
Chapter 11
Reliability Issues in High-Stakes
Educational Tests

Cees A. W. Glas

Abstract High-stakes tests and examinations often give rise to rather specific
measurement problems. Though nowadays item response theory (IRT) has become
the standard theoretical framework for educational measurement, in practice,
number-correct scores are still prominent in the definition of standards and norms.
Therefore, in this chapter methods are developed for relating standards on the
number-correct scale to standards on the latent IRT scale. Further, this chapter focuses
on two related issues. The first issue is estimating the size of standard errors when
equating older versions of a test to the current version. The second issue is estimating
the local reliability of number-correct scores and the extra error variance introduced
through number-correct scoring rather than using IRT proficiency estimates. It is
shown that the first issue can be solved in the framework of maximum a posteriori
(MAP) estimation, while the second issue can be solved in the framework of expected
a posteriori (EAP) estimation. The examples that are given are derived from sim-
ulations studies carried out for linking the nation-wide tests at the end of primary
education in the Netherlands.

11.1 Outline of the Problem

The problem addressed here is that the standard scoring rule in much educational
measurement, that is, the number-correct score, is not the same one as the optimal
scoring rule that is derived from the IRT model that fits the data. In this chapter, a
method is outlined for how to evaluate the consequences of this discrepancy for an
important inference that is often made using IRT, that is, the consequences for test
equating. To explain this further, we first introduce an IRT model and outline the
principle of test equating.

The IRTmodels used in this chapter are the one-, two- and three-parameter Logis-
tic models. The data are responses of students labeled with an index n = 1, …, N to
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items labeled with an index i = 1, …, K. To indicate whether a response is available,
we define a variable

dni =
{
1 if a response of student n to item i is available
0 if this is not the case.

(11.1)

The responses will be coded by a stochastic variable Yni . In the sequel, upper-case
characters will denote stochastic variables and lower-case characters will denote
realizations. In the present case, there are two possible realizations, defined by

yni =
⎧⎨
⎩
1 if dni = 1 and student n gave a correct response to item i
0 if dni = 1 and student n did not give a correct response to item i
c if dni = 0, where c is an arbitrary constant unequal 0 or 1.

(11.2)

Define the logistic function �(.) as:

�(x) = exp(x)

1 + exp(x)
.

In the 3-parameter logistic model (3PLM, Birnbaum 1968) the probability of a cor-
rect response depends on three item parameters, ai, bi and ci which are called the
discrimination, difficulty and guessing parameter, respectively. The parameter θn is
the latent proficiency parameter of student n. The model is given by

Pi (θn) = ci + (1 − ci ) + �(ai (θn − bi ))

= ci + (1 − ci )
exp(ai (θn − bi ))

1 + exp(ai (θn − bi ))
. (11.3)

The2-parameter logisticmodel (2PLM,Birnbaum1968) followsby setting the guess-
ing parameter equal to zero, so by introducing the constraint ci = 0. The 1-parameter
logistic model (1PLM, Rasch 1960) follows by introducing the additional constraint
ai = 1.

Note that in the application of the models in high-stakes situations, the number of
proficiency parameters θn can become very large. Besides the practical problem of
computing estimates of all model parameters concurrently, this also leads to theoreti-
cal problems related to the consistency of the estimates (see, Neyman and Scott 1948;
Kiefer and Wolfowitz 1956). Therefore, it is usually assumed that the proficiency
parameters are drawn from one or more normal proficiency distributions, indexed g
= 1, …, G, which are often also referred to as population distributions. That is, θn
has the density function

g(θn;μg(n), σ
2
g(n)) = 1

σ
√
2π

exp

(
−1

2

(θn − μn(g))
2

σ 2

)
, (11.4)
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Table 11.1 Example of proficiency estimates and their standard errors on two linked tests

Score Test A Test B

Freq Prob θ Se(θ) Freq Prob θ Se(θ)

0 156 0.03 −1.91 0.54 6 0.00 −2.40 0.36

1 504 0.13 −1.34 0.50 16 0.00 −2.03 0.34

2 1055 0.34 −0.81 0.47 52 0.02 −1.68 0.33

3 1077 0.56 −0.38 0.45 122 0.04 −1.31 0.33

4 839 0.73 0.02 0.42 261 0.09 −0.96 0.34

5 658 0.86 0.41 0.40 516 0.20 −0.57 0.36

6 367 0.93 0.78 0.37 956 0.39 −0.17 0.37

7 194 0.97 1.15 0.37 1194 0.63 0.25 0.38

8 102 0.99 1.51 0.38 978 0.82 0.71 0.40

9 42 1.00 1.87 0.39 638 0.95 1.19 0.42

10 6 1.00 2.22 0.41 261 1.00 1.73 0.46

where g(n) is the population to which student n belongs.
Test equating relates the scores on one test to the scores on another test. Consider

a simulated example based on the estimates displayed in Table 11.1. The estimates
emanate from two tests. A sample of 5000 students of a population A was given a
test A consisting of the items i = 1,…,10, while a sample of 5000 other students of
a population B was given a test B consisting of the items i = 6,…,15. So the anchor
between the two tests, that is, the overlap between the two tests, consists of 5 items.
The anchor supports the creation of a common scale for all parameter estimates. The
responses were generated with the 2PLM. The difficulties of the two tests differed:
test A had a mean difficulty parameter, bA, of 0.68, while the difficulty level of test
B, bB , was equal to −0.92. The mean of the proficiency parameters θn of sample A,
μA was equal to −0.25, while the mean of the proficiency parameters of sample B,
μB was equal to 0.25. The variances of the proficiency parameters and the mean of
the discrimination parameters were all equal to one.

Suppose that test A has a cutoff score of 4, where 4 is the highest number-correct
score that results in failing the test. In the fourth column of Table 11.1, the column
labeled θ , it can be seen that the associated estimate on the latent θ -scale is 0.02. We
chose this point as a latent-cutoff point, that is, θ0 = 0.02. If the Rasch model would
hold for these data, the number-correct score would be the sufficient statistic for θ .
In the 2PLM, the relation between a number-correct score and a θ -estimate is more
complicated; this will be returned to below. Through searching for number-correct
scores on Test B with θ -estimates closest to the latent cutoff point, we find that a
cutoff score 6 on Test B best matches a cutoff score 4 on Test A. This conclusion is
consistent with the fact the average difficulty of test A was higher than the average
difficulty of test B. On the other hand, the sample administered test B was more
proficient than the sample of test A. The columns labeled “Freq” and “Prob” give the
frequency distributions of the number-correct scores and the associated cumulative
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proportions, respectively. Note that 73% of sample A failed their test, while 39% of
sample B failed theirs. Again, this is as expected.

Thenext question of interest is the reliability of the equating procedure. This canbe
translated into the question how precise the two cutoff scores can be distinguished. If
we denote the cutoff scores by SA and SB, and denote the estimates of the positions on
the latent scale associated with these two cutoff points by θ̂SA and θ̂SB , then Se(θ̂SA−
θ̂SB) can be used as a measure of the precision with which we can distinguish the two
scores. The estimates θ̂SA and θ̂SB are not independent. Firstly, they both depend on
the same linked data set and, secondly, they both depend on a concurrent estimate of
all item-parameters, ai, bi and ci, and (functions of) all latent proficiency parameters
θn . Therefore, the standard error Se(θ̂SA − θ̂SB) cannot be merely computed as the
square root of Var(θ̂SA − θ̂SB) = Var(θ̂SA) + Var(θ̂SB), but the covariance of the
estimates must be taken into account also. The method to achieve this is outlined
below, after the outline of a statistical framework and considering the problem of test
scoring with number-correct scores when these are not sufficient statistics.

11.2 Preliminaries

Nowadays, marginal maximum likelihood (MML, see, Bock and Aitkin 1981) and
fully Bayesian estimation (Albert 1992; Johnson and Albert 1999) are the prominent
frameworks for estimating IRT models. Mislevy (1986, also see, Glas 1999) point
out that they are closely related, because MML estimation is easily generalized to
Bayes modal estimation, an estimation method that seeks the mode of the posterior
distribution rather than the mode of the likelihood function. In this chapter, we adopt
the MML and Bayes modal framework. In this framework, it is assumed that the
θ -parameters are drawn from a common distribution, say, a population proficiency
distribution as defined in Formula (11.4). Estimates of the item parameters and the
parameters of the population proficiency distribution are obtained by maximizing a
likelihood function that is marginalized with respect to the θ -parameters.

An important tool for deriving the estimation equations is Fisher’s identity (Efron
1977; Louis 1982). For this identity, we distinguish N independent observations yn
and unobserved data zn . The identity states that the first order derivatives of the
parameters of interest δ with respect to the log-likelihood function L(.) are given by

∂L(δ)

∂δ
=

N∑
n=1

Ez|y(∇n(δ)| yn) =
N∑

n=1

∫
, . . . ,

∫ [
log p(yn, zn; δ)

∂δ

]
p(zn|yn; δ)dzn,

(11.5)

where p(yn, zn; δ) is the likelihood if zn would be observed, ∇n(δ) is the first-
order derivative of its logarithm, and p(zn|yn; δ) is the posterior distribution of the
unobserved data given the observations.
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Bock and Aitkin (1981) consider the θ -parameters as unobserved data and use
the EM-algorithm (Dempster et al. 1977) for maximum likelihood estimation from
incomplete data to obtain estimates of the item and population parameters. In this
framework, Glas (1999, 2016) uses Fisher’s identity to derive estimation and testing
procedures for a broad class of IRT models.

Standard errors can be obtained as the square roots of the covariance matrix of
the estimates Cov(δ̂, δ̂) which can be obtained by inverting the observed Fisher
information matrix, say, Cov(δ̂, δ̂) = I (δ̂, δ̂)−1. Louis (1982) shows that this matrix
is given by

I (δ, δ) = −∂2L(δ)

∂δ ∂δt
= −

N∑
n=1

Ez|y
(∇n(δ, δ

t )
∣∣ yn) − Covz|y

(∇n(δ)∇n(δ)
t
∣∣ yn),
(11.6)

where ∇n(δ, δ
t ) stands for the second-order derivatives of log p(yn, zn; δ) with

respect to δ. Evaluated at the MML estimates, the information matrix can be approx-
imated by

I (δ̂, δ̂) ≈
N∑

n=1

Ez|y
(∇n(δ)∇n(δ)

t
∣∣ yn) (11.7)

(see Mislevy 1986). In the next sections, this framework will be applied to the issues
addressed in this chapter: the reliability of tests scored with number-correct scores
and to equating errors.

11.3 MAP Proficiency Estimates Based on Number-Correct
Scores

Glas (1999, 2016) shows how the estimation equations for the item and population
parameters of a broad class of IRT models can be derived using Fisher’s identity.
This identity can also be applied to derive an estimation equation for a proficiency
estimate based on a number-correct score

s =
k∑

i=1

di yi , (11.8)

with di and yi as defined in (11.1) and (11.2) dropping the subscript n.The application
of Fisher’s identity is based on viewing a response pattern as unobserved and the
number-correct score as observed. Define Ls(θ) as the product of the normal prior
distribution g(θ; λ)with λ = (μ, σ 2) and the probability of a number-correct score s
given θ . Define {y|s} as the set of all response patterns resulting in a number correct
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score s. Then the probability of a number-correct score s given θ is equal to the sum
over {y|s} of the probabilities of response patters P(y|θ, β) given item parameters β

and proficiency parameters θ . Application of Fisher’s identity results in a first order
derivative

∂Ls(θ)

∂θ
= Ey|s(∇(θ)| s, β) =

∑
{y|s}

[
∂ log P(y,θ;β,λ)

∂θ

]
P(y|θ, β)∑

{y|s} P(y|θ, β)
. (11.9)

Equating this expression to zero gives the expression for the MAP estimate. Compu-
tation of the summation over {y|s} can be done using the recursive algorithm by Lord
and Wingersky (1984). The algorithm is also used by Orlando and Thissen (2000)
for the computation of expected a-posteriori estimates of θ given a number-correct
score s.

Note that in expression (11.9), the prior g(θ; λ) cancels in the posterior, so
p(y|s; θ, β, λ) ≡ p(y|s; θ, β).

As an example, consider the 2PLM, given by expression (11.3) with ci = 0. The
probability of a response pattern becomes

Ls(θ) =
∑
{y|s}

log P(y, θ;β, λ) = log g(θ;μ, σ 2)

+
∑
{y|s}

K∑
i=1

log
(
Pi (θ)di yi (1 − Pi (θ))di (1−yi )

)
, (11.10)

and

∂Ls(θ)

∂θ
=μ − θ

σ 2
+

∑
{y|s}

K∑
i=1

(diai (yi − Pi (θ)))p(y|s; θ, β) . (11.11)

The estimation equation can be solved by either the Newton-Raphson algorithm,
or by the EM algorithm. Standard errors can be based on observed information as
defined in expression (11.7). One way of estimating θ and computing the standard
errors is to impute the item parameters as known constants. However, when we want
to compare the estimated proficiencies obtained for two tests through their difference,
say, Se(θ̂SA − θ̂SB), we explicitly need to take the precision of the estimates of all
item and population parameters into account. How this is accomplished is outlined
in the next section.
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11.4 Equating Error

Suppose θ0 is a cutoff point on the latent scale andwewant to impose this cutoff point
on several test versions. Further, we want to estimate the reliability of the created
link. Three procedures for the computation of equating errors will be discussed, using
some possible data collection designs displayed in Fig. 11.1.

To introduce the first method, consider the design displayed in Fig. 11.1a. In this
design, students were administered both test versions, that is, Version A and Version
B. The first measure for the strength of the link is based on the standard error of the
difference between the average difficulties of the two versions, say, Se(bA − bB),
where bA is the estimate of the mean difficulty of Version A and bB the estimate
of the mean difficulty of Version B. The strength of the link is mainly determined
by the number of students, but also by the number of item parameters making up
the two means. Since the estimates are on a latent scale that is subject to linear
transformations, we standardize the standard error with the standard deviation of the
proficiency distribution. This leads to the definition of the index

Equating Error = Se(bA − bB)

Sd(θ)
. (11.12)

The standard error can be computed as the square root of Var(bA − bB), which
can be computed by pre- and post-multiplying the covariance matrix by a vector of
weights, that is, wtCov(δ̂, δ̂)w,

A B

(a) Direct Link

A1 A2

B2 B3

(b) Link via Items

A1 A2

C2 C3

B3 B4

(c) Link via Students

A1 A2 A3

C2 C3 C4

B3 B4 B5

(d) Link via Students and Items

Fig. 11.1 Four designs for test equating
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where w has elements w j =
{

di A

i di A

− di B

i di B

if j is related toCov(b̂i , b̂i )

0 if this is not the case,

(11.13)

where di A and di B are defined by expression (11.1), for a student administered test
A and a student administered test B, respectively.

Figure 11.1b gives an example of equating two tests via common items (the so-
called anchor). The test consisting of the items A1 and A2 is linked to the test
consisting of the items B2 and B3, because A2 and B2 consist of the same items.
The larger the anchor, the stronger the link. In this design it is usually assumed that
the means of the two proficiency distributions are different. This leads to a second
definition of an index for equating error, that is:

Equating Error =
Se(μ̂A − μ̂B)

Sd(θ)
, (11.14)

where Sd(θ) is a pooled estimate of the standard deviations of the proficiency dis-
tributions of the two populations. In Fig. 11.1c, the test consisting of parts A1 and
A2 and the test consisting of the parts B3 and B4 have no items in common, but a
link is forged by the students administered C2 and C3.

Again, the standard error can be computed as the square root of the associated
variance, which can be computed by pre- and post-multiplying the covariance matrix
of the parameter estimates by a vector of weights, that is, wtCov(δ̂, δ̂)w, where w
has elements

w j =
⎧⎨
⎩

1 if j is related toCov(μ̂A, μ̂A)

−1 if j is related toCov(μ̂B, μ̂B)

0 if this is not the case.
(11.15)

A thirdmethod to assess a equating error is based on the position of the cutoff point
on the latent scale. This approach gives a more precise estimate of the equating error
of the cutoff point, but below it becomes clear that it is somewhat more complicated
to compute. Suppose θ0 is the cutoff point on the latent scale. On both tests, we
choose an observed cutoff score, say SA and SB, that are associated with the same
(mean) proficiency level θ0. Then an equating error index can be defined as

Equating Error =
Se(θ̂SA − θ̂SB)

Sd(θ)
(11.16)

where θ̂SA and θ̂SB are the estimates of the positions on the latent scale with the two
observed cutoffs.

To define this standard error, we augment the log-likelihood given the observed
datawith two observations, one for each of the sum scores SA and SB . So the complete
likelihood becomes L(δ, θ) = L(δ) + Ls(θ), and the information matrix becomes
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I (δ, θ) ≈ Eθ

⎛
⎝ ∇(δ)∇(δ)t ∇(δ)d(θSA)

t ∇(δ)d(θSB)t

∇(θSA)∇(δ)t ∇(θSA)∇(θSA)
t 0

∇(θSB)∇(δ)t 0 ∇(θSB)∇(θSB)t

∣∣∣∣∣∣ y
⎞
⎠. (11.17)

As above, the standard error of the difference between θ̂SA and θ̂SB can be com-
puted as the square root of the associated variance,which can be computed bypre- and
post-multiplying the covariancematrix by a vector of weights, that is,wtCov(δ̂, δ̂)w.
In this case, the vector w has elements

w j =
⎧⎨
⎩
1 if j is related toCov(θ̂SA, θ̂SA)

−1 if j is related toCov(θ̂SB, θ̂SB)

0 if this is not the case.
(11.18)

Examples will be given below.

EAP estimates and another approach to the reliability of number-correct scores.

In test theory we distinguish between global reliability and local reliability. Global
reliability is related to the precision with which we can distinguish two randomly
drawn students from some well-defined population, while local reliability relates
to the precision given a specific test score. We discuss these two concepts in the
framework of IRT in turn.

One of the ways in which global reliability can be defined is as the ratio of the
true variance relative to the total variance. For the framework of IRT, consider the
variance decomposition

var(θ) = var [E(θ | y)] + E[var(θ | y)], (11.19)

where y is an observed response pattern, var(θ) is the population variance of the
latent variable, var [E(θ | y)] is the posterior variance of the expected person parame-
ters (say, the EAP estimates of θ ). So this EAP estimate is the error variance averaged
over the values that can be observed weighted with their probability of their occur-
rence under the model. Further, E[var(θ | y)] is the expected posterior variance of
the EAP estimate. Then reliability is given by the ratio

ρ = var [E(θ | y)]
var(θ)

= 1 − E[var(θ | y)]
var(θ)

(11.20)

(See, Bechger et al. 2003). The middle expression in (11.20) is the variance of the
estimates of the person parameters relative to the ‘true’ variance, and the right-hand
expression in (11.15) is oneminus the average variance of the estimates of the student
parameters, say, the error variance, relative to the ‘true’ variance.

The generalization to number-correct scores s is straightforward. If the observa-
tions are restricted from y to s, a student’s proficiency can be estimated by the EAP
E(θ |s), that is, the posterior expectation of θ given s, and the precision of the estimate
is given by the posterior variance var(θ |s). Then global reliability generalizes to
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ρs = var [E(θ |s)]
var(θ)

= var(θ) − E[var(θ |s)]
var(θ)

. (11.21)

If the 1PLM holds, s is a sufficient statistic for θ . Therefore, it is easily verified
that E(θ |s) ≡ E(θ | y) and the expressions (11.20) and (11.21) are equivalent. In
all other cases, computation of the posterior distribution involves a summation over
all possible response patterns resulting in a number-correct score s, and, as already
noticed above, this can be done using the recursive algorithm by Lord andWingersky
(1984).

If the 1PLM does not hold, there is variance in E(θ | y) conditional on s. This leads
to the interesting question how much extra error variance is created by using s as the
basis for estimating θ . That is, we are interested in the contribution of Var(E(θ | y)|s)
to the total error variance, that is, to the posterior varianceVar(θ |s). This contribution
can be worked out by using an identity analogous to Expression (11.21), that is,

Var(θ |s) = E(Var(θ | y)|s) + Var(E(θ | y)|s)). (11.22)

Note that E(Var(θ | y)|s) is the squared measurement error given y averaged
over the distribution of y given s, and Var(E(θ | y)|s)) is the variance of the EAP
estimates, also over the distribution of y given s. In the next section, examples of
local reliability estimates will be given.

Examples of Reliability Estimates

In this section, two simulated examples are presented to show the kind of results that
the local reliability indices presented above produce.

The first example is created by simulating 1000 response patterns on a 20-item
test. The data were created with the 2PLM, with the θ -values drawn from a standard
normal distribution. The 20 item parameters were the product of a set of four dis-
crimination parameters a = {0.8, 0.9, 1.10, 1.20} and five difficulty parameters b =
{−1.0,−0.5, 0.0, 0.5, 1.0}. MML estimates (i.e., Bayes modal estimates) were com-
puted with a standard normal distribution for the θ -values. The results are displayed
in Table 11.2.

Note that the MAP estimates and the EAP estimates are very similar, as are their
standard deviations displayed in the columns labeled SdMAP(θ |s) and SdEAP(θ |s).
The last three columns give the variance decomposition as defined in Expres-
sion (11.22). It can be seen that Var(E(θ | y)|s) is relatively small compared to
E(Var(θ | y)|s)). So the potential bias in a student’s proficiency estimate when using
number-correct scores is much less than the inflation of the precision of the estimate.
A final observation that can be made from this simulation study is that the global reli-
ability when switching from scoring using the complete response patters to using the
number-correct scores dropped from 0.788 to 0.786. So the loss in global reliability
was negligible.

It is expected that if the variability of the discrimination parameters is enlarged,
Var(E(θ | y)|s) increases. The reason is that if the discrimination parameters are
considered known, the weighted sum score 
i diai yi is a sufficient statistic for θ . If
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all discrimination parameters are equal to 1.0, the 2PLMbecomes the 1PLM, and then
the number-correct score becomes a sufficient statistic. So the more variance in the
discrimination parameters, the greater the violation of the 1PLMand the depreciation
of the appropriateness of the scoring rule.

To investigate this effect, the discrimination parameters of the simulation were
changed to parameters a = {0.40, 0.60, 1.40, 1.60}. The results are displayed
in Table 11.3. It can be seen that the standard deviations in the columns labeled
SdMAP(θ |s) and SdEAP(θ |s) blew up a bit, but the effect was not very large. Fur-
ther, in the column labeled Var(E(θ | y)|s) the values clearly increased, while this
is less the case in the column labeled E(Var(θ | y)|s)). For instance, if we consider
a number-correct score 10, we observe that the initial values 0.01 and 0.19 changed
to 0.04 and 0.17. The net effect was a change in Var(θ |s) from 0.20 to 0.21. So the
increase in variance of θ -estimates (that is, of expectations E(θ | y)) was counterbal-
anced by an increase of the overall precision Var(θ | y).

11.5 Simulation Study of Equating Errors

In this section, two sets of simulation studies will be presented. The first study was
based on the design displayed in Panel b of Fig. 11.1, which displays a design with a
link via common items. The simulation was carried out to study the effect of the size
of the anchor. The second set of simulations was based on the design of Panel c of
Fig. 11.1, which displays a design with common students. These simulations were
carried out to study the effect of the number of students in the anchor.

The studies were carried out using the 2PLM. To create realistic data, the item
parameters were sampled from the pool of item parameters used in the final tests in
primary education in the Netherlands. Also the means of proficiency distributions
and cutoff scores were chosen to create a realistic representation of the targeted
application, that entailed equating several versions and cycles of the tests.

For the first set of simulations, two tests were simulated with 2000 students each.
The proficiency parameters for the first sample of students were drawn from a stan-
dard normal distribution, while the proficiency parameters for the second sample of
students were drawn from a normal distribution that was either standard normal or
normal with a mean 0.5 and a variance equal to 1.0. Cutoff points were varied as
θ0 = −0.5 or θ0 = 0.0. The results are displayed in Table 11.4. The first column
gives the length of the two tests; the tests were of equal size. 50 items is considered
realistic for a high-stakes test, tests of 20 and 10 items were simulated to investigate
the effects of decreasing the test length.

The second column gives the size of the anchor. The total number of items in the
design displayed in the third column follows from the length of the two tests and the
size of the anchor. 100 replications were made for every one of the 24 conditions.
For every replication, the item parameters were redrawn from the complete pool
of all item parameters of all (five) test providers. The complete pool consisted of
approximately 2000 items. The last three columns give the three equating errors
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Table 11.4 Simulation of equating via common items

Number of items

Examination Anchor Total θ0 μB Se(bA − bB) Se(μ̂A −
μ̂B)

Se(θ̂SA −
θ̂SB)

50 30 70 0.00 0.00 0.050 0.010 0.441

0.50 0.053 0.010 0.441

−0.50 0.00 0.050 0.010 0.445

0.50 0.052 0.010 0.446

20 80 0.00 0.00 0.054 0.014 0.441

0.50 0.055 0.015 0.441

−0.50 0.00 0.055 0.015 0.447

0.50 0.056 0.016 0.447

10 90 0.00 0.00 0.062 0.022 0.434

0.50 0.059 0.023 0.434

−0.50 0.00 0.059 0.022 0.441

0.50 0.061 0.023 0.441

20 10 30 0.00 0.00 0.053 0.018 0.651

0.50 0.054 0.020 0.651

−0.50 0.00 0.052 0.018 0.677

0.00 0.054 0.018 0.651

5 35 0.00 0.00 0.082 0.028 0.666

0.50 0.080 0.031 0.666

−0.50 0.00 0.086 0.029 0.682

0.50 0.079 0.031 0.683

10 5 15 0.00 0.00 0.100 0.024 0.889

0.50 0.086 0.026 0.889

−0.50 0.00 0.097 0.024 0.937

0.50 0.087 0.026 0.937

defined above. Note that Sd(θ) was always equal to 1.0, so the equating errors were
equal to the analogous standard errors.

The results are generally as expected. Note first that there was always a substantial
main effect of the test length for all three indices. For a test length of 50 items,
decreasing the size of the anchor increased the equating errors for the average item
difficulties Se(bA − bB) and the proficiency means Se(μ̂A − μ̂B). The effect on
Se(θ̂SA − θ̂SB) was small. This pattern was sustained for a test length of 20 items,
but in that case also Se(θ̂SA − θ̂SB) increased slightly when the anchor was decreased
from 10 to 5. Finally, there were no marked effects of varying the position of the
cutoff points and the differences between the two proficiency distributions.
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The second set of simulations was based on the design of panel c of Fig. 11.1, the
design with common students. The general setup of the study was analogous to the
first one, with some exceptions. All samples of students were drawn from standard
normal distributions and the cutoff point was always equal to θ0 = 0.0. There were
three tests in the design: two tests to be equated and a test given to the linking group.
As can be seen in the first column of Table 11.5, the tests to be equated had either
40 or 20 items. In the second column, it can be seen that the linking groups were
either administered tests of 20, 10, or 4 items. These linking tests always comprised
of an equal number of items from the two tests to be equated. The third column
shows how the size of the sample of the linking group was varied. The two tests to
be equated were always administered to 2000 students. In general, the results are
much worse than those displayed in Table 11.4. In fact, only the combination of two
tests of 40 items with a linking group of 1600 students administered a test of 20
items comes close to the results displayed in Table 11.4. Note that linking tests of 40
items with linking groups administered 4 items completely breaks down, especially
the results for Se(θ̂SA − θ̂SB) with 100, 400 or 800 students in the linking groups
become extremely poor.

11.6 Conclusion

Transparency of scoring is one of the major requirements for the acceptance of an
assessment by stakeholders such as students, teachers and parents. This is probably
the reason why number-correct scores are still prominent in education. The logic of
such scoring is evident: the higher the number of correct responses, the higher the
student’s proficiency. The alternative of using the proficiency estimates emanating
from an IRT model as test scores is more complicated to explain. In some settings,
such as in the setting of computerized adaptive testing, it can be made acceptable
that students that respond to more difficult items get a higher proficiency estimate
than students with an analogous score on more easy items. However, explaining
the dependence of proficiency estimates on item-discrimination parameters is more
cumbersome.

A potential solution to the problem is using the 1PLM model, where all items
are assumed to have the same discrimination index, and the proficiency estimate
only depends on the number of correct responses to the items. However, the 1PLM
seldom fits educational test data and using the 1PLM to utilize all the advantages of
IRT leads to notable loss of precision. Therefore, the 2PLM and 3PLM have become
the standard models for analyzing educational test data. In this chapter, a method
to combine number-correct scoring with the 2PLM and 3PLM was suggested and
methods for relating standards on the number-correct scale to standards on the latent
IRT scale were outlined. Indices for both the global and local reliability of number-
correct scores were introduced. It was shown that the error variance for number-
correct scoring can be decomposed into two components. The first component is
the variance of the proficiency estimates given the response patterns conditional on
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Table 11.5 Simulation of equating via common students

Number of items Number of students

Examination Linking
group

Linking
group

Se(bA − bB) Se(μ̂A − μ̂B) Se(θ̂SA − θ̂SB)

40 20 100 0.092 0.098 0.505

400 0.088 0.045 0.495

800 0.081 0.036 0.494

1600 0.069 0.032 0.494

40 10 100 0.468 0.179 0.574

400 0.201 0.062 0.499

800 0.139 0.051 0.496

1600 0.101 0.045 0.495

40 4 100 0.416 2.043 3.310

400 0.209 0.487 3.290

800 0.129 0.342 2.240

1600 0.096 0.222 0.587

20 10 100 0.128 0.118 0.702

400 0.116 0.060 0.692

800 0.107 0.050 0.692

1600 0.089 0.044 0.691

20 4 100 0.618 0.167 0.724

400 0.289 0.107 0.705

800 0.204 0.098 0.703

1600 0.130 0.092 0.702

number-correct scores. This component can be viewed as a measure for the bias
introduced by using number-correct scores as estimates for proficiency rather than
estimating the proficiency under the 2PLM or 3PLM based on a student’s complete
response pattern. The second component can be interpreted as the average error
variance when using the number-correct score. The presented simulation studies
indicate that, relative to the second component, the first component is small.

When equating two tests, say an older version and a newer version, it is not only
the standard error of the proficiency estimates on the two tests which is important,
but also the standard error of differences between proficiency estimates on the two
tests. To obtain a realistic estimate of the standard errors of these differences, the
whole covariance matrix of the estimates of all item and population parameters in
the model must be taken into account. The size of these standard errors depends on
the strength of the link between the two tests, that is, on the number of items and
students in the design and the sizes of the overlap between, respectively, items and
students. The simulation studies presented in this chapter give an indication of the
standard errors of these differences for various possible designs.
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The procedure for number-correct scoring was presented in the framework of
unidimensional IRT models for dichotomously scored items. It can be generalized in
various directions. First of all, a sum score can also be defined for a test with polyto-
mously scored items by adding the scores on the individual items in the test. These
sum scores can then be related to a unidimensional IRT model for polytomously
scored items such as the generalized partial credit model (Muraki 1992), the graded
response model (Samejima 1969) or the sequential model (Tutz 1990) in an manner
that is analogous to the procedure presented above. Also multidimensional versions
of these models (Reckase 1985) present no fundamental problems: the proficiency
distributions and response probabilities introduced above just become multivariate
distributions in multivariate θ parameters. For the generalized definitions of reliabil-
ities refer to van Lier et al. (2018).

A final remark concerns the statistical framework of this chapter, which was the
related Bayes modal and marginal maximum likelihood framework. In the prelim-
inaries section of this chapter, it was already mentioned that this framework has
an alternative in the framework of fully Bayesian estimation supported by Markov
chain Monte Carlo computational methods (Albert 1992; Johnson and Albert 1999).
Besideswith dedicated samplers, the IRTmodels discussed here can also be estimated
using general purpose samplers such as Bugs (Lunn et al. 2009) and JAGS (Plummer
2003). But details of the generalizations to other models and another computational
framework remain points for further study.
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