PREDICTIVE CONTROL OF PLANTARFLEXOR MUSCLE-TENDON FORCE DURING SIMULATED HUMAN HOPPING

Mahdi Nabipour* (1), Gregory S. Sawicki (2), Massimo Sartori (1)

*<u>m.nabipour@utwente.nl</u>

1. University of Twente, Netherlands; 2. Georgia Institute of Technology, United States of America

Abstract

Assistive devices (e.g., exoskeletons) could be used to steer a user's musculotendon unit (MTU) loading *in vivo*. A challenge is to develop a control algorithm that is simple enough to enable fast computation and adaptable enough to handle different gait patterns. Here, we propose a nonlinear model predictive control (NMPC) approach to maintain a predefined threshold tendon force within the plantarflexor muscle-tendon complex during simulated human hopping.

Introduction

Human-in-the-loop (HIL) control of exoskeletons can identify the assistance strategy that minimizes a userrelated cost function during gait [1]. A downside of this approach is that the computational time required for state-of-the-art HIL approach to identify the optimal assistance pattern is approximately half an hour [2]. Alternatively, we seek direct control of muscle-tendon (MT) force via estimation using available toolboxes [3] and a personalized closed-form model [4]. In this way, it should be possible to demonstrate direct control of a user's tendon force - to say, target a given cyclic strain tissue healing. Here, rate for we use а modelling/simulation framework to demonstrate modelpredictive control (MPC) that can predict future tendon dynamics and provide smooth exoskeleton assistance during simulated hopping.

Methods

Building on previous simple models of human hopping with passive-elastic exoskeletons [5] by adding a computationally-efficient closed-form equivalent model for MT force [4], a combined exoskeleton-MT model (Fig. 1a) can be obtained using the following equation:

$$\dot{F}^{T} = k^{T} \left(\dot{L}^{MT} - \dot{L}^{M} \cos \alpha + L^{M} \sin \alpha . \dot{\alpha} \right)$$
$$\dot{L}^{MT} = \frac{-g}{W} \left(F^{T} + F_{ac} - W \right)$$
(1)

where, F^T and k^T are the tendon force and stiffness, respectively. The MTU length, L^{MT} , and the pennation angle, α , are derived by the limb kinematics and the muscle fibre length, L^M , is derived using the method discussed in [4]. Equation (1) is a state-space model of the combined exoskeleton-MT model:

$$\dot{x} = Ax + Bu$$
 , $x = \begin{bmatrix} F^T \\ L^{MT} \\ \dot{L}^{MT} \end{bmatrix}$, $u = F_{ac}$. (2)

Next, the derived nonlinear state-space representation is used as the inner model of an NMPC controller and the cost function of the controller is defined as:

$$J = w_{1}u^{2} + w_{2}(\Delta u)^{2} + w_{3}(F^{T})^{2}$$
(3)

where, w_i are constants and Δu is the exoskeleton actuator force increment. We extracted human-like specifications and activation dynamics from [5] (Fig. 1b) and the controller's horizon and upper bound were set to 15 steps and 1000 N, respectively. To demonstrate feasibility *in silico*, we set the goal of the controller to keep tendon force under 1000 N. An interior-point method was used for solving the optimization problem. **Results and discussion**

Results and discussion

Over a range of simulated hopping intensities (Fig. 1b), our novel NMPC controller appropriately commanded exoskeleton actuator force (Fig. 1c) to maintain tendon force under the target threshold (Fig. 1d).

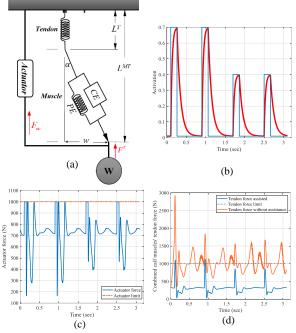


Figure 1: a) The simplified hopping and actuator model, b) activation dynamics for hopping, c) actuator assistive force, d) tendon force with and without assistance **References**

- 1. J. Zhang et al, "Human-in-the-loop optimization of exoskeleton assistance during walking," *Science*, 2017.
- P. Slade et al, "Personalizing exoskeleton assistance while walking in the real world," *Nature*, 2022.
- C. Pizzolato, et al, "CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks," *J. of biomechanics*, 2015.
- 4. M. Nabipour et al, "closed-form Modeling of the SOLEUS musculotendon unit," in proc. of *ESB* 2023.
- 5. B.D. Robertson et al, "More is not always better: modeling the effects of elastic exoskeleton compliance on underlying ankle muscle-tendon dynamics," *Bioinsp & Biomim*, 2014.