Controlling ferromagnetism in LaMnO₃/SrTiO₃ thin films using Ti oxygen scavenging layers

Thijs Roskamp^{1,*}, Thies Jansen¹, Bart Folkers¹, Carlos Rosário^{1,2} and Hans Hilgenkamp¹; ¹MESA+ Institute of Technology, University of Twente, 7500AE Enschede, The Netherlands; ²International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal;

*E-mail: t.j.roskamp@utwente.nl

Suppression of ferromagnetism using Ti layers

Oxygen scavenging by the Ti layer

- Uncovered LMO/STO has clear FM signal
- SSM pickup loop (15- $20 \ \mu m^2$) convolutes FM domains by averaging
- \circ True LaMnO₃ ferromagnetic domains are smaller

- SQUID measures noise for LMO/STO covered by Ti/Au
- Ti layer influences FM of LMO
- Au is capping layer

Au | 60 nm

Ti | 4 nm LaMnO₃ | 20 uc

> Scanning **SQUID Microscopy**

> > • Scanning SQUID Microscopy (SSM) probes magnetic flux from a surface using a DC SQUID

> > > **S**uperconducting **QU**antum Interference

> > > > Device (SQUID)

- Decrease in FM dependent on:
 - Time

ii. Ti and LMO layer thickness

• Reactive metals like Ti are oxygen scavenging, creating oxygen vacancies at LMO/Ti interface

- Patterning FM structures in LMO persists till nanoscale
- Small structures have smaller SQUID signals
- \circ Below ~ 5 μ m signal is like in-plane magnetic dipole

Single domain LMO?

• Magnetic signal is picked up Pickup loop remotely using a pickup loop

DC SQUID washer

<u>9</u> µm

• High sensitivity due to flux-locked loop and modulation coil

 $max(dV/d\Phi)$

Our SSM: Spatial resolution \sim 5-10 μm Field resolution \sim 10 nT

Decreasing distance between micromagnets leads to interactions

SQUID Signal [μ T] -10 25 µm Shape restraints force 'dipole' signals to

Patterning ferromagnetism in LaMnO₃

orient along the structures long-axis

Ο

• Asymmetric structures show multiple domains

ICe.

Shape restraints and interactions

Conclusions and Future Work

- Ti layers suppress ferromagnetism in LaMnO₃
- Ti oxygen scavenging can influence the FM to AFM transition
- FM can be structured down to nanoscale dipole-like magnets
- TEM investigation of the Ti/LMO interface
- Interactions between LMO nanomagnets
- Mechanisms for ferromagnetism in LMO

References

[1] Wang et al. *Science* **349**: 716 (2015)

[2] Ahn et al. *Physical Review B* **64**(11): 115103 (2001)

[3] Hemberger et al. *Physical Review B* **66**(9): 094410 (2002)

UNIVERSITY OF TWENTE.

MESA+ INSTITUTE

