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Abstract

In this paper, we investigate the spread of COVID-19 and the impact of government mea-

sures at the early stage of the pandemic (before the introduction of the vaccines) in the Neth-

erlands. We build a multiple linear regression model to predict the effective reproduction

rate using key factors and measures and integrate it with a system dynamics model to pre-

dict the spread and the impact of measures against COVID-19. Data from February to

November 2020 is used to train the model and data until December 2020 is used to validate

the model. We use data about the key factors, e.g., disease specific such as basic reproduc-

tion rate and incubation period, weather related factors such as temperature, and controlla-

ble factors such as testing capacity. We consider particularly the following measures taken

by the government: wearing facemasks, event allowance, school closure, catering services

closure, and self-quarantine. Studying the strategy of the Dutch government, we control

these measures by following four main policies: doing nothing, mitigation, curbing, elimina-

tion. We develop a systems dynamic model to simulate the effect of policies. Based on our

numerical experiments, we develop the following main insights: It is more effective to imple-

ment strict, sharp measures earlier but for a shorter duration than to introduce measures

gradually for a longer duration. This way, we can prevent a quick rise in the number of

infected cases but also to reduce the number of days under measures. Combining the mea-

sures with a high testing capacity and with effective self-quarantine can significantly reduce

the spread of COVID-19.

1. Introduction

The COVID-19 pandemic has affected the social and economic life of the world severely. Gov-

ernments all over the world have taken several measures to control the pandemic. Yet, govern-

ments still do not exactly know how much impact measures have on limiting the spread of the
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pandemic, and how other factors (e.g. weather) impact the spread exactly. Furthermore, each

country has different demographics and circumstances, which makes the effectiveness of mea-

sures differ between countries [1, 2]. In this paper, we investigate the spread of COVID-19 and

the impact of government measures in the Netherlands.

According to Red Team, an independent group of experts that aims to prevent and fight

COVID-19 in the Netherlands, there exist roughly four strategies to determine the policy that

can prevent a virus from spreading. These are “Do nothing”, “Mitigation”, “Curbing”, and

“Elimination”. Do nothing does not take action to prevent spread and the virus can move

freely. Mitigation allows circulation of the virus to a certain extent and measures are put in

place to avoid overuse of hospital and IC capacity. Curbing strives for as little infections as pos-

sible, pursues every infection. Elimination aims to make the virus disappear. The policy that

was chosen by the Dutch government is called “maximal control”, which can be seen as a mix

of policies mitigation and curbing. The main focus of the government is to protect people who

are vulnerable and prevent healthcare from overloading [3].

To predict the spread of the pandemic and analyze impact of measures, we use a two-step

approach. In the first step, we use a multiple linear regression (MLR) model to explain the rela-

tion between the spread, the key factors and government measures. The key factors that we

consider are: disease related: incubation period, infectious period, basic reproduction rate,

fatality ratio, initial infected cases; weather related: temperature, humidity, wind speed; and

controllable factors: adoption of government measures and testing. The government measures
that we consider are event allowance, school closure, catering services closure, wearing face-

masks, and self-quarantine. In the second step, we bring the key factors and measures in a sim-

ulation environment using a System Dynamics (SD) model. We use system dynamics to model

the spread of COVID-19 of the early phase of the pandemic, with which we can represent the

structure of a complex system and analyze dynamic behaviour over time [4]. In the SD model

we use the effective reproduction rate as an indicator of the spread. This rate is influenced by

external factors like government measures [5]. Since SD uses a high level of aggregation, we

combine our SD model with MRL to enhance predictions. The SD model can capture the

dynamic nature of the pandemic and MLR incorporates the more detailed hidden relations

between factors and the spread of the pandemic.

We study the spread of COVID-19 in the Netherlands and use the data publicly available

until 31 December 2020. We build and calibrate the SD model predicting future spread of the

pandemic using data until 1 December 2020. With this model we develop insights for policy-

making by considering different policies to prevent spread, discover the impact of timing and

strictness of measures, and test whether testing capacity affects the effectiveness of a policy in

the Dutch case.

The remainder of this paper is organized as follows: In Section 2, we discuss the contribu-

tion to the literature. In Section 3, we introduce our data analysis methodology and develop

the prediction model. Numerical implementation and results are presented in Section 4, and

in Section 5 we conclude main findings and provide the foundation for further work.

2. Contribution to the literature

There have been several research papers on estimating the individual impact of factors such as

incubation period and weather, and also on the impact of government measures such as school

closure on the spread of COVID-19 [6–15]. But since there exists no magical measure that is

able to decrease the effective reproduction rate below one on its own, a suitable combination

of measures is necessary to effectively prevent spread of the virus. Next to the combination of

measures, timing of the implementation of these measures can drastically influence the impact
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[16, 17]. And combining effective measures with a sufficient testing policy is considered to be

important to end the pandemic [18, 19]. In addition there are several other country specific

factors influencing the spread of COVID-19 such as population density and the acceptance of

implemented measures by the public in that specific country. This indicates that each country

can require a different policy to work best. Yet studies on effectiveness of measures in the

Netherlands either look at the general impact instead of the country specific impact, or deter-

mine the effectiveness of a particular measure. This paper takes a broader perspective. We

investigate the impact of all measures taken by the government, considering other aspects such

as weather related factors, using in a dynamic model.

Various SD models are developed to predict spread of COVID-19 [20–25]. Combining SD

modelling with other methods allows to enhance the contribution of modeling work and

develop potential solutions in more profound ways than a single-method study can do [23,

24]. Yet, none of these models enhances predictors by incorporating MRL. While MRL shows

to be an effective method to predict the spread of COVID-19 [26–28]. We contribute to the lit-

erature by developing a method combining (i) SD to capture the dynamic nature of the pan-

demics and (ii) MRL to integrate it with detailed relations between factors and response

variables. In this way we can integrate the effectiveness of policies to prevent the spread of

COVID-19 in the Netherlands that include the effect of testing and the timing of the imple-

mentation of measures in the Dutch case.

3. Methodology

This section introduces our method. First we introduce our SD model in Section 3.1 and the

MLR model in Section 3.2. In Section 3.3, we calibrate the SD model integrated with the MLR

model. And in Section 3.4 we explain how we model all policies (doing nothing, mitigation,

curbing, and elimination).

3.1 The system dynamics model

There are a number of well-known classical epidemiological models that can express outbreak

dynamics in the SD model. We apply an extension of the SIR compartment model from Ker-

mack and McKendick [29]. In the SIR model, individuals pass through different stages as they

experience the disease. The SIR model distinguishes susceptible, infected, and recovered com-

partments in the population. In the extension we apply, the SEIR model, an exposed compart-

ment is included additionally. This is useful due to the relatively long latency phase of

COVID-19.

3.1.1 Dynamics of the SD model. With our SD model, visualized in Fig 1, we express the

spread of COVID-19 in the Netherlands. Quantities of the compartments (susceptible,

exposed, infected, recovered) in the SD model are changing over time and can be mathemati-

cally formulated with differential equations. Below we provide the differential equations indi-

cating the change in susceptible, exposed, infected, and recovered population per day,

expressed with dS
dt ;

dE
dt ;

dI
dt and dR

dt respectively.

dS
dt
¼ � bSI

dE
dt
¼ bSI� / E
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dI
dt
¼/ E � gI

dR
dt
¼ gI

Fractions S, E, I, and R represent the fraction of susceptible, infected, and recovered individ-

uals respectively. The four population fractions resemble the entire Dutch population, mean-

ing S+E+I+R = 1. Additionally, we distinguish infected population in confirmed and

unconfirmed with help of a regression model for the number of confirmed cases (see Section

3.2.3). Similarly, we distinguish recovered population in recovered and deceased using Infec-
tion Fatality Ratio (IFR).

3.1.2 Input for the SD model. Being nonlinear models, SD models are sensitive to input

parameters, which requires rigorous parameter estimation [30]. To determine the effect of

each parameter on the spread, we use multiple linear regression. In our study, we develop two

regression models. In the first regression model, we take the effective reproduction rate (Re(t))
as a response and explain the relation between effective reproduction rate and factors and mea-

sures. The second regression model expresses the number of confirmed cases per day with

respect to the input variable testing capacity.

We identify five groups of input parameters in our SD model that affect the spread of

COVID-19. These include disease related uncontrollable factors, population related uncontrol-
lable factors, weather related uncontrollable factors, controllable factors and government
measures.

Disease related factors affecting the spread of COVID-19. Disease related uncontrollable fac-

tors include incubation period, infectious period, basic reproduction rate, fatality ratio and ini-

tial infected cases. Ranges of the disease related factors are provided below. We calibrate input

values of these factors to mimic actual spread (Section 3.3).

• Incubation period: The time between infection and symptom onset. This period is estimated

to be on the average five to six days, but can be between 2 to 14 days [31].

Fig 1. The SD model.

https://doi.org/10.1371/journal.pone.0283086.g001
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• Infectious period: The period an infected person is able to infect another person. This period

is estimated to start approximately two days before symptom onset with a range between

one and five days [31]. The proportion of transmissions before symptom onset was esti-

mated to be 44%, yet the accuracy of this estimate has to be questioned due to a lack of data.

The infectious period continues for up to seven days from the onset of symptoms with a

peak at 0.7 days [32].

• Basic reproduction rate (R0): This rate indicates how many people are infected by one

infected person on average. The basic reproduction rate applies when no outbreak control is

applied to limit the spread, and defines the rate as the average number of cases produced by

an infected individual in a fully susceptible population [33]. The RIVM (the Dutch National

Institute for Public Health and Environment) estimates R0 to be between 2 and 2.5 [34].

• Infection fatality ratio: The number of deaths divided by the number of infections. We use

the IFR to indicate the number of deaths after infection. The IFR ranges between 0.3% and

1% [7].

Population related factors affecting the spread of COVID-19. Population related uncontrolla-

ble factors include the population size and the fraction of susceptible cases. The population

size of the Netherlands is assumed to be fixed at 17,400,000 on the first day of simulation. The

fraction of susceptible cases depends on the number of initial infected cases.
Weather related uncontrollable factors affecting the spread of COVID-19. We express

weather with wind speed, humidity, and temperature. We gather values from the KNMI (the

Royal Netherlands Meteorological Institute) measured in the Bilt, a municipality in the middle

of the Netherlands [35]. We use these values to represent values everywhere in the

Netherlands.

Controllable factors affecting the spread of COVID-19. We identify adoption of government

measures, testing capacity, and self-quarantine as controllable factors that might affect the spread.

• Adoption of government measures: We use the number of people staying home per day

(“staying at home behaviour”) and the extent by which people travel with public transport

per day (“traveling behaviour”) to express adoption of government measures. We quantify

staying home behaviour with Google data about how often people stay at home per day com-

pared to a baseline, and we quantify traveling behaviour with data about public transport

gathered from Translink [36, 37]. Staying home behaviour and traveling behaviour per day

are visualized in Figs 2 and 3 respectively.

• Testing capacity: We express testing capacity with the number of tests per day, visualized in

Fig 4. Data before 1 June is gathered from Datagraver and data after 1 June from the Dutch

Central Government (“Rijksoverheid”) [38, 39].

• Self-quarantine: Besides including the effect of the places of infection above with help of mea-

sures, we include the effect of self-quarantine in our model. This measure is included with a

fixed value by defining the fraction of infected cases who are effectively quarantined. Accord-

ing to data from the RIVM, approximately 50% of reported infection places is at home [40].

The effectivity of self-quarantine is therefore estimated to be between 50 and 70%.

Government measures affecting the spread of COVID-19

The measures taken by the Dutch government are mostly implemented to reduce the contact

rate in certain places of infection. However, schools, catering services, and events and
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gatherings are places where a considerable number of infections can occur, and are thus key

for the effectiveness of government measures [40]. Therefore, we include them explicitly in

our model. The degree by which schools and catering services are opened, events are allowed,

and facemasks are implemented is quantified per day based on the definition of measures in

Table 1 (referred to as school closure, catering service closure, event allowances, and facemasks

respectively). For example, when all schools are closed, we consider the measure to be very

strict which we indicate with a value of 5. Historical values of these measures are clarified in

the S1 Table, with additional dates of implementation.

3.2 Multiple linear regression models for key indicators

We use two linear regression models. The first one expresses the effective reproduction rate in

terms of weather-related factors, controllable factors and measures (Section 3.2.2). The second

Fig 2. Development of the staying home behaviour in the Netherlands.

https://doi.org/10.1371/journal.pone.0283086.g002

Fig 3. Development of the travelling behaviour in the Netherlands.

https://doi.org/10.1371/journal.pone.0283086.g003
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one expresses the relationship between the number of confirmed cases on a day and the test

capacity (Section 3.2.3). We apply multiple linear regression to identify relations between

parameters and to determine whether weather-related factors, controllable factors and mea-

sures have a considerable influence on the spread.

3.2.1 Performance measures of the multiple linear regression model. We use R2, the

adjusted R2 and the test error to assess the performance of our regression model. We express

Fig 4. Development of the number of tests per day in the Netherlands.

https://doi.org/10.1371/journal.pone.0283086.g004

Table 1. Quantification of government measures.

Measure Value Definition

Schools closure 1 Normal education. Fully physical.

2 Mostly physical education / Most schools open.

3 Partially physical, partially non-physical education / Approx. half of schools

opened.

4 Mostly non-physical education / most schools closed.

5 All schools closed / only online education.

Catering service
closure

1 All catering services normally opened.

2 All catering services normally opened with distancing measures.

3 All catering services opened, closing at 12 PM. With distancing measures

4 All catering services opened, closing at 10 PM. With distancing measures

5 All catering services closed.

Events allowance 1 All events allowed.

2 Some events cancelled.

3 Big events prohibited.

4 Events prohibited and gatherings with maximum number of people.

5 All events and gatherings are prohibited. No maximum

Facemasks 1 No facemasks.

2 Facemasks in public transport only.

3 Urge to wear facemasks.

4 Strong urge to wear facemasks in all public spaces.

5 Facemasks mandatory in all public spaces.

https://doi.org/10.1371/journal.pone.0283086.t001
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the test error with the mean squared error (MSE). To avoid an optimistic outcome of the per-

formance measures, we correct R2 and MSE for optimism by performing bootstrap. We call

the resulting performance measures “corrected R2” and “corrected MSE”. We use the boot-

strap method to estimate the accuracy of the method by running the method multiple (500)

times, each time with a different sample set [41].

3.2.2 Multiple linear regression model for effective reproduction rate. Effective repro-
duction rate. The effective reproduction rate Re(t) is influenced by external factors like govern-

ment measures. To incorporate impact of changing measures and factors, we develop a

regression model that can express Re(t) of COVID-19 in the Netherlands as a function of these

factors and measures on any day t.
Before we can identify the effect of controllable factors and measures on Re(t) we have to

calculate Re(t), to be able to compare the outcome of our model to the actual reproduction rate

when making predictions in the future. We refer to the calculated effective reproduction rate

as Re
calculated(t). We calculate Re

calculated(t) in R with an implementation of the method pro-

vided by Wallinga & Teunis [42]. The method estimates the time dependent reproduction

number together with a confidence interval. We assume a gamma-distribution for the genera-

tion interval with a mean of 4 days and a standard deviation of 3 days in this function [43, 44].

A visualization of Re
calculated(t), from 20 February until 31 November, is provided in the S1 Fig,

based on the number of infections and the number of hospitalizations respectively.

Regression model for the effective reproduction rate

We apply the backward selection method to determine the relevance of weather related factors,

controllable factors and government measures and thus to determine whether a considerable

relation exists [45]. This provides the following model for Re(t):

ReðtÞ ¼ 1:259 � 0:014∗average temperature � 2:669∗staying home behaviour
þ 0:919∗traveling behaviourþ 0:047∗school closure
� 0:041∗catering service closure � 0:076∗event allowanceþ 0:061∗facemasks

This model has an adjusted R2 of 0.859 a corrected R2 of 0.852, and a corrected MSE of

0.014. We observe the residuals of this model to be approximately normally distributed around

zero, meaning the model indicates no non-linearity (Fig 5). We check multi-collinearity of

predictors by using VIF (Variance Inflation Factor). In practice, there are typically a small

amount of collinearity among predictors in a regression model. Staying home behaviour and

traveling behaviour have a VIF value just above 10. A VIF value of 10 is considered to be a

threshold for high collinearity [45].

Interactions and their effect on effective reproduction rate. Additionally we determine the

value of adding interaction terms to the linear model. The model with interaction terms per-

forms well in terms of R2 and test error with an adjusted R2 of 0.889, a corrected R2 of 0.882,

and a corrected MSE of 0.011. Yet interactions do not show a significant impact for the predic-

tion of the effective reproduction rate. For this reason, we do not include interaction terms in

the multiple linear regression model to not overcomplicate the model.

Results of our regression model for effective reproduction rate. The normalized values of coef-

ficients of the regression model and the standard deviation of these estimates are provided in

Table 2. We express the statistical significance of the relation between a parameter and

response with help of the p-value. We consider parameters to be statistically significant when a

p-value is below 0.01. In Table 2, “***” stands for a p-value <0.001 and “*” for a p-value <0.05.

3.2.3 Regression model for the number of confirmed cases. The number of confirmed

cases highly depends on the number of infections and the number of tests per day. Since the
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actual number of infected cases per day is unknown, this number has to be estimated. We do

this with data of the number of infectious cases [46]. We use a logarithm of the response vari-

able as we observe that the residuals are more evenly distributed in a logarithmic model (see

Fig 6). As a result, we find that the relation between the number of confirmed cases per day

and the predictors, number of tests per day and number of infections per day, is significant.

The following expression for the number of confirmed cases on any day t is obtained:

confirmed cases ðtÞ ¼ e4:869þ4:56e� 05∗number of testsþ1:361e� 04∗infected cases

In Table 3, the estimates of the coefficients βi for the predictors in this model can be found,

together with their p-value and the standard error of the estimates for βi.

3.3 Calibration of the SD model

To obtain actual spread, the values of fixed parameters are calibrated (see Table 4). With a cali-

brated incubation period of 4 days and a calibrated infectious duration of 5.5 days respectively,

we obtain an incubation rate α of 1/4 and recovery rate γ of 1/5.5.

Table 2. Normalized values of coefficients, standard deviation and p-value for all predictors in the regression

model of the effective reproduction rate.

Predictor Estimate Std. Error P-value

Intercept 1.333 0.141 < 2e-16 ***
Average temperature -0.380 0.078 1.99e-06 ***
Staying home behaviour -0.454 0.111 5.91e-05 ***
Traveling behaviour 0.801 0.144 5.66e-08 ***
School closure 0.189 0.061 0.00228 ***
Catering services closure -0.162 0.084 0.05401 *
Event allowance -0.303 0.073 4.04e-05 ***
Facemasks 0.184 0.041 1.09e-05 ***
https://doi.org/10.1371/journal.pone.0283086.t002

Fig 5. Histogram of residuals of the regression model for the effective reproduction rate.

https://doi.org/10.1371/journal.pone.0283086.g005
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3.4 Modelling the policies to prevent spread

In this section we describe how each policy, doing nothing, mitigation, curbing, and elimina-

tion is modelled. In each of these policies the strictness of measures differs.

Measures applied per policy

• Do nothing. No measures (Table 5) are implemented and a low testing capacity (Fig 9) is

used.

• Mitigation. The number of IC occupations and hospital admissions on a day are used to

identify the measures to implement for this policy. Signal values for IC occupations and hos-

pital admissions per day (Fig 7) determine the risk level and subsequently the measures that

are implemented (Table 5). Furthermore, the actual number of tests per day is used (Fig 9).

• Curbing. To determine the performance of curbing, we distinguish two ways to implement

the curbing policy, referred to as curbing type 1 and curbing type 2. The first type uses signal

values from the route map of the Dutch government to determine when to implement cer-

tain measures (Fig 7). The second type uses an adjusted route map (Fig 8). The number of

confirmed cases is used to identify the measures to implement for the curbing policy,

because it indicates a change or trend in spread earlier than other indicators such as the

number of hospitalizations. And since curbing requires a high testing capacity to quickly

identify infected cases, this policy uses a high testing capacity (Fig 9).

• Elimination. Lockdown measures apply in the entire period and testing capacity is set high

to help quick tracking of infected cases.

Fig 6. Residual plot of the regression models for the number of confirmed cases. On the left the model without

logarithmic response and on the right the model with a logarithmic response.

https://doi.org/10.1371/journal.pone.0283086.g006

Table 3. Values of coefficients, standard deviation and p-value for all parameters in the regression model of the

number of confirmed cases.

Predictor Estimate Std. error P-value

(Intercept) 4.869 5.434e-02 < 2e-16 ***
Number of tests 4.559e-05 2.413e-06 < 2e-16 ***
Number of infected cases 1.361e-04 6.797e-06 < 2e-16 ***
https://doi.org/10.1371/journal.pone.0283086.t003
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In order to model the mitigation and curbing policies, we use the so-called route map of the

Dutch government [47]. The Dutch government uses this route map to determine which mea-

sures to apply with help of signal values (Fig 7). Arrows in the figure indicate the risk level that

applies when certain signal values are reached and consequently which measures have to be

implemented.

In Table 5, we establish the values each measure should have per risk level (Figs 7 and 8).

For school closure, catering services closure and event allowance, this is in accordance with the

values per risk level in the route map of the Dutch government and parameter values in

Table 1. For factors traveling behaviour and staying home behaviour the established values are

approximations, based on observed values in the past (Figs 2 and 3). We assume that measures

from a lower or higher risk level can only be implemented when measures of the current risk

level are implemented for at least two weeks, because effects of adjusted measures are not

immediately visible.

For each policy, the input values used for all measures, and the factors testing capacity, stay-

ing home behaviour, traveling behaviour, and weather related factors can be found per day in

de S1 Data.

4.Results

The results after calibrating and validating the model are provided in Section 4.1. In Section

4.2, the results of the modelled policies (doing nothing, mitigation, curbing, and elimination)

and the sensitivity results can be found.

4.1 Performance of the model

We express the performance of the SD model with numbers of the infected cases, confirmed

cases, deaths, hospitalizations, and IC occupations.

4.1.1 Calibration results. Calibrated numbers are values observed on 30 November. The

calibrated results for all indicators but the total infected cases in our model are quite aligned

with actual values (see Table 6).

Table 4. Calibrated input values of the fixed parameters in the SD model.

Calibrated parameter Calibrated input value

Incubation period 4

Infectious period 5.5

Basic reproduction rate 2.5

Initial infected cases 100

Infection fatality ratio 0.37%

Self-quarantine fraction 60%

https://doi.org/10.1371/journal.pone.0283086.t004

Table 5. Established input values per risk level for each measure.

No measures Alert Alarming Serious Very serious Lockdown

School closure 1 2 2 3 4 5

Catering service closure 1 2 3 4 5 5

Event allowance 1 1 2 3 4 5

Traveling behaviour 1 0.5 0.5 0.3 0.3 0.2

Staying home behaviour 0 4.5% 4.5% 9% 13.5% 18%

https://doi.org/10.1371/journal.pone.0283086.t005
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Development of the calibrated number of infected cases, confirmed cases, deaths, hospitali-

zations, and IC occupations per day is provided in S2–S6 Figs.

4.1.2 Validation results. Numbers from 1 December until 31 December are used to vali-

date our model. Table 7 expresses the actual and validated numbers of the infected cases, con-

firmed cases, deaths, hospitalizations, and IC occupations on 31 December. Development of

the infected cases, confirmed cases, deaths, hospitalizations, and IC occupations per day are

provided in S9–S11 Figs.

4.2 Performance of the policies

We compare the performance of policies based on two indicators: the number of infected

cases and the number of days with strict measures. The first provides an indication of the

spread of the virus and the second an indication of the impact on economy and social life.

4.2.1 Results of the policies. In Table 8, we provide the numbers for infected cases, con-

firmed cases, deaths, hospitalizations, and IC occupations on 30 November per policy. We

refer to the “actual policy” as the policy that leads to the numbers observed in reality. Graphical

results over time of all policies are provided in S12 and S13 Figs.

In Table 9, we provide the number of days with strict measures per policy. Strict measures

are considered to be measures of the serious, very serious, or lockdown risk level. We cannot

Fig 7. Route map to determine the risk level.

https://doi.org/10.1371/journal.pone.0283086.g007

Fig 8. Route map to determine the risk level with adjusted signal values.

https://doi.org/10.1371/journal.pone.0283086.g008
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provide a clear specification of the days with strict measures for the actual policy, because in

reality the Dutch government did not determine the policy exactly according to the signal val-

ues in the route map.

4.2.2 Sensitivity results of feasible policies. The SD model, being a nonlinear model, can

be very sensitive to small changes. For this reason, we simulate the policies again considering

small changes in input values of the self-quarantine fraction and the testing capacity. These

two parameters are considered to be the main parameters that can be affected in reality. We let

the self-quarantine fraction vary between 20%, 60% and 80% and let the testing capacity vary

between low and high.

Only feasible policies are simulated with these varying input values. As feasible policies we

consider mitigation and curbing (type 1 and type 2). Results for the number of infected cases

on 30 November are provided in Figs 10 and 11 and results for the number of days with strict

measures in Tables 10 and 11.

5. Discussion and conclusions

5.1 Discussion

Doing nothing to prevent spread of COVID-19 turns out to be the worst policy in the

Dutch case. This is expected due to the high population density in the Netherlands. The

Table 6. Performance of the SD model after calibration.

Total infected Total confirmed Total deaths Total hospitalizations Total IC occupations

Calibrated numbers 3,013,040 528,381 9,419 27,946 5,589

Actual numbers N.A. 529,304 9,653 27,738 5,551

https://doi.org/10.1371/journal.pone.0283086.t006

Table 7. Performance of the SD model after validation.

Total infected Total confirmed Total deaths Total hospitalizations Total IC occupations

Validated numbers 3,534,680 810,482 11,686 33,884 6,777

Actual numbers N.A. 808,906 11,627 34,833 6,748

https://doi.org/10.1371/journal.pone.0283086.t007

Fig 9. Development of low, actual and high testing capacity per day.

https://doi.org/10.1371/journal.pone.0283086.g009
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feasibility of the elimination policy is low in a short amount of time, since it requires world-

wide cooperation. There are some countries that tried to implement this policy, for example

New Zealand, resulting in very low infection numbers combined with a low number of days

with strict measures [48]. This might partially be achieved due to a lower population density

in these countries. We believe that, with the relatively high population density in the Neth-

erlands, the elimination policy would cause major damage to economy and is therefore not

feasible in the Dutch case. We see this in economic performance during periods of lock-

down measures [49].

Mitigation turns out to be the policy that comes closest to the actual situation in the Nether-

lands. This is expected because the actually implemented policy resembles this policy the most.

The total number of infected cases with the mitigation policy is lower than the actual number

(2,590,550 versus 3,013,040), yet the number of days with strict measures for the mitigation

policy is approximately 60 days higher. This indicates that the signal values in the route map of

the government are not sufficient to come from a higher risk level to a lower risk level quickly,

leading to a lot of days with strict measures and consequently a bigger impact on economy.

With the curbing policy, infected individuals will be identified by quick testing and in-

depth source- and contact investigation. We studied two types of curbing by which we observe

that curbing becomes more effective as it has stricter measures. Looking at the differences

between the two types of curbing we observe that implementing stricter short-term measures

are more effective than gradual long-term measures. This is more resilient for economy as it

will lead to lower negative impacts. Especially, if such a policy can be announced to public, the

public and businesses can plan according to such clear plans and this can reduce sources of

uncertainties in the public and business.

An important requirement of the curbing type 2 policy to be effective is having a high test-

ing capacity. The sensitivity results show that when mitigation uses a high testing capacity, the

total number of infected cases becomes lower than the number of infected cases of curbing

type 2 (2,097,410 versus 2,193,390). With a remark that the number of days with strict mea-

sures is more than once as high (239 versus 91). When both policies implement a low testing

Table 8. Performance of the policies in terms of spread.

Policy Total infected Total confirmed Total deaths Total hospitalizations Total IC occupations

Actual policy 3,013,040 528,381 9,419 27,946 5,589

Doing nothing 11,927,500 7,962,770 44,022 117,404 23,481

Mitigation 2,590,550 229,439 8,797 24,678 4,936

Curbing type 1 4,806,090 1,113,440 16,528 46,190 9,238

Curbing type 2 2,193,390 332,144 8,089 21,582 4,316

Elimination 1,142,350 109,318 4,229 11,256 2,251

https://doi.org/10.1371/journal.pone.0283086.t008

Table 9. Performance of the policies in terms of days with strict measures.

Policy Days with strict measures

Actual policy +/- 200

Doing nothing 0

Mitigation 260

Curbing type 1 131

Curbing type 2 91

Elimination 264

https://doi.org/10.1371/journal.pone.0283086.t009
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capacity, the number of infected cases of mitigation is significantly lower than the number

infected cases of curbing type 2 (2,763,400 versus 4,969,410), where the number of days with

strict measures remains more than once as high (260 versus 126). Similar to testing capacity,

effective self-quarantine has a significant effect on the spread of the virus and the impact on

Fig 10. Sensitivity results of the total infected cases on 30 November 2020 per policy–changing quarantine

fraction.

https://doi.org/10.1371/journal.pone.0283086.g010

Fig 11. Sensitivity results of the total infected cases on 30 November 2020 per policy–changing testing capacity.

https://doi.org/10.1371/journal.pone.0283086.g011
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economy. Based on the results in the sensitivity analysis, both the number of infected cases

and the number of days with strict measures decrease significantly with a higher self-quaran-

tine fraction, no matter the implemented policy. This suggests that it is valuable to invest in an

effective testing and quarantine policy, which is in line with other works [19, 50].

Another finding of our model is that the actual total number of infected cases seems to be

highly underestimated when we compare it to the estimate of the number of infected cases.

The total number of infected cases based on this estimate is 1,814,638 on 30 November,

whereas the calibrated total number of infected cases in our model is much higher (3,013,040).

The outcome of this study can be different for other countries due to the high population

density in the Netherlands. However, our model could still be applicable to other countries.

This requires adjustments of the factors and the government measures.

5.2 Limitations

To express the measures school closure, caterings services closure, event allowance, and wear-

ing facemasks we use discrete values (levels 1 to 5). By using continuous values we can obtain a

better estimation of Re
linear(t), which can improve predictions.

Not all measures that are included in the route map of the Dutch government are included

in our analysis (e.g. measures on sports and the curfew). The measures that we do not include

might show their impact in the regression model for the effective reproduction rate with

another measure that is included.

Our paper focuses on the early phase of the pandemic, before the introduction of vaccines.

The variants of SARS-CoV-2 and the vaccination have a huge impact on the spread of the

Table 10. Sensitivity results of the number of days with strict measures per policy–changing quarantine fraction.

Policy Days with strict measures

Actual policy +/- 200

Mitigation (60%) 260

Mitigation (20%) 260

Mitigation (80%) 260

Curbing type 1 (60%) 131

Curbing type 1 (20%) 218

Curbing type 1 (80%) 113

Curbing type 2 (60%) 91

Curbing type 2 (20%) 162

Curbing type 2 (80%) 84

https://doi.org/10.1371/journal.pone.0283086.t010

Table 11. Sensitivity results of the number of days with strict measures per policy–changing testing capacity.

Policy Days with strict measures

Actual policy +/- 200

Mitigation (low testing capacity) 260

Mitigation (normal testing capacity) 260

Mitigation (high testing capacity) 239

Curbing type 1 (low testing capacity) 97

Curbing type 1 (high testing capacity) 131

Curbing type 2 (low testing capacity) 126

Curbing type 2 (high testing capacity) 91

https://doi.org/10.1371/journal.pone.0283086.t011
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pandemic. Extension of our model to include the variants and vaccination would be worth to

investigate.

5.3 Conclusions

To effectively prevent the spread of COVID-19 in the Netherlands, strict measures have to be

implemented early to keep both the number of days with strict measures and the number of

infected cases relatively low. It is however important to combine this way of policymaking

with effective self-quarantine and an effective testing policy. Our results are valid for the Dutch

case. However, our model is generic and can be applicable for other cases provided that the

data is available. As we focus on the early of the pandemic, we exclude variants of SARS-CoV-

2 and vaccination. These are the notable directions that deserve further attention.
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