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Abstract: Sustainable agricultural management requires knowledge of where and when crops are
grown, what they are, and for how long. However, such information is not yet available in Nepal.
Remote sensing coupled with farmers’ knowledge offers a solution to fill this gap. In this study, we
created a high-resolution (10 m) seasonal crop map and cropping pattern in a mountainous area of
Nepal through a semi-automatic workflow using Sentinel-2 A/B time-series images coupled with
farmer knowledge. We identified agricultural areas through iterative self-organizing data clustering
of Sentinel imagery and topographic information using a digital elevation model automatically. This
agricultural area was analyzed to develop crop calendars and to track seasonal crop dynamics using
rule-based methods. Finally, we computed a pixel-level crop-intensity map. In the end our results
were compared to ground-truth data collected in the field and published crop calendars, with an over-
all accuracy of 88% and kappa coefficient of 0.83. We found variations in crop intensity and seasonal
crop extension across the study area, with higher intensity in plain areas with irrigation facilities
and longer fallow cycles in dry and hilly regions. The semi-automatic workflow was successfully
implemented in the heterogeneous topography and is applicable to the diverse topography of the
entire country, providing crucial information for mapping and monitoring crops that is very useful
for the formulation of strategic agricultural plans and food security in Nepal.

Keywords: Sentinel 2; crop pattern; crop calendar; NDVI; Nepal

1. Introduction

The demand for food is expected to increase from 59% to 98% by 2050 (Valin et al.,
2014) due to the increasing population and economic growth that increase per capita
consumption [1]. In order to supply the increasing demand for food, crop production
will need to be increased by either increasing the area of agricultural land or enhancing
productivity. Several other factors, such as increasing climatic variability, urbanization, and
lack of investment, etc., will make it challenging to produce enough food [2]. The ecological
and social trade-offs of converting more land to agriculture are full of dispute and are not
possible in many places. The only possible option would be to intensify the cultivation and
enhance the productivity of existing agricultural land through modern varieties of crops
and better crop management.

Considering the increasing climatic variability and changes in technological and
socioeconomic factors, the introduction of modern varieties of crops and better farm
management are the available options for increasing productivity [3]. Besides, climatic and
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socioeconomic factors cause the inter-annual fluctuation of planting and corresponding
harvesting dates, adding to the challenges of optimal farm management. Tracking such
variations in crop dynamics in a heterogeneous topography, such as Nepal, is challenging
due to the complexity of the multi-crop environment, fragmented plot sizes, changes in
technology, farm management practices, and climatic conditions [4–6].

Optimal management of crops requires detailed information on when and where a
particular crop is being planted. Updated information on the cultivation area and their
seasonal dynamics helps to address such ever-growing issues that can facilitate a better crop
management plan such as timely crop seed supply, fertilizer supply, training, and capacity
building of farmers to improve productivity, etc. This is important for proper storage
planning and supply chain management, which could contribute to policy development
for decision-makers.

Knowledge of where and when crops are grown provides insights into the ecology
and ecosystem balance of the region. The extent of agricultural land, cropping intensity,
and phenology of the crops affect the interaction in the ecosystem and its services at the
local as well as regional levels. Information on these aspects can act as a decision support
tool for a stakeholder to reach sustainable land-use management. Since agriculture uses
resources such as water, nutrients, and carbon, as well as the biodiversity in the region in
the process of growth and production, it creates a strong chain in the transfer of material
and energy in the ecosystem [7]. Agriculture as a component of the ecosystem affects and
is affected by the environment, it therefore has multiple interactions in the ecosystem viz.
pollination, pests, soil symbiosis, and the carbon cycle, among others [8–11].

In addition to an areal extent, the timing and cropping intensities of crops are important
determinants of the ecosystem. For instance, the increased cropping intensity of the same
crop has been linked to reduced ecosystem services such as pollination and pest control due
to an overuse of resources, thereby threatening the sustainability of the agriculture yield [12].
Moreover, the phenology of the crops influences the plant-pollinator interaction whereby
the overall state of the ecosystem, as well as the productivity of the crop, is determined [13].
For example, the larger overlap period between the crops growing stage and insect larval
stage puts crops under greater threat, while that between the crop flowering stage and
insect matured stage increases pollination and hence production [8,9]. Hence, the mapping
of crops and crop phenology is an important aspect of the ecology.

Phenological analysis of crops through time-series remote sensing images allows the
monitoring of the seasonal dynamics of crops that can capture significant agricultural
activity, i.e., sowing, transplanting, and harvesting dates of an area [5]. The increasing
availability of spatial and temporal resolution satellite images allows us to monitor crop
phenology at regular intervals. The uses of the remote sensing-based vegetation index
(VI) have already been widely accepted to monitor crop growth at a global, regional and
field scales [14–17]. Furthermore, a number of studies in the past have acquired the precise
phenological stages such as the start of the season (SOS), the peak of the season (PoS),
or end of the season (EoS) at the pixel level from the phenological curve derived from
remote sensing images [18–20]. The cropping intensity of a region can be derived once the
key phenological stages are identified. In addition, the detection of uncultivated arable
land in a particular season provides an opportunity to intensify the cropping pattern and
increase production.
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Mapping of cropping intensity using low to moderate spatial resolution [21] (i.e.,
NOVA-AVHRR, MODIS) remains a challenge in Nepal due to a large number of smallholder
farmers [22] and very complex terrain. The size of plots are usually smaller than a single
pixel [0.7 ha of average farm size [23] vs. 6.25 ha of MODIS image, approximately 100 ha
for AVHRR] and multiple cropping patterns which results in subpixel heterogeneity in crop
intensity and type identification. An alternative higher resolution images such as Sentinel
dataset with 10 m spatial resolution can be used to overcome this subpixel heterogeneity
problem by applying the temporal mixture analysis for fragmented farms [16]. However,
this dataset has not been fully explored to keep track of the phenological stages (i.e., crop
calendar in the mountainous topography) of a country like Nepal. On the other hand,
a high-resolution crop cycle inventory and precise crop areas are not yet available [24]
although they are essential for better crop planning and management and for improving
agricultural production. Therefore, knowledge about the seasonal extension of cropping
patterns in Nepal remains limited and accurate cropping intensity maps are in urgent need.
This study aims to fill this gap by using remote sensing-based data along with farmer
knowledge at the field level.

The objectives of this study are: (i) to develop a semi-automatic workflow to develop
a high-resolution crop calendar, (ii) to integrate the crop calendar and farmer knowledge to
produce the cropping maps, and (iii) to assess the spatiotemporal dynamics of cropping
intensity in Kaski, Nepal. The results will be important when developing agricultural
policies for decision-makers. The knowledge of precise harvesting dates are useful in
relation to food security, for planning and developing mobilization of food aid, and proper
storage planning, all of which could contribute to the united nations (UN) sustainable
development goal (SDG#12.3) [4].

2. Study Area

Kaski district extends from the mid-hilly region to the High Mountainous region of
Nepal and is geographically between 28.09 ◦N to 28.42 ◦N latitude and 83.68 ◦E to 84.14 ◦E
longitude Gandaki Province, with a total area of 2017 km2. Figure 1 depicts the land cover
map of Kaski district. The elevation of the Kaski district ranges from the lowest land of
450 to 8091 m (Mt. Annapurna I). The climate varies based on altitude, from subtropical
in the lowest altitude region of the district to temperate and subalpine to alpine. The low
altitude subtropical areas are warm for most of the year, while the mountains in the north
have a temperate climate [25]. The district receives approximately 2710 mm of precipitation
annually. Approximately 70% of the annual precipitation occurs during the rainy season
from June to September [26]. The total agricultural area of Kaski district is 19,200 ha [27].
In summer, the principal crop types are rice and millet planted from June to August and
harvested from September to November; maize is a spring crop planted from March to
April and harvested from June to July; and wheat, potato, and buckwheat are winter crops
planted from November to January. Winter vegetables are also common in the district, but
are often planted in a minimal plot smaller than one ropani (504 m2), the most commonly
used local unit of land, and are usually grown for domestic uses. Forest and snow cover
dominate land cover types in the higher altitude areas, while in the south, it is cultivated.
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Figure 1. This map shows the study area, Kaski district, Nepal, along with the land cover classifica-
tion. The land cover data was sourced from ICIMOD (nternational Centre for Integrated Mountain
Development).

3. Data and Method

We refined, extended, and automated the remote sensing-based methods to keep track
of the season’s crop dynamics and computation of crop intensity through phenology based
on Sentinel 2 A/B images of the high mountainous areas to the hill with a plain valley, to
develop a high-resolution crop calendar. We first delineated the agricultural area through
unsupervised ISOData clustering within the topographically cultivable area and employed
a rule-based algorithm on time series Sentinel 2 normalized difference vegetation index
(NDVI). The overall process flow is depicted in Figure 2, and the details of each step are
elaborated in the subsequent subsections.
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Figure 2. This diagram illustrates the overall research design used to estimate agricultural areas and
extract seasonal dynamics using remote sensing techniques.

3.1. Remotely Sensed Dataset

The present study used Sentinel 2 A/B images available every five days at a 10 m
spatial resolution in the visible and near-infrared bands. The images from October 2018 and
February 2020 were used for the time-series analysis. We obtained the Surface Reflectance
(Bottom of Atmosphere) data of product level 2A from the Google Earth Engine (GEE).
The product was already orthorectified and performed atmospheric correction. A Global
Digital Elevation Model (GDEM) from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) with a spatial resolution of 30 m was also acquired.

3.2. Field Based Data

Field plot data were collected between April and May 2019. Questionnaire surveys
with farmers and agricultural extension officers were conducted to determine cropping
types and calendars across the district. This information includes a list of common crops
planted in different seasons, crop calendars, and cropping intensity (single, double, or triple
crop). In order to access the mapping accuracy, a total of 385 locations, as shown in Figure 3,
were selected as ground truth points, based on the knowledge of local agricultural extension
officers, to ensure that the sample size was adequate, out of which we visited 240 locations.
This covered the major crop-land areas and other landcover types. For the remaining
145 locations, primarily located in high-altitude areas, we used high-resolution Google
Earth images. Garmin GPSMap 64 and Garmin eTrex30 series handheld devices were
used to record the geographical coordinates. All points (385), which included agricultural
and nonagricultural classes, were used for the accuracy assessment. At each of the field
locations, the following data were recorded for 2019.
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i. Land-use parameters such as cropland, rangelands, forest, etc.
ii. Cropping calendars for monsoon, winter, and autumn seasons for an agricultural

area
iii. Irrigation (also seasonal) availability.

The NDVI values were computed by combining timeseries NDVI values into a single-
file data cube subjected for the agricultural area delineation and phenological analysis. The
NDVI is the normalized difference ratio between the reflectance measured at the red and
near-infrared (NIR) bands (Equation (1)).

NDVI =
NIR(842 nm)− Red(665 nm)

NIR(842 nm) + Red(665 nm)
(1)

The unsupervised clustering Iterative Self-Organizing Data Analysis (ISODATA) tech-
nique [28] was applied to the NDVI time-series of eight images (cloud-free) around the year
to generate the initial classes. A maximum of 50 iterations and a convergence threshold of
0.99 were set for the clustering. The number of clusters varied from 5 to 10. NDVI temporal
signatures and ground survey data were used to convert the clusters into land cover classes,
such as agricultural, built-up, barren, forest, grass, snow, and water. The agricultural area
was further used to determine the seasonal crop extent and crop calendar, which consists of
the following major steps: (i) NDVI time-series generation, (ii) data filtering and smoothing,
(iii) crop calendar estimation, and (iv) accuracy assessment.

3.3. Crop Calendar Estimation

The time-series NDVI dataset after the cloud mask was subjected to analysis. The
missing dataset, (Figure 4a) due to the cloud contamination, was filled through the linear
interpolation method to obtain the continuous-time series dataset, as shown in Figure 4b. To
smooth the image time series of individual pixels, we applied a locally estimated scatterplot
smoothing (LOESS) filter [29–31]. The filter was applied using linear regression with a
moving window of size 11. The window size of 11 was set after multiple trials and errors.
The outcomes of the multiple trials can be seen in Figure 4c.

The crop calendar, the classification of different physiological stages of a crop dur-
ing its growth cycle [32], consists of crucial phenological information ranging from land
preparation to harvesting dates. The start of the season (SoS) is referred to as the period
before sowing. The end of the season (EoS) is referred to as the period after harvest. The
smoothed time-series data identified the local maxima and minima, as shown in Figure 4c.
This local minima, maxima, and minima duration is considered a valid crop cycle and
an indicator of the number of cropping seasons detected. The following conditions have
been set to detect the crops and their phenological stages (i) average annual NDVI value
is below 0.25, which was found empirically with the known agricultural area, and (ii) a
consistent NDVI increment after the detected minima, (iii) the maximum NDVI is above
0.4, and (iv) the range of days in between minima and maxima of the valid crop cycle
was within 60 to 120 days. Finally, the number of cropping cycles was determined by
counting the seasonal peaks in each year. The source code of every process is available in
Supplementary Material.

3.4. Accuracy Assessment

The accuracy assessment was performed based on the field-based survey data points,
as shown in Figure 3, and a confusion matrix was generated for the land cover and crop
intensity, respectively. The overall accuracy, producer accuracy, user accuracy, and Kappa
coefficient were computed to ensure the accuracy, which provides a measure of agreement
between the model predictions and reality obtained from the field visit.
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4. Results and Discussion
4.1. Agriculture Map

Figure 5a illustrates the land cover map for the Kaski district based on ISODATA
clustering followed by post-processing classification, and Figure 5b shows the delineated
agricultural areas. Table 1 shows the error matrix based on the ground observations. The
overall accuracy was 81.34%, and the Kappa coefficient was 0.74. The user’s accuracy in
the agricultural area was 93.59%, whereas the producer’s accuracy was 91.82%.

The arable land is concentrated in the southern and southeastern parts of the district
along the Seti River Basin up to 3000 m, and sparse arable land is distributed in the higher
elevation zone. A total of 21,404 ha of the area is identified as agricultural area, which is
approximately 10% (2204 ha) higher than the agricultural area recorded by the Ministry of
Agriculture (19,200 ha) [27]. The error of commission arises from forest and grassland being
misclassified as an agricultural class, as the grassland has a very similar attribute to the
single-season agricultural area, i.e., the grasses grow in monsoon and reach a peak in mid-
September, which is very similar to the timing of rice and millet. Similarly, the riverbanks
next to the paddy field were covered by grass during this season. Therefore, the agricultural
area in one season is slightly overestimated. However, detecting the phenological cycle of
non-cultivated vegetation in winter and spring is sporadic, and if any, the phenological
cycle is not similar to that of any crops. There could be a rare chance to have a similar
pattern to the crops in the winter season, but this is often very short in duration, and the



Geomatics 2023, 3 320

NDVI usually does not reach the minimum requirement of the maximum NDVI value,
i.e., 0.4.

Most of the area in the north is a higher mountainous region with a perennial snow
cover area (above 4000 m elevation) and a steep slope, so the arable land is less in proportion.
Among the five local units, namely Annapurna, Machhapuchre, Madi, Rupa and Pokhara,
most of the agricultural land falls into the Pokhara Lekanath metropolitan city, as shown in
Figure 5b.
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Figure 5. Agricultural area in Kaski, Land cover map—(a) and agricultural area only (b) over the
topography background of ArcGIS.

Table 1. Error matrix obtained based on the ISODATA clustering followed by post-processing.

Observed Data

AgricultureForest Water Snow GrasslandBareland Builtup Total Users Accuracy

Classified data

Agriculture 146 3 0 0 5 2 0 156 93.59
Forest 6 27 0 0 9 0 0 42 64.29
Water 2 0 12 0 0 0 0 14 85.71
Snow 0 0 2 6 0 2 0 10 60.00
Grassland 3 3 0 0 14 0 0 20 70.00
Bareland 2 0 0 0 2 32 8 44 72.73
Builtup 0 0 0 0 4 11 42 57 73.68
Total 159 33 14 6 34 47 50 343
Producers Accuracy 91.82 81.82 85.71 100.00 41.18 68.09 84.00 81.34

4.2. Crop Calendar

We identified a maximum of three crop cycles in a year through the time-series NDVI
analysis between October 2018 to March 2020. The first season was February-April to
June-September, the second crop season was May-August to September-December, and the
third was November-December to February-May. The division of seasons is based on the
field visit and the phenological changes in the ground vegetation, while their names season
1, season 2, and season 3 are given arbitrarily.

We mapped the annual crop intensity of the Kaski district at a 10 m spatial resolution
for the year 2019. Figure 6 shows the map of cropping intensity, Table 2 depicts the
performance of the detected crop intensity, and Table 3 depicts the total area covered by
agricultural land based on a multi-cropping pattern (i.e., one, two, and three-season crops).
The areas cultivated with crops in all three seasons are mainly detected around the Pokhara
valley, as the valley’s topographic characteristics and availability of irrigation facilities
make it favorable for three cycles of cropping. Land with crops in two seasons are dominant
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in the Pokhara Valley, including rice and millet during summer, and buckwheat, wheat,
potato, and other seasonal vegetables during winter; the third season crops include maize,
rice, and other vegetables where irrigation is available.
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Figure 6. Crop intensity in Kaski District, shows the one, two, and three-season cropping areas.

Table 2. Error matrix of the crop intensity.

Observation Producers’
Accuracy

Intensity One Two Three Total

Classification

One 66.00 6 0.00 72.00 91.67
Two 2.00 44 4.00 50.00 88.00
Three 0.00 3 21.00 24.00 87.50
Total 68.00 53 25.00 146.00
Users
accuracy 97.06 83 84.00 88.73

Table 3. Area of one season, two season, and three-season crops in Kaski in 2019.

Season Area (ha)

One season 13,519
Two seasons 6721
Three seasons 1164
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4.3. Seasonal Crop Dynamics

Figure 7a,b illustrate the crop area and calendar of crops during season 1 in the Kaski
district in 2019. The season starts in February-April and ends in June-September. The
primary crop in season 1 is maize. Although there are spring rice plantations in some
areas, and a few green vegetables were identified in this season, they were very fragmented
and planted primarily for domestic purposes. Those planted for commercial purposes are
usually in a greenhouse environment which is not visible in the satellite images. Therefore,
we have not considered any other crops in this study. Maize is one of the major staple crops
in Nepal and is equally popular from high-altitude areas to the southern plains. Maize is
grown in almost all non-irrigated land (locally called bari) and paddy rice in all irrigated
farmlands across the district during the summer, irrespective of location. More than 12,000
ha of spring crops were detected in the year 2019. This contributes to about 25% of the total
crop area of the entire year. The local variants of maize are grown under rainfed conditions
and mostly on marginal land with minimal chemical fertilizers; however, modern hybrid
varieties were identified in the low valley area, where irrigation facilities are available and
where the yield is better according to the farmers.

Similarly, the season 2 crop calendar in the Kaski district in 2019 is shown in Figure 7c
at the start of the season and Figure 7d at the end of the season. The season starts in
May-August and ends in September-December. The primary crop in season 2 is rice
in the irrigated areas. At the same time, it is millet in a non-irrigated area, lentils are
usually planted along with rice, especially in the edges of plots and near the river-sandy
areas. Summer vegetables are also common, but they are very fragmented and planted
for domestic purposes only. Rice transplantation typically started in mid-June and lasted
until mid-August, whereas harvesting started from late September to early December. It is
the summer crop that occupies the largest area of a single crop in this district. Most of the
rice is transplanted in late June. The millet is transplanted from late May to late June, and
harvested in November.

Figure 7e,f illustrate the crop dynamics in season 3 in the Kaski district in 2019 with
the start of the season in Figure 7e and end of the season in Figure 7f. The season started in
November–December and ended in February–May. During the winter season, varieties of
vegetables, including potato, buck whites, spinach, cauliflower, broccoli, radish, caret, and
various beans, etc., are cultivated across the district, and vegetables occupy the largest area
among the crops in this season. Wheat and barley, along with other wheat families and
buckwheat, are the other major crops grown in winter. Figure 7g illustrates the sampled
area where one-, two-, and three-season crops were present. The majority of the area has
a single rice crop from July to November. The figure shows the field preparation for rice
transplantation in July, followed by the full flowering of rice in October, and the harvesting
in November. After the rice harvest, the area remains fallow or is sown with potato or
wheat in December, which becomes visible in January and is harvested in March. In April,
a few areas have crops such as maize, while the majority remain fallow. As a result, some
areas have only one crop, whereas others have two, and a few have all three crops.
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Figure 7. The figure shows the timing of the agricultural cycle, where green represents the agricultural
area. The Start of Season (SoS) and End of Season (EoS) are overlaid in yellow, orange, and red. The
SoS and EoS are shown for the three seasons, with season 1 represented by panels (a,b), season 2 by
panels (c,d), and season 3 by panels (e,f). Panel (g) shows the sampled area with a mix of one, two,
and three-season crops.

4.4. Discussion

In this study, agricultural land was delineated at high-resolution and seasonal dy-
namics of the crops, and eventually the cropping intensity, was computed using Sentinel
2-based NDVI time-series in the Kaski district of central Nepal through the automatic
processing chain. This study established that the Sentinel-2 based dataset is useful for
automatically tracking crop dynamics in small-scale farms with heterogeneous topography.
Before this study, phenology estimation had been realized based on a field survey [33,34] or
coarse resolution remote sensing data such as MODIS time-series data [24,35,36]. However,
field observation is time and resource consuming; hence, it cannot be extended to a larger
area. On the other hand, the use of coarse resolution remote sensing data does not provide
reliable results for crop cycle mapping in hilly regions due to mixed pixel conditions.

Mapping and comparative analysis of cropping intensities over the years requires
adequate quality and spatiotemporal accessibility of satellite datasets for key crop growth
seasons. Sentinel 2 based method could accurately map the seasonal cropping patterns of
smallholder farms where the size of one field (typically ≤ 2 ha) is smaller than the spatial
resolution of readily available satellite data, like MODIS and Landsat. The coarse spatial
resolution of the MODIS data limits its applicability for phenology extraction and crop
mapping in heterogeneous landscapes with mixed pixels, such as those in the hilly regions
of Nepal [36]. Further, crop mapping and phenology mapping using Landsat alone may not
be sufficient due to its long (16-day) revisit time, as noted in reference [37]; in addition to
that, a higher percentage of cloud cover (e.g., >25%) limits the accessibility of good quality
images during monsoon season in this region [38]. However, the Sentinel 2 images with a
spatial resolution of 10 m [39] can detect small farms and frequently revisit (5-day) hence,
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it is found to be highly useful for tracking the seasonal crop dynamics and eventually
cropping intensity.

The extent of croplands and their seasonality are important aspects of the ecosystem,
as crops are affected by the interactions in the ecosystem as well as the impact on the
existing ecosystem. During the field visit, we confirmed that the dynamics of the seasonal
cropping systems are dependent on various factors: the intrinsic characteristics of the
ecosystem, including soil type, soil moisture, and soil nutrients, and on external factors
such as elevation, rainfall, drought, availability of irrigation, especially in winter, and timely
availability of fertilizers and seeds. The type of crop and its timing is affected by soil type
and availability of soil moisture. Relatively higher winter rainfall and fertile alluvial soils
offer sufficient soil moisture to raise winter and spring crops during the dry season, which
begot a higher concentration of double or triple crop patterns in the Pokhara Valley. In
contrast, higher elevation mountainous regions in the northern part where a dry and cold
ecosystem prevails receive irregular and relatively less rainfall during dry seasons, which
leads to inadequate soil moisture conditions to establish and grow any crop. Consequently,
most cultivable land remains fallow during the dry season. Dryness could be a prominent
factor that could affect the cropping intensity. The seasonal crop dynamics detected in this
region supports these facts. The winter rainfall is irregular, and a dry winter spell reduces
the winter cropping areas. Similarly, cropping in the summer season also depends on the
timing and amount of rainfall.

Accurate and updated cropping intensity maps and their area statistics enables policy-
makers to intensify cropping patterns and increase crop production primarily in single-crop
areas. This study’s comparative and temporal analysis of seasonal crop dynamics and
intensity revealed that 13,519 ha (more than 63% of the total agricultural area) remained
fallow during the dry season. The majority of these are concentrated in the hilly regions
of the district. These single crop areas can be cultivated by introducing water-efficient
crops such as vegetables, lentils, and pulses, or could invest further in the irrigation to
facilitate the perennial irrigation facility. Given the availability of irrigation facilities, a
large proportion of areas will convert to suitable areas for the cultivation of high-value
winter crops such as potato, tomato, cauliflower, and other vegetables, medicinal plants, or
even fruits such as apples at higher altitude and oranges or kiwis in lower altitude. Thus,
the obtained crop intensity maps and statistics offer further investment to intensify crop
patterns and improve the livelihood of local farmers.

This study focused on using Sentinel 2 optical imagery to keep track of seasonal
crop dynamics. However, Sentinel 1 microwave dataset would be instrumental with the
coupling of optical imageries to detect cropping patterns and could yield a better result
in the monsoon seasons, as microwave remote sensing is all-weather remote sensing and
has little or no effect due to the cloud cover. Cloud contamination is one of the biggest
challenges in using optical remote sensing images in high mountainous regions. As we
obtained promising results through the semi-automatic processing of the freely available
Sentinel 2 A/B dataset for the Kaski district, the method is applicable to keep track of
seasonal crop dynamics across the country, region, or global scale.

5. Conclusions

We developed a semi-automatic rule-based workflow that effectively captures seasonal
dynamics and maps cropping intensity using time-series NDVI data from Sentinel 2A
and 2B satellites, coupled with farmer knowledge. This workflow has been applied to
the complex topography of the Himalayas of Nepal, utilizing unsupervised ISODATA
clustering to extract agricultural areas, and a phenology-based method using GDEM
elevation and slope data to automatically map seasonal cropping patterns and intensity.
This was coupled with farmer knowledge regarding the common crops in the region and
their calendar, to obtain the seasonal crop information.

The resultant maps had an overall accuracy of 82%, with a Kappa coefficient of 0.74 for
the Kaski district. We were able to detect a maximum of three cropping cycles: the first
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starting in March-May and ending in June–August, the second starting in November–
December and ending in March–May, and the third starting between June and August
and ending in February–May. The accuracy of cropping intensity was excellent, with
88% accuracy and a 0.83 Kappa coefficient at a 10 m spatial resolution.

We found that a significant proportion of arable land was single cropped, leaving these
areas fallow during other seasons. However, we believe that intensifying crop production
in these areas could provide an opportunity to increase agricultural production and combat
potential food insecurity in the future.

In conclusion, this study provides valuable insights into innovative agricultural plan-
ning at the district level and highlights the potential for similar work to be extended across
the country and various regions. As such, it remains an essential case for policymakers
and planners to consider as they work towards improving agriculture and food security
in Nepal.

Supplementary Materials: The developed system has been made public and all the relevant sources
along with the user manual are available at the following link: https://github.com/bgmishra/Crop_
monitoring (accessed on 2 April 2023).
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