, train a BNN for high accuracy and for high bit error tolerance.
Hence, another approach is to combine high accuracy and high bit error tolerance
into a single loss function directly so that both objectives are jointly optimized during
training. To do so, we now introduce a margin-based neuron-level bit error tolerance
metric for BNNs that is then extended to formulate a bit error tolerance metric for the
output layer.

In the following, we use a notation describing the properties of neurons in convolu-
tional layers, but our considerations also apply to neurons in fully connected layers. Let
n be the index of one neuron in a ANN, and x ∈ X an input to the ANN. The output of a
neuron in a convolutional layer is a featuremapwithheightU andwidthV. Let hx,n,u,v ∈
Z be the pre-activation value of neuron n at place (u, v) ∈ {0, . . . , U} × {0, . . . , V},
before applying the activation function. For BNNs, the pre-activation values of a neuron
are computed by a weighted sum of inputs and weights that are ±1. Therefore, one bit
flip in one weight changes the pre-activation value by 2.

Theorem 25. Let n ∈ {0, . . . , N} be the index of one neuron. Furthermore, let q be the
number of bit flips induced in the weights of neuron n. The pre-activation of neuron n at
place (u, v) after induction of these bit flips is in the interval [hx,n,u,v − 2q, hx,n,u,v + 2q].

The proof can be found in [113].
A detailed analysis of the error tolerance for hidden-layer neurons has been con-

ducted in [114], but the use of Theorem 25 for optimizing bit error tolerance on the
neuron-level has been reported to be unsuccessful. We hypothesize that bit flips of
neuron outputs can only affect the BNN prediction if the effect of bit flips reaches the
output layer and leads to a change in the predicted class. Therefore, we now shift our
focus on applying the notion of margin to the output layer, i.e., to neurons with index
in NO.
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Each neuron in the output layer has only one output value hx,n,1,1 which is one entry
in the vector of predictions ŷ. No activation function is applied to the output value of
these neurons. There are as many values in ŷ as there are neurons in the last layer. The
index of the entry with the maximum value in ŷ determines the class prediction, where
we assume that ties are broken arbitrarily.

If bit errors modify the output values in the output layer such that another neuron
provides the highest output value, then the class prediction changes. Let hx,n′ ,1,1 and
hx,n′′ ,1,1 with n′, n′′ ∈ NO be the highest and the second-highest output value of neurons
in the output layer. The following corollary shows that the margin

m := hx,n′ ,1,1 − hx,n′′ ,1,1 (7.10)

serves as a bit error tolerance metric for the output layer.

Corollary 26. If m > 0, then the output layer of the BNN toleratesmax(0,
⌊︀m
2
⌋︀
− 1) bit

flips.

The proof can be found in [113].
We now focus on constructing a loss function based on Corollary 26 and the hinge

loss known from Support Vector Machines (SVMs). The hinge loss [602] for maximum
margin classification is defined as

ℓ(y, f ) = max(0, 1 − y · f ), (7.11)

with the ground truth prediction y = ±1 and the prediction f ∈ R. This loss becomes
small if the predictions have the same sign as the predicted class and are close to 1 in
magnitude. For predicted values larger than 1, the loss becomes 0. The “1” in the loss
forces the classifier to maximize the margin between two class predictions.

For BER tolerance of the last layer, the margin m as introduced in Equation 7.10
needs to be large so that themaximumnumber of bit flips the output layer can tolerate is
high. The margin can be directly computed by subtracting the second-highest entry ŷc′′
of the output vector ŷ from the highest entry ŷc′ , i.e.,m = ŷc′ − ŷc′′ . However, optimizing
with respect to m without considering the other entries ŷc of ŷ may not exhaust the full
potential of the margin between ŷc′ and the output of the other classes ŷc. The larger
the margin between ŷc′ and ŷc of other classes c, i.e. mc = ŷc′ − ŷc, the more bit errors
can be tolerated in the neuron that calculates ŷc without a change in the prediction. To
put it concisely, for a bit error tolerant output layer, ŷc′ needs to be as large as possible,
while the other ŷc need to be as small as possible.

In the case of BNNs for multi-class problems, however, the version of the hinge loss
in Equation 7.11 cannot be directly used. To extend the hinge loss to multiple classes,
we define yenc as a one-hot vector with elements in {−1, 1}, which has a +1 at the index
with the ground truth, else −1. yenc has the same number of elements as ŷ. Then the
element-wise product yenc · ŷ is computed. In this product, in case of correct predictions,
positive predictions in the correct class will stay positive, and negative predictions that
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Tab. 7.5: Datasets used for experiments.

Name # Train # Test # Dim # classes

FashionMNIST 60000 10000 (1,28,28) 10
CIFAR10 50000 10000 (3,32,32) 10

Tab. 7.6: Parameters used for experiments.

Parameter Range

Fashion FCNN In → FC 2048 → FC 2048 → 10
Fashion CNN In → C64 →MP 2 → C64 →MP 2

→ FC2048 → 10
CIFAR10 CNN In → C128 → C128 →MP 2 → C256 → C256

→MP 2 → C256 → C256 →MP 2
→ FC 2048 → 10

should be as negative as possible become positive. In case of wrong predictions, i.e.
high negative values for the correct class and high positive values for the wrong class,
the values become negative. For a high penalty in thewrong case and a small penalty for
the correct case, we subtract the product yenc · ŷ from a parameter b, and get (b−yenc · ŷ).
Since we do not demand higher prediction values than b, we set negative values to zero
with the max function, and denote the Modified Hinge Loss (MHL):

ℓMHL(ŷ, yenc) = max{0, (b − yenc · ŷ)}. (7.12)

7.2.4 Experiments

We evaluate fully connected binarized neural networks (FCBNNs) and convolutional
binarized neural networks (CBNNs) in the configurations shown in Table 7.6 for the
datasets FashionMNIST and CIFAR10 (see Table 7.5). In all experiments, we run the
Adam optimizer for 100 epochs for FashionMNIST and 250 epochs for CIFAR10. We
use a batch size of 128 and an initial learning rate of 10−3. To stabilize training, we
exponentially decrease the learning rate every 25 epochs by 50%. In the following,
we compare the margin-based methods (MHL) to Flip Regularization (FR). FR uses
the Cross-Entropy Loss (CEL) by default. We first compare MHL without FR to FR. In a
second step, we compare MHL without FR to MHL in combination with FR.

7.2.4.1 MHL Only vs. FR
Figure 7.10 presents the experimental results of different BNNs with respect to the
accuracy over BER (from 0% to up to 15% in Figure 7.10(a) and (b), and from 0% to up
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to 5% in Figure(c)). For each dataset, five BNNs were conducted using MHLwithout any
FR and FR with different BERs for bit-flip injections. Moreover, for all BNNs trained with
MHL, we employed a parameter search for b, testing powers of two, up to two times
the maximum value the neurons in the output layer can compute (maximum output
value of a neuron in the output layer is the number of neurons in the layer before the
output layer). Among these configurations of b, the best one was chosen. We observe
that BNNs trained with the MHL without FR have better accuracy over BER than the
BNNs trained with FR, i.e., in Figure(a) and (b) up to 10%, and in Figure(c) up to 5%.
The BNNs trained with FR suffer from a significant accuracy drop for lower BERs, when
the BER during training is high, e.g., CEL 20% and/or CEL 30% at low BER. The BNNs
trained with MHL, however, do not suffer from this accuracy drop. Although the BNNs
trained with FR 20% and bit-flip injections have better accuracy for Fashion CBNN in
Figure 7.10(b) when the error rate is higher than 10%, the accuracy of the BNNs drops
by a significant amount, which may be unacceptable. Below, we thus present further
investigations.

7.2.4.2 MHL Combined With FR
We evaluate BNNs trained with the MHL and FR under different BERs. In addition, the
BNNs trained with the MHL without FR (i.e., those BNNs generated using the MHL in
Figure 7.11 under 0% BER) are included here as the baseline in this subsection. For
all configurations, we employed the same parameter search for b as in the previous
section. Figure 7.11 presents the experimental results of different BNNs with respect to
the accuracy over BER (from 0% to up to 30% in Figure 7.11(a) and (b) and from 0% to
up to 6% in (c)). In all experiments, we observe that the accuracy over the BER of the
BNNs trained under MHL and FR is significantly higher than that of the baseline trained
by only MHL. For example, for Fashion in Figure 7.11, the BER at which the accuracy
degrades significantly is extended from 5% (baseline, green curve) to 20% and 15%,
respectively, with a small trade-off in the accuracy at 0% BER. If more accuracy at low
error bit rates is traded, the BER at which accuracy degrades steeply can be shifted even
further. For CIFAR10 in Figure 7.11, this breaking point can also be increased. However,
more accuracy has to be traded compared with previous cases. If b is higher than the
ones shown, the accuracy for lower BERs suffers similarly to how it would using CEL
with high BERs. If b is lower, there will be no significant change compared with CEL
with 0% BER. We only show the results with the best b.

7.2.5 Conclusion

Deep learning is notoriously memory hungry and hence new memory sub-systems
must be developed to push the application of ANNs to small devices. Likewise, new
ANN architectures can help to reduce memory consumption and offer a more resource-



7.2 Machine Learning Based on Emerging Memories | 335

friendly execution of deep networks. Non-volatile memories such as Ferroelectric FET
(FeFET) are a promising technology for new memory sub-systems. FeFET enables faster
and more energy-efficient read/write operations but it introduces bit errors into the
execution. While standard software solutions can monitor and correct bit errors, they
negate the advantages of non-volatile memories by introducing further processing
overhead. Neural networks that are resilient to random bit errors by design, on the
other hand, can retain the advantages of non-volatile memories leading to potentially
faster and more energy-efficient solutions. BNNs are a novel class of small, resource-
efficient neural nets that are ideally suited for such a setting. In BNNs each weight
consists of weights {0, 1} so that they require 32 times less memory than their floating-
point counterpart while being more resilient to random bit flips. In this contribution,
we provided an in-depth discussion of the bit errors in BNNs and derived a novel
max-margin optimization from it. Our approach offers a better accuracy across most
error rates while preventing the overfitting of the BNN to a specific error rate. Hence,
our approach allows the deployment of BNNs on a variety of different devices with
unknown and varying error rates.
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Fig. 7.10: Accuracy over bit error rate for BNNs trained with FR under a given bit flip injection rate
(specified in the legend, 0%, 5%, 10%, etc.) and BNNs trained with MHL without FR for a specified b
in Equation 7.12.
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Fig. 7.11: Accuracy over bit error rate for BNNs trained with MHL and FR (denoted as FR 0%, 1%, etc).
The number after the b is the value to which the parameter b in the MHL is set during training (see
Equation (7.12)).
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7.3 Cache-Friendly Execution of Tree Ensembles

Sebastian Buschjäger
Kuan-Hsun Chen

Abstract: Ensembles of decision trees are among the most used classifiers in machine
learning and regularly achieve state-of-the-art performance in many real-world applica-
tions, e.g., in the classification of celestial objects in astrophysics, pedestrian detection,
etc. Machine learning practitioners are often concernedwithmodel training, re-training
different models again and again to achieve the best performance. Nevertheless, once a
learnedmodel is trained and validated, the executing cost of its continuous application
might become the major concern.
Applying decision trees for inferences is very efficient in run-time, but it requires

many memory accesses to retrieve nodes. For example, it is common to train several
thousand trees, e.g., each with depth 15 leading to 215 = 32768 nodes per tree. This
leads tomillions of decision nodes that must be stored inmemory and processed. Cache
memory is commonly adopted to hide the long latency between the main memory and
the processor. However, an improper memory layout might bring up additional cache
misses, leading to performance degradation. Thus, designing a suitable memory layout
of tree ensembles is of key importance to achieve efficient inference over tree ensembles.
In this contribution, we discuss the deployment of tree ensembles on different hard-

ware architectures. Given a pre-trained decision tree ensemble, we first present different
realization techniques commonly used in the literature. Afterwards, we study different
layout strategies to optimize the node placement in the memory, focusing on the caches
available on different hardware architectures. Finally, we present the evaluation results
over different configurations and combine all approaches into a single framework that
automatically generates the optimized realization for a target hardware architecture.

7.3.1 Introduction

Efficient learning has always been the focus of research, but the demand for the efficient
application of learned models has emerged only recently. Consider, for example, self-
driving cars. Current prototypes use machine learning (ML) for image recognition and
fundamental steering.¹ Thus, the ML model must not only be applied continuously, but
it also must react on time. As a second example, consider search engines that utilize ML

1 ,https://towardsdatascience.com/teslas-deep-learning-at-scale-7eed85b235d3.

https://towardsdatascience.com/teslas-deep-learning-at-scale-7eed85b235d3
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models such as Gradient Boosted Trees² to rank search results. These engines routinely
process roughly 12 billion search queries a month worldwide.³ The 4 480 287 queries
per second they process demand fast model application.

While deep learning is excellent for unstructured image data, tree ensembles are
often referred to as one of the best black-boxmethods available for structured data. They
offer high accuracy with only a few parameters to tune [120, 223] and frequently place
among the top methods in data science competitions.⁴ For real-time application, tree
ensembles have become important in many domains, e.g., the real-time classification
of celestial objects in astrophysics [115], real-time pedestrian detection [466], real-time
3D face analysis [211]), the real-time classification of noise signals [608], nano-particle
sensors [439].

However, these trees are usually stored in the main memory and processed directly
out of the memory. The runtime of such a memory-intensive application is mainly de-
termined by the use of the various caches of the CPU. Surprisingly, as the line between
realizational details and algorithmic contributions becomes blurry on modern comput-
ing systems, caching behavior determines the performance of implemented algorithms
evenmore than algorithmic differences [615]. For tree ensembles, we can foresee that an
analytical approach to an efficient layout of thememory is desirable. Given a pre-trained
tree ensemble, we present several cache-aware approaches to optimize the memory
layout (so-called tree-framing), while preserving the original ensembles’ accuracy. The
proposed approaches are wrapped in a code generator that automatically adapts to
underlying architectures to produce optimized code segments. Overall, we present the
following contributions:
Cache-aware tree-framing approaches We analyze the source of cache misses on

two common tree realizations, i.e., native and if-else trees, and discuss several
approaches at the application level to optimize the memory layout by artificially
creating instruction/data locality .

Architecture-aware code generator We present a code generator that exploits the
analytical insights for generating optimized realizations of a given tree ensem-
ble. The code generator is publicly available at https://github.com/sbuschjaeger/
fastinference.

Empirical evaluation We perform 1800 experiments across three different computer
architectures and show that our approaches offer a speed-up factor at 2 − 4 on
average without changing the prediction accuracy of the given trained model.

This contribution was previously published as a conference paper in [108] and was
later expanded in a dissertation in [107].

2 https://www.seroundtable.com/bing-core-ranking-algorithm-machine-learning-27040.html.
3 Numbers are for 2019, see https://www.statista.com/topics/4294/bing/.
4 https://www.kdnuggets.com/2016/01/anthony-goldbloom-secret-winning-kaggle-competitions.
html.

https://github.com/sbuschjaeger/fastinference
https://github.com/sbuschjaeger/fastinference
https://www.seroundtable.com/bing-core-ranking-algorithm-machine-learning-27040.html
https://www.statista.com/topics/4294/bing/
https://www.kdnuggets.com/2016/01/anthony-goldbloom-secret-winning-kaggle-competitions.html
https://www.kdnuggets.com/2016/01/anthony-goldbloom-secret-winning-kaggle-competitions.html
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7.3.2 Related Work

Tree ensembles are some of the most used machine learning algorithms and, as such,
have been studied extensively in the literature. In the context of model application and
fast inference, there are two principled approaches. The first set of methods changes the
training procedure for Decision tree (DT) ensembles to produce more resource-friendly
models. This can be beneficial to achieve the highest accuracy given the computational
resources provided, but often result in longer training times and more evolved training
procedures. Common examples for this approach are pre- and post-pruning rules for
trees (see, e.g. [43]) or the pruning of entire ensemble members [347, 449, 589, 739].

The second set of methods studies the realization of a given DT ensemble and its
execution. This approach uses the ensemble as-is and, as such, does not affect the train-
ing. We will focus on this methodology in this contribution. Note that bothmethods can
also be combined. For example, Van Essen et al. present in [679] a comprehensive study
of different architectures for implementing Random Forests (RFs) on CPUs, FPGAs, and
GPUs. Based on the CATE algorithm [586], the authors train an RF with DTs constrained
by a fixed height. By fixing the tree-depth, the authors show a practical pipelining
approach for executing DTs on CPUs, FPGAs, and GPUs.

Asadi et al. introduce different realization schemes of tree-based models in the
context of learning-to-rank tasks [26]. They introduce two different realization schemes,
which will be discussed in more detail later: the first one uses a while-loop to iterate
over individual nodes of the tree, whereas the second approach decomposes each tree
into its if-else structure. For the first realization, the authors also consider a continuous
data layout (i.e., an array of structs) to increase data locality but do not directly optimize
each realization. Also note that the authors mainly consider gradient-boosted trees.
There, the individual trees are usually “weak” in a sense, that they are comparably
small, as opposed to larger trees in RFs.

Also in the context of ranking models, Lucchese et al. present the QuickScorer
algorithm for gradient boosted trees [162, 450]. In this approach, the authors discard
the tree structure and decompose each tree into its comparisons. Then, they sort the
comparisons of the entire ensemble according to the feature value and perform them
one after another instead of traversing trees in a classical sense. To do so, they introduce
a 2∆-dimensional bit vector, where ∆ is the height of a tree in which the most significant
bit (MSB) signifies the prediction leaf node of that tree. This way, the algorithm can
reuse comparisons across all ensemble members while minimizing cache misses. In
[452] the authors further enhance their method by adding vectorization over multiple
examples for more efficient batch-processing. To mitigate the limitations of a fixed
height, Ye et al. propose in [721] using an encoding scheme called epitome that decodes
the bitvectors on the fly while preserving vectorization. We note that, while these
methods usually offer a tremendous speed-up, they execute all possible comparisons
in the entire ensemble in the worst case. Thus, they are especially effective for large
ensembles of smaller trees commonly produced by gradient boosting algorithms.
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Kim et al. present in [373] a realization for binary search trees using vectorization units
on Intel CPUs and compare their realization against a GPU realization. The authors
provide insight on how to tailor the realization to Intel CPUs by taking into account
register sizes, cache sizes, and page sizes. Their work is specialized for Intel CPUs,
and thus, it is not directly applicable for different CPU architectures. Lucchese and
colleagues have already noticed, that many nodes are seldom visited [450]. Buschjäger
and Morik formalize this observation in [110] by estimating the probabilities of specific
paths during tree traversal. Based on this probabilistic view of model execution or
inference, the authors consider different realization schemes for tree traversal and
theoretically analyze their runtime. Note, however, that this model of computation
remains at the software level and does not include the memory layout. Buschjäger et al.
enhance this model in [108] by including the memory layout in their model. They show
how to minimize cache misses and how different realizations affect the instruction and
data cache differently for executing ensembles of large trees commonly found in RFs.
We will now discuss this paper in more detail.

7.3.3 A Probabilistic View of DT Execution

We consider supervised learning problems, in which we infer a model f : Rd → Y from
labeled training data {(xi , yi)|i = 1, . . . , N} to predict the value f (x) of new, unseen
observations. For Y = R, we have a regression problem, for Y = {0, 1, . . . }, we have a
classification problem.

Tree ensembles train a set of individual trees and combine their predictions to
establish a joint model. In the classical Random Forest (RF) approach by Breiman [72],
K DTs are trained using different samples of input features. Other RFs variations have
been explored, such as those that train trees on samples of data (bagging) [71] or those
that randomly generate splits for training [250]. Boosting [610] also frequently uses
decision trees as their weak base learners, but trains them sequentially to correct each
other.

A decision tree is a simple, tree-structured model that consists of inner nodes with
two children and leaf nodes. Each inner node compares the feature value xf of the
current sample x against a threshold t where f and t are computed during tree training.
Depending on the outcome of this comparison, either the left or the right child of this
node is used until a leaf node is found. The leaf node stores a constant prediction value
(e.g. the estimated class probabilities that fall into the leaf) which is then returned.

Our goal is to analyze the probability of performing a certain comparison while
traversing a DT. Based on this analysis, we can decide for each tree, which realization
and which data layout is best. Our notation is the following: each node receives a
unique identifier (e.g., in breath-first order) i. We denote the left child of i with l(i) and
the right child with r(i). Note that every observation takes exactly one path π(x) from
the root node to one leaf. To lighten the notation, we drop the argument x, if we are not
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Fig. 7.12: Decision tree with probabilities of the path.

interested in the path of a specific observation. As established in [110], we model each
comparison at node i as a Bernoulli experiment in which we take the path towards
the left child with probability p(i → l(i)) and towards the right child with p(i → r(i)). It
holds that p(i → l(i)) = 1 − p(i → r(i)). An example can be found in Figure 7.12.

The probabilities p(i → l(i)) and p(i → r(i)) can be estimated with the training
data by counting the number of samples at each node i taking the left and right path.
Assume a path of length L with π = (i1, i2, . . . , iL), where ij+1 is either the left or
the right child of the jth node on the path. Following this path consists of a series of
Bernoulli experiments, each with probability p(ij → ij+1). Let P denote the set of all
paths in the tree. The probability of taking path π ∈ P is given by

p(π) = p(i0 → i1) · . . . · p(iL−1 → iL) =
L∏︁

j=0
p(ij → ij+1) (7.13)

Again, let i be a node, there is exactly one path π = (0, . . . , i) ending in node i. We
call the probability of the path leading to node i the probability of that node, that is
p(i) = p((0, . . . , i)). Let T be the set of all nodes in the tree. We define the probability
for every subset of nodes T ⊆ T as:

p(T) =
∑︁

i∈T
p(i) (7.14)

7.3.4 Memory Locality and Tree Realization

As mentioned, tree ensembles can consist of millions of nodes that must be stored and
managed in themainmemory. Hence, thememory layout of tree ensembles is one of the
most crucial aspects of efficient tree traversal. In order to mitigate the performance gap
between the main memory and the processor, smaller and faster memory subsystems
are often introduced in modern computer architectures to hide the long read/write
latency, in the forms of cache and scratchpad memories. Here we focus on the cache
memory, which is commonly equipped in modern computing systems.

The cache memory basically acts as a buffer between the main memory and the
CPU and stores the data and instructions that the CPU uses more frequently. This way,
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frequently accessed parts of the memory can be loaded from the smaller, but much
faster cache memory to reduce the latency of memory accesses. However, any misuse of
cachememorymight be evenworse than no cache in thememory hierarchy because one
cache miss triggers two loading instructions, one from the main memory to the cache
and one from the cache to the processor. There are three types of cache misses [183]:
Compulsory misses are due to the first access to a memory block that the cache did

not yet have a chance to buffer.
Capacity misses occur when somememory blocks are discarded from the cachemem-

ory due to the limited capacity, i.e., the program is working on more data than the
cache capacity.

Conflict misses occur in set-associative or direct-mapped caches when several blocks
are mapped to the same cache set.

The basic assumption of a cache is that ofmemory localities:
Temporal locality Recent data will be accessed in the near future, say, in small pro-

gram loops.
Spatial locality Data at addresses close to the addresses of recently accessed data will

be accessed in the near future, say, in sequential accesses to elements of an array.

These are the general assumptions for cache design, but please note that knowing how
the caches exactly behave is difficult or even impossible. Caches are manufactured
as parts of the closed IP of CPU manufacturers and hence the exact design of caches
is unknown. Additionally, due to the fact that there are often competing processes
running on a single CPU it is difficult to predict the cache behavior deterministically. In
this contribution we suppose that the design of cache behaviors cannot be changed.
The question we address is this: How to realize a cache-friendly execution while

preserving the functional behaviors of a given DT?

First, we analyze the memory usage of two common realizations of DT, i.e., native
Tree and If-else Tree that do not exploit the memory locality during the execution over
the structure of DT. Then we discuss how we can make these two realizations more
cache-friendly.

Native Tree The native tree implementation uses a while-loop to iterate over the
individual tree nodes that are stored within a continuous data structure, say, in a
one-dimensional array. An example code can be found in Listing 7.1. Although the
usage of the simple loop with a few lines of codes preserves the temporal locality,
the accesses over the nodes of a DT do not have spatial locality. The nodes are often
allocated sequentially according to the indexes, whereas such indexes might not take
the execution of the DT into consideration, e.g., the nodes on one path might not be
allocated sequentially. In addition, if the distance between each node of the path is
greater than the number of nodes that can be hosted into a cache set, some nodes will
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be loaded into caches but not used at all, leading to much capacity and conflict cache
misses.

Listing 7.1: Example for native tree structure in C++.

struct Node {

bool isLeaf;

unsigned int prediction; // Predicted label

unsigned char feature; // Targeted feature

float split; // Threshold

unsigned short leftChild, rightChild;

};

Node tree[] = {{0,0,0,8191,1,2},{0,0,1,2048,3,4},..]}

bool predict(short const x[3]){

unsigned int i = 0;

While(!tree[i].isLeaf) {

if (x[tree[i].feature] <= tree[i].split) {

i = tree[i].leftChild;

} else {

i = tree[i].rightChild;

}

}

return tree[i].prediction;

}

If-Else Tree An alternative is the if-else tree, which statically encodes the split values
of nodes in the instructions. This realization essentially avoids the indirect memory
accesses required by the native tree and usually improves the runtime efficiency sig-
nificantly. An example code can be found in Listing 7.2. However, the advantage of
the temporal locality in the instruction cache might be completely abandoned. Since
DTs are naturally composed of many branches, some encoded instructions might be
prefetched into the instruction cache but not used. Additionally, if the size of the instruc-
tions for one DT is greater than the size of the instruction cache, the cached instructions
may be evicted out by loading other instructions due to the capacity and conflict cache
misses.



7.3 Cache-Friendly Execution of Tree Ensembles | 345

Listing 7.2: Example for if-else trees in C++.

bool predict(short const x[3]){

if(x[0] <= 8191){

if(x[1] <= 2048){

return true;

} else {

return false;

}

} else {

if(x[2] <= 512){

return true;

} else {

return false;

}

}

}

7.3.5 Memory Layout Optimization

In the following, we analyze the caching behaviors of the two different realizations and
present our tree-framing algorithms to optimize the memory layout at the application
layer accordingly.

Native Tree As shown in Listing 7.1, a DT can be realized by allocating the tree nodes
sequentially in an 1-D array, and a simple loop can access them according to the com-
parison between the feature and the split value. We first observe that, in fact, half of
the nodes in a tree are leaf nodes storing a prediction value. This naive realization, how-
ever, assumes the same data type for each node, incurring unnecessary memory usage.
Second, the access pattern of a DT forms a unique path from the root to a leaf for each
input data, but the nodes are typically sequentially allocated in the array according to
Breadth-First Search (BFS).⁵ The distance between each accessed node becomes larger
when the accessed nodes are placed deeper in the DT. The proposed optimization is
twofold: 1) reducing compulsory cache misses by encoding the predicted label into the
field of children, and 2) reducing capacity and conflict cache misses by allocating as
many nodes as possible from the same path into the same cache set.

When a node is loaded, the following nodes in the array are prefetched into the
data cache sequentially. If the size of memory for each node can be reduced, more
nodes can be loaded into the cache at once so that overall compulsory cache misses
can be reduced. To reduce memory consumption we can completely remove the isLeaf

5 Please note that the problem is not limited to BFS. Here we point out the demand of considering the
access pattern when allocating nodes to memory.
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and prediction fields, and store the predicted labels of the children directly in the
respective fields by encoding the node type with an indicator field, i.e., removing one
Boolean variable and two unsigned shorts by adding one unsigned short.

Asmentioned earlier, the sequence of stored nodes is not consistent with the access
pattern over the execution of the tree, so the benefit of caching cannot be utilized
properly. A sensible solution is to leverage the probabilistic view on DT execution
to identify nodes that were likely executed consecutively and place them in memory
accordingly. Let τ be the cache set size and A be the array in which we place all nodes
of T. Furthermore, let C be the candidate list of nodes in T that have not been placed
in A yet and let S denote the nodes that should be placed in the same cache set. For
each node, we greedily choose a child that has the highest probability on the current
path and place it in S. Once S contains τ − 1 elements (and hence is full), we append
all nodes from S to the array A, clean up S, and repeat the above procedure for the next
set. The details are summarized in Algorithm 6.

Algorithm 6: Optimized path layout
Data: Tree-nodes T, maximum nodes per set τ
Result: A data array A with the path-oriented layout

1 A = [ ]
2 C ← {0}
3 while C ̸= ∅ do
4 i ← argmaxj∈C{p(π(j))}
5 C ← C \ {i}
6 S ← {i}
7 while |S| ̸= τ do
8 if i is leaf-node and C ̸= ∅ then
9 i ← argmaxj∈C{p(π(j))}
10 C ← C \ {i}
11 else

12 C ← C ∪ argmin{p(i → l(i)), p(i → r(i))}
13 i ← argmax{p(i → l(i)), p(i → r(i))}
14 if |S| = τ − 1 then
15 C ← C ∪ {l(i), r(i)}
16 S ← S ∪ {i}
17 A.append(S)

Please note that adding a new node to S (Line 7) has two possible actions for the
encoding procedure:
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– The current node is a split node. The algorithm picks the next node based on the
children’s probabilities and puts a more probable child in S and the other children
into the candidate list C.

– The checked node is a leaf node, i.e., the end of the path. The algorithm picks a
sub-root with the highest probability from the candidate list C as long as it is not
empty. The traversal starts again until S is full.

If the current S is full, but a path is not finished yet (Line 14), two children of the current
node are returned to the candidate list C (Line 16). A sub-root that has the highest
probability is picked from C for the next new set S. The algorithm outputs the optimized
memory layout over nodes in which path-oriented sets are sequentially allocated to the
array.

If-Else Tree As shown in Listing 7.2, a DT can be realized by unrolling the comparisons
of a DT into conditional statements with the if-else blocks. This version avoids the
indirect memory accesses and does not consider the execution pattern of a DT. The
proposedoptimization is also twofold: 1) reducing compulsory cachemisses by reducing
the branch executions, and 2) reducing capacity and conflict cache misses by grouping
those nodes used most of the time, e.g., the root node.

When a compulsory cache miss takes place, several consecutive instructions are
fetched into the instruction cache, even though some of them might not be executed
due to branches. An analysis of the corresponding assembly code reveals that only the
branches for else statements are generated in general. In order to increase the chance of
using prefetched instructions, the possibility of branch executions should be reduced.
Towards this, we propose traversing all paths in the DT and swapping the children of
every node i when p(i → l(i)) ≥ p(i → r(i)).

Furthermore, unlike the native tree, the positions of unrolled nodes cannot be freely
allocated. The size of nodes from a DT is likely greater than the size of the instruction
cache. Because of the capacity and conflict cache misses the cached instructions may
be evicted by fetching other instructions. We propose partitioning nodes into different
computation kernel functions, and leveraging goto statements to break the tie between
if-else blocks so that we can put probable nodes together.

LetK denote the kernel function and let s(i) be a mapping function returning the
instruction size of node i. We formulate the following optimization problem:

K = argmax
{︀
p(T)

⃒⃒
⃒T ⊆ Ts.t.

∑︁

i∈T
s(i) ≤ β

}︀
, (7.15)

where β is a given budget related to the size of the instruction cache on the targeted
architecture. GivenK, these nodes likely remain in the cache once they are fetched,
whereas the remaining nodes L = P \Kmay be evicted more often. In order to avoid
iterating over all possible subsets of T, which might be computationally inefficient, we
propose a greedy algorithm to partition nodes in a path-wise manner, summarized in
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Algorithm 7. At first, the algorithm swaps the children according to their probabilities,

Algorithm 7: Optimized if-else tree
Data: Tree T, Paths P = {π1, . . . , πM}
Result: KernelK, Label L

1 swapChildren(T)

2 P ← sortByProbabilities(P)

3 b ← 0
4 for π ∈ P do

5 for i ∈ π do
6 if b + s(i) > B then

7 Add i to L
8 else

9 Add i toK
10 b ← b + s(i)

and sorts all paths in the tree by their probabilities. Afterwards, the approach greedily
appends nodes one by one into K until the accumulated size of the added nodes b
is greater than the given budgetB. The rest of the nodes are all added to L. Once the
nodes are grouped intoK and L, we can use goto statements to break the sequential
generation of if-else blocks. First, we generate if-else blocks for all nodes inK. Once
the left/right child of one of those nodes is in L, a goto statement is generated at the
same position to replace the original if-else statement. Then, the corresponding if-else
statements of this node and its children are all generated into a label block at the end,
which is branched from the goto statement. Listing 7.3 shows an example based on
Listing 7.2 by applying Algorithm 7.
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Listing 7.3: If-else structure in C++ with goto statements.

bool predict(short const x[3]){

if(x[0] > 8191){

if(x[2] <= 512){

return true;

} else {

return false;

}

} else {

goto Label0;

}

Label0:

{

if(x[1] <= 2048){

return true;

} else {

return false;

}

}

}

The remaining question is how to estimate the instruction size s(·) of each node. In
general, the instruction set size differs for two different types of nodes:
Split nodes require three types of instructions. First, the values of the target feature

and the corresponding threshold are loaded into registers. Second, the values
inside the registers are compared against constant values. Last, a jump out of the
current block is performed based on the comparison.

Leaf nodes need two types of instructions. First, the return value of the prediction
is stored in a register, and second, a jump back to the caller of the if-else tree is
performed.

Therefore, we can estimate s(·) by counting the number of generated instructions for a
tree node. Table 7.7 summarizes the expected size of instructions for ARM, X86 (Intel),
and PPC in an isolated example.⁶ Please note that in a real application, the actual
number of instructions depends on the adopted compilation tool-chains and the actual
realization. An advanced automation can be further explored by exploiting compiler
features, e.g., annotations on the source code, to enforce the executing patterns. By
doing so, the number of generated instructions can be firmed in the proposal algorithm
as for example done in ongoing research such as [132].

6 We adopted GNU C++ (g++) compiler version 4.8.3 for ARM, version 4.9.2 for PPC, and version 5.4.0
for Intel with -O0 option.
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Tab. 7.7: The expected size of instructions for a split node and a leaf node in a decision tree on ARM
(Raspberry PI 2), PPC (NXP T4240 processors) and Intel (Intel Core i7-6700) processors.

ARM [Bytes] PPC [Bytes] Intel [Bytes]

Type Int Float Int Float Int Float
Split 20 32 20 48 28 17
Leaf 8 8 8 8 10 10

7.3.6 Architecture-Aware Code Generator

As noted earlier, for each combination of tree ensembles and target hardware architec-
ture a different implementation might offer the best inferencing solution. Hence, we
implement the discussed tree-framing methods in a single code-generator framework
that generates the optimized realizations for a given forest and target platform. Fig-
ure 7.13 gives an overview of the whole workflow. First, the pre-trained forest (in a JSON
format) is loaded. Afterwards, the corresponding intermediate representation of the
ML model is generated, and the proposed optimizations are performed, e.g., branch
swapping, node re-indexing, etc. Finally, we provide a set of C-style templates that
represent the specific implementation types (e.g. native or if-else). Several auxiliary
scripts scripts are provided to automate the above procedures, e.g., selecting corre-
sponding cross-compilers. Per default sci-kit learn models are targets [561] but other
model definitions, in, say, the ONNX format are also supported. More details can be
found at https://github.com/sbuschjaeger/fastinference.

JSON

Read File

Decision Tree

Ensemble

...

Optimize
Model

Tree Framing

Choose
Target

Architecture

X86

ARM

PPC

Generate
Code

if-else

native

...

Fig. 7.13:Workflow of our code generator. The model configuration is loaded into an internal repre-
sentation. If selected, optimizations are performed on the model before code generation. Afterwards,
the target architecture and the appropriate templates are selected for final code generation.

https://github.com/sbuschjaeger/fastinference
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7.3.7 Experimental Evaluation

We have performed 1800 different experiments by training Decision Trees (DT) [73],
Random Forests (RF), [72] and Extremely randomized Trees (ET) [250] on 12 different
datasets with varying tree-depths to generate the aforementioned realizations for dif-
ferent architectures, i.e., X86, PPC, and ARM CPUs. Table 7.8 shows the datasets we
used during the experiments. All datasets are available in the UCI Machine Learning
Repository [31] except for MNIST [420], IMDB [456], and FACT [17]. In addition to the
number of features and the number of examples during test time, we also report the
range of accuracy for the three different models DT, RF, and ET. In all experiments we
used the CART algorithm with the Gini score criterion for node-splitting and trained
models using the sklearn package[561]. For RF and ET, we used 25 trees. If the respec-
tive dataset comes with a pre-computed train/test split, we use this. Otherwise, we use
75% of the data for training and 25% of the data for testing. DTs often do not achieve
high accuracy, whereas RF and ET perform best with large trees. We did not perform
any hyperparameter optimization with respect to the classification accuracy and report
the accuracy here to validate our code generator.

Since sklearn is arguably one of the most-used machine learning libraries we also
compared its performance against our implementation. We found that, our realization
is on average 500 − 1500 times faster than sklearn. However, we admit that this com-
parison is biased, because large parts of sklearn are written in Python and optimized
for batch execution. Thus, we excluded these comparisons in the following discussion.
For space reasons, we focus our evaluation on RF models, but found that DT and ET
result in similar behaviors across all systems. We use the naive native realization as
the baseline for all experiments, and measure the average speed-up for each dataset of
each optimization against this realization. To minimize unfairness due to caching, we
classify all samples in the test set twice, but only report the runtime of the second run.
We repeat the whole process 50 times and report the average speed-up across these 50
repetitions.

For native optimizations, we choose τ = 25 on X86, τ = 8 on ARM, and τ = 8 for
the PPC CPU. For if-else optimizations, we use an instruction-cache size β = 128000
bytes on X86, β = 32000 bytes on ARM, and β = 32000 bytes on the PPC CPU. The
experiments were performed on an Intel Core i7-6700 desktop machine with 16GB
RAM for X86. For PPC, we use a NXP Reference Design Board with T4240 processors

and 6GB RAM. For ARM, we use an Raspberry PI 2 with an ARMv7 CPU and 1GB RAM.

Experiments on the X86 CPU Architecture Figure 7.14 depicts the average speed-up
of the four different optimizations on Intel. First we note, that the if-else trees are the
fastest on Intel and offer a speed-up of around three across all tree depths. For smaller
tree depths from 1 − 10, we see that optimizing if-else trees only offers marginal speed-
up. However, for larger tree depths of around 15 and 20, we can see that optimized
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Tab. 7.8: Summary of datasets for our experiments based on UCI datasets [31], IMDB [456],
MNIST [420], FACT [17].

Dataset # Examples # Features Accuracy

adult 8141 64 0.76 - 0.86
bank 10297 59 0.86 - 0.90
covertype 145253 54 0.51 - 0.88
fact 369450 16 0.81 - 0.87
imdb 25000 10000 0.54 - 0.80
letter 5000 16 0.06 - 0.95
magic 4755 10 0.64 - 0.87
mnist 10 000 784 0.17 - 0.96
satlog 2000 36 0.40 - 0.90
sensorless 14628 48 0.10 - 0.99
wearable 41 409 17 0.57 - 0.99
wine-quality 1625 11 0.49 - 0.68

if-else trees can retain their speed-up and outperform unoptimized if-else trees with a
speed-up factor larger than 3.

Native trees do not perform as well as if-else trees on Intel CPUs. Overall, the speed-
up compared with naive native trees is only marginal for smaller trees below depth 15.
Here, both versions, i.e., the StandardNativeTree and the OptimizedNativeTree, offer a
speed-up of 1.5 at most. Interestingly, for larger trees around depth 15 and more, we
again notice that our optimizations improve performance.

Experiments on the PPC CPU architecture Figure 7.15 depicts the average speed-
up of the four different optimizations on PPC. We can observe that the results here
are similar to Figure 7.14, in which if-else trees always outperform native trees with a
speed-up in the range from 2 − 5. Along with the increment of tree depth, the speed-up
from both if-else tree versions drops. Un-optimized if-else trees suffer especially from
degraded performance, dropping to almost 2, whereas the optimized version can retain
a speed-up of around 3.5.

Similar to X86 CPU, the native realization does not seem to be the best choice
as it provides a speed-up under 2 in all cases. However, with increasing tree depths,
optimizations are more important. It is worth noting, that we can observe cases where
the native trees outperform if-else trees when tree depth is larger than 15.

Experiments on the ARM CPU Architecture Figure 7.16 depicts the average speed-
up of the four different optimizations on ARM. We observe that the situation on ARM is
more fragmented than that of X86 and PPC. In general, we are able to achieve a speed-up
of around 4 for small trees, which drops to around 2−3 for larger trees. Both realizations
roughly start with the same speed-up factor for small trees, but then quickly diverge for
tree depth from around 5−15. In this range of tree depth, we see that if-else trees are the
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Fig. 7.14: Average speed-up factor for real-time execution compared with the naive native realization
on Intel for tree depths from 1 − 20.
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Fig. 7.15: Average speed-up factor for real-time execution compared to the naive native realization on
PPC for tree depths from 1 − 20.
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Fig. 7.16: Average speed-up factor for real-time execution compared with the naive native realization
on ARM for tree depths from 1 − 20.

fastest choice on ARM. Additionally, we notice that with increasing tree depths cache
optimizations become more important and consistently outperform their un-optimized
counterpart. Once trees are sufficiently large, we see that the native trees match again
the performance of if-else trees and even outperform them for tree depths of 15 and 20
in some cases. In this sense, the results are similar to what we have seen on the PPC
architecture.

7.3.8 Discussion of the Experiments

The experiments show differences and similarities across the three architectures. Here,
we want to discuss these phenomena in terms of the properties of the specific architec-
tures, as well as the particular CPU models used for experiments. We note that one of
the main architectural differences between X86, ARM, and PPC are the available instruc-
tions. Since native trees only use a small amount of hot-code, the differences between
CPU architectures will likely not matter much here. However, while looking at if-else
trees, we can expect a larger difference. To further investigate the interplay between
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CPU architectures and code size, we consider Table 7.9, ⁷ which depicts the instruction
size of a tree kernel function for varying tree depths over the FACT dataset (containing
floating-point features) and the covertype dataset (containing integer features) under
the standard if-else tree realization. For Intel CPUs, as shown in Figure 7.14, we notice

Tab. 7.9: The actual size of instructions for if-else tree executing kernel functions on different archi-
tectures with the O3 option.

(a) Kernel size with integer features for covertype dataset

DateType DT-1 DT-5 DT-10 DT-15 DT-20

Intel 224 575 8185 51005 167644
PPC 232 604 7732 51840 170772
ARM 204 604 9040 55012 180628

(b) Kernel size with floating point features for fact dataset

DateType DT-1 DT-5 DT-10 DT-15 DT-20

Intel 96 415 17023 127330 404722
PPC 96 556 20996 169696 577952
ARM 88 428 18436 154992 542020

that if-else trees are the best choice. There are mainly two reasons. First, X86 CPUs
are Complex Instruction Set Computers (CISC) offering a very rich set of instructions
that include all sorts of specialized operations. Since if-else trees unroll the complete
tree structure into instructions, they give the compiler the opportunity to utilize this
multitude of instructions to the fullest by encoding larger parts of the tree in single
instructions. From Table 7.9 we can also see that the Intel CPU almost always requires
the fewest instructions per decision tree. Second, in our experimental setting, the Intel
Core i7-6700 CPU has a comparably large instruction cache of 256 KiB combined with
two larger shared caches of 1MiB (L2 Cache) and 8MiB (L3 Cache). Thus, by encoding a
single tree in only a few instructions, it is likely to fit it into the larger instruction cache.
By contrast, native trees do not benefit from the CISC architecture and require additional
space in the data cache by encoding the tree nodes as data instead of instructions.

As with the X86 architecture, we have seen that if-else trees perform very well on
the PPC architecture, but to a lesser extent. The PPC CPU architecture is a Reduced
Instruction Set Computer (RISC) with performance enhancement for high performance
computing. RISC does not offer instructions for specialized operations as CISC does.

7 Although the instructions generated by the compiler may differ due to aggressive compiler optimiza-
tion (O3) compared with the presented node sizes (O0 optimization) in Table 7.7, the code generator at
the end selects the O3 option to accelerate the realizations as much as possible.
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Thus, the compiler must largely rely on the combination of (comparably) simple
instructions to implement if-else trees. This, in turn, results in larger code that is less
likely to fit into the instruction cache. Comparing the instruction size of PPC with
X86 in Table 7.9 we see that the PPC architecture indeed requires more instructions
than with X86. Interestingly, this case is less severe for integer features, due to the
enhancements in this instruction set architecture. Considering the cache sizes of the
T4240 processors used in the experiments, we see that it only has a 32 KiB instruction
cache, but also comes with a 2MiB shared L2 cache, which is even larger than the Intel
Core i7-6700 CPU. For smaller trees of around 5 − 10, the cache sizes are still large
enough to hold all trees, and thus if-else trees are still the fastest choice. If trees become
large (depth 10 or more), the instruction cache is not enough to hold all trees and we
must rely on the larger L2 cache. However, this cache is slower, which in combination
with the larger code size explains the performance drop for larger trees.

Finally, we discuss the fragmented behavior of the ARM architecture. Much like its PPC
counterpart, ARM also uses a RISC architecture. However, ARM’s RISC does not come with
specialized instructions for high-performance computing, and thus the compiler has to
completely rely on the combination of simple instructions for if-else realization. This in
turn results in even larger code for integer features, which is less likely to fit into the
instruction cache as shown in Table 7.9. Interestingly, for floating-point features, we see
that the ARM CPU uses fewer instructions than the PPC CPU, which is attributable to the
specific CPU model used during experiments. The T4240 processors are optimized for
high-performance computing in a low-power embedded computing setting, such as
networking applications, and thus are optimized for integer operations. By contrast,
the ARMv7 CPU of the Raspberry PI 2 is a general-purpose CPU aimed at the needs
of the average user, and thus it places a larger emphasis on floating-point operations
compared with the T4240 processors. It has a 32 KiB instruction cache in combination
with a significantly smaller 512 KiB L2 shared cache. Compared with the other CPUs,
this means that the ARM CPU has 2 − 16 times less L2/L3 cache available. For smaller
trees around a depth of 5−10, the cache sizes are still enough to hold all trees, and thus
if-else trees are still the fastest choice. For larger tree depths, however, the instruction
cache is not enough and native structures using the data cache become faster. However,
since the data cache is also small, both caches are filled quickly to their maximum.
Interestingly, if we optimize both if-else and native trees, we end up with roughly the
same performance.

7.3.9 Conclusion

DTs form one of the building blocks of modern machine learning and ensembles of
decision trees are one of the most successful classifiers regularly achieving state-of-
the-art performance in real-world applications. DTs are generally regarded as ‘simple’
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classifiers that can be executed even on the tiniest of hardware. However, a tree easily
contains up to millions of decision nodes that must be stored and managed which can
be a challenge even for large server hardware. Cache memory is commonly adopted
in today’s von-Neumann computing architecture to hide the long latency between
the main memory and the processor. Hence, an efficient realization of a given tree
ensemble must respect this memory hierarchy and provide a suitable memory layout of
the decision nodes for optimal performance. In every modern programming language
there are at least two ways to implement a DT: either one decomposes the tree into its
if-else structure or one uses a while-loop to iterate over a continuous array of nodes.
Both approaches offer different caching behaviours that can be further enhanced by
the tree-framing methods discussed in this contribution. At the core of these methods
lies the fact that DTs do not have a deterministic runtime, but its execution time may
vary depending on the current sample. Hence, a probabilistic view of DT execution
estimates themost probable paths of the tree and frames the tree so that these paths are
likely to remain in the cache. The experimental evaluation shows a speed-up around
2 − 4 across three different hardware architectures on a variety of datasets without any
loss in accuracy occurs.




