
A Practitioner’s Guide to
MDP Model Checking Algorithms?

Arnd Hartmanns1 , Sebastian Junges2 ,
Tim Quatmann3 , and Maximilian Weininger4(�)

1 University of Twente, Enschede, The Netherlands a.hartmanns@utwente.nl
2 Radboud University, Nijmegen, The Netherlands sebastian.junges@ru.nl

3 RWTH Aachen University, Aachen, Germany tim.quatmann@cs.rwth-aachen.de
4 Technical University of Munich, Munich, Germany maxi.weininger@tum.de

Abstract. Model checking undiscounted reachability and expected-re-
ward properties on Markov decision processes (MDPs) is key for the
verification of systems that act under uncertainty. Popular algorithms are
policy iteration and variants of value iteration; in tool competitions, most
participants rely on the latter. These algorithms generally need worst-case
exponential time. However, the problem can equally be formulated as
a linear program, solvable in polynomial time. In this paper, we give a
detailed overview of today’s state-of-the-art algorithms for MDP model
checking with a focus on performance and correctness. We highlight
their fundamental differences, and describe various optimizations and
implementation variants. We experimentally compare floating-point and
exact-arithmetic implementations of all algorithms on three benchmark
sets using two probabilistic model checkers. Our results show that (op-
timistic) value iteration is a sensible default, but other algorithms are
preferable in specific settings. This paper thereby provides a guide for
MDP verification practitioners—tool builders and users alike.

1 Introduction

The verification of MDPs is crucial for the design and evaluation of cyber-physical
systems with sensor noise, biological and chemical processes, network protocols,
and many other complex systems. MDPs are the standard model for sequential
decision making under uncertainty and thus at the heart of reinforcement learning.
Many dependability evaluation and safety assurance approaches rely in some
form on the verification of MDPs with respect to temporal logic properties.
Probabilistic model checking [4,5] provides powerful tools to support this task.

The essential MDP model checking queries are for the worst-case probability
that something bad happens (reachability) and the expected resource consumption
until task completion (expected rewards). These are indefinite (undiscounted)

? This research was funded by the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No.
101008233 (MISSION), and by NWO VENI grant no. 639.021.754.

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13993, pp. 469–488, 2023.
https://doi.org/10.1007/978-3-031-30823-9_24

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0002-2843-5511
http://orcid.org/0000-0002-0163-2152
https://doi.org/10.1007/978-3-031-30823-9_24
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30823-9_24&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

470 A. Hartmanns et al.

horizon queries: They ask about the probability or expectation of a random vari-
able up until an event—which forms the horizon—but are themselves unbounded.
Many more complex properties internally reduce to solving either reachability or
expected rewards. For example, if the description of something bad is in linear
temporal logic (LTL), then a product construction with a suitable automaton
reduces the LTL query to reachability [6]. This paper sets out to determine the
practically best algorithms to solve indefinite horizon reachability probabilities
and expected rewards; our methodology is an empirical evaluation.

MDP analysis is well studied in many fields and has lead to three main types
of algorithms: value iteration (VI), policy iteration (PI), and linear programming
(LP) [55]. While indefinite horizon queries are natural in a verification context,
they differ from the standard problem of e.g. operations research, planning, and
reinforcement learning. In those fields, the primary concern is to compute a
policy that (often approximately) optimizes the discounted expected reward over
an infinite horizon where rewards accumulated in the future are weighted by a
discount factor < 1 that exponentially prefers values accumulated earlier.

The lack of discounting in verification has vast implications. The Bellman
operation, essentially describing a one-step backward update on expected re-
wards, is a contraction with discounting, but not a contraction without. This
leads to significantly more complex termination criteria for VI-based verification
approaches [34]. Indeed, VI runs in polynomial time for every fixed discount
factor [49], and similar results are known for PI as well as LP solving with
the simplex algorithm [60]. In contrast, VI [9] and PI [20] are known to have
exponential worst-case behaviour in the undiscounted case.

So, what is the best algorithm for model checking MDPs? A polynomial-time
algorithm exists using an LP formulation and barrier methods for its solution [12].
LP-based approaches (and their extension to MILPs) are also prominent for
multi-objective model checking [21], in counterexample generation [23], and
for the analysis of parametric Markov chains [16]. However, folklore tells us
that iterative methods, in particular VI, are better for solving MDPs. Indeed,
variations of VI are the default choice of all model checkers participating in the
QComp competition [14]. This uniformity may be misleading. Indeed, for some
stochastic game algorithms, using LP to solve the underlying MDPs may be
preferential [3, Appendix E.4]. An application in runtime assurance preferred PI
for numerical stability [45, Sect. 6]. A toy example from [34] is a famous challenge
for VI-based methods. Despite the prominence of LP, the ease of encoding MDPs,
and the availability of powerful off-the-shelf LP solvers, many tools did (until
very recently) not include MDP model checking via LP solvers.

With this paper, we reconsider the PI and LP algorithms to investigate
whether probabilistic model checking focused on the wrong family of algorithms.
We report the results of an extensive empirical study with two independent
implementations in the model checkers Storm [42] and mcsta [37]. We find that,
in terms of performance and scalability, optimistic value iteration [40] is a solid
choice on the standard benchmark collection (which goes beyond competition
benchmarks) but can be beat quite considerably on challenging cases. We also

A Practitioner’s Guide to MDP Model Checking 471

emphasize the question of precision and soundness. Numerical algorithms, in
particular ones that converge in the limit, are prone to delivering wrong results.
For VI, the recognition of this problem has led to a series of improvements over
the last decade [8,34,40,19,54,56]. We show that PI faces a similar problem. When
using floating-point arithmetic, additional issues may arise [36,59]. Our use of
various LP solvers exhibits concerning results for a variety of benchmarks. We
therefore also include results for exact computation using rational arithmetic.
Limitations of this study. A thorough experimental study of algorithms requires
a carefully scoped evaluation. We work with flat representations of MDPs that
fit completely into memory (i.e. we ignore the state space exploration process
and symbolic methods). We selected algorithms that are tailored to converge to
the optimal value. We also exclude approaches that incrementally build and solve
(partial or abstract) MDPs using simulation or model checking results to guide
exploration: they are an orthogonal improvement and would equally profit from
faster algorithms to solve the partial MDPs. Moreover, this study is on algorithms,
not on their implementations. To reduce the impact of potential implementation
flaws, we use two independent tools where possible. Our experiments ran on a
single type of machine—we do not study the effect of different hardware.
Contributions. This paper contributes a thorough overview on how to model-
check indefinite horizon properties on MDPs, making MDP model checking more
accessible, but also pushing the state-of-the-art by clarifying open questions. Our
study is built upon a thorough empirical evaluation using two independent code
bases, sources benchmarks from the standard benchmark suite and recent publi-
cations, compares 10 LP solvers, and studies the influence of various prominent
preprocessing techniques. The paper provides new insights and reviews folklore
statements: Particular highlights are a new simple but challenging MDP family
that leads to wrong results on all floating-point LP solvers (Section 2.3), a nega-
tive result regarding the soundness of PI with epsilon-precise policy evaluators
(Section 4), and an evaluation on numerically challenging benchmarks that shows
the limitations of value iteration in a practical setting (Section 5.3).

2 Background

We recall MDPs with reachability and reward objectives, describe solution
algorithms and their guarantees, and address commonly used optimizations.

2.1 Markov Decision Processes

Let DX := { d : X → [0, 1] |
∑
x∈X d(x) = 1 } be the set of distributions over X.

A Markov decision process (MDP) [55] is a tupleM = (S,A, δ) with finite sets of
states S and actions A, and a partially defined transition function δ : S×A⇀ DS

such that A(s) := { a | (s, a) ∈ domain(δ) } 6= ∅ for all s ∈ S. A(s) is the set of
enabled actions at state s. δ maps enabled state-action pairs to distributions over
successor states. A Markov chain (MC) is an MDP with |A(s)| = 1 for all s. The
semantics of an MDP are defined in the usual way, see, e.g. [6, Chapter 10]. A

472 A. Hartmanns et al.

(memoryless deterministic) policy—a.k.a. strategy or scheduler—is a function
π : S → A that, intuitively, given the current state s prescribes what action
a ∈ A(s) to play. Applying a policy π to an MDP induces an MCMπ. A path
in this MC is an infinite sequence ρ = s1s2 . . . with δ(si, π(si))(si+1) > 0. Paths
denotes the set of all paths and Pπs denotes the unique probability measure of
Mπ over infinite paths starting in the state s.

A reachability objective Popt(T) with set of target states T ⊆ S and opt ∈
{max,min} induces a random variable X : Paths→ [0, 1] over paths by assigning 1
to all paths that eventually reach the target and 0 to all others. Eopt(rew) denotes
an expected reward objective, where rew : S→ Q≥0 assigns a reward to each state.
rew(ρ) :=

∑∞
i=1 rew(si) is the accumulated reward of a path ρ = s1s2 This

yields a random variable X : Paths→ Q ∪ {∞} that maps paths to their reward.
For a given objective and its random variable X, the value of a state s ∈ S is the
expectation of X under the probability measure Pπs of the the MC induced by an
optimal policy π from the set of all policies Π, formally V(s) := optπ∈ΠEπs [X].

2.2 Solution Algorithms

Value iteration (VI), e.g. [15], computes a sequence of value vectors converging
to the optimum in the limit. In all variants of the algorithm, we start with a
function x : S → Q that assigns to every state an estimate of the value. The
algorithm repeatedly performs an update operation to improve the estimates.
After some preprocessing, this operation has a unique fixpoint when x = V. Thus,
value iteration converges to the value in the limit. Variants of VI include interval
iteration [34], sound VI [56] and optimistic VI [40]. We do not discuss these in
detail, but instead refer to the respective papers.

Linear programming (LP), e.g. [6, Chapter 10], encodes the transition structure
of the MDP and the objective as a linear optimization problem. For every state,
the LP has a variable representing an estimate of its value. Every state-action
pair is encoded as a constraint on these variables, as are the target set or rewards.
The unique optimum of the LP is attained if and only if for every state its
corresponding variable is set to the value of the state. We provide an in-depth
discussion of theoretical and practical aspects of LP in Section 3.

Policy iteration (PI), e.g. [11, Section 4], computes a sequence of policies.
Starting with an initial policy, we evaluate its induced MC, improve the policy by
switching suboptimal choices and repeat the process on the new policy. As every
policy improves the previous one and there are only finitely many memoryless
deterministic policies (a number exponential in the number of states), eventually
we obtain an optimal policy. We further discuss PI in Section 4.

2.3 Guarantees

Given the stakes in many application domains, we require guarantees about the
relation between an algorithm’s result v̄ and the true value v. First, implemen-
tations are subject to floating-point errors and imprecision [59] unless they use
exact (rational) arithmetic or safe rounding [36]. This can result in arbitrary

A Practitioner’s Guide to MDP Model Checking 473

0

Mn:
1

91

2

92

· · ·

· · ·

n

9n

τ

m

j

j

m

m

j

j

m

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1

1

1
2 · · ·

1
2 · · ·

Fig. 1: A hard MDP for all algorithms

Table 1: Correct results

alg. solver n≤

PI – 20

LP COPT 18
CPLEX 18
Glop 25
GLPK 24
Gurobi 18
HiGHS 22
lp_solve 28
Mosek 22
SoPlex 34

differences between v̄ and v. Second are the algorithm’s inherent properties: VI
is an approximating algorithm that converges to the true value only in the limit.
In theory, it is possible to obtain the exact result by rounding after exponentially
many iterations [15]; in practice, this results in excessive runtime. Instead, for
years, implementations used a naive stopping criterion that could return arbi-
trarily wrong results [33]. This problem’s discovery sparked the development
of sound variants of VI [8,34,40,19,54,56], including interval iteration, sound
value iteration, and optimistic value iteration. A sound VI algorithm guarantees
ε-precise results, i.e. |v − v̄| ≤ ε or |v − v̄| ≤ v · ε. For LP and PI, the guarantees
have not yet been thoroughly investigated. Theoretically, both are exact, but
implementations are often not. We discuss the problems in Sections 3 and 4.

The handcrafted MC of [33, Figure 2] highlights the lack of guarantees
of VI: standard implementations return vastly incorrect results. We extended
it with action choices to obtain the MDP Mn shown in Fig. 1 for n ∈ N,
n ≥ 2. It has 2n+ 1 states; we compute Pmin({n }) and Pmax({n }). The policy
that chooses action m wherever possible induces the MC of [33, Figure 2] with
(Pmin({n }),Pmax({n })) = (1

2 ,
1
2). In every state s with 0 < s < n, we added

the choice of action j that jumps to n and 9n. With that, the (optimal) values
over all policies are (1

3 ,
2
3). In VI, starting from value 0 for all states except n,

initially taking j everywhere looks like the best policy for Pmax. As updated
values slowly propagate, state-by-state, m becomes the optimal choice in all states
except −n+ 1. We thus layered a “deceptive” decision problem on top of the slow
convergence of the original MC. For n = 20, VI with Storm and mcsta deliver the
incorrect results (0.247, 0.500). For Storm’s PI and various LP solvers, we show in
Table 1 the largest n for which they return a ± 0.01-correct result. For larger n,
PI and all LP solvers claim ≈ (1

2 ,
1
2) as the correct solution except for Glop and

GLPK which only fail for the maximum at the given n; for the minimum, they
return the wrong result at n ≥ 29 and 52, respectively. Sound VI algorithms and
Storm’s exact-arithmetic engine produce (ε-)correct results, though the former at
excessive runtime for larger n. We used default settings for all tools and solvers.

474 A. Hartmanns et al.

2.4 Optimizations

VI, LP, and PI can all benefit from the following optimizations:
Graph-theoretic algorithms can be used for qualitative analysis of the MDP,
i.e. finding states with value 0 or (only for reachability objectives) 1. These
qualitative approaches are typically a lot faster than the numerical computations
for quantitative analysis. Thus, we always apply them first and only run the
numerical algorithms on the remaining states with non-trivial values.
Topological methods, e.g. [17], do not consider the whole MDP at once. Instead,
they first compute a topological ordering of the strongly connected components
(SCCs)5 and then analyze each SCC individually. This can improve the runtime,
as we decompose the problem into smaller subproblems. The subproblems can
be solved with any of the solution methods. Note that when considering acyclic
MDPs, the topological approach does not need to call the solution methods, as
the resulting values can immediately be backpropagated.
Collapsing of maximal end components (MECs), e.g., [13,34], transforms the MDP
into one with equivalent values but simpler structure. After collapsing MECs,
the MDP is contracting, i.e. we almost surely reach a target state or a state with
value zero. VI algorithms rely on this property for convergence [34,40,56]. For PI
and LP, simplifying the graph structure before applying the solution method can
speed up the computation.
Warm starts, e.g. [26,46], may adequately initialize an algorithm, i.e., we may
provide it with some prior knowledge so that the computation has a good starting
point. We implement warm starts by first running VI for a limited number of
iterations and using the resulting estimate to guess bounds on the variables in
an LP or a good initial policy for PI. See Sections 3 and 4 for more details.

3 Practically solving MDPs using Linear Programs

This section considers the LP-based approach to solving the optimal policy prob-
lem in MDPs. To the best of our knowledge, this is the only polynomial-time
approach. We discuss various configurations. These configuration are a combina-
tion of the LP formulation, the choice of software, and their parameterization.

3.1 How to encode MDPs as LPs?

For objective Pmax(T) we formulate the following LP over variables xs, s ∈ S \ T:
minimize

∑
s∈S

xs s.t. lb(s) ≤ xs ≤ ub(s) and

xs ≥
∑

s′∈S\T

δ(s, a)(s′) · xs′ +
∑
t∈T

δ(s, a)(t) for all s ∈ S \ T, a ∈ A

5 A set S′ ⊆ S is a connected component if for all s, s′ ∈ S′, s can be reached from s′.
We call S′ strongly connected component if it is inclusion maximal.

A Practitioner’s Guide to MDP Model Checking 475

We assume bounds lb(s) = 0 and ub(s) = 1 for s ∈ S \ T. The unique solution
η : {xs | s ∈ S \ T } → [0, 1] to this LP coincides with the desired objective
values η(xs) = V (s). Objectives Pmin(T) and Eopt(rew) have similar encodings:
minimizing policies require maximisation in the LP and flipping the constraint
relation. Rewards can be added as an additive factor on the right-hand side. For
practical purposes, the LP formulation can be tweaked.

The choice of bounds. Any bounds that respect the unique solution will not change
the answer. That is, any lb and ub with 0 ≤ lb(s) ≤ V (s) ≤ ub(s) yield a sound
encoding. While these additional bounds are superfluous, they may significantly
prune the search space. We investigate trivial bounds, e.g., knowing that all
probabilities are in [0, 1], bounds from a structural analysis as discussed by [8],
and bounds induced by a warm start of the solver. For the latter, if we have
obtained values V ′ ≤ V , e.g., induced by a suboptimal policy, then V ′(s) is a
lower bound on the value xs, which is particularly relevant as the LP minimizes.

Equality for unique actions. Markov chains, i.e., MDPs where |A| = 1, can be
solved using linear equation systems. The LP encoding uses one-sided inequalities
and the objective function to incorporate nondeterministic choices. We investigate
adding constraints for all states with a unique action.

xs ≤
∑

s′∈S\T

δ(s, a)(s′) · xs′ +
∑
t∈T

δ(s, a)(t) for all s ∈ S \ T with A(s) = {a}

These additional constraints may trigger different optimizations in a solver, e.g.,
some solvers use Gaussian elimination for variable elimination.

A simpler objective. The standard objective assures the solution η is optimal for
every state, whereas most invocations require only optimality in some specific
states – typically the initial state s0 or the entry states of a strongly connected
component. In that case, the objective may be simplified to optimize only the
value for those states. This potentially allows for multiple optimal solutions: in
terms of the MDP, it is no longer necessary to optimize the value for states that
are not reached under the optimal policy.

Encoding the dual formulation. Encoding a dual formulation to the LP is interest-
ing for mixed-integer extensions to the LP, relevant for computing, e.g., policies
in POMDPs [47], or when computing minimal counterexamples [58]. For LPs, due
to the strong duality, the internal representation in the solvers we investigated is
(almost) equivalent and all solvers support both solving the primal and the dual
representation. We therefore do not further consider constructing them.

3.2 How to solve LPs with existing solvers?

We rely on the performance of state-of-the-art LP solvers. Many solvers have
been developed and are still actively advanced, see [2] for a recent comparison
on general benchmarks. We list the LP solvers that we consider for this work
in Table 2. The columns summarize for each solver the type of license, whether
it uses exact or floating-point arithmetic, whether it supports multithreading,

476 A. Hartmanns et al.

Table 2: Available LP solvers (“intr” = interior point)

solver version license exact/fp parallel algorithms mcsta Storm

COPT [24] 5.0.5 academic fp yes intr+ simplex yes no
CPLEX [44] 22.10 academic fp yes intr+ simplex yes no
Gurobi [32] 9.5 academic fp yes intr+ simplex yes yes
GLPK [29] 4.65 GPL fp no intr+ simplex no yes
Glop [30] 9.4.1874 Apache fp no simplex only yes no
HiGHS [35,43] 1.2.2 MIT fp yes intr+ simplex yes no
lp_solve [10] 5.5.2.11 LGPL fp no simplex only yes no
Mosek [52] 10.0 academic fp yes intr+ simplex yes no
SoPlex [28] 6.0.1 academic both no simplex only no yes
Z3 [53] 4.8.13 MIT exact no simplex only no yes

and what type of algorithms it implements. We also list whether the solver is
available from the two model checkers used in this study6.
Methods. We briefly explain the available methods and refer to [12] for a thorough
treatment. Broadly speaking, the LP solvers use one out of two families of
methods. Simplex -based methods rely on highly efficient pivot operations to
consider vertices of the simplex of feasible solutions. Simplex can be executed
either in the primal or dual fashion, which changes the direction of progress
made by the algorithm. Our LP formulation has more constraints than variables,
which generally means that the dual version is preferable. Interior methods,
often the subclass of barrier methods, do not need to follow the set of vertices.
These methods may achieve polynomial time worst-case behaviour. It is generally
claimed that simplex has superior average-case performance but is highly sensitive
to perturbations, while interior-point methods have a more robust performance.
Warm starts. LP-based model checking can be done using two types of warm
starts. Either by providing a (feasible) basis point as done in [26] or by presenting
bounds. The former, however, comes with various remarks and limitations, such
as the requirement to disable preprocessing. We therefore used warm starts only
by using bounds as discussed above.
Multithreading. We generally see two types of parallelisation in LP solvers. Some
solvers support a portfolio approach that runs different approaches and finishes
with the first one that yields a result. Other solvers parallelize the interior-point
and/or simplex methods themselves.
Guarantees for numerical LP solvers. All LP solvers allow tweaking of various
parameters, including tolerances to manage whether a point is considered feasible
or optimal, respectively. The experiments in Table 1 already indicate that these
guarantees are not absolute. A limited experiment indicated that reducing these
tolerances towards zero did remove some incorrect results, but not all.
6 Support for Gurobi, GLPK, and Z3 was already available in Storm. Support for Glop
was already available in mcsta. All other solver interfaces have been added.

A Practitioner’s Guide to MDP Model Checking 477

Exact solving. SoPlex supports exact computations, with a Boost library wrapping
GMP rationals [22], after a floating-point arithmetic-based startup phase [27].
While this combination is beneficial for performance in most settings, it leads to
crashes for the numerically challenging models. Z3 supports only exact arithmetic
(also wrapping GMP numbers with their own interface). We observe that the
price of converting large rational numbers may be substantial. SMT solvers like
Z3 use a simplex variation [18] tailored towards finding feasible points and in an
incremental fashion, optimized for problems with a nontrivial Boolean structure.
In contrast, our LP formulation is easily feasible and is a pure conjunction.

4 Sound Policy Iteration

Starting with an initial policy, PI-based algorithms iteratively improve the policy
based on the values obtained for the induced MC. The algorithm for solving
the induced MC crucially affects the performance and accuracy of the overall
approach. This section addresses the solvers available in Storm, possible precision
issues, and how to utilize a warm start, while Section 5 discusses PI performance7.
Markov chain solvers. To solve the induced MC, Storm can employ all linear
equation solvers listed in [42] and all implemented variants of VI. In our experi-
ments, we consider (i) the generalized minimal residual method (GMRES) [57]
implemented in GMM++ [25], (ii) VI [15] with a standard (relative) termination
criterion, (iii) optimistic VI (OVI) [40], and (iv) the sparse LU decomposition
implemented in Eigen [31] using either floating-point or exact arithmetic (LUX).
LU and LUX provide exact results (modulo floating-point errors in LU) while
OVI yields ε-precise results. VI and GMRES do not provide any guarantees.
Correctness of PI. The accuracy of PI is affected by the MC solver. Firstly, PI
cannot be more precise than its underlying solver: the result of PI has the same
precision as the result obtained for the final MC. Secondly, inaccuracies by the
solver can hide policy improvements; this may lead to premature convergence with
a sub-optimal policy. We show that PI can return arbitrarily wrong results—even
if the intermediate results are ε-precise:

s0 s1

s2 G

s3
a

b 0.1

0.9

δ/2

δ/2

1−δ

Fig. 2: Example MDP

Consider the MDP in Fig. 2 with objective
Pmax({G }). There is only one nondeterministic choice,
namely in state s0. The optimal policy is to pick b,
obtaining a value of 0.5. Picking a only yields 0.1. How-
ever, when starting from the initial policy π(s0) = a,
an ε-precise MC solver may return 0.1 + ε for both s0
and s1 and δ/2 + (1 − δ) · 0.1 for s2. This solution is
indeed ε-precise. However, when evaluating which action to pick in s0, we can
choose δ such that a seems to obtain a higher value. Concretely, we require
δ/2 + (1 − δ) · 0.1 < 0.1 + ε. For every ε > 0, this can be achieved by setting
δ < 2.5 · ε. In this case, PI would terminate with the final policy inducing a
severely suboptimal value.
7 [46] addresses performance in the context of PI for stochastic games.

478 A. Hartmanns et al.

If every Markov chain is solved precisely, PI is correct. Indeed, it suffices to be
certain that one action is better than all others. This is the essence of modified
policy iteration as described in [55, Chapters 6.5 and 7.2.6]. Similarly, [46, Section
4.2] suggests to use interval iteration when solving the system induced by the
current policy and stopping when the under-approximation of one action is higher
than the over-approximation of all other actions.
Warm starts. PI profits from being provided a good initial policy. If the initial
policy is already optimal, PI terminates after a single iteration. We can inform
our choice of the initial policy by providing estimates for all states as computed
by VI. For every state, we choose the action that is optimal according to the
estimate. This is a good way to leverage VI’s ability to quickly deliver good
estimates [40], while at the same time providing the exactness guarantees of PI.

5 Experimental Evaluation

To understand the practical performance of the different algorithms, we performed
an extensive experimental evaluation. We used three sets of benchmarks: all
applicable benchmark instances8 from the Quantitative Verification Benchmark
Set (QVBS) [41] (the qvbs set), a subset of hard QVBS instances (the hard set),
and numerically challenging models from a runtime monitoring application [45]
(the premise set, named for the corresponding prototype). We consider two prob-
abilistic model checkers, Storm [42] and the Modest Toolset’s [37] mcsta. We used
Intel Xeon Platinum 8160 systems running 64-bit CentOS Linux 7.9, allocating 4
CPU cores and 32GB RAM to each experiment unless noted otherwise.

We plot algorithm runtimes in seconds in quantile plots as on the left and
scatter plots as on the right of Fig. 3. The former compare multiple tools or con-
figurations; for each, we sort the instances by runtime and plot the corresponding
monotonically increasing line. Here, a point (x, y) on the a-line means that the
x-th fastest instance solved by a took y seconds. The latter compare two tools
or configurations. Each point (x, y) is for one benchmark instance: the x-axis
tool took x while the y-axis tool took y seconds to solve it. The shape of points
indicates the model type; the mapping from shapes to types is the same for all
scatter plots and is only given explicitly in the first one in Fig. 3. Additional
plots to support the claims in this section are provided in the appendix of the
full version [39] of this paper.

The depicted runtimes are for the respective algorithm and all necessary
and/or stated preprocessing, but do not include the time for constructing the
MDP state spaces (which is independent of the algorithms). mcsta reports all
time measurements rounded to multiples of 0.1 s. We summarize timeouts, out-
of-memory, errors, and incorrect results as “n/a”. Our timeout is 30 minutes for
the algorithm and 45 minutes for total runtime including MDP construction. We
consider a result v̄ incorrect if |v− v̄| > v ·10−3 (i.e. relative error 10−3) whenever
a reference result v is available. We however do not flag a result as incorrect if

8 A benchmark instance is a combination of model, parameter valuation, and objective.

A Practitioner’s Guide to MDP Model Checking 479

0 50 100 150 200 250 300 350
0.1

1

10

100

1,000 VIs
VIm
COPTm

CPLEXm

Glopm
GLPKs

Gurobis
Gurobim
HiGHSm

lp_solvem
Mosekm

SoPlexs

SoPlexXs
Z3X

s

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

Gurobim

C
O

P
T

m

MA MDP PTA

Fig. 3: Comparison of LP solver runtime on the qvbs set

v and v̄ are both below 10−8 (relevant for the premise set). Nevertheless, we
configure the (unsound) convergence threshold for VI as 10−6 relative; among the
sound VI algorithms, we include OVI, with a (sound) stopping criterion of relative
10−6 error. To only achieve the 10−3 precision we actually test, OVI could thus
be even faster than it appears in our plots. We make this difference to account
for the fact that many algorithms, including the LP solvers, do not have a sound
error criterion. We mark exact algorithms/solvers that use rational arithmetic
with a superscript X. The other configurations use floating-point arithmetic (fp).

5.1 The QVBS Benchmarks

The qvbs set comprises all QVBS benchmark instances with an MDP, Markov
automaton (MA), or probabilistic timed automaton (PTA) model9 and a reacha-
bility or expected reward/time objective that is quantitative, i.e. not a query that
yields a zero or one probability. We only consider instances where both Storm
and mcsta can build the explicit representation of the MDP within 15 minutes.
This yields 367 instances. We obtain reference results for 344 of them from either
the QVBS database or by using one of Storm’s exact methods. We found all
reference results obtained via different methods to be consistent.

For LP, we have various solvers with various parameters each, cf. Section 3. For
conciseness, we first compare all available LP solvers on the qvbs set. For the best-
performing solver, we then evaluate the benefit of different solver configurations.
We do the same for the choice of Markov chain solution method in PI. We then
focus on these single, reasonable, setups for LP and PI each in more detail.
LP solver comparison. The left-hand plot of Fig. 3 summarizes the results of
our comparison of the different LP solvers. Subscripts s and m indicate whether
the solver is embedded in either Storm or mcsta. We apply no optimizations or
9 MA and PTA are converted to MDP via embedding and digital clocks [48].

480 A. Hartmanns et al.

150 200 250 300

1

100

simple/all/ineq
bounds/all/ineq
bounds/init/ineq
bounds/all/eq
bounds/init/eq

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

bounds/all/ineq

b
ou

nd
s/
in
it
/i
ne
q

Fig. 4: Performance impact of LP problem formulation variants (using Gurobis)

Table 3: LP summary

solver correct incorr. no result

VIs 359 8 0
VIm 357 8 2
COPTm 312 12 43
CPLEXm 291 10 66
Glopm 257 4 106
GLPKs 199 5 163
Gurobis 331 4 32
Gurobim 323 4 40
HiGHSm 288 10 69
lp_solvem 209 0 158
Mosekm 287 15 65
SoPlexs 226 9 132
SoPlexXs 218 0 149
Z3X

s 148 0 219

reductions to the MDPs except for the precom-
putation of probability-0 states (and in Storm
also of probability-1 states), and use the default
settings for all solvers, with the trivial variable
bounds [0, 1] and [0,∞) for probabilities and ex-
pected rewards, respectively. We include VI as
baseline. In Table 3, we summarize the results.

In terms of performance and scalability,
Gurobi solves the highest number of benchmarks
in any given time budget, closely followed by
COPT. CPLEX, HiGHS, and Mosek make up a
middle-class group. While the exact solver Z3 is
very slow, SoPlex’s exact mode actually competes
with some fp solvers. However, the quantile plots
do not tell the whole story. On the right of Fig. 3, we compare COPT and Gurobi
directly: each has a large number of instances on which it is (much) better.

In terms of reliability of results, the exact solvers as expected produce no
incorrect results; so does the slowest fp solver, lp_solve. COPT, CPLEX, HiGHS,
Mosek, and fp-SoPlex perform badly in this metric, producing more errors than
VI. Interestingly, these are mostly the faster solvers, the exception being Gurobi.

Overall, Gurobi achieves highest performance at decent reliability; in the
remainder of this section, we thus use Gurobis whenever we apply non-exact LP.
LP solver tweaking. Gurobi can be configured to use an “auto” portfolio approach,
potentially running multiple algorithms concurrently on multiple threads, a primal
or a dual simplex algorithm, or a barrier method algorithm. We compared each
option with 4 threads and found no significant performance difference. Similarly,
running the auto method with 1, 4, and 16 threads (only here, we allocate 16
threads per experiment) also failed to bring out noticeable performance differences.
Using more threads results in a few more out-of-memory errors, though. We thus
fix Gurobi on auto with 4 threads.

Fig. 4 shows the performance impact of supplying Gurobi with more precise
bounds on the variables for expected reward objectives using methods from

A Practitioner’s Guide to MDP Model Checking 481

150 200 250 300 350

1

100

VI
OVI
PI
LP
VI2PI
VI2LP

50 100 150 200 250 300

1

100

RSX

PI/LUX

VI2PI/LUX

LP/SoPlexX

LP/Z3X

VI2LP/SoPlexX

Fig. 5: Comparison of MDP model checking algorithms on the qvbs set

[8,51] (“bounds” instead of “simple”), of optimizing only for initial state (“init”)
instead of the sum over all states (“all”), and of using equality (“eq”) instead of
less-/greater-than-or-equal (“ineq”) for unique action states. More precise bounds
yield a very small improvement at essentially no cost. Optimizing for the initial
state only results in a little better overall performance (in the “pocket” in the
quantile plot around x = 315 that is also clearly visible in the scatter plot).
However, it also results in 2 more incorrect results in the qvbs set. Using equality
for unique actions noticeably decreases performance and increases the incorrect
result count by 9 instances. For all experiments that follow, we thus use the more
precise bounds, but do not enable the other two optimizations.

0 100 200 300

1

100

PI/gmres
PI/VI
PI/OVI
PI/LU
PI/LUX

PI methods comparison. The main choice in
PI is which algorithm to use to solve the
induced Markov chains. On the right, we
show the performance of the different algo-
rithms available in Storm (cf. Section 4). LUX

yields a fully exact PI. This interestingly
performs better than the fp version, poten-
tially because fp errors induce spurious policy
changes. The same effect likely also hinders the use of OVI, whereas VI leads
to good performance. Nevertheless, gmres is best overall, and thus our choice
for all following experiments with non-exact PI. VI and gmres yield 6 and 4
incorrect results, respectively. OVI and the exact methods are always correct on
this benchmark set.

Best MDP algorithms for QVBS. We now compare all MDP model checking
algorithms on the qvbs set: with floating-point numbers, LP and PI configured as
described above, plus unsound VI, sound OVI, and the warm-start variants of PI
and LP denoted “VI2PI” and “VI2LP”, respectively. Exact results are provided
by rational search (RS, essentially an exact version of VI) [50], PI with exact LU,
and LP with exact solvers (SoPlex and Z3). All are implemented in Storm.

In a first experiment, we evaluated the impact of using the topological
approach and of collapsing MECs (cf. Section 2.4). The results, for which we
omit plots, are that the topological approach noticeably improves performance
and scalability for all algorithms, and we therefore always use it from now on.
Collapsing MECs is necessary to guarantee termination of OVI, while for the

482 A. Hartmanns et al.

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

OVI

V
I2
P
I/
L
U

X

(a) qvbs OVI vs. VI2PIX

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

OVI

V
I2
P
I/
L
U

X

(b) hard OVI vs. VI2PIX

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

OVI

L
P

(c) hard OVI vs. LP

Fig. 6: Additional direct performance comparisons

0 5 10 15

1

100

VI
OVI
PI
LP
VI2PI
VI2LP

0 5 10 15

1

100 RSX

PI/LUX

VI2PI/LUX

LP/SoPlexX

LP/Z3X

VI2LP/SoPlexX

Fig. 7: Comparison of MDP model checking algorithms on the hard subset

other algorithms it is a potential optimization; however we found it to overall
have a minimal positive performance impact only. Since it is required by OVI
and does not reduce performance, we also always use it from now on.

Fig. 5 shows the complete comparison of all the methods on the qvbs set,
for fp algorithms on the left and exact solutions on the right. Among the fp
algorithms, OVI is clearly the fastest and most scalable. VI is somewhat faster
but incurs several incorrect results that diminish its appearance in the quantile
plot. OVI is additionally special among these algorithms in that it is sound, i.e.
provides guaranteed ε-correct results—though up to fp rounding errors, which
can be eliminated following the approach of [36]. On the exact side, PI with
an inexact-VI warm start works best. The scatter plots in Fig. 6(a) shows the
performance impact of computing an exact instead of an approximate solution.

5.2 The Hard QVBS Benchmarks

The QVBS contains many models built for tools that use VI as default algorithm.
The other algorithms may actually be important to solve key challenging instances
where VI/OVI perform badly. This contribution could be hidden in the sea of
instances trivial for VI. We thus zoom in on a selection of QVBS instances that
appear “hard” for VI: those where VI takes longer than the prior MDP state

A Practitioner’s Guide to MDP Model Checking 483

60 80 100 120 140 160

1

100

VI
OVI
PI
LP
VI2PI
VI2LP

0 50 100 150 200

1

100

RSX

PI/LUX

VI2PI/LUX

LP/SoPlexX

LP/Z3X

VI2LP/SoPlexX

Fig. 8: Comparison of MDP model checking algorithms on the premise set

space construction phase in both Storm and mcsta, and additionally both phases
together take at least 1 s. These are 18 of the previously considered 367 instances.

In Fig. 7, we show the behaviour of all the algorithms on this hard subset. OVI
again works better than VI due to the incorrect results that VI returns. We see
that the performance and scalability gap between the algorithms has narrowed;
although OVI still “wins”, LP in particular is much closer than on the full qvbs set.
We also investigated the LP outcomes with solvers other than Gurobi: even on this
set, Gurobi and COPT remain the fastest and most scalable solvers. With mcsta,
in the basic configuration, they solve 16 and 17 instances, the slowest taking
835 s and 1334 s, respectively; with the topological optimization, the numbers
become 17 and 15 instances with the slowest at 1373 s and 1590 s seconds. We
show the detailed comparison of OVI and LP in Fig. 6(c), noting that there are
a few instances where LP is much faster, and repeat the comparison between the
best fp and exact algorithms (Fig. 6(b)).

5.3 The Runtime Monitoring Benchmarks

While the QVBS is intentionally diverse, our third set of benchmarks is inten-
tionally focused: We study 200 MDPs from a runtime monitoring study [45]. The
original problem is to compute the normalized risk of continuing to operate the sys-
tem being monitored subject to stochastic noise, unobservable and uncontrollable
nondeterminism, and partial state observations. This is a query for a conditional
probability. It is answered via probabilistic model checking by unrolling an MDP
model along an observed history trace of length n ∈ { 50, . . . , 1000 } following
the approach of Baier et al. [7]. The MDPs contain many transitions back to the
initial state, ultimately resulting in numerically challenging instances (containing
structures similar to the one of Mn in Section 2.3). We were able to compute a
reference result for all instances.

Fig. 8 compares the different MDP model checking algorithms on this set. In
line with the observations in [45], we see very different behaviour compared to
the QVBS. Among the fp solutions on the left, LP with Gurobi terminates very
quickly (under 1 s), and either produces a correct (155 instances) or a completely
incorrect result (mostly 0, on 45 instances). VI behaves similarly, but is slower.
OVI, in contrast, delivers no incorrect result, but instead fails to terminate on all
but 116 instances. In the exact setting, warm starts using VI inherit its relative

484 A. Hartmanns et al.

slowness and consequently do not pay off. Exact PI outperforms both exact LP
solvers. In the case of exact SoPlex, out of the 112 instances it does not manage
to solve, 98 are crashes likely related to a confirmed bug in its current version.

The premise set highlights that the best MDP model checking algorithm
depends on the application. Here, in the fp case, LP appears best but produces
unreliable (incorrect) results; the seemingly much worse OVI at least does not
do so. Given the numeric challenge, an exact method should be chosen, and we
show that these actually perform well here.

6 Conclusion

We thoroughly investigated the state of the art in MDP model checking, showing
that there is no single best algorithm for this task. For benchmarks which are
not numerically challenging, OVI is a sensible default, closely followed by PI and
LP with a warm start—although using the latter two means losing soundness as
confirmed by a number of incorrect results in our experiments. For numerically
hard benchmarks, PI and LP as well as computing exact solutions are more
attractive, and clearly preferable in combination. Overall, although LP has the
superior (polynomial) theoretical complexity, in our practical evaluation, it almost
always performs worse than the other (exponential) approaches. This is even
though we use modern commercial solvers and tune both the LP encoding of the
problem as well as the solvers’ parameters. While we observed the behaviour of
the different algorithms and have some intuition into what makes the premise
set hard, an entire research question of its own is to identify and quantify the
structural properties that make a model hard.

Our evaluation also raises the question of how prevalent MDPs that challenge
VI are in practice. Aside from the premise benchmarks, we were unable to find
further sets of MDPs that are hard for VI. Notably, several stochastic games (SGs)
difficult for VI were found in [46]; the authors noted that using PI for the SGs
was better than applying VI to the SGs. However, when we extracted the induced
MDPs, we found them all easy for VI. Similarly, [3] used a random generation
of SGs of at most 10,000 states, many of which were challenging for the SG
algorithms. Yet the same random generation modified to produce MDPs delivered
only MDPs easily solved in seconds, even with drastically increased numbers
of states. In contrast, Alagöz et al. [1] report that their random generation
returned models where LP beat PI. However, their setting is discounted, and
their description of the random generation was too superficial for us to be able
to replicate it. We note that, in several of our scatter plots, the MA instances
from the QVBS (where we check the embedded MDP) appeared more challenging
overall than the MDPs. We thus conclude this paper with a call for challenging
MDP benchmarks—as separate benchmark sets of unique characteristics like
premise, or for inclusion in the QVBS.

Data availability statement. The datasets generated and analysed in this
study and code to regenerate them are available in the accompanying artifact [38].
For Storm, our code builds on version 1.7.0. We used mcsta version 3.1.213.

A Practitioner’s Guide to MDP Model Checking 485

References

1. Alagöz, O., Ayvaci, M.U.S., Linderoth, J.T.: Optimally solving Markov decision
processes with total expected discounted reward function: Linear programming
revisited. Comput. Ind. Eng. 87, 311–316 (2015). https://doi.org/10.1016/j.cie.
2015.05.031

2. Anand, R., Aggarwal, D., Kumar, V.: A comparative analysis of optimization
solvers. Journal of Statistics and Management Systems 20(4), 623–635 (2017).
https://doi.org/10.1080/09720510.2017.1395182

3. Azeem, M., Evangelidis, A., Kretínský, J., Slivinskiy, A., Weininger, M.: Optimistic
and topological value iteration for simple stochastic games. CoRR abs/2207.14417
(2022). https://doi.org/10.48550/arXiv.2207.14417

4. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Handbook of Model Checking, pp. 963–999. Springer (2018)

5. Baier, C., Hermanns, H., Katoen, J.P.: The 10,000 facets of MDP model checking.
In: Computing and Software Science, LNCS, vol. 10000, pp. 420–451. Springer
(2019). https://doi.org/10.1007/978-3-319-91908-9_21

6. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008), https:
//mitpress.mit.edu/books/principles-model-checking

7. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabil-
ities in Markovian models efficiently. In: TACAS. LNCS, vol. 8413, pp. 515–530.
Springer (2014). https://doi.org/10.1007/978-3-642-54862-8_43

8. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reliability
of your model checker: Interval iteration for Markov decision processes. In: CAV
(1). LNCS, vol. 10426, pp. 160–180. Springer (2017). https://doi.org/10.1007/
978-3-319-63387-9_8

9. Balaji, N., Kiefer, S., Novotný, P., Pérez, G.A., Shirmohammadi, M.: On the
complexity of value iteration. In: ICALP. LIPIcs, vol. 132, pp. 102:1–102:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.
ICALP.2019.102

10. Berkelaar, M., Eikland, K., Notebaert, P.: Introduction to lp_solve 5.5.2.11, https:
//lpsolve.sourceforge.net/5.5/, accessed 2023-01-25.

11. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems.
Math. Oper. Res. 16(3), 580–595 (1991). https://doi.org/10.1287/moor.16.3.580

12. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2014)

13. Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretínský, J., Kwiatkowska,
M.Z., Parker, D., Ujma, M.: Verification of Markov decision processes using learning
algorithms. In: ATVA. LNCS, vol. 8837, pp. 98–114. Springer (2014). https://doi.
org/10.1007/978-3-319-11936-6_8

14. Budde, C.E., Hartmanns, A., Klauck, M., Kretínský, J., Parker, D., Quatmann, T.,
Turrini, A., Zhang, Z.: On correctness, precision, and performance in quantitative
verification – QComp 2020 competition report. In: ISoLA (4). LNCS, vol. 12479,
pp. 216–241. Springer (2020). https://doi.org/10.1007/978-3-030-83723-5_15

15. Chatterjee, K., Henzinger, T.A.: Value iteration. In: 25 Years of Model Check-
ing. LNCS, vol. 5000, pp. 107–138. Springer (2008). https://doi.org/10.1007/
978-3-540-69850-0_7

16. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.P., Topcu, U.: Convex optimization
for parameter synthesis in MDPs. IEEE Trans. Autom. Control. (2022). https:
//doi.org/10.1109/TAC.2021.3133265

https://doi.org/10.1016/j.cie.2015.05.031
https://doi.org/10.1016/j.cie.2015.05.031
https://doi.org/10.1016/j.cie.2015.05.031
https://doi.org/10.1016/j.cie.2015.05.031
https://doi.org/10.1080/09720510.2017.1395182
https://doi.org/10.1080/09720510.2017.1395182
https://doi.org/10.48550/arXiv.2207.14417
https://doi.org/10.48550/arXiv.2207.14417
https://doi.org/10.1007/978-3-319-91908-9_21
https://doi.org/10.1007/978-3-319-91908-9_21
https://mitpress.mit.edu/books/principles-model-checking
https://mitpress.mit.edu/books/principles-model-checking
https://doi.org/10.1007/978-3-642-54862-8_43
https://doi.org/10.1007/978-3-642-54862-8_43
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.4230/LIPIcs.ICALP.2019.102
https://doi.org/10.4230/LIPIcs.ICALP.2019.102
https://doi.org/10.4230/LIPIcs.ICALP.2019.102
https://doi.org/10.4230/LIPIcs.ICALP.2019.102
https://lpsolve.sourceforge.net/5.5/
https://lpsolve.sourceforge.net/5.5/
https://doi.org/10.1287/moor.16.3.580
https://doi.org/10.1287/moor.16.3.580
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1109/TAC.2021.3133265
https://doi.org/10.1109/TAC.2021.3133265
https://doi.org/10.1109/TAC.2021.3133265
https://doi.org/10.1109/TAC.2021.3133265

486 A. Hartmanns et al.

17. Dai, P., Mausam, Weld, D.S., Goldsmith, J.: Topological value iteration algorithms.
J. Artif. Intell. Res. 42, 181–209 (2011), https://www.jair.org/index.php/jair/
article/view/10725

18. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In:
CAV. LNCS, vol. 4144, pp. 81–94. Springer (2006)

19. Eisentraut, J., Kelmendi, E., Kretínský, J., Weininger, M.: Value iteration for
simple stochastic games: Stopping criterion and learning algorithm. Inf. Comput.
285(Part), 104886 (2022). https://doi.org/10.1016/j.ic.2022.104886

20. Fearnley, J.: Exponential lower bounds for policy iteration. In: ICALP
(2). LNCS, vol. 6199, pp. 551–562. Springer (2010). https://doi.org/10.1007/
978-3-642-14162-1_46

21. Forejt, V., Kwiatkowska, M.Z., Parker, D.: Pareto curves for probabilistic model
checking. In: ATVA. LNCS, vol. 7561, pp. 317–332. Springer (2012). https://doi.
org/10.1007/978-3-642-33386-6_25

22. Free Software Foundation: The GNU Multiple Precision Arithmetic Library, https:
//gmplib.org/, accessed 2023-01-25.

23. Funke, F., Jantsch, S., Baier, C.: Farkas certificates and minimal witnesses for
probabilistic reachability constraints. In: TACAS (1). LNCS, vol. 12078, pp. 324–345.
Springer (2020)

24. Ge, D., Huangfu, Q., Wang, Z., Wu, J., Ye, Y.: Cardinal Optimizer (COPT) user
guide (2022), https://guide.coap.online/copt/en-doc

25. GetFEM project: Gmm++ Library, https://getfem.org/gmm/, accessed 2023-01-25.
26. Giro, S.: Optimal schedulers vs optimal bases: An approach for efficient exact

solving of Markov decision processes. Theor. Comput. Sci. 538, 70–83 (2014).
https://doi.org/10.1016/j.tcs.2013.08.020

27. Gleixner, A.M., Steffy, D.E., Wolter, K.: Improving the accuracy of linear program-
ming solvers with iterative refinement. In: ISSAC. pp. 187–194. ACM (2012)

28. Gleixner, A.M., Steffy, D.E., Wolter, K.: Iterative refinement for linear programming.
Tech. Rep. 3, ZIB, Takustr. 7, 14195 Berlin (2016). https://doi.org/10.1287/ijoc.
2016.0692

29. GNU Project: GLPK (GNU Linear Programming Kit), http://www.gnu.org/
software/glpk/glpk.html

30. Google: Glop – linear optimization, https://developers.google.com/optimization/lp,
accessed 2023-01-25.

31. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010), http://eigen.tuxfamily.org
32. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022), https:

//www.gurobi.com
33. Haddad, S., Monmege, B.: Reachability in MDPs: Refining convergence of value

iteration. In: RP. LNCS, vol. 8762, pp. 125–137. Springer (2014)
34. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs. Theor.

Comput. Sci. 735, 111–131 (2018). https://doi.org/10.1016/j.tcs.2016.12.003
35. Hall, J., Galabova, I., Gottwald, L., Feldmeier, M.: HiGHS – high performance soft-

ware for linear optimization, https://www.maths.ed.ac.uk/hall/HiGHS/, accessed
2023-01-25.

36. Hartmanns, A.: Correct probabilistic model checking with floating-point arithmetic.
In: TACAS (2). LNCS, vol. 13244, pp. 41–59. Springer (2022). https://doi.org/10.
1007/978-3-030-99527-0_3

37. Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment for
quantitative modelling and verification. In: TACAS. LNCS, vol. 8413, pp. 593–598.
Springer (2014). https://doi.org/10.1007/978-3-642-54862-8_51

https://www.jair.org/index.php/jair/article/view/10725
https://www.jair.org/index.php/jair/article/view/10725
https://doi.org/10.1016/j.ic.2022.104886
https://doi.org/10.1016/j.ic.2022.104886
https://doi.org/10.1007/978-3-642-14162-1_46
https://doi.org/10.1007/978-3-642-14162-1_46
https://doi.org/10.1007/978-3-642-14162-1_46
https://doi.org/10.1007/978-3-642-14162-1_46
https://doi.org/10.1007/978-3-642-33386-6_25
https://doi.org/10.1007/978-3-642-33386-6_25
https://doi.org/10.1007/978-3-642-33386-6_25
https://doi.org/10.1007/978-3-642-33386-6_25
https://gmplib.org/
https://gmplib.org/
https://guide.coap.online/copt/en-doc
https://getfem.org/gmm/
https://doi.org/10.1016/j.tcs.2013.08.020
https://doi.org/10.1016/j.tcs.2013.08.020
https://doi.org/10.1287/ijoc.2016.0692
https://doi.org/10.1287/ijoc.2016.0692
https://doi.org/10.1287/ijoc.2016.0692
https://doi.org/10.1287/ijoc.2016.0692
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
https://developers.google.com/optimization/lp
http://eigen.tuxfamily.org
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://www.maths.ed.ac.uk/hall/HiGHS/
https://doi.org/10.1007/978-3-030-99527-0_3
https://doi.org/10.1007/978-3-030-99527-0_3
https://doi.org/10.1007/978-3-030-99527-0_3
https://doi.org/10.1007/978-3-030-99527-0_3
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51

A Practitioner’s Guide to MDP Model Checking 487

38. Hartmanns, A., Junges, S., Quatmann, T., Weininger, M.: A Practitioner’s Guide
to MDP Model Checking Algorithms (Artefact) (2023). https://doi.org/10.5281/
zenodo.7509474

39. Hartmanns, A., Junges, S., Quatmann, T., Weininger, M.: A practitioner’s guide
to MDP model checking algorithms (2023). https://doi.org/10.48550/ARXIV.2301.
10197

40. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: CAV (2). LNCS, vol.
12225, pp. 488–511. Springer (2020). https://doi.org/10.1007/978-3-030-53291-8_26

41. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quan-
titative verification benchmark set. In: TACAS. LNCS, vol. 11427, pp. 344–350.
Springer (2019). https://doi.org/10.1007/978-3-030-17462-0_20

42. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022).
https://doi.org/10.1007/s10009-021-00633-z

43. Huangfu, Q., Hall, J.A.J.: Parallelizing the dual revised simplex method. Math. Pro-
gram. Comput. 10(1), 119–142 (2018). https://doi.org/10.1007/s12532-017-0130-5

44. IBM: IBM ILOG CPLEX Optimizer, https://www.ibm.com/analytics/
cplex-optimizer, accessed 2023-01-25.

45. Junges, S., Torfah, H., Seshia, S.A.: Runtime monitors for Markov decision processes.
In: CAV (2). LNCS, vol. 12760, pp. 553–576. Springer (2021)

46. Kretinsky, J., Ramneantu, E., Slivinskiy, A., Weininger, M.: Comparison of algo-
rithms for simple stochastic games. Inf. Comput. (2022). https://doi.org/10.1016/j.
ic.2022.104885

47. Kumar, A., Zilberstein, S.: History-based controller design and optimization for
partially observable MDPs. In: ICAPS. vol. 25, pp. 156–164 (2015)

48. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods Syst. Des.
29(1), 33–78 (2006). https://doi.org/10.1007/s10703-006-0005-2

49. Littman, M.L., Dean, T.L., Kaelbling, L.P.: On the complexity of solving Markov
decision problems. In: UAI. pp. 394–402. Morgan Kaufmann (1995)

50. Mathur, U., Bauer, M.S., Chadha, R., Sistla, A.P., Viswanathan, M.: Exact quanti-
tative probabilistic model checking through rational search. Formal Methods Syst.
Des. 56(1), 90–126 (2020)

51. McMahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time dynamic pro-
gramming: RTDP with monotone upper bounds and performance guarantees. In:
ICML. ACM International Conference Proceeding Series, vol. 119, pp. 569–576.
ACM (2005). https://doi.org/10.1145/1102351.1102423

52. MOSEK ApS: The MOSEK Optimization Suite 10.0.34, https://docs.mosek.com/
latest/intro/index.html, accessed 2023-01-25.

53. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: TACAS.
LNCS, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/
978-3-540-78800-3_24

54. Phalakarn, K., Takisaka, T., Haas, T., Hasuo, I.: Widest paths and global propaga-
tion in bounded value iteration for stochastic games. In: CAV (2). LNCS, vol. 12225,
pp. 349–371. Springer (2020), https://doi.org/10.1007/978-3-030-53291-8_19

55. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley (1994). https://doi.
org/10.1002/9780470316887

56. Quatmann, T., Katoen, J.P.: Sound value iteration. In: CAV (1). LNCS, vol. 10981,
pp. 643–661. Springer (2018). https://doi.org/10.1007/978-3-319-96145-3_37

https://doi.org/10.5281/zenodo.7509474
https://doi.org/10.5281/zenodo.7509474
https://doi.org/10.5281/zenodo.7509474
https://doi.org/10.5281/zenodo.7509474
https://doi.org/10.48550/ARXIV.2301.10197
https://doi.org/10.48550/ARXIV.2301.10197
https://doi.org/10.48550/ARXIV.2301.10197
https://doi.org/10.48550/ARXIV.2301.10197
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/s12532-017-0130-5
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.1016/j.ic.2022.104885
https://doi.org/10.1016/j.ic.2022.104885
https://doi.org/10.1016/j.ic.2022.104885
https://doi.org/10.1016/j.ic.2022.104885
https://doi.org/10.1007/s10703-006-0005-2
https://doi.org/10.1007/s10703-006-0005-2
https://doi.org/10.1145/1102351.1102423
https://doi.org/10.1145/1102351.1102423
https://docs.mosek.com/latest/intro/index.html
https://docs.mosek.com/latest/intro/index.html
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-53291-8_19
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-319-96145-3_37

488 A. Hartmanns et al.

57. Saad, Y., Schultz, M.H.: Gmres: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. Siam Journal on Scientific and Statistical Computing
7, 856–869 (1986), https://epubs.siam.org/doi/10.1137/0907058

58. Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.P., Becker, B.:
High-level counterexamples for probabilistic automata. Log. Methods Comput. Sci.
11(1) (2015)

59. Wimmer, R., Kortus, A., Herbstritt, M., Becker, B.: Probabilistic model checking
and reliability of results. In: DDECS. pp. 207–212. IEEE Computer Society (2008).
https://doi.org/10.1109/DDECS.2008.4538787

60. Ye, Y.: The simplex and policy-iteration methods are strongly polynomial for the
Markov decision problem with a fixed discount rate. Mathematics of Operations
Research 36(4), 593–603 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright
holder.

https://epubs.siam.org/doi/10.1137/0907058
https://doi.org/10.1109/DDECS.2008.4538787
https://doi.org/10.1109/DDECS.2008.4538787
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A Practitioner’s Guide to MDP Model Checking Algorithms
	1 Introduction
	2 Background
	2.1 Markov Decision Processes
	2.2 Solution Algorithms
	2.3 Guarantees
	2.4 Optimizations

	3 Practically solving MDPs using Linear Programs
	3.1 How to encode MDPs as LPs?
	3.2 How to solve LPs with existing solvers?

	4 Sound Policy Iteration
	5 Experimental Evaluation
	5.1 The QVBS Benchmarks
	5.2 The Hard QVBS Benchmarks
	5.3 The Runtime Monitoring Benchmarks

	6 Conclusion
	References

