
PIP-Net: Patch-Based Intuitive Prototypes for Interpretable Image Classification

Meike Nauta
University of Twente, the Netherlands

University of Duisburg-Essen, Germany
m.nauta@utwente.nl

Jörg Schlötterer
University of Duisburg-Essen, Germany

joerg.schloetterer@uni-due.de

Maurice van Keulen
University of Twente, the Netherlands

m.vankeulen@utwente.nl

Christin Seifert
University of Duisburg-Essen, Germany

christin.seifert@uni-due.de

Abstract

Interpretable methods based on prototypical patches rec-
ognize various components in an image in order to explain
their reasoning to humans. However, existing prototype-
based methods can learn prototypes that are not in line with
human visual perception, i.e., the same prototype can refer
to different concepts in the real world, making interpretation
not intuitive. Driven by the principle of explainability-by-
design, we introduce PIP-Net (Patch-based Intuitive Proto-
types Network): an interpretable image classification model
that learns prototypical parts in a self-supervised fashion
which correlate better with human vision. PIP-Net can
be interpreted as a sparse scoring sheet where the pres-
ence of a prototypical part in an image adds evidence for a
class. The model can also abstain from a decision for out-of-
distribution data by saying “I haven’t seen this before”. We
only use image-level labels and do not rely on any part an-
notations. PIP-Net is globally interpretable since the set of
learned prototypes shows the entire reasoning of the model.
A smaller local explanation locates the relevant prototypes
in one image. We show that our prototypes correlate with
ground-truth object parts, indicating that PIP-Net closes
the “semantic gap” between latent space and pixel space.
Hence, our PIP-Net with interpretable prototypes enables
users to interpret the decision making process in an intuitive,
faithful and semantically meaningful way. Code is available
at https://github.com/M-Nauta/PIPNet.

1. Introduction
Deep neural networks are dominant in computer vision,

but there is a high demand for understanding the reasoning of
such complex models [23,30]. Consequently, interpretability
and explainability have grown in importance. In contrast to
the common post-hoc explainability that reverse-engineers

a black box, we argue that we should take interpretability
as a design starting point for in-model explainability. The
recognition-by-components theory [1] describes how hu-
mans recognize objects by segmenting them into multiple
components. We mimic this intuitive line of reasoning in
an intrinsically interpretable image classifier. Specifically,
our PIP-Net (Patch-based Intuitive Prototypes Network) au-
tomatically identifies semantically meaningful components,
while only having access to image-level class labels and
not relying on additional part annotations. The components
are “prototypical parts” (prototypes) visualized as image
patches, since exemplary natural images are more informa-
tive to humans than generated synthetic images [2]. PIP-Net
is globally interpretable and designed to be highly intuitive
as it uses simple scoring-sheet reasoning: the more relevant
prototypical parts for a specific class are present in an image,
the more evidence for that class is found, and the higher its
score. When no relevant prototypes are present in the image,
with e.g. out-of-distribution data, PIP-Net will abstain from a
decision. PIP-Net is therefore able to say “I haven’t seen this
before” (see Fig. 2). Additionally, following the principle
of isolation of functional properties for aligning human and
machine vision [5], the reasoning of PIP-Net is separated
into multiple steps. This simplifies human identification of
reasons for (mis)classification.

Recent interpretable part-prototype models are ProtoP-
Net [3], ProtoTree [24], ProtoPShare [29] and ProtoPool [28].
These part-prototype models are only designed for fine-
grained image recognition tasks (birds and car types) and
lack “semantic correspondence” [17] between learned proto-
types and human concepts. This “semantic gap” in prototype-
based methods between similarity in latent space and input
space was also found by others [9, 14]. We hypothesize that
the main cause of the semantic gap is the fact that exist-
ing part-prototype models only regularize interpretability on
class-level, since their underlying assumption is that (parts

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2744



Sun OR Dog NOT (sun OR dog)

Image patches similar to prototype 1 

Image patches similar to prototype 1 (“dog”)

Existing prototype-based models Our model

Image patches similar to prototype 2 (“sun”)

Figure 1. Toy dataset with two classes (left). Existing models can learn representations of prototypes that do not align with human visually
perceived similarity (center). Our objective is to learn prototypes that represent concepts that also look similar to humans (right).

of) images from the same class have the same prototypes.
This assumption may however not hold, leading to similarity
in latent space which does not correspond to visually per-
ceived similarity. Consider the example in Fig. 1, where we
have re-labeled images from a clipart dataset [43] to create a
binary classification task: the two kids are happy when the
sun or dog is present, and sad when there is neither a sun
nor a dog. Hence, the classes are ‘sun OR dog’ and ‘NOT
(sun OR dog)’. Intuitively, an easy-to-interpret model should
learn two prototypes: one for the sun and one for the dog.
However, existing interpretable part-prototype models, such
as ProtoPNet [3] and ProtoTree [24], optimize images of the
same class to have the same prototypes. They could, there-
fore, learn a single prototype that represents both the sun
and the dog, especially when the model is optimized to have
few prototypes (see Fig. 1, center). The model’s perception
of patch similarity may thus not be in line with human visual
perception, leading to the perceived “semantic gap”.

To address the gap between latent and pixel space, we
present PIP-Net: an interpretable model that is designed to
be intuitive and optimized to correlate with human vision.
A sparse linear layer connects learned interpretable proto-
typical parts to classes. A user only needs to inspect the
prototypes and their relation to the classes in order to inter-
pret the model. We restrict the weights of the linear layer to
be non-negative, such that the presence of a class-relevant
prototype increases the evidence for a class. The linear layer
can be interpreted as a scoring sheet: the score for a class is
the sum of all present prototypes multiplied by their weights.
A local explanation (Fig. 2 and Fig. 3) explains a specific
prediction and shows which prototypes were found at which
locations in the image. The global explanation provides an
overall view of the model’s decision layer, consisting of the
sparse weights between classes and their relevant prototypes.
Because of this interpretable and predictive linear layer, we
ensure a direct relation between the prototypes and the clas-
sification, and thereby prevent unfaithful explanations which
can arise with local or post-hoc XAI methods [16].

Our Contributions:
1. We present the Patch-based Intuitive Prototypes Net-

work (PIP-Net): an intrinsically interpretable image
classifier, driven by three explainability requirements:
the model should be intuitive, compact and able to han-
dle out-of-distribution data.

2. PIP-Net has a surprisingly simple architecture and is
trained with novel regularization for learning prototype
similarity that better correlates with human visual per-
ception, thereby closing a perceived semantic gap.

3. PIP-Net acts as a scoring sheet and therefore can detect
that an image does not belong to any class or that it
belongs to multiple classes.

4. Instead of specifying the number of prototypes be-
forehand as in ProtoPNet [3], ProtoPool [28] and Tes-
Net [35], PIP-Net only needs an upper bound on the
number of prototypes and selects as few prototypes as
possible for good classification accuracy with compact
explanations, reaching sparsity ratios > 99%.

2. Related Work

Interpretable Models Chen et al. [3] introduced the Pro-
totypical Part Network (ProtoPNet), an intrinsically inter-
pretable model with a predetermined number of prototypical
parts per class. To classify an image, the similarity between
the latent encoding of a prototype and an image patch is
calculated by measuring the distance in latent space. The
resulting similarity scores are weighted by values learned
by a fully-connected layer. The explanation of ProtoPNet
shows the reasoning process for a single image, by visual-
izing all prototypes together with their weighted similarity
score. The explanation can therefore be understood as a
scoring sheet, although with a fixed number of class-specific
prototypes leading to large explanations which have been
shown to contain redundant prototypes [22]. In contrast, our
prototypes can be shared between classes and explanation
size is minimized. TesNet [35] builds upon ProtoPNet by

2745



Figure 2. Our classifier is a scoring sheet based on the presence of prototypical parts in an image. Reasoning is intuitive since a single-object
classifier can handle multi-object images and out-of-distribution data. Our model is therefore able to abstain from a decision and instead say
“I haven’t seen this before”. Figure shows actual predictions and prototype locations of PIP-Net trained on PETS (37 cat and dog species).

learning prototypes on a Grassman manifold in order to dis-
entangle the latent space, but also uses a fixed number of 10
prototypes per class. They are applied to the CUB-200-2011
dataset [33] with 200 bird species, and Stanford Cars [15]
with 196 car types, meaning that an explanation consists
of 2000 prototypes, which can be overwhelming for a user.
ProtoPShare [29] is a pruning mechanism for ProtoPNet to
reduce the explanation size, and ProtoPFormer [39] adapts
ProtoPNet for Transformers. ProtoTree [24] reduces the
number of prototypes further and learns prototypical parts in
a decision tree structure in order to reduce the local explana-
tion size. ProtoPool [28] is an improvement of ProtoPNet by
sharing prototypes between classes without pruning. Their
number of prototypes is fixed and has to be defined before-
hand. All models are however only designed for fine-grained
image recognition tasks (CUB-200-2011 and Stanford Cars)
since their loss functions optimize latent prototypes to be
near (parts of) images from the same class. This however
does not explicitly optimize towards human perceptual sim-
ilarity. Additionally, where other prototype-based models
learn latent vectors for the prototypes, PIP-Net has a node per
prototype indicating to what extent the prototype is present.

Prototypical parts are also related to concepts. Some
concept-based XAI methods, e.g. TCAV [13], are supervised
by relying on training data for specific concepts. In contrast,
PIP-Net discovers prototypical parts in a self-supervised way.
Other concept-based methods, e.g. [41], are post-hoc XAI
methods, and are therefore not guaranteed to faithfully ex-
plain the model’s reasoning [6]. More related to our work
is the post-hoc sparse explainer of Wong et al. [38] which
fits a sparse linear classification layer to a trained CNN and
explains the resulting sparse nodes with LIME [27] and acti-
vation maximization [42]. They show how the sparse linear
layer helps users to understand the model better and that

sparse interpretability contributes to easy debugging of the
network. Our PIP-Net also contains a sparse linear decision
layer to adopt these advantages, but in our intrinsically in-
terpretable model the CNN features are optimized together
with the linear layer rather than being frozen and each node
can be visualized as a semantically meaningful prototype.

Self-supervised Representation Learning When there is
a high variety between discriminative features for a class,
extra regularization on the prototypes is needed to prevent a
semantic gap (Fig 1). Since we do not require manual part
annotations but only rely on image labels (for at least part
of the data), we use self-supervised learning of prototypes.
Danon et al. [4] learn patch similarity with a triplet loss based
on spatial proximity. The intuition is that two neighboring
patches should have a similar encoding (i.e., prototype in
our case), whereas a distant patch should have a different
encoding. However, such triplet losses can lead to false neg-
atives (e.g. a car has multiple wheels on different locations
in the image), and usually require complex hard-negative
mining [10]. Instead, [37] obviate the need for negatives
by optimizing only two properties for contrastive represen-
tation learning: alignment enforces two similar images to
be mapped to nearby latent feature vectors, and uniformity
induces a uniform distribution of the feature vectors on a
unit hypersphere. Although applied to full images only, we
show that the underlying concept can be applied to image
patches as well. Since we want to model the presence or ab-
sence of prototypes, our image encodings are ideally binary
rather than continuous. Most existing self-supervised feature
learning methods (see [12] for an overview) are therefore
not directly applicable. Most relevant to our work is the
recently proposed method CARL (Consistent Assignment
for Representation Learning) from [31]. Rather than directly

2746



Figure 3. Example of local explanation of PIP-Net with only 3
prototypes for the correct class. PIP-Net learns part-prototypes
visualized as patches from the training data, and localizes similar
image patches in an unseen input image.

learning continuous image embeddings, CARL learns a pre-
determined number of latent anchors. A softmax is applied
to get the distribution of an image over all anchors. CARL’s
alignment loss enforces different augmented views of an
image to be assigned to the same anchors. This is similar to
our approach, though we aim to learn a prototype per patch.

3. Model Architecture and Reasoning

Consider a classification problem with K classes
with training set T containing N labeled1 images
{(x(1), y(1)), ..., (x(N), y(N))} ∈ X × Y . Our main ob-
jective is to learn interpretable prototypes, which can then be
used as input features for any interpretable model. The core
of our model architecture is a convolutional neural network
(CNN) backbone that learns an interpretable, 1-dimensional
image encoding p indicating the presence or absence of pro-
totypical parts in an image, based on the principle that a
CNN’s latent map preserves spatial information. A sparse
linear layer then connects those prototypical parts (proto-
types) to classes (see Fig. 4 and Fig. 3).

An input image is first forwarded through CNN f . The
resulting convolutional output z = f(x;ωf ) consists of
D two-dimensional (H ×W ) feature maps, where ωf de-
notes the trainable parameters of f . We apply a softmax
over D such that

∑D
d zh,w,d = 1 to force a patch zh,w,:

to belong to exactly one prototype. Each value zh,w,d can
be interpreted as the probability that the patch at location
h,w ∈ H ×W corresponds to prototype d. Ideally, zh,w,: is
a one-hot encoded representation signaling perfect allocation
to one prototype. Since our goal is to identify the absence
or presence of a prototypical part in an image, we apply
a max-pooling operation per feature map z:,:,d, as shown
by the colors in Fig. 4. The resulting tensor p ∈ [0., 1.]D

represents the presence score of all D prototypes2 in the
image, such that the dth-value in p indicates to what extent
prototype d is present in the image. For example, image en-

1We pretrain prototypes in a self-supervised fashion, thus, additional
unlabeled data can be included during the pretraining process.

2D is only an upper bound for the number of prototypes. Regularization
will reduce the number of relevant prototypes. In case D of the chosen
CNN is not sufficient, a 1× 1-convolutional layer could be added to f to
increase the number of prototypes D, although we empirically found that
an additional layer was not necessary for our datasets.

coding p could be [0.9, 0.0, 0.0, 0.1, 0.8, 1.0], indicating that
the first, fifth and sixth prototype are (substantially) present
in this image. The image encoding p is used as input to a
linear classification layer with weights ωc ∈ RD×K

≥0 which
connects prototypes to classes and acts as a scoring system.
Learned weight ωd,k

c indicates the relevance of prototype
d to class k. The output score per class is the sum of the
prototype presence scores multiplied by the incoming class
weights of this linear layer. By adding up scores for relevant
present prototypical parts, we allow the model to find evi-
dence for multiple classes or for none, as shown in Fig. 2. To
improve interpretability, we restrict the linear layer to have
non-negative weights and optimize for sparsity by learning
many zero weights (see Sec. 5).

4. Self-Supervised Pre-Training of Prototypes
We use self-supervised learning with specially designed

loss functions to generate semantically meaningful proto-
types. We assume image-level labels and do not rely on
expensive manual part-annotations. In the first step we pre-
train the prototypes, while freezing (and not using) the linear
layer to the classes. In this step, we optimize the proto-
types to already learn semantic similarity, independent of the
classification task. This will prevent perceptually different
prototypes to be similar in latent space (see Fig. 1).

We learn image encodings p which indicate the presence
of prototypes in input image x. In line with other self-
supervised learning methods [12], we create a positive pair
x′,x′′ by applying different data augmentations to input
image x. By selecting data augmentations such that humans
would still consider the two views similar, we incorporate
human perception into the training process.

Similar to the contrastive learning approach of [37], we
optimize for alignment and uniformity of representations.
However, rather than optimizing for alignment on image-
level, we optimize for patch alignment by optimizing the
model to assign the same prototype to two views of an aug-
mented image patch. Specifically, for pretraining the proto-
types we use a linear combination of only two loss terms:
λALA+λTLT . The alignment loss LA optimizes two views
of the same image patch to belong to the same, and ideally
a single, prototype. We compute the similarity between the
latent patches of two views of an image patch (z′

h,w,: and
z′′
h,w,:) as their dot product:

LA = − 1

HW

∑
(h,w)∈H×W

log(z′
h,w,: · z′′

h,w,:). (1)

Since each patch encoding is normalized with softmax such
that

∑D
d zh,w,d = 1, two identical one-hot encoded tensors

result in LA = 0. This loss, similar to the consistency
loss of CARL (Consistent Assignment for Representation
Learning [31]), therefore implicitly optimizes for near-binary

2747



Figure 4. PIP-Net consists of a CNN backbone (e.g. ConvNeXt) to learn prototypical representations z. The feature representations are
pooled to a vector of prototype presence scores p. Contrastive learning implements the objective that two representations of patches for an
image pair should be assigned the same prototype in the latent feature space (loss LA). The tanh-loss LT prevents trivial solutions and
regularizes the model to make use of all available prototypes. As such, PIP-Net disentangles the latent space into neurons that relate to
specific object parts. Learned part-prototypes and classes are connected via a sparse linear layer. LC is the standard negative log-likelihood
loss. Model outputs during test time are not normalized and allow the outputs to be interpreted as simple scoring sheets.

encodings where an image patch corresponds to exactly one
prototype. One can imagine that binary presence scores
are easier to interpret than soft scores where a prototype is
present for e.g. 50%.

A naive solution for the model to get LA = 0 is to let
one prototype node be activated on all image patches in each
image in the dataset. To prevent such a trivial solution and
learn diverse image representations that make use of the
whole space of D prototypes, we introduce our tanh-loss LT

that regulates that every prototype should be at least once
present in a mini-batch:

LT (p) = − 1

D

D∑
d

log(tanh(

B∑
b

pb) + ϵ), (2)

where tanh and log are element-wise, B is the number of
samples in a mini-batch and ϵ is a small number for numeri-
cal stability. The intuition behind LT is that the tanh checks
whether a prototype is present in the mini-batch without tak-
ing into account how often a prototype is present, since some
prototypes (e.g. sky) will naturally occur more frequently
than others.

5. Training PIP-Net
After pretraining the prototypes, we unfreeze the last

linear layer and train the model as a whole. To optimize
for classification performance, we add a classification loss
term LC , which is simply a standard negative log-likelihood
loss between prediction ŷ and the one-hot encoded ground-
truth label y. LC mainly influences the weights of the linear
layer, but also finetunes the prototypes to be relevant for the
downstream classification task. In addition to optimizing for
classification performance, we have three requirements for
our interpretable classifier: (i) it should be explainable with
scoring-sheet reasoning (cf. Sec. 5.1, (ii) the explanation

should be compact (cf. Sec. 5.2), and (iii) the model should
be able to handle out-of-distribution data by being able to
output “I haven’t seen this before”, i.e., be able to abstain
(cf. Sec. 5.3). These three objectives are captured in a
custom activation function (cf. Eq. (3)) in Sec. 5.4). The
overall objective for the second training phase of PIP-Net is:
λCLC + λALA + λTLT .

5.1. Scoring Sheet Reasoning

We implement the linear classification layer as an inter-
pretable scoring sheet that looks for (only positive) class
evidence in an input sample. Summing up the relevance of
present prototypical parts allows the model to find evidence
for multiple classes or for none (see Fig. 2).

Whereas usually class confidence scores are used to train
neural networks, scoring-sheet inference results in unnor-
malized output scores. To train with the regular negative
log-likelihood loss during the second training phase (after
prototype pretraining), we apply a softmax activation func-
tion σ to the output of the linear layer o during training to
convert unnormalized logits to class confidence scores.3

Naively applying softmax would however conflict with
our goals of compactness and decision abstaining in scoring-
sheet reasoning, because softmax is not scale-invariant, i.e.,
σ(z) ̸= σ(c · z) for scalar c. More concretely, if the
output-scores are initially large (for example, when there
a many relevant prototypes present with large weights to
classes), then softmax outputs a highly skewed distribution.
In contrast, when the class scores are low (and hence when
the weights or prototype presence scores are very small),
the softmax output is close to a uniform distribution, e.g.,
σ([0.12, 0.65, 0.21]) = [0.26, 0.45, 0.29]. Having either
very high or very low scores makes the model susceptible to

3We only apply softmax during training, and use interpretable scoring
during inference.

2748



weight initialization and hinders effective and stable training.
Sections 5.2 to and 5.3 discuss this challenge in more detail
before presenting the final solution in Section 5.4.

5.2. Compact Explanations

The overconfidence of softmax would also compete
with our compactness goal. Consider the following exam-
ple activations in a 3-class scenario: σ([1.2, 6.5, 2.1)] =
[0.005, 0.983, 0.012]. The confidence score of the second
class is already close to one, such that the model has no
incentive to further reduce the output scores of the other
classes. Prototypes which are actually irrelevant for a class,
might therefore keep a positive weight, which results in ex-
planations that are larger than necessary. Sparse weights
between prototypes and classes would improve interpretabil-
ity because the number of relevant prototypes per class and
consequently explanation size are reduced. Existing spar-
sity and pruning methods are mainly developed for reducing
memory and computation costs [8] and often the sparsity
ratio has to be predetermined by the user [8, 20], making
them not directly relevant to our interpretability goal (further
discussed in Suppl.). Instead, we introduce a novel function
that optimizes classification performance and compactness
simultaneously, as presented in Sec. 5.4.

5.3. Handling OoD Data

The standard solution for the scale-invariance issue is
simply to apply normalization before softmax, as is often
done in representation learning (e.g. [11, 34, 37]). However,
established normalization layers such as batch normalization
and instance normalization impede interpretability since the
prototype absence scores with a value of zero become non-
zero. With such normalization, we would lose the desirable
property of scoring systems being able to output “I haven’t
seen this before” by giving near-zero scores for all classes.
Abstaining from a decision could add to the trustworthiness
of explanations [19]. Lp normalization (e.g. L2) is an alter-
native where zero remains zero. However, a near-zero score
could still be significantly increased, limiting the OoD de-
tection possibilities. More importantly, Lp normalization of
p would make the scores in p dependent on each other. The
presence score of one prototypical part would then influence
the encoding of other prototypes in p. Such dependence
could result in unintuitive behaviour. As found by others,
normal CNNs can be easily fooled by adding occluding ob-
jects (e.g. a prediction of a monkey changes to a human when
a guitar partly occludes the monkey) [36]. Hence, to prevent
unexpected and unintuitive behavior, we want the prototype
presence scores to behave independently of each other. We
therefore introduce in Sec. 5.4 another way of normalizing
the logits, where a score of zero stays zero.

Method Top-1
Acc↑

Global
Size↓

Local
Size↓

Spar-
sity%↑

C
U

B

PIP-Net C 84.3±0.2 495±6 10 (4) 99.3
PIP-Net R 82.0±0.3 731±19 12 (5) 99.7
ProtoPNet [3] 79.2 2000 2000
ProtoTree [24] 82.2±0.7 202 8.3
ProtoPShare [29] 74.7 400 400
ProtoPool [28] 85.5±0.1 202 202

C
A

R
S

PIP-Net C 88.2±0.5 515±4 9 (4) 99.4
PIP-Net R 86.5±0.3 669±13 11 (4) 99.8
ProtoPNet [3] 86.1 1960 1960
ProtoTree [24] 86.6±0.2 195 8.5
ProtoPShare [29] 86.4 480 480
ProtoPool [28] 88.9±0.1 195 195

PE
T

S PIP-Net-C 92.0±0.3 172±2 4 (2) 99.4
PIP-Net R 88.5±0.2 346±12 8 (5) 99.5

Table 1. Mean accuracy and standard deviation (3 random seeds).
Global size indicates the total number of prototypes in the model.
Local size indicates the number of non-zero prototypes used for
a single prediction: for all classes in total, and between brackets
for the predicted class only. Sparsity ratio indicates percentage of
zero-weights in PIP-Net’s linear classification layer.

5.4. Overall Classification Objective

To regularize for sparsity during training, we calculate
the output scores o, that are used as input to softmax, as
follows:

o = log((pωc)
2 + 1), (3)

where p are the prototype presence scores and ωc the weights
of the linear layer. Since we restrict the weights to be non-
negative such that ωc ∈ RD×K

≥0 , and p ∈ [0., 1.]D, o will be
zero when the input is zero, such that the OoD-property is
kept. Squaring pωc helps the model to quickly adapt. Addi-
tionally, the natural logarithm reduces large weights to pre-
vent overconfidence as the ‘loss gain’ by decreasing weights
is higher than increasing weights, such that the model is
incentivized to reduce the weights of irrelevant prototypes.
This normalization step therefore implicitly optimizes for
sparsity and smaller explanations. During inference (test
time), the output scores are simply calculated as pωc in
order to support easy interpretation.

6. Experiments and Results

We evaluate our model on the standard benchmarks in
prototype literature: CUB-200-2011 [33] (200 bird species),
and Stanford Cars [15] (196 car models). Additionally, we
evaluate on Oxford-IIIT Pet [25] (37 cat and dog species) to
include a dataset with fewer classes.

2749



6.1. Implementation Details

In our architecture, any convolutional backbone can be
used and we apply ResNet50 and ConvNeXt-tiny [18], in-
dicated with R and C respectively. We use the pretrained
versions but change the strides of the last layers from 2 to
1, such that the width W and height H of the output feature
maps are increased (from 7× 7 to 28× 28 for ResNet and
7 × 7 to 26 × 26 for ConvNeXt, see Suppl.). This small
change results in a more fine-grained patch grid z which
can be better optimized for patch similarity. Backbone f is
finetuned with Adam with a learning rate of 0.0001 (CUB-R
and PETS) or 0.0005 (CARS, CUB-C) in a cosine annealing
schedule. The linear layer is trained with a learning rate
of 0.05. Weights for the losses are set to λC = λT = 2,
λA = 5. We pretrain the prototypes for 10 epochs, followed
by training PIP-Net as a whole for 60 more epochs. Images
are resized to 224 × 224 and augmented with TrivialAug-
ment [21]. See Suppl. and code for details.

6.2. Performance and Explanation Size

Table 1 presents the accuracy of recent prototypical-parts-
based models and the compactness of the explanations. We
measure the size of the global explanation as the number of
prototypes in the model with at least one non-zero weight.
The local explanation can either count all present prototypes
that are relevant for any class, or only for the predicted class
(Fig. 3). For a local explanation, we count all relevant pro-
totypes with a similarity > 0.1. Table 1 shows that PIP-Net
has a low number of prototypes, especially in a local expla-
nation, in combination with a competitive accuracy. Hence,
a user only has to check a handful of prototypes to under-
stand why PIP-Net predicted a specific class. Figure 2 shows
the actual output of PIP-Net trained on PETS. The local
explanation for one class consists of just 3 prototypes, and
PIP-Net can indeed, as designed, abstain from classifying for
out-of-distribution data. The supplementary material shows
further examples of OoD and multi-object predictions.

PIP-Net is specifically designed for open set recogni-
tion [40], implying that it can detect OoD input while clas-
sifying in-distribution (ID) input. We quantify the OoD-
detection of PIP-Net with the common FPR95-metric by
determining class-specific thresholds for output score o such
that 95% of the ID samples are classified as in-distribution.
Table 2 shows that PIP-Net can detect most of the OoD
samples, thereby contributing to intuitive reasoning. Our
findings confirm the insight of [32] that sparsification is
beneficial for OOD detection.

6.3. Semantic Quality of Prototypes

As the ‘sun OR dog’ issue from Fig. 1 illustrated, accu-
racy and number of prototypes is not sufficient for indicating
interpretability. Figure 5 visualizes the top-10 patches of
learned prototypes. To quantify the semantic correspondence

FPR95 (↓) OOD

ID PETS CUB CARS
PETS - 0.129 0.009
CUB 0.081 - 0.011

CARS 0.056 0.078 -

Table 2. OOD detection results, which calculates the false positive
rate of OOD detection when the true positive rate of ID samples
is at 95%. When 95% of the PETS images are classified as in-
distribution, PIP-Net classifies only 0.9% of the CARS images and
12.9% of CUB images as in-distribution for PETS.

Model Purity
(train) ↑

Purity
(test) ↑

C
U

B

ProtoPNet R [3] 0.44± 0.21 0.46± 0.22
ProtoTree R [24] 0.13± 0.14 0.14± 0.16
ProtoPShare R [29] 0.43± 0.21 0.43± 0.22
ProtoPool R [28] 0.35± 0.20 0.36± 0.21
PIP-Net R (ours) 0.63± 0.25 0.65± 0.25
PIP-Net R (self-sup) 0.29± 0.31 0.29± 0.32
PIP-Net C (ours) 0.92 ± 0.16 0.93 ± 0.15
PIP-Net C (self-sup) 0.61± 0.38 0.60± 0.38

Table 3. Purity of CUB-prototypes w.r.t. object part annotations,
averaged over all relevant prototypes in the model (± std. dev.). Cal-
culates how often the (center of the) same object part is present in
the top-10 image patches per prototype. PIP-Net (self-supervised)
indicates the purity after pretraining the prototypes (i.e. without
classification loss LC ). R is ResNet, C is ConvNeXt backbone.

between prototypes and image patches, we evaluate the pu-
rity of prototypes by using ground-truth center locations of
object parts available in the CUB dataset. Our assumption is
that an interpretable prototype should correspond to a single
object part, e.g. an eye or a wing. We evaluate to what extent
the top-10 image patches for a prototype are encoding the
same part by calculating whether the center of the ground-
truth object part is contained in a 32× 32 image patch. For
each part-prototype model, we select the 10 images with the
highest similarity score for a particular prototype, in order to
avoid model-specific similarity/distance thresholds. Table 3
presents the purity of learned CUB-prototypes. It shows a
correlation between the size of the explanation and the purity
of the prototypes for the existing models, which is in line
with the ‘sun OR dog’ issue. Our PIP-Net is however com-
pact and has pure, interpretable prototypes. PIP-Net with a
ConvNeXt-tiny backbone achieves a substantially higher pu-
rity than other models. Interestingly, even the self-supervised
prototypes of PIP-Net-C have a higher purity score than the
prototypes learned by other models with classification loss.
Also PIP-Net with a ResNet-backbone achieves a higher
purity than ProtoPNet, ProtoPShare (a pruned version of

2750



(a) ProtoPNet - CUB (b) ProtoPool - CUB (c) PIP-Net - CUB, self-supervised
pretraining only

(d) PIP-Net - CUB, full

(e) PIP-Net - CUB (more vis.) (f) PIP-Net - CARS (g) PIP-Net - PETS (h) PIP-Net - PIN

Figure 5. Example prototypes, one per row visualized with their top-10 image patches. Note that both ProtoPNet and ProtoPool learn
interpretable and less-interpretable prototypes (e.g, first two rows). ProtoPNet might learn duplicate prototypes (fifth and sixth row). Showing
the same prototypes pi for pretrained and fully trained PIP-Net. All prototypes visualized in the supplementary material.

ProtoPNet), ProtoPool and ProtoTree. We hypothesize that
the “patchify stem” of ConvNeXt is beneficial for learning
part prototypes, whereas ResNet might perform worse due
to its larger number of prototypes (D = 2048 ResNet vs
D = 768 for ConvNeXt), and because ResNets have weak
spatial localization discriminativeness in the last layers [26].

The relatively high standard deviation in Tab. 3 indicates
that some prototypes have a lower part purity. This could
be due to the fact that some prototypes are semantically
meaningful for humans but do not correspond to a single
object part, such as a prototype encoding a specific color
(e.g. ‘anything bright blue’) or a non-part-related concept
(e.g. ‘human skin’ or ‘tree leaves’).

PIP-Net is also applicable to non-fine-grained image data.
We train PIP-Net with a ConvNeXt backbone on PartIma-
geNet [7] (PIN), a dataset with 158 classes from ImageNet
with part segmentation annotations, allowing us to further
evaluate prototype purity. PIP-Net achieves a top-1 accuracy
of 85% with 262 prototypes, compared to 91% for a normal
black-box ConvNeXt. We leave further hyperparameter tun-
ing for improved classification performance for future work,
and rather focused on the evaluation of prototype purity. We
define prototype purity as the fraction of image patches of a
prototype that have overlap with the same ground-truth ob-
ject part. We measure the purity based on all image patches
where a relevant prototype is detected (i.e., a prototype pres-
ence score > 0.5) and find that the purity averaged over
all active non-zero-weighted PIN-prototypes is 92%. The
high purity aligns with the visual evidence from Fig. 5 and
confirms the interpretability of the learned prototypes.

7. Conclusion
We presented PIP-Net: an image classifier optimized

to be aligned with human perception. By carefully craft-
ing the loss terms and activation functions, PIP-Net learns
high-quality prototypical parts, is globally interpretable and
generates compact explanations. Additionally, it can abstain
from decision making by outputting near-zero scores when
no relevant prototypes are found. Our sparse linear deci-
sion layer makes PIP-Net an intuitive model, although such
simplicity also has it limitations. PIP-Net learns whether a
prototype is present or absent, but does not count the number
of prototypes in an image. Hence, our model may not be
suited for datasets where the number of occurrences of a
prototype is the only discriminative feature.

Importantly, PIP-Net only relies on image labels and no
other annotations to learn an interpretable part-prototype
model. Since our prototypes are learned with a combination
of supervised and self-supervised loss terms, it is possible
to apply the self-supervised losses from Sec. 4 to unlabeled
data. This is especially interesting for domains where manual
image labeling is expensive. We leave the exploration of
partly unlabeled data for future work. Lastly, we see further
research opportunities to use PIP-Net for efficiently adapting
the model’s reasoning for e.g. fixing shortcut learning. We
think that interpretability-by-design should become the new
standard for interpretable and explainable AI, especially for
high stakes decisions. This approach resulted in our PIP-
Net, which provides compact explanations that align well
with human perception, allowing to interpret decisions in an
intuitive, faithful and semantically meaningful way.

2751



References
[1] Irving Biederman. Recognition-by-components: a the-

ory of human image understanding. Psychological review,
94(2):115, 1987. 1

[2] Judy Borowski, Roland Simon Zimmermann, Judith Schepers,
Robert Geirhos, Thomas S. A. Wallis, Matthias Bethge, and
Wieland Brendel. Exemplary natural images explain CNN
activations better than state-of-the-art feature visualization.
In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. 1

[3] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia
Rudin, and Jonathan K Su. This looks like that: Deep learn-
ing for interpretable image recognition. In H. Wallach, H.
Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R.
Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. 1, 2, 6, 7

[4] Dov Danon, Hadar Averbuch-Elor, Ohad Fried, and Daniel
Cohen-Or. Unsupervised natural image patch learning. Com-
putational Visual Media, 5(3):229–237, 2019. 3

[5] Christina M. Funke, Judy Borowski, Karolina Stosio, Wieland
Brendel, Thomas S. A. Wallis, and Matthias Bethge. Five
points to check when comparing visual perception in humans
and machines. Journal of Vision, 21(3):16–16, 03 2021. 1

[6] Yash Goyal, Amir Feder, Uri Shalit, and Been Kim. Ex-
plaining classifiers with causal concept effect (cace). arXiv
preprint arXiv:1907.07165, 2019. 3

[7] Ju He, Shuo Yang, Shaokang Yang, Adam Kortylewski, Xi-
aoding Yuan, Jie-Neng Chen, Shuai Liu, Cheng Yang, Qihang
Yu, and Alan Yuille. Partimagenet: A large, high-quality
dataset of parts. In Computer Vision–ECCV 2022: 17th Eu-
ropean Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part VIII, pages 128–145. Springer, 2022. 8

[8] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden,
and Alexandra Peste. Sparsity in deep learning: Pruning and
growth for efficient inference and training in neural networks.
Journal of Machine Learning Research, 22(241):1–124, 2021.
6

[9] Adrian Hoffmann, Claudio Fanconi, Rahul Rade, and Jonas
Kohler. This looks like that... does it? shortcomings of la-
tent space prototype interpretability in deep networks. arXiv
preprint arXiv:2105.02968, 2021. 1

[10] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki
Zadeh, Debapriya Banerjee, and Fillia Makedon. A survey
on contrastive self-supervised learning. Technologies, 9(1),
2021. 3

[11] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki
Zadeh, Debapriya Banerjee, and Fillia Makedon. A survey
on contrastive self-supervised learning. Technologies, 9(1),
2021. 6

[12] Longlong Jing and Yingli Tian. Self-supervised visual fea-
ture learning with deep neural networks: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
43(11):4037–4058, 2021. 3, 4

[13] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai,
James Wexler, Fernanda Viegas, and Rory sayres. Inter-
pretability beyond feature attribution: Quantitative testing

with concept activation vectors (TCAV). In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pages 2668–2677.
PMLR, 10–15 Jul 2018. 3

[14] Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy,
Ruth Fong, and Olga Russakovsky. HIVE: Evaluating the
human interpretability of visual explanations. In European
Conference on Computer Vision (ECCV), 2022. 1

[15] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013. 3, 6

[16] Matthew L. Leavitt and Ari Morcos. Towards falsifiable
interpretability research. arXiv:2010.12016 [cs, stat], Oct.
2020. arXiv: 2010.12016. 2

[17] Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency.
Foundations and recent trends in multimodal machine learn-
ing: Principles, challenges, and open questions, 2022. 1

[18] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for
the 2020s. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
11976–11986, June 2022. 7

[19] Radek Mackowiak, Lynton Ardizzone, Ullrich Kothe, and
Carsten Rother. Generative classifiers as a basis for trustwor-
thy image classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2971–2981, June 2021. 6

[20] Decebal Constantin Mocanu, Elena Mocanu, Tiago Pinto, Se-
lima Curci, Phuong H. Nguyen, Madeleine Gibescu, Damien
Ernst, and Zita A. Vale. Sparse training theory for scalable
and efficient agents. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’21, page 34–38, Richland, SC, 2021. International
Foundation for Autonomous Agents and Multiagent Systems.
6

[21] Samuel G. Müller and Frank Hutter. Trivialaugment: Tuning-
free yet state-of-the-art data augmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 774–782, October 2021. 7

[22] Meike Nauta, Annemarie Jutte, Jesper Provoost, and Christin
Seifert. This looks like that, because ... explaining proto-
types for interpretable image recognition. In Machine Learn-
ing and Principles and Practice of Knowledge Discovery in
Databases, pages 441–456, Cham, 2021. Springer Interna-
tional Publishing. 2

[23] Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen,
Michelle Peters, Yasmin Schmitt, Jörg Schlötterer, Maurice
van Keulen, and Christin Seifert. From anecdotal evidence
to quantitative evaluation methods: A systematic review on
evaluating explainable ai. ACM Comput. Surv., feb 2023. 1

[24] Meike Nauta, Ron van Bree, and Christin Seifert. Neural pro-
totype trees for interpretable fine-grained image recognition.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 14933–14943,
June 2021. 1, 2, 3, 6, 7

2752



[25] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and
C. V. Jawahar. Cats and dogs. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 3498–3505,
2012. 6

[26] Maithra Raghu, Thomas Unterthiner, Simon Kornblith,
Chiyuan Zhang, and Alexey Dosovitskiy. Do vision trans-
formers see like convolutional neural networks? In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing
Systems, volume 34, pages 12116–12128. Curran Associates,
Inc., 2021. 8

[27] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
"why should i trust you?": Explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, KDD ’16, page 1135–1144, New York, NY, USA,
2016. Association for Computing Machinery. 3

[28] Dawid Rymarczyk, Łukasz Struski, Michał Górszczak, Ko-
ryna Lewandowska, Jacek Tabor, and Bartosz Zieliński. In-
terpretable image classification with differentiable prototypes
assignment. In Shai Avidan, Gabriel Brostow, Moustapha
Cissé, Giovanni Maria Farinella, and Tal Hassner, editors,
Computer Vision – ECCV 2022, pages 351–368, Cham, 2022.
Springer Nature Switzerland. 1, 2, 3, 6, 7

[29] Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, and Bartosz
Zieliński. ProtoPShare: Prototypical Parts Sharing for Sim-
ilarity Discovery in Interpretable Image Classification. In
Proceedings of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery & Data Mining, KDD ’21, page 1420–1430,
New York, NY, USA, 2021. Association for Computing Ma-
chinery. 1, 3, 6, 7

[30] Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin,
Christopher J. Anders, and Klaus-Robert Müller. Explaining
deep neural networks and beyond: A review of methods and
applications. Proceedings of the IEEE, 109(3):247–278, 2021.
1

[31] Thalles Silva and Adín Ramírez Rivera. Representation learn-
ing via consistent assignment of views to clusters. In Pro-
ceedings of the 37th ACM/SIGAPP Symposium on Applied
Computing, SAC ’22, page 987–994, New York, NY, USA,
2022. Association for Computing Machinery. 3, 4

[32] Yiyou Sun and Yixuan Li. Dice: Leveraging sparsification
for out-of-distribution detection. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23–
27, 2022, Proceedings, Part XXIV, pages 691–708. Springer,
2022. 7

[33] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011. 3, 6

[34] Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon
Yuille. Normface: L2 hypersphere embedding for face verifi-
cation. In Proceedings of the 25th ACM International Confer-
ence on Multimedia, MM ’17, page 1041–1049, New York,
NY, USA, 2017. Association for Computing Machinery. 6

[35] Jiaqi Wang, Huafeng Liu, Xinyue Wang, and Liping Jing.
Interpretable image recognition by constructing transparent

embedding space. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 895–
904, October 2021. 2

[36] Jianyu Wang, Zhishuai Zhang, Cihang Xie, Yuyin Zhou, Vittal
Premachandran, Jun Zhu, Lingxi Xie, and Alan Yuille. Visual
concepts and compositional voting. Annals of Mathematical
Sciences and Applications, 3(1):151–188, 2018. 6

[37] Tongzhou Wang and Phillip Isola. Understanding contrastive
representation learning through alignment and uniformity on
the hypersphere. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning
Research, pages 9929–9939. PMLR, 13–18 Jul 2020. 3, 4, 6

[38] Eric Wong, Shibani Santurkar, and Aleksander Madry. Lever-
aging sparse linear layers for debuggable deep networks. In
Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages
11205–11216. PMLR, 18–24 Jul 2021. 3

[39] Mengqi Xue, Qihan Huang, Haofei Zhang, Lechao Cheng, Jie
Song, Minghui Wu, and Mingli Song. Protopformer: Concen-
trating on prototypical parts in vision transformers for inter-
pretable image recognition. arXiv preprint arXiv:2208.10431,
2022. 3

[40] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu.
Generalized out-of-distribution detection: A survey. arXiv
preprint arXiv:2110.11334, 2021. 7

[41] Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li,
Tomas Pfister, and Pradeep Ravikumar. On completeness-
aware concept-based explanations in deep neural networks.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 20554–20565. Curran Associates,
Inc., 2020. 3

[42] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and
Hod Lipson. Understanding neural networks through deep
visualization. arXiv preprint arXiv:1506.06579, 2015. 3

[43] C. L. Zitnick and Devi Parikh. Bringing semantics into focus
using visual abstraction. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2013. 2

2753


