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Abstract. This paper reports on a formalisation of the semi-formal
modelling language SysML in the formal language mCRL2, in order to
unlock formal verification and model-based testing using the mCRL2
toolset for SysML models. The formalisation focuses on a fragment of
SysML used in the railway standardisation project EULYNX. It com-
prises the semantics of state machines, communication between objects
via ports, and an action language called ASAL. It turns out that the
generic execution model of SysML state machines can be elegantly spec-
ified using the rich data and process languages of mCRL2. This is a big
step towards an automated translation as the generic model can be con-
figured with a formal description of a specific set of state machines in a
straightforward manner.

1 Introduction

The importance of correct specifications is evident for safety-critical systems
such as those in the railway domain. At the same time, due to the increasing
use of digital technology in those systems, specifications are getting more and
more complex and harder to get completely correct. To cope with the complex-
ity, railway engineers are gradually adopting a model-based system engineering
approach for the development of their systems. EULYNX1, an initiative of a con-
sortium of thirteen European railway infrastructure managers, uses SysML to
specify a standard for interfaces between the various components of a signalling
system (signal, point, level crossing, interlocking, etc.).

The use of SysML for system requirements specification is a big step forward
for the railway domain as it is significantly more precise than natural language.
SysML has a fairly intuitive graphical syntax, which allows railway engineers to
understand and use it without extensive training. Still, SysML is semi-formal : it
has a well-defined syntax, but its semantics is informal and not firmly grounded
in mathematics. As a consequence, system behaviour specified by a SysML model
is not directly amenable to the more thorough kind of analysis that genuine
formal methods offer.

1 See https://eulynx.eu.
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The aim of the FormaSig2 project, a collaboration of the Dutch and German
railway infrastructure managers, Eindhoven University of Technology and the
University of Twente, is to formalise the aforementioned EULYNX standard to
the extent that delivered components conforming to the standard provably sat-
isfy a collection of safety properties. The idea is to associate with each EULYNX
SysML model a formal mCRL2 model [5,6]. Then mCRL2’s model checker can
be used to establish that the model satisfies the required safety properties, and
automated model-based test technology can be used to reliably test compliance
to the model of actual implementations (see Fig. 1). In a first case study, we have
demonstrated the viability of this idea. We took the EULYNX SysML model of
the Point interface, associated an mCRL2 model with it, used the mCRL2 model
checker to analyse its correctness and used the model-based test tool JTorX [2]
to check conformance of a SysML simulator of Point [4].

Fig. 1. FormaSig: using a formal mCRL2 model to establish that implementations
conforming to the EULYNX standard satisfy properties.

The EULYNX standard is under development, and it is likely that also in the
future it will be subject to changes. Hence, it is impractical to rely on manual
translations from the EULYNX SysML models to mCRL2. To facilitate that
model-checking and model-based test techniques will become an integral aspect
of maintaining the standard, it is imperative that the translation from EULYNX
SysML to mCRL2 is automated. Another benefit of having a automated trans-
lation is that, as its correctness can be rigorously examined, the likelihood of
introducing mistakes in the formalised model is reduced.

How EULYNX SysML models are meant to be interpreted is specified in
the EULYNX modelling standard. So far FormaSig delivers an interpretation of
EULYNX SysML. Going forward, FormaSig also aims to increase precision of
the modelling standard and become the official interpretation.

Implementing an automated translation from SysML to mCRL2 is, however,
a nontrivial undertaking, most notably hampered by the lack of a complete and
comprehensive formal semantics for SysML and the complexity of the informally
described SysML execution model. Furthermore, also due to the lack of a fixed
formal semantics, there are many dialects of SysML. A particular variation point
is the action language, the language used to specify guards and the effects of

2 Formal Methods in Railway Signaling Infrastructure Standardization Processes.
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transitions. In EULYNX SysML all communication is performed via ports, which
are referenced as variables in the action language. The action language itself is
ASAL, which is tied to the PTC Windchill tool3.

The main contribution of this paper is to present a formalisation of the
informal semantics of EULYNX SysML state machines directly in mCRL2. Our
formalisation consists of three parts. The first part is a generic, comprehensive
formalisation of the operational semantics of UML state machines, which form
the basis of EULYNX SysML state machines. This part involves formalising
the notion of state hierarchy and transition selection. The second part adds an
interpretation of the particular communication mechanism via ports that is used
in EULYNX SysML. The third part defines an execution model for the ASAL
action language. In this paper, we generalise to a class of action languages that
reference ports as variables. The resulting mCRL2 specification can straightfor-
wardly be turned into an actual formal model interpreting a particular EULYNX
SysML interface by populating the relevant data types with some static details
from the SysML model and generating a suitable number of instantiations of
predefined processes. For the latter, we have implemented a tool that is dis-
cussed in a companion paper [22]. The resulting mCRL2 specification can be
model-checked and used for model-based testing and serve as the formal model
central to FormaSig idea (see Fig. 1).

The semantics of UML/SysML state machines has been formalised in pre-
ceding academic work. A number of papers describe a translation from UML
state machines to PROMELA (the input language of the SPIN model checker)
[11–13,18,21]. Our formalisation of transition selection draws inspiration from
[13]. In [14] a structural operational semantics is presented along with a custom
verification tool USM2C. The AVATAR [19] tool offers a SysML-style environ-
ment with particular focus on verifying security properties; it offers translation
to UPPAAL and ProVerif. Other translations and formalisations include a trans-
lation from xUML class diagrams and state machines to mCRL2 [7,8], a trans-
lation from SysML BDDs and state machines to NuSMV [23], a formalisation of
UML state machines using structured graph transformations [10] and a formali-
sation of UML state machines in Object-Z [9]. In [20] a translation is given from
sequence diagrams to mCRL2. Our approach to formalisation differs from earlier
work by specifying the generic semantics in the target formal language which
can be instantiated with a specific configuration. Moreover, our formalisation
includes a communication mechanism using ports.

The OMG organisation, which manages the UML and SysML standards, has
also released “Precise Semantics of UML State Machines (PSSM)” [17], which
gives an informal but very precise semantics. Our formalisation differs in at least
one way from PSSM. We do not create completion events in order to prevent
cluttering the event queue. Instead, transitions relying on a completion event
have completion of the source state as an extra guard. PSSM also provides an
extensive compliance test suite. In the future we would like to make a version

3 https://www.ptc.com/en/products/windchill/integrity/.

https://www.ptc.com/en/products/windchill/integrity/
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of our model that adheres to PSSM and measure the effect of completion events
on the state space.

This rest of the paper is organised as follows. In Sect. 2 we present the visual
syntax of state machines and a summary of the run-to-completion semantics;
this section can be skipped by readers familiar with state machines. In Sect. 3
we give a quick introduction to mCRL2. From Sect. 4 to Sect. 6 we go into the
details of the formalisation. We conclude the paper in Sect. 7.

2 An Informal Introduction to UML State Machines

Fig. 2. Example showing all state machine constructs supported in EULYNX SysML.

Figure 2 shows an example of a state machine, with names of the various con-
structions added in blue. In this section, we briefly discuss the informal semantics
of each construction as in the UML standard [16].

The basic constituents of state machines are states and transitions. Initial
states, choice states, final states, junctions, forks and joins are also called pseu-
dostates. The UML state machine formalism derives its expressiveness from these
the possibility to have states and transitions nested within states, and even have
transitions cross state border. Transitions may have a trigger, a guard and an
effect. The trigger of a transition (which is optional) is an event ; it can be a
change event (notation when(x)) or a timeout event (notation after(x)).

The modeller can define behaviour that is executed upon entering or exiting
a simple or composite state. Exit behaviour is executed before the effect of a
transition, entry behaviour is executed after the effect of a transition. Simple
and composite states can also have internal transitions, which do not change
state (see, e.g., the state Failed in Fig. 2).
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Junctions and choice vertices allow more concise specification of transitions
that induce the same behaviour. The choice vertex c1 in Fig. 2 combines two
transitions from Checking which share the common behaviour A:=1. Junctions
serve a similar purpose (see junction j1 in Fig. 2) with the difference that for
junctions the guards of outgoing transitions need to be checked before taking
a transition to the junction, whereas for choice vertices the guards are checked
when arriving at the vertex.

A state can contain other states, in which case it is called a composite state
and the states it encloses are called substates. A composite state can have a
final state (see, e.g., the state Failed in Fig. 2). Transitions from the border of
a composite state can be fired regardless of the current substate, except when
the transition does not have a trigger, in which case the current substate of the
composite state must be a final state. A composite state may also have multiple
parallel regions. Each region has an initial state and can perform local transitions
independently of other regions. A transition ending at the border of a composite
state with parallel regions will let each region start from its initial state. A fork
indicates that a transition ends on specific states in multiple regions. Conversely,
a join can begin from specific states in parallel regions.

Due to the presence of composite states, a state machine is not just in a single
state but in a collection of states, a state configuration. A state configuration is
stable when it does not contain pseudostates. Transitions are specified on states;
a state machine may combine several transitions (as is the case with joins, forks
and junctions) to perform a bigger step from one state configuration to another,
which we will call a step. Events that occur are stored in an event pool until
they are dispatched. A step is enabled when the specified trigger (if any) is in
the event pool and all guards of transitions involved in the step evaluate to
true. State machines have run-to-completion semantics: a state machine selects
a step to execute and will completely finish executing the behaviour of the step
and entry and exit behaviour before it considers performing a new step. Parallel
regions may start a step simultaneously when both steps have the same trigger;
in that case the state machine performs a multi-step.

3 Introduction to mCRL2

The mCRL2 toolset is designed to model and analyse concurrent and distributed
systems. The mCRL2 language is an ACP-style process algebra and contains a
rich data language based on abstract data types. The semantic interpretation of
an mCRL2 model is a Labelled Transition System (LTS). By translating from
SysML to mCRL2 we indirectly associate an LTS to the SysML model. The
toolset contains tools for the verification of parametrised modal μ-calculus for-
mulas, bisimulation reduction, counterexample generation, simulation and visu-
alisation. To aid the reader in understanding the mCRL2 snippets in following
sections, we will cover some basics using an example unrelated to the contents of
this paper. For more information on mCRL2 we refer to https://mcrl2.org and
[6].

https://mcrl2.org
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The mCRL2 language has some primitive data types built in, such as integers,
natural numbers and booleans, including common operations on them. Users
can also define their own data types and operations. The code below shows
an example. The sort Place has one constructor, Coordinates, with projection
functions X and Y. Equations are treated as rewrite rules; terms that match the
left hand side will be rewritten to the right hand side.
sort Place = struct Coordinates(X:Nat , Y: Nat);
map computeManhattanDistance: Place#Place -> Nat;
var p1, p2:Place;
eqn computeManhattanDistance(p1,p2) = abs(X(p1)-X(p2))+abs(Y(p1)-Y(p2));

The process definition below specifies the behaviour of the Point process; it
can perform three actions: move, invite and respond. The sum operator rep-
resents a non-deterministic choice over all values of the quantified data domain.
Summations over infinite data domains can be restricted by adding a condition.
In the example below a condition is used to restrict a point process to move to
any place on a 10 by 10 grid.
act move: Nat; invite , respond , meet: Place;
proc Point(p:Place) = sum new:Place. (X(new) < 10 && Y(new) < 10)

-> move(computeManhattanDistance(p,new)). Point(new)
+ invite(p).Point(p) + sum new:Place. respond(new).Point(new);

The initial process expression specifies the initial state of the labelled tran-
sition associated with the specification. The example below specifies a parallel
composition of two Point processes wrapped in a communication and an allow
operator. Both Point processes can perform a move action, which is allowed
by the allow operator. The invite and respond actions are not allowed and
hence blocked. However, the two processes can synchronize on a multi-action
invite|respond, which is transformed to a meet action by the communication
operator, which is allowed by the allow operator. The labelled transition system
(sometimes referred to as the state space) associated with this specification will
have exactly 10.000 states, representing every combination of coordinates.
init allow ({move ,meet}, comm({ invite|respond -> meet},

Point(Coordinates (1 ,1))|| Point(Coordinates (2 ,3))));

4 The Operational Semantics of State Machines

In Sect. 2 we already gave a rough sketch of the execution semantics of state
machines. In this section we treat the semantics of UML state machines and
its formalisation in mCRL2, including the role of the action language and some
mCRL2 snippets that are illustrative of the formalisation. The model itself is
available on GitHub [3]. In Sect. 5 we extend the UML semantics with EULYNX
SysML specific communication over ports. In Sect. 6 we detail how to complete
the model with a configuration and touch on the subject of verification.

4.1 Strategy to Formalisation

Our goal is to generically describe the semantics of state machines in mCRL2
achieving a high degree of modularity. There are several choices to be made
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(e.g., with respect to the granularity of interleaving, run-to-completion seman-
tics, syntax and semantics of the action language) and we want to set up our
specification in such a way that parts of it can be easily modified or replaced. A
particular concern is that the specific details of a concrete state machine to be
translated are separated from the generic semantics.

Due to our modular setup it is rather straightforward to configure the generic
model with a specific set of communicating state machines. The user needs to
do two things: 1) define the semantics of the action language and 2) encode
the structure of the state machines in an mCRL2 data type and pass it as a
parameter to the generic state machine process.

4.2 Abstract Action Language

The UML standard [16] is not prescriptive of the action language used to specify
guards and the effect of transitions. In this paper we abstract from any particular
action language.

Let Instruction be a sort containing all action language expressions, which
we will also refer to as a behaviour. Let VarName be a sort containing all variable
names. It is assumed that variables range over elements of a sort Value.

In order to formalise the action language semantics it may be necessary
to include additional data structures, e.g., a program stack or a valuation of
local variables. To encapsulate such additional data structures we introduce the
notion of execution frame, represented by the mCRL2 sort ExcFrame, which will
be assumed to consist of all data necessary to execute programs of the action
language. We do not assume that execution of behaviour is atomic, we allow
that two components interleave their execution of behaviour when they are both
taking a transition. We abstract from the granularity of interleaving and simply
allow an execution frame e to make a step to an execution frame e′, where e′

may still have behaviour waiting to be executed.
To define the semantics of the action language the user needs to add equations

for the following mappings. We assume a subset of action language expressions
represent predicates, which can be evaluated using checkPredicate.
sort VarValuePair = struct VarValuePair(getVariable:VarName , getValue:Value);

Instructions = List(Instruction );
map initializeExcFrame: Instructions #( VarName -> Value) -> ExcFrame;

executeExcFrameCode: ExcFrame -> ExcFrame;
checkPredicate: Instructions #( VarName -> Value) -> Bool;
isFinished: ExcFrame -> Bool;
getValuation: ExcFrame -> VarName -> Value;
getVariableUpdates: ExcFrame -> List(VarValuePair );
resetVariableUpdates: ExcFrame -> ExcFrame;

The mapping getVariableUpdates is assumed to retrieve all updates to vari-
ables that occurred during the execution of the execution frame. This field is
needed for deriving change events, described in Sect. 4.5.

4.3 Representing State Machines in mCRL2

We assume that StateName and CompName have been declared as mCRL2 enu-
meration sorts, enumerating, respectively, all state names and all state machine
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identifiers occurring in the SysML model under consideration. These two sorts
are part of the configuration in the model as they need to be instantiated.

We proceed by introducing the sort StateInfo, which is an example of
mCRL2’s facility to define structured sorts. By means of a structured sort, data
can be concisely aggregated. An element of the sort StateInfo is either a triple
with constructor SimpleState or with constructor CompositeState, both with
projection functions parent, entryAction and exitAction, or it stores a single
data element together with a constructor (JoinVertex, JunctionVertex, etc.).
StateInfo = struct SimpleState(parent: StateName , entryAction: Instructions ,

exitAction: Instructions) | CompositeState(parent: StateName ,
entryAction: Instructions , exitAction: Instructions)

| JoinVertex(parent: StateName) | JunctionVertex(parent: StateName)
| ForkVertex(parent: StateName) | InitialState(parent: StateName)
| FinalState(parent: StateName) | ChoiceVertex(parent: StateName );

The parent of a state is stored to represent the hierarchy of states induced by
composite states. A state’s parent is the first enclosing composite state. We
assume that the sort StateName has a special element root; states that are not
enclosed in a composite state have root as their parent.

Our framework supports change events and timeout events, see the defini-
tion of the sort Event below. The event type none is used as placeholder for
transitions without a trigger. Time is currently not modelled explicitly in our
framework, even though mCRL2 does support it. Explicit timing would result
in a significantly larger state space, while it is not relevant for the properties
that need to be verified in the context of EULYNX. Instead, transitions with a
timeout event as trigger can fire non-deterministically. The generation of change
events is discussed in Sect. 4.5.
Event = struct none | ChangeEvent(getTriggerExpr:Instructions) | TimeoutEvent

The sort Transition (given below) is used to specify the transitions of a state
machine. The Boolean internal is used to differentiate between selfloops and
internal transitions, the latter do not induce entry and/or exit behaviour.
Transition = struct Transition(source:StateName , trigger:Event ,

guard:Instructions , effect:Instructions , target:StateName , internal:Bool);

We also define the sort StateMachine, which aggregates all the information we
need of a state machine.
StateMachine = struct StateMachine(

transitions:List(Transition),initialState:StateName ,states:List(StateName),
stateInfo: StateName -> StateInfo , initialValuation: VarName -> Value);

The initialState designates the initial state in the root of the state machine
(i.e. the initial state that is not contained in a composite state). The projection
functions states and stateInfo retrieve which states are present in the state
machine and the associated StateInfo, respectively. Note that functions can be
partial in mCRL2, the function stateInfo only needs to be defined for the state
names that occur in that state machine.

Due to the hierarchy of states a state machine is ‘in’ a collection of states, a
state configuration. A state configuration can be represented as a tree structure
where the top node is not enclosed in a composite state. Parallel regions introduce
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nodes with multiple children. The mCRL2 excerpt below gives the definition of
state configurations in the model.
StateConfig =

struct StateConfig(rootState:StateName ,substates:List(StateConfig ));

An example configuration of the state machine depicted in Fig. 2 is
StateConfig(Booting ,[ StateConfig(Initial2 ,[]), StateConfig(Initial3 ,[])]).

4.4 Step Selection and Execution

As explained in Sect. 2, state machines make a step from one state configura-
tion to another. Such a step could consist of multiple transitions, as is the case
with junctions, joins and forks. We could in theory perform step selection by
performing a reachability search across the transitions. We anticipate that this
will make step selection computationally expensive. Instead, we opt to prepro-
cess Transitions into Steps. The definition of Step is given below, as well as
the mapping that derives Steps from Transitions. The effect of the step is a
ComposedBehaviour. It allows us to create a partially ordered set of behaviours,
which is needed for defining steps in the context of parallel regions (see Fig. 3).
sort Step = struct Step(source: StateConfig , trigger: Event ,

guard: List(Instructions),effect: ComposedBehaviour , target: StateConfig ,
internal: Bool , arrowEnd: StateName );

ComposedBehaviour = List(InstructionOrPar );
InstructionOrPar = struct Instruction(getInstruction:Instruction)

| ParBehaviours(parBehaviours:List(ComposedBehaviour ));
map transitionsToSteps: StateMachine -> List(Step);

The mCRL2 code specifying the transformation from Transitions to Steps
consists of over 200 lines. Avoiding too much detail we illustrate what transfor-
mations are done. The first transformation is to create a Step object for every
Transition by adding the ancestors to the source and target state.

We deal with forks by combining the outgoing transitions. The transition to
the fork is changed by adding the guards of the outgoing transitions. The effects
of the outgoing transitions are put in parallel (See Fig. 3). Note that in the case
of a fork the step does not have a single arrowEnd; we assume that StateName
has a special element multiple which will be used in the case of forks.

Similarly, we deal with joins by combining incoming steps and their guards.
For steps ending on a composite state we add the initial state in the target.
For steps from composite states there are two options: if the step has a change
event as trigger then we do not add a substate to the source (step is enabled
regardless of the substate); if the step does not have a trigger we require that
all the parallel regions of the composite state are in a final state.

We remove junctions by introducing a step for each path over the junction.
Given a state configuration and a set of steps we can reason about which

steps are enabled for firing. We will go over the restrictions for firing steps that
are checked in different data equations.

The most basic requirement for selecting a step is that the source of
the step must match the current state configuration. This is checked by
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Fig. 3. Example steps to and from a fork.

filterPossible, defined below. The helper function getAllStatesConfig
returns the set of all states that are in a state configuration. The helper function
containsPseudoState checks whether a state configuration contains a pseu-
dostate. Due to the run-to-completion semantics we only select a new step when
we have reached a stable state configuration (i.e. a state configuration without
pseudostates). For this reason we add the condition that if the current state
configuration contains a pseudostate then we will only consider transitions from
the pseudostate.
map filterPossible: List(Step)# StateConfig#StateMachine -> List(Step);

matchState:StateConfig#StateConfig -> Bool;
var sc, sc1 , sc2: StateConfig; step: Step; steps: List(Step);

sm:StateMachine;
eqn filterPossible ([], sc, sm) = [];

filterPossible(step |> steps , sc, sm) = filterPossible(steps ,sc,sm)
++ if(matchState(sc,source(step))

&& (containsPseudoState(sc,sm)=> containsPseudoState(source(step),sm)),
[step], []);

matchState(sc1 ,sc2) = (getAllStatesConfig(sc2)- getAllStatesConfig(sc1 ))=={};

Another requirement is that the guard evaluates to true and the trigger matches
the current event that is being processed. These two checks are performed by
filterEnabled.
filterEnabled: List(Step)#Event -> List(Step);

Another rule is that steps for which the source is lower (i.e. more deeply nested)
in the state hierarchy have a higher priority than steps for which the source is
higher in the state hierarchy. The mapping filterPriority selects the steps
with the highest priority among the input. Note that there may be multiple
steps on the same priority level.
filterPriority: List(Step) -> List(Step);

As mentioned earlier, a state machine can also perform a multi-step if multiple
steps with the same trigger event are enabled in parallel regions. To be more
precise: the state machine selects a multi-step consisting of the maximal set of
non-conflicting steps, where non-conflicting means that no two steps in the set
exit the same state. The mapping multiStepPossibilities computes all such
multi-steps given a set of steps.
multiStepPossibilities: List(Step) -> List(List(Step ));
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Due to the way we have constructed Steps the target field of a transition is not
always a complete state configuration. We leave out parallel regions in defining
transitions when they do not actively contribute. If we were to include all the
parallel regions in the source and target of Steps we would have to compute
all variations. To construct the new state configuration computeNextState takes
the target of a transition and adds the parallel regions of the current state
configuration that are unaffected (i.e. not exited).
computeNextState: StateConfig#Step -> StateConfig;

computeNextState recurses through the tree structure of the target state config-
uration. At each level it copies over unaffected regions. It is unaffected when the
region was not present in the source of the step (it was not an active participant
of the step) and it is not exited by the step.

The behaviour of performing a step, i.e. an instance of Instructions, is the
behaviour of the step itself combined with possible exit and entry behaviour.
For internal transitions no state is entered or exited. The snippet below shows
the definition of determineBehaviourStep.
map getEntryBehaviour: StateMachine#StateConfig#Step -> ComposedBehaviour;

getExitBehaviour: StateMachine#StateConfig#Step -> ComposedBehaviour;
determineBehaviourStep: StateMachine#Step#StateConfig -> ComposedBehaviour;

var sm: StateMachine; cur: StateConfig; st: Step;
eqn (! internal(st)) -> determineBehaviourStep(sm,st,cur) =

getExitBehaviour(sm,cur ,st) ++ effect(st) ++ getEntryBehaviour(sm,cur ,st);
internal(st) -> determineBehaviourStep(sm,st,cur) = effect(st);

Both getEntryBehaviour and getExitBehaviour compute the new state con-
figuration after firing the transition and which states are entered/exited; subse-
quently they determine the order in which behaviour needs to be executed and
construct a ComposedBehaviour. The order of composing entry behaviours is
outside-in (top level states first) and the order of composing exit behaviours is
inside-out (nested states first). To determine the order both functions recurse
through the new state configuration. Behaviour of states that are entered/exited
that are on the same level (parallel regions) is put in parallel.

We use a mapping computeExecutionOptions to compute all the options for
what behaviour from a ComposedBehaviour can be executed next. If the head
of the composed behaviour is a sequential composition of instructions it will
return one execution option with all instructions up to the end of the composed
behaviour or up to a parallel composition (whatever comes first). If the head of
the composed behaviour is a parallel composition then we get multiple options
corresponding to each parallel branch.
sort ExecutionOption = struct ExecutionOption(getCodeToExecute :Instructions ,

getRemainingBehavior:ComposedBehavior );
map computeExecutionOptions: ComposedBehavior -> List(ExecutionOption );

4.5 Change Events

A change event is generated when the content of a when(x) trigger becomes true.
When a variable is updated we need to check which change events need to be
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generated. For this purpose we introduce the sort Monitor. A monitor stores an
action language expression and the last evaluation. When we update a variable
we can check which change events are generated using deriveChangeEvents.
The mapping updateMonitors updates the valuation stored in the monitors.
sort Monitor = struct Monitor(getExpression:Instructions , getValuation:Bool);
map deriveChangeEvents: List(Monitor )#( VarName -> Value) -> List(Event);

updateMonitors: List(Monitor )#( VarName -> Value) -> List(Monitor );
var vars: VarName -> Value; mon: Monitor; mons: List(Monitor );
eqn deriveChangeEvents(mon |> mons ,vars) =

if(checkPredicate(getExpression(mon),vars) && !getValuation(mon),
[ChangeEvent(getExpression(mon))], []) ++ deriveChangeEvents(mons ,vars);

deriveChangeEvents ([], vars) = [];

4.6 StateMachine Process

The state machine process uses the data operations that we described in earlier
sections and uses them to specify the observable actions of a single state machine,
which will be visible in the LTS associated to the mCRL2 model. For now we will
present a slightly simplified version, which we will extend when we incorporate
SysML specific communication in Sect. 5. Below we present the parameters of
the process and the declaration of the observable actions (which includes the
parameters of those actions).
act discardEvent: Event; selectMultiStep: Event#List(Step);

executeStep: Step; executeBehaviour;
proc StateMachine(ID:CompName , SM:StateMachine , sc:StateConfig ,

eq:List(Event), steps:Set(Transition), behav:ComposedBehaviour ,
mon:List(Monitor), vars:VarName -> Value , exc:ExcFrame) = ...

The UML standard does not define in what order events are processed. We have
opted to process events in FIFO order, hence event queue is a list of events. The
StateMachine process consists of one big alternative composition where each
summand performs one action and then recurses (with updated parameters).

The observable actions are chosen to reflect decisions in the run-to-completion
cycle. When both steps and behav are empty a new multi-step should be consid-
ered. If no step is enabled by the head of the event queue the process can perform
a discardEvent action and remove it from the event queue. Alternatively, we
can select a multi-step with a selectMultiStep action. We can now perform a
executeStep action to start executing one of the selected steps, which updates
sc and puts the composed behaviour of the step in behav. The process selects one
of the execution options calculated by computeExecutionOptions and initializes
an ExcFrame which is stored in exc. The process calls executeExcFrameCode
and performs an executeBehaviour action until the execution frame is finished.
Every time code is executed (and thus possibly variables are updated), it is
checked whether change events can be derived. When the execution frame is
finished we compute a new execution option. When the execution of behav is
finished we select a next step from steps. When there are no more steps to
execute the process is ready to select a new multi-step.

As an example, consider the summand that performs the executeStep. Note
that mCRL2 allows for an abbreviated, assignment-like syntax in which only
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the to be updated parameters need to be mentioned in a recursive call; all other
parameters of the process remain the same.
+ (# behavior_to_execute == 0) ->

sum next_step:Step. (next_step in steps) -> executeStep(next_step)
.StateMachine(steps = steps - {next_step},

behav = determineBehaviourStep(SM,next_step ,sc),
sc = computeNextState(sc,next_step ))

Depending on the kind of analysis that will be performed on the resulting LTS
we might want different observable actions. If we would want to verify something
regarding the state configuration we might want to add a self loop signalling the
current state configuration. Alternatively, we might want to hide some actions
by renaming them to τ , indicating that they are unobservable.

5 SysML Specific Communication

Specific to EULYNX SysML is that there are ports over which communication
takes place. Internal Block Diagrams (IBDs) describe the interfaces of compo-
nents by specifying the ports of components and their connections.

This paper focuses on the semantics of a set of communicating state machines.
For the semantics of IBDs we refer the reader to [22]. Here we assume that
we have the following communication structure. Each component has a set of
ports, which are subdivided in input and output ports. An output port can
be connected to multiple input ports. Both input and output ports need not
be connected at all, in which case they interact with the environment. One
more assumption on the action language is that ports are treated as variables:
changing the variable associated to an output port leads to a communication,
which updates the variable associated to the input port of the receiver.

The sort Component extends state machines with extra information. The sort
Channel models the connections between ports. Both sorts are defined below.
The sort CompName defines a finite enumeration of identifiers for components.
CompPortPair = struct CompPortPair(getComp: CompName , getPort: VarName );
Component = struct Component(SM: StateMachine , in_ports: List(VarName),

out_ports:List(VarName ));
Channel = struct Channel(sender: CompPortPair , receivers: List(CompPortPair ));

To take into account communication between state machines, we modify the
StateMachine process of Sect. 4.6 by replacing the state machine parameter
with a comp parameter, adding a parameter oq and adding two extra actions:
act sendComp ,receiveComp: CompPortPair#Value;
proc StateMachine (...,comp:Component , oq:List(VarValuePair )) = ...

When executing an execution frame we check whether there are updates to
output ports and store those updates in output queue oq. When oq is not empty
it can perform a sendComp action, communicating the update. At any point in
time the process can receive messages via a receiveComp action. The summand
related to receiving messages is given below.
sum v:Value ,p:VarName. receiveComp(CompPortPair(ID ,p),v)

.StateMachine(vars = vars[p -> v],
eq = eq ++ deriveChangeEvents(mon , vars[p->v]),
mon = updateMonitors(mon ,vars[p -> v]))
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We want to ensure that when a value is sent on an output port, it is received by
all (and only) connected input ports. This is enforced by the Messaging process
and the allow and communication operators in the initialization process (both
given below). When the number of components in a configuration is n then the
allow operator and Messaging process should be extended with the ability to
perform a send with up to n − 1 receive actions.
proc Messaging(channels: List(Channel )) =

sum ch:Channel , v:Value. (ch in channels) ->
((# receivers(ch) == 1) -> receiveI(sender(ch),v)|sendI(receivers(ch).0,v)

+ (# receivers(ch) == 2) -> receiveI(sender(ch),v)|sendI(receivers(ch).0,v)
|sendI(receivers(ch).1,v)

). Messaging ();
init allow ({ selectMultiStep , discardEvent , executeStep , executeBehaviour ,

send|receive , send|receive|receive},
comm({ sendComp|receiveI -> send , sendI|receiveComp -> receive},

MessagingIntermediary|| Environment
|| StateMachine (...)|| StateMachine (...) ...));

The central idea is that individual components need not know how ports are con-
nected. Instead, the Messaging provides a ‘meeting place’ with which the sender
and receivers synchronize. As an example, suppose some component C1 sends
some value v on port P1 that should be received by two receivers C2 and C3 on
ports P2 and P3, respectively. The Messaging process and the StateMachine
process of the sender and the two receivers can perform the multi-action
sendComp(C1,P1,v)| receiveI(C1,P1,v)|sendI(C2,P2,v)
|sendI(C3,P3,v)| receiveComp(C2,P2,v)| receiveComp(C3,P3,v).

This is transformed by the communication operator to send(C1,Port1,v)
|receive(C2,Port2,v)|receive(C3,Port3,v).

Ports that are not connected to any other port are exposed to the envi-
ronment, i.e. adjacent systems not included in the model. Input ports exposed
to the environment can expect inputs at any moment in time. We model the
environment with the Environment process, which can always send messages to
ports in envInputs and receive messages from ports in envOutputs. Note that
a connection between the environment and an exposed port must also be passed
to the Messaging process.
Environment(envInputs:List(CompPortPair), envOutputs:List(CompPortPair )) =

sum inp:CompPortPair , v:Value. (inp in envInputs)
-> sendComp(CompPortPair(Environment ,getPort(inp)),v). Environment ()

+ sum out:CompPortPair , v:Value. (out in envOutputs)
-> receiveComp(CompPortPair(Environment ,getPort(out)),v). Environment ();

6 Creating a Configuration and Model Checking

In the previous sections, we have discussed the generic parts of the mCRL2
model; in this section, we describe how to configure the model with a specific
configuration and touch on the subject of model checking.

First, the enumerations StateName, CompName and VarName need to be
instantiated. The action language needs to be defined: the sorts Value and
Instruction need to be defined. Also the semantics of the action language need
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to be defined by extending the sort ExcFrame and giving defining equations for
the mappings listed in Sect. 4.2. Finally, the initial process expression needs to
be given, in accordance with the structure described in Sect. 5. The Environment
and Messaging processes must be given appropriate parameters. For every state
machine a process expression StateMachineInit(c,x) needs to be added, where
c is a CompName and x is a Component object.

The model available on GitHub [3] contains an example configuration. This
configuration contains just one component named C1 with the state machine of
Fig. 2. The initial valuation of C1 gives controller state the string “booted”
as initial value and sets reactor ready to true. There is one channel: component
C1 has an output port m, which is open to the environment.

We can use the mCRL2 model checker to verify properties expressed in the
expressive parametrised first-order modal μ-calculus. For instance, we can verify
that we always eventually reach the state Booted. We need to capture this prop-
erty in a μ-calculus formula using the action labels of the model. Note that when
C1 enters the state Booted, it sends a message on port m to the environment, so
the desired property is expressed by the following formula:
mu X. [true]X || <send(CompPortPair(C1,m),Value_String(STR_booted ))
|receive(CompPortPair(Environment ,m),Value_String(STR_booted))> true.

Using the mCRL2 toolset we can check the formula, which does not hold
for the model. The toolset produces a counterexample file containing the part of
state space that (dis)proves the formula. In this case we get a lasso shaped coun-
terexample with a loop between the states Booting and Failed. The labels on the
transitions in the trace are the same as in the mCRL2 model (selectMultiStep,
executeStep, executeBehaviour and send|receive).

7 Discussion and Conclusion

One of the main benefits of our generic formalisation of the semantics of SysML
in mCRL2 is that that it facilitates a straightforward automated translation.
To have an automated translation from SysML to mCRL2 we only need to
implement a tool that extracts the configuration data from a SysML model and
prints the mCRL2 code as described in Sect. 6. Such a tool has recently been
built and is discussed in a companion paper (see [22]).

Another benefit of directly formalizing in mCRL2 (compared to formalising
in plain mathematics) is that the mCRL2 toolkit acts as an IDE. The parser
and type checker of the editor root out the most obvious mistakes. Moreover, the
model can be simulated when provided with a configuration of a simple set of
state machines. This provides an additional way of verifying whether the seman-
tics is as intended. There is still room for improvement of the mCRL2 toolset
though: subtle mistakes in data equations can be hard to debug. Debugging
techniques such as breakpoints and being able to step through term rewriting
would be beneficial in this regard.

The statespace induced by a SysML model is potentially infinite as event
queues can grow without bound. This happens when incoming messages trig-
ger change events faster than the receiving component can process the events.
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Since mCRL2 has an explicit-state model checker verification is no longer pos-
sible when the state space is infinite, though symbolic tools are in development
[15]. The state space can be restricted by bounding the event queue, disallow-
ing reception of messages until some events are processed. The downside of
this approach is that the model ‘loses’ behaviour that could be analysed during
model-checking. We leave it for future work to implement more sophisticated
bounded event pools such as, e.g., the controlled buffers used in [1].

We reckon that significant optimization can be done to reduce the state
space. One such optimization possibility was discovered in a case study of the
EULYNX Point interface [4]. In our model all updates to variables are stored in
the vars parameter of the StateMachine process. This is not always necessary;
only when a variable is read in an action language expression do we really need
to store the value. In particular, the variables associated to output ports are
rarely referenced by the state machine. We could add a referencedVariables
field to state machines and adjust the semantics to only remember the value of
variables that are actually referenced. This would reduce the state space whilst
preserving the behaviour modulo strong bisimilarity.

The UML standard does not give guidelines about the degree of interleaving
in the execution of action language expressions. This ambiguity affects both
the interleaving between state machines and the interleaving between parallel
behaviours in a step. We would like to be able to generate mCRL2 models with
varying interleaving models. The finest mode could break behaviour execution
down to single instructions (such as looking up the value of a variable) and
would allow the most detailed analysis. The coarsest mode could implement
a run-to-completion semantics for parallel behaviour, reducing the state space.
This variation can be realised by modifying the ExecuteExcFrameCode mapping.

Evidence provided by the mCRL2 toolkit (dis)proving properties is presented
as an LTS with labels from the mCRL2 model. In the future we would like to
improve usability by converting these evidence LTSs to UML sequence diagrams.
This may not always be possible (or beneficial) as the evidence LTS may contain
the entire state space. We reckon that some common evidence structures such
as simple traces and lassos are well suited for conversion to sequence diagrams.

Concluding, we have shown how we have formalised the semantics of (SysML)
state machines directly in mCRL2. The generic mCRL2 model is flexible and
could be adjusted for a wide range of action languages. The step to an automated
translation using our model is small and has been achieved in FormaSig.
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