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Abstract 

High spatiotemporal resolution satellite data have been available to provide rainfall estimates with 

global coverage and relatively short latency. On the other hand, a rain gauge measures the actual 

rain that falls to the surface, but its network density is commonly sparse, particularly those that 

record at sub-daily records. These datasets are extensively used to define rainfall thresholds for 

landslides. This study aims to investigate the use of GSMaP-GNRT and CMORPH-CRT data along with 

automatic rain station data to determine rainfall thresholds for landslides in Progo Catchment, 

Indonesia, as the basis for landslide early warning in the area. Using the frequentist method, we 

derived the thresholds based on 213 landslide occurrences for 2012-2021 in the Progo Catchment. 

Instead of relying on a fixed time window to determine rainfall events triggering landslides, we 

consider a dynamic window, enabling us to adapt to the rainfall event responsible for landslides by 

extending or shortening its duration depending on the persistence of the rainfall signal. Results 

indicate that both GSMaP-GNRT and CMORPH-CRT products fail to capture high-intensity rainfall in 

Progo Catchment and overestimate light rainfall measured by rain gauge observations. 

Nevertheless, when accumulated to define the rainfall threshold, the overall performance of 

GSMaP-GNRT and automatic rain station data in Progo Catchment is comparable. The rainfall 

measured at the stations performed slightly better than the estimated rainfall from GSMaP-GNRT, 

particularly at a probability exceedance level below 15%. In contrast, CMORPH -CRT performed the 

worst for all exceedance probabilities. The suitable exceedance probability for early warning 

purposes in Progo Catchment is 10% if it is based on the automatic rain station data. At this 

exceedance probability level, the threshold can adequately discriminate triggering/non-triggering 

rainfall conditions and produces the minimum false alarms and missed events. 
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1. Introduction 

The complexity of the Indonesian landscape and the unique climatic regime the country is exposed to 

makes it prone to landslides (Kirschbaum et al., 2015). Monsoons frequently discharge large and 

prolonged amounts of rainfall which in turn is responsible for widespread landslide events, and their 

numbers have locally seen a significant increase in the last decade (BNPB, 2021). Specifically, 5822 

landslides have been documented in Indonesia from 2010 to 2020, out of which, approximately 79% 

took place solely within Java (BNPB, 2021). As a result, at least 1044 lives were lost, to which an 

appalling count of 971 people injured, and 119 missings still need to be added. These numbers attest 
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to the high-risk locals exposed to landslides (Cepeda et al., 2010; Sartohadi et al., 2010; Hadmoko et 

al., 2017). These studies also stressed the need for a suitable Early Warning System (EWS) meant to 

inform the population of the threat they may face and the appropriate behaviour to be taken in 

imminent situations of hydro-morphological danger.  

One EWS is already in place in Indonesia (Hidayat et al., 2019), which the rainfall threshold is valid for 

the whole Indonesian landscape. A single rainfall threshold might be problematic, as it may not reflect 

the climatic regime responsible for landslide occurrences in such a diverse territory, nor the terrain 

characteristics of the same. As a result, the warnings issued for specific areas may be unsuitable, thus 

leading to false alarms or landslide events that have not been forecasted (Guzzetti et al., 2008; Segoni 

et al., 2014). This issue is relatively common, with numerous examples of national thresholds failing 

when their performance is assessed on a local basis (Guzzetti et al., 2020). For this reason, scientific 

efforts have been made to create a spatially distributed network of rainfall thresholds for specific 

countries. For instance, Wang et al. (2021) subdivided the Chinese landscape according to six 

geomorphological regions and assigned a different threshold to each one. Moreover, Peruccacci et al. 

(2017) defined thresholds over environmental sub-zones in Italy clustered based on topography, 

lithology, land-use, land cover, climate, and meteorology. An example from another tropical country 

comes from Malaysia, whose territory is divided into six zones, each of them relying on an 

independent EWS (Althuwaynee et al., 2015). However, even assigning thresholds to sectors of a given 

country may not be sufficient to support EWS, and an even higher spatial detail may be required.  

For operational EWS, rainfall thresholds are derived for territorial units or alert zones surrounding a 

reference rain gauge (e.g., Lagomarsino et al., 2013; Segoni et al., 2014). This level of spatial resolution 

implies that local landslide data may be insufficient to compute thresholds. Thus, the robustness of 

the rainfall threshold analysis should be considered as a function of the local number of landslides in 

each sub-zone (Lagomarsino et al., 2013; Segoni et al., 2014; Peruccacci et al., 2017). Aside from the 

number of landslides, their information is also an important element to evaluate. In fact, assigning a 

landslide date and time of occurrence is not a trivial task, which is at times undertaken by collecting 

public reports, leading to positional and temporal errors. The assigning is particularly valid at very 

large scales, such as national and even global ones, where landslides may be heavily underreported 

(Kirschbaum and Stanley, 2018). However, defining thresholds over large territories also comes with 

advantages because one can safely rely on satellite products to describe the spatiotemporal rainfall 

distribution. For instance, Papua New Guinea used TRMM satellite precipitation estimates (Robbins, 

2016). Brunetti et al. (2021) showed that rainfall thresholds estimated from satellite products 

outperformed those derived from ground observations in India. Even Indonesia tested similar data to 

support its landslide EWS. Specifically, Hidayat et al. (2019) used the Tropical Rainfall Measuring 

Mission/TRMM rainfall product (Huffman et al., 2007) with a spatial resolution of 0.25°×0.25°. 

However, the product failed to capture the spatially heterogeneous rainfall patterns due to its coarse 

resolution (Chikalamo et al., 2020).  

Recent developments are attempting to mitigate this issue with new-generation satellite products 

such as the Japan Aerospace Exploration Agency's (JAXA) Global Satellite Mapping of 

Precipitation/GSMaP (Kubota et al., 2020) and the Climate Prediction Center/National Oceanic and 

Atmospheric Administration's (CPC/NOAA) morphing technique (CMORPH) (Xie et al., 2017) ensuring 

a higher spatial and temporal resolution. However, this is not the only problem with remotely sensed 

data. In fact, satellite-based thresholds tend to be much lower than the ones based on local rain 

gauges, making any comparison between the two difficult (Rossi et al., 2017). Chikalamo et al. (2020) 

have also observed such a difference within an Indonesian catchment. Irrespective of the data one 

may choose to use, an important element is shared among all the EWS we have described so far. Each 
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EWS relies on a fixed time window for the threshold to be derived (e.g., Chikalamo et al., 2020). Among 

landslide EWSs, there may be differences in the time window length, but the threshold definition itself 

boils down to a fixed rainfall duration. This element is something we consider requires further 

consideration. Weather systems are dynamic phenomena and do not always manifest with the same 

characteristics. Therefore, a fixed event duration may imply that a threshold may miss some important 

characteristics of the precipitation regime and meteorological variability. We argue instead that a 

more appropriate solution would be a dynamic time window, capable of adapting to the rainfall event 

responsible for landslides by extending or shortening its duration depending on the persistence of the 

rainfall signal. Taking into account the continuous nature of such a signal would allow one to respect 

prolonged dry periods and extended wet ones, without enforcing a predefined and systematic rule to 

the threshold analysis. The dynamic time window may account for the different meteorological 

regimes (Brunetti et al., 2010) or the antecedent rainfall that influence the initial state of soil moisture 

(Hong et al., 2018). 

This study aims to derive and evaluate empirical rainfall thresholds for landslides in Progo Catchment 

using satellite-based precipitation products (SPPs) and rain gauge observations. To achieve this, we 

first evaluate the performance of SPPs in detecting rainfall measured by rain gauge observations. Then 

we define rainfall events responsible for landslides by implementing a dynamic time window. 

Afterwards, we derive rainfall thresholds using the frequentist method (Brunetti et al., 2010) that 

allows multiple thresholds depending on the exceedance probability level in such a way that optimum 

for an early warning, i.e. minimum false alarms and missed events. This study fits into the recent 

Indonesian effort attested by the work of Hidayat et al. (2019) and revised by Yuniawan et al. (2022) 

to move away from a unique national EWS and instead move towards a nested system, where specific 

sectors of the country can rely on their local forecast.   

 

2. Study area and data sets 

2.1. Study area 

The study area is the Progo Catchment, which is located in central Java, Indonesia, and covers an 

area of approximately 3100 km2 (Figure 1). The Progo river, the main river, flows through several 

mountain ranges, such as Sumbing, Sundoro, Merbabu, Merapi, and Menoreh, which are located in 

Central Java and Yogyakarta Provinces. Those mountain ranges also form boundaries at the west, 

north, and east sides of the catchment. Like other regions in Java Island, Progo Catchment is 

predominated by monsoon climate and experiences the wet northwest monsoon from November to 

March and the dry southeast monsoon from May to September (Aldrian and Susanto, 2003). During 

the period of 1991-2000, the average annual rainfall in the catchment is 2358 mm.  

The complex landscape of the Progo Catchment makes the area prone to multiple natural hazards. 

For example, Mount Merapi is one of the most active volcanoes in Indonesia and the flanks of 

Merapi, which are vulnerable to debris flow, are inhabited by more than 50,000 people (Hapsari et 

al., 2019). In addition, human settlements are found situated on gentle slopes or very steep slope of 

Menoreh Mountains, the instability of which are aggravated due to slope-cut and -fill practices to 

build houses (Hadmoko et al., 2010). Tropical Cyclone Cempaka, which hit the southern coast of Java 

on November 27, 2017 (BMKG, 2017), caused floods and landslides in the catchment among other 

affected areas.  
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2.2. Landslide inventory 

We collected landslide information from solely authorised sources, including (i) online reports of 

landslide events compiled by the National Agency for Disaster Management (BNPB) and Regional 

Agency for Disaster Management (BPBD), (ii) event reports by the territorial police department, (iii) 

reports of disaster compiled by the Center for Health Crisis, Indonesian Ministry of Health, and (iv) 

technical report by the Volcanology Survey Indonesia. We also gathered information on landside 

occurrences from online mass media. The landslide information collected and stored includes (i) the 

exact landslide location, (2) the date and the time of the slope failures, (3) the type of landslide, and 

(4) the trigger. Since most of the reports were prepared by agencies responsible for disaster 

response, not all information is available in the inventory. The landslide locations are primarily 

reported by mentioning the name of the governmental administrative unit where the landslide 

occurred. The administrative unit includes Province, Regency/City, District, Village/Sub-district, and 

Hamlet, where the province is the highest level, while Hamlet is the lowest one. However, the lowest 

level of the administrative unit up to which the landslide location reported varied. Only a few reports 

provided location coordinates. The coordinates are essential for determining objectively the 

representable rain station for determining rainfall event responsible for a landslide (Section 3.2). 

Therefore, we geocoded the locations through Google Geocoding API using the ggmap R package 

(Kahle and Wickham, 2013) based on the names of the administrative units reported. The 

coordinates are used to select the representative automatic rain gauge station from which the 

rainfall event triggering the landslide is identified. Since the timing of landslide occurrences is crucial 

to derive a rainfall threshold, only the landslide events with at least a known date of occurrence are 

considered. 

After reviewing the inventory, we obtained 214 landslide events in the study area from 2012 to 

2021, out of which 213 events have a known date of occurrence. Note that multiple events can be 

triggered for the same rainfall event. For these dated events, the precise or approximate time of 

landslide occurrence was known for 110 (51.6%) events.  

Figure 1. Landslides and automatic rain station locations in the Progo Catchment. The inset shows 
the location of the Progo Catchment in Java Island, Indonesia. The ID number of automatic rain 
stations refers to stations presented in Table 1. 
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2.3. Rainfall datasets 

We used measurements by automatic rainfall stations and rainfall estimates obtained from satellite-

based precipitation products (SPPs) to identify the dynamical rainfall thresholds triggering landslides 

in the study area. The SPPs include the Global Satellite Mapping of Precipitation (GSMaP) data by the 

Japan Aerospace Exploration Agency (JAXA) and the Climate Prediction Center morphing method 

(CMORPH) by The National Oceanic and Atmospheric Administration Climate Prediction Center 

(NOAA CPC). The products are provided by their respective data provider for the World 

Meteorological Organization (WMO) Space-based Weather and Climate Extremes Monitoring 

(SWCEM). Kuleshov et al. (2019) demonstrated that the two SPPs provide valuable information for 

monitoring heavy rainfall over the Maritime Continent.  

2.3.1. GSMaP-GNRT data 

Global Satellite Mapping of Precipitation (GSMaP) is a blended Microwave-IR product developed by 

Japan Aerospace Exploration Agency (JAXA) for the Global Precipitation Measurement Mission 

(GPM). JAXA's GSMaP Near-real-time Gauge-adjusted Rainfall Product version 6 (hereafter GSMaP-

GNRT) is processed 4 hours after observation and distributed with a spatial resolution of 0.1×0.1 

and hourly temporal resolution (Kubota et al., 2020). The dataset is available from April 2000 to the 

present. For the Southeast Asia region and Pacific Ocean, the data can be obtained from 

ftp://swcem@hokusai.eorc.jaxa.jp/EAWP/GSMaP_GNRT/DATA/. 

While high spatiotemporal resolution data are desirable for landslide study, to our knowledge, the 

studies that evaluate GSMaP products over the Maritime Continent are typically carried out at a 

daily scale or even longer timescales up to season (e.g., Kuleshov et al., 2019; Liu et al., 2020; 

Tashima et al., 2020). Analysis at daily or longer timescales might not reveal the ability of the 

products to track rapidly evolving extreme rainfall events (Turk and Xian, 2013). Nevertheless, the 

accuracy of the gauge-adjusted product is generally higher than the uncorrected ones (Kubota et al., 

2020; Zhou et al., 2020). A few studies have evaluated the product at a sub-daily scale. Rauniyar et 

al. (2017) compared several microwave- and infrared-based satellite rainfall data and showed that 

the gauge-adjusted product outperformed other multi-satellite-based rainfall estimate products in 

characterising rain-no rain over the Maritime Continent. Moreover, the application in the 

hydrological modelling also showed that the gauge-adjusted product was more accurate in 

replicating past flood events in Jakarta, Indonesia, than the uncorrected one (Priyambodoho et al., 

2021).  

2.3.2. CMORPH-CRT data 

The National Oceanic and Atmospheric Administration Climate Prediction Center (NOAA CPC) 

incorporates precipitation estimates from multiple passive microwave satellites and geostationary 

satellite infrared data using a technique called CMORPH, Climate Prediction Center morphing 

method (Joyce et al., 2004). Bias-corrected CMORPH precipitation estimates (hereafter, CMORPH-

CRT) are originally generated with a spatial resolution of 8 km × 8 km over the global domain (60S-

60N) in 30-minute intervals (Xie et al., 2017). For SWCEM, CMORPH-CRT is available from January 

1998 to the present with a spatial resolution of 0.1×0.1 and temporal resolution of 1-hour. The 

data are updated at a latency of 2 hours and can be obtained from 

ftp://ftp.cpc.ncep.noaa.gov/precip/PORT/SEMDP/CMORPH_CRT/DATA/.   

The reprocessing and bias-correction of CMORPH original product makes CMORPH-CRT better at 

representing the magnitude and spatial-temporal variations of precipitation over the quasi-global 

domain (Xie et al., 2017). This product is similar to the GSMaP-GNRT in the way that both are derived 

ftp://swcem@hokusai.eorc.jaxa.jp/EAWP/GSMaP_GNRT/DATA/
ftp://ftp.cpc.ncep.noaa.gov/precip/PORT/SEMDP/CMORPH_CRT/DATA/
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from PMW observations and adjusted using the CPC gauge-based analysis of global daily 

precipitation (Chen et al., 2008). The key difference lies in the usage of infrared (IR) dataset. GSMaP 

derived rainfall estimates from IR data between PMW overpasses (Ushio et al., 2009). Meanwhile, 

CMORPH retrieves rainfall estimates only from PMW and uses the moving vector of cloud systems 

derived from IR data to propagate PMW precipitation estimates (Joyce et al., 2004; Xie et al., 2017). 

Like GSMaP products, evaluation of CMORPH products was typically performed at a daily scale or 

longer timescales, including over the Maritime Continent (e.g., Rahmawati and Lubczynski, 2018; 

Wild et al., 2021). A study at 3-hourly temporal resolution showed that CMORPH-CRT could 

accurately capture the amplitude of the diurnal cycle over the Maritime Continent (Rauniyar et al., 

2017). Using a near real-time CMORPH product, Apip et al. (2010) demonstrated the potential 

applicability of the product as an input to the hydrological-geotechnical model for a landslide 

prediction system in the upper Citarum River Catchment, Indonesia. 

2.3.3. Automatic rain stations data 

The data measured by automatic rain stations were obtained from the Indonesian Agency for 

Meteorology, Climatology and Geophysics (BMKG). The automatic stations record cumulative rainfall 

every 10-minute starting from past midnight and ending at midnight Coordinated Universal Time 

(UTC). The distribution of rain stations with such high temporal resolution in Indonesia is 

inhomogeneous and sparse in mountainous areas (please see https://awscenter.bmkg.go.id/ for the 

map of the automatic weather station network). The network density is even sparser than the 

density of a gauge network that typically measures at 3-hourly and daily periods at the fixed synoptic 

hours (Kidd et al., 2017). 

Before processing the data for analysis, we undertook a test to check gross errors. Missing time 

intervals were added to create complete 10-minute time series. To detect implausible values, we 

checked if they fell within a range of 0-300 mm, the measure of the instruments. Values out of range 

were then manually inspected. If the implausible values were likely caused by mistakes in the 

algorithm for recording the rainfall value, the values are corrected using the appropriate formula. 

For instance, in case the values recorded in each 10-minute interval during a day were 10-minute 

intensity, instead of accumulation, we corrected the value by accumulating from the starting time of 

accumulation for the day. Otherwise, the values were considered suspicious and excluded from the 

analysis. If the rainfall is a dip or NA in the time series while the preceding and following values are 

the same and occur before the accumulate ending hours, the value is set to be the same as the 

preceding value. 

After the gross check, the 10-minute data were aggregated into hourly rainfall to match the lowest 

temporal resolution of SPPs used in this study. The data were also aggregated into daily data for 

consistency check with nearby sites. We inspected if the rainfall values > 20 mm/h (very heavy 

rainfall) had fallen over the site by comparing the daily data to the rainfall of the collocated 

observations. We accepted the value if the collocated observation exhibited a rainfall event with a 

comparable amount. Otherwise, we exclude the suspicious value. In the absence of collocated 

observation, we compared the data with rainfall observations from the neighbouring site(s), which is 

typically within a distance of ~7 km. In general, comparison with multiple sites was undertaken 

because of the incompleteness of the data from the nearest site.  

Considering the length of rainfall time series and landslide area representativeness, we selected nine 

automatic rainfall stations located within and nearby the study (Figure 1). The data availability and 

information of each station are shown in Table 1.  

https://awscenter.bmkg.go.id/
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Table 1. Meta-information on the automatic rain stations in the Progo catchment in Central Java, 

Indonesia 

ID Station name  Lon Lat Elevation 
(meter) 

Available period 

1 ARG Temanggung 110.0335 E 7.339445 S 234 2016-01-01 – present  

2 ARG Pakisdadu 110.2957 E 7.354779 S 620 2015-08-24 – present  

3 ARG SMPK Borobudur 110.2080 E 7.61007 S 248 2016-09-01 – present  

4 ARG Kalibawang 110.25779 E 7.687176 S 160 2017-09-06 – present 

5 AWS Pakem 110.4190 E 7.667140 S 415 2015-01-01 – present 

6 AWS Staklim Mlati 110.3354 E 7.716165 S 182 2015-04-01 – present 

7 ARG Moyudan 110.2620 E 7.740457 S 150 2017-09-06 – present 

8 ARG Waduk Sermo 110.123754 E 7.823245 S 169 2017-09-06 – present 

9 AWS Kulonprogo 110.1202 E 7.89177 S 8 2016-11-01 – present 

 

3. Method 

The rainfall estimates of SPPs are indirect measurements of rain rates. Hence, we first benchmark 

the performance of SPPs against the surface measurements in the study area. Considering the 

availability of the automatic rainfall data, the performance evaluation was carried for period of 1 

October 2017-31 December 2021. Afterwards, we identified the rainfall events that triggered past 

landslides in the study area. Ultimately, we derived the rainfall thresholds based on the cumulated 

rainfall and the duration of the rainfall events. 

3.1. Statistical metrics  

We evaluated the detection capacity of SPPs using four indicators based on a common contingency 

table that includes (i) hit (H), where both SPP and rain station detect the rain occurrence; (ii) miss 

(M), the rain station detects the rain occurrence, but the SPP does not; (iii) false alarm (FA), SPP 

detect rain occurrence that does not occur; and (iv) correct negative, neither the rain station nor the 

SPP detects the rain occurrence. The indicators are the probability of detection (POD), success ratio 

(SR), bias score (BIAS), and critical success index (CSI). POD indicates the fraction of observed rains 

that are correctly detected by SPP. SR denotes the fraction of rain occurrences detected by SPP that 

actually occur. BIAS reflects whether the SPP tends to underestimate (BIAS <1) or overestimate (BIAS 

>1) rain events. CSI measures the overall fraction of rain occurrences correctly detected by SPP. 

Those four indicators are summarised in a performance diagram (Roebber, 2009).  

To measure the discrepancy between SPP rain estimates and ground observations, we calculated the 

statistical metrics such as mean absolute error (MAE), relative bias (RB), and correlation coefficient 

(CC). The formula, range, and perfect score for each metric are listed in Table 2. The calculation of 

the statistical metrics and the visualisation of SPPs performance are carried out using the verification 

R package (NCAR, 2015).  

Table 2. Statistical metrics for evaluating the performance of SPPs. Notes: S: SPP rain estimate, O: observed, H: 

hit, M: miss, FA: false alarm. 

Indicator Formula Range Perfect Score 

Mean absolute error (MAE) 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑆𝑖 − 𝑂𝑖|

𝑛

𝑖=1

 
[0,) 0 
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Relative bias (RB) 
𝑅𝐵 =

∑ (𝑆𝑖 − 𝑂𝑖)𝑛
𝑖

∑ 𝑂𝑖
𝑛
𝑖

 
(-,) 0 

Correlation coefficient (CC) 
𝐶𝐶 =

∑ (𝑆𝑖 − 𝑆̅)(𝑂𝑖 − �̅�)𝑛
𝑖

√∑ (𝑆𝑖 − 𝑆̅)2𝑛
𝑖 √∑ (𝑂𝑖 − �̅�)2𝑛

𝑖

 
[-1,1] 1 

Probability of detection (POD) 
POD =

H

H + M
 

[0,1] 1 

Success ratio (SR) 
SR =

H

H + FA
 

[0,1] 1 

Bias score (BIAS) 
BIAS =

H + FA

H + M
 

[0,) 1 

Critical success index (CSI) 
CSI =

H

H + M +  FA
 

[0,1] 1 

 

Following Haile et al. (2013), we calculated the statistical metrics for paired datasets of rainfall rates 

that are greater than a threshold value of rain detection for at least one of the two datasets. This 

was carried out to minimise the effects of rainless hours. Rain rates of 0.1 mm/h are considered 

suitable for defining no-rain conditions since such a low intensity is unlikely to generate surface 

ponding and runoff (Dunkerley, 2015). To assess the performance of the SPPs in capturing higher 

rainfall intensities, we extended the rain detection threshold for other values: 0.2 mm/h, 0.5 mm/h, 

1 mm/h, 5 mm/h, and 10 mm/h. 

3.2. Determination of rainfall events 

When the exact or estimated location and the date of landslide events were known, we selected the 

representable rain station based on the nearest distance. We also considered the station elevation 

by finding the minimum difference in elevation between the station and the landslide location. 

However, we prioritised the distance over elevation due to the sparseness of the automatic rain 

station network that records in a sub-hourly time scale in the study area. If the station with the 

minimum difference in elevation was at a distance beyond twice SPP spatial resolution (20 km), we 

opted for the nearest station.  

Once the appropriate rain station was identified and the precise or approximate time of landslide 

occurrence was known, we determined the possible rainfall event that triggered the landslide. We 

identified the time of landslide occurrence as the ending time of rainfall events. We accumulated the 

rainfall from the starting time of rainfall to the ending time. When the time of landslide occurrence 

was unknown, we identified the ending time of landslide as the peak rainfall intensity during the day 

of the landslide occurrence. The interval between the starting and ending times is the duration of 

the rainfall event. Considering the varying rainfall in time, identifying the starting time of rainfall 

events might be complicated. Therefore, we considered a minimum period of 24 consecutive hours 

of no rain to separate two rainfall events. In the end, we have a pair of accumulated rainfall and 

duration for each landslide event to derive rainfall thresholds (Section 3.3). The same procedure was 

applied to the SPP rainfall database extracted from the grid corresponding to the location of the 

reference rain stations.   
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For the purpose of the threshold performance evaluation, the non-triggering rainfall events were 

taken into account. Using the similar definition above, we extracted the non-triggering rainfall 

events from the period between the oldest and the most current landslide event in our inventory. 

3.3. Calculation of rainfall thresholds 

For this study, we adopted the frequentist method (M. T. Brunetti et al., 2010; Peruccacci et al., 

2012) to derive an empirical rainfall threshold. The method assumes a threshold curve of power-law 

form, relating the accumulated rainfall E (mm) to the rainfall duration D (hour): 

𝐸 = (𝛼 ± ∆𝛼) × 𝐷(𝛾±∆𝛾)          (1) 

where ⍺ is a scaling constant (the intercept), and 𝛾 is the shape parameter that defines the slope of 

the threshold curve. Multiple thresholds corresponding to different exceedance probabilities were 

derived, ranging from 1% to 50%. The exceedance probability level of 50% corresponds to the best-

fit line of all (D,E) scatter points, while lower levels represent threshold lines parallel to the best-fit 

line. When the rainfall in the study area exceeds the threshold, a landslide is likely to occur.  

In order to be statistically robust, we randomly selected 70% of the landslide-triggering rainfall 

events and used the remaining to assess the threshold performance. This procedure was repeated 

100 times, allowing us to obtain mean and standard deviation of  and  in Equation 1 and to 

construct a contingency table. The contingency table lists four possible outcomes with the threshold 

as a binary classifier of the rainfall conditions ((D, E) points) that triggered or did not trigger 

landslides. A landslide-triggering (D, E) located above the threshold is a true positive (TP), and below 

the threshold is a false negative (FN). A non-triggering (D, E) above the threshold is a false positive 

and below the threshold is a true negative (TN).  

Using the contingency table, we calculated three skill scores, i.e., True Positive Rate (TPR) and False 

Positive Rate (FPR), as well as true skill statistic (TSS): 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (2) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
           (3) 

𝑇𝑆𝑆 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅           (4) 

TPR represents the proportion of the landslide-triggering (D, E) above the threshold (correctly 

predicted), and FPR is the proportion of non-triggering (D, E) above the threshold (incorrectly 

predicted). TSS measures the performance of the rainfall threshold to separate the triggering- and 

non-triggering rainfall events, where value of 1 indicates the best performance and value of 0 or less 

suggests a performance no better than a random chance. TSS is also known as Hanssen and Kuipers 

discriminant (Hanssen and Kuipers, 1965).   

For each exceedance probability, we classified the rainfall events (E, D) into four categories of a 

contingency (TP, FP, FN, and TN) and calculated TPR and FPR skill scores. We then constructed a 

receiver operating characteristic (ROC) graph (Fawcett, 2006) based on TPR and FPR to evaluate the 

predicting capability of rainfall threshold for different exceedance probability levels. The area under 

the ROC curve (AUC) measures the goodness of each dataset. AUC values range from 0 (perfectly 

inaccurate) to 1 (perfectly accurate). In general, an AUC of 0.5 indicates no discrimination (i.e., 

landslide/no-landslide triggering rainfall events), 0.5  AUC < 0.7 is considered poor, 0.7  AUC < 0.8 

is considered acceptable, 0.8  AUC < 0.9 is considered excellent, and AUC ≥ 0.9 is considered 

outstanding (Hosmer et al., 2013). 
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4. Results 

4.1. Performance of GSMaP-GNRT and CMORPH-CRT 

The capacity of GSMaP-GNRT and CMORPH-CRT in detecting the hourly rainfall observed by 

automatic rain stations in the study area is summarised in performance diagrams (Figure 2). Given 

the perfect scores of statistical metrics shown in Table 2, a perfect detection capacity lies in the 

upper right of the performance diagram. In general, the detection capacity of both SPPs over each 

station site lies in approximately the same location, i.e., near the centre for low rainfall intensities 

(Figure 2a-d) and lower left for higher rainfall intensity (Figure 2e-f). The performance diagrams 

suggest that the capability of SPPs in detecting rainfall at an hourly time scale tends to be poorer as 

the threshold of rain detection increases. In general, the performance of GSMaP-GNRT is 

comparable to that of CMORPH-CRT, and both SPPs do not exhibit a trend with regard to the station 

elevation. However, a clear distinction can be seen, this being shown through thetwo groups 

highlighted in the performance diagrams for the detection of low rain intensity (Figure 2a-d). 

Specifically, if we inspect this figure further, the lower group exhibiting poorer performance 

represents the performances of the SPPs over the stations located in leeward of the mountain and 

hill ranges, i.e., ARG Pakisdadu and ARG Temanggung. Except for BIAS, the performance indicator 

values of this group are persistently lower than those of the upper group.  

POD values imply that <63% of low rainfall intensity observed by automatic rain stations in the study 

area are correctly detected by both SPPs (Figure 2a-d). Less than 26% of the rain rates ≥5 mm/h 

observed in the study area were correctly detected by GSMaP-GNRT and CMORPH-CRT (Figure 2e). 

The fraction even has a lower value for rain rates ≥10 mm/h, below 16% (Figure 2f). Along with low 

POD values, low SR values are observed as well. Since SR equals to 1 – false alarm ratio, the low SR 

values imply that the SPP algorithms detected a significant number of rains that did not occur. Less 

than 43% of low rain intensity detected by either GSMaP-GNRT or CMORPH-CRT were observed at 

the surface in the study area, and the proportion is even less (<24%) for higher rainfall intensity. The 

combination of low POD and SR values resulted in low CSI values, indicating that the overall fraction 

of rainfall correctly detected by both SPPs is relatively small. BIAS values suggest that both GSMaP-

GNRT and CMORPH-CRT tend to overestimate the low-intensity rainfall (Figure 2a-d) and 

underestimate the high-intensity rainfall in our study area (Figure 2f). The SPPs skill in detecting low-

intensity rainfall slightly varies from station to station. Overall, both SPPs have very low skill in 

detecting high rain intensity at an hourly time scale. 

 

Based on the performance in detecting rain over various detection thresholds described above and 

the spread of the indicators in the performance diagram, we consider using 0.2 mm/h as the basis 

for rain/no-rain threshold in the subsequent analysis. At this rain detection threshold, the spread of 

BIAS values is the narrowest among other detection thresholds for low-intensity rainfall. 
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Figure 2. Performance diagram summarising POD, SR, CSI, and BIAS of SPPs. Light grey contours represent CSI, 
whereas the dashed lines denote bias scores.  

 

Figure 3 shows a significant scatter between GSMaP-GNRT hourly rain estimates and the 

corresponding surface measurements at automatic rain stations in Progo Catchment. Few data 

points spread along the diagonal line, and false detection (missed rain) by the GSMaP-GNRT along 

the vertical (horizontal) axis are clearly observed. As shown in Figure 2, GSMaP-GNRT tends to 

overestimate the low intensity and underestimate high-intensity rainfall. However, most of the rain 

estimates and rain observed in the stations are low intensity. Therefore, GSMaP-GNRT exhibit very 

low CC at an hourly time scale (Table 3). This result suggests that GSMaP-GNRT could not reproduce 

hourly rainfall variation. Moreover, GSMaP-GNRT appears to provide rain estimates with a maximum 

value of ~30 mm/h.  

Significant scatter also can be found between CMORPH-CRT rain estimates and the corresponding 

observed rain data from rain stations (Figure 4). The number of data points spread along the diagonal 

line is few, while false detection and missed rain are visible. Like GSMaP-GNRT, CMORPHT-CRT could 

not capture hourly rainfall observed in Progo Catchment. 
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Figure 3. Scatter plots of GSMaP-GNRT and hourly rain rates observed at automatic rain stations in the study 
area. Each black dot represents a pair of observation with at least one of the data pair has value of ≥0.2 mm/h. 
Box and whisker plot at horizontal (vertical) axis shows the spread of observed rain at the station (GSMaP-
GNRT rain estimates) at hourly time scale. The whiskers extend to the minimum and maximum values.  
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Figure 4. Similar to Figure 3, but the scatter plots compare CMORPH-CRT and hourly rain rates observed at 
automatic rain stations in the study area. 

 

In general, the performance of GSMaP-GNRT in detecting rain ≥0.2 mm/h is comparable to that of 

CMORPH-CRT in terms of MAE, RB, and CC (Table 3). MAE and CC values are relatively unvarying from 

station to station in the Progo Catchment. GSMaP-GNRT has MAE values ranging from 2.32 mm (in 

Temanggung) to 3.03 mm (in Pakem), while MAE of CMORPH-CRT ranges from 2.37 mm (in 

Temanggung) to 2.94 (in Pakem). Regarding the RB indicator, RB values vary from station to station 

but do not show a trend regarding elevation. The values support the results shown in Figure 2b, 

where GSMaP-GNRT and CMORPH-CRT slightly overestimate the rain observed at almost all stations, 

except at AWS Pakem and ARG Waduk Sermo. The largest RB is observed at ARG Temanggung. The 

large bias is likely related to the fact that the station is located between two mountains on the 

leeward side. Regarding correlation, CC values show a very weak relationship between rain 

estimates obtained from each SPP and observed rain in all stations in Progo Catchment at an hourly 

time scale.  
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Table 3. Values of statistical metrics for hourly GSMaP-GNRT and CMORPH-CRT rain estimates with a rain 

detection threshold of 0.2 mm/h over Progo Catchment. TMG: ARG Temanggung, PKD: ARG Pakisdadu, SBR: 

ARG SMPK Borobudur, PKM: AWS Pakem, KLB: ARG Kalibawang, MYD: ARG Moyudan, SML: AWS Staklim Mlati, 

WDS: ARG Waduk Sermo, KLP: AWS Kulonprogo. 

 TMG PKD SBR PKM KLB MYD SML WDS KLP 

MAE          

GSMaP-GNRT 2.32 2.72 2.66 3.03 3.01 2.90 2.70 2.79 2.61 

CMORPH-CRT 2.37 2.65 2.55 2.94 2.87 2.72 2.54 2.66 2.43 

RB          

GSMaP-GNRT 0.40 0.12 0.16 -0.12 0.16 0.23 0.26 0.03 0.19 

CMORPH-CRT 0.70 0.26 0.18 -0.09 0.11 0.12 0.21 -0.01 0.15 

CC          

GSMaP-GNRT 0.03 -0.02 0.07 0.07 0.03 0.08 0.09 0.08 0.19 

CMORPH-CRT 0.06 0 0.14 0.15 0.09 0.14 0.20 0.17 0.21 

 

4.2. Empirical rainfall thresholds 

The duration of rainfall events (D) measured by automatic rain stations that triggered landslides in 

Kulonprogo Catchment ranged from 1 hour to 289 hours (~12 days) with an average of ~87 hours. 

GSMaP-GNRT provided the duration of rainfall events triggering landslides ranging from 1 hour to 

903 hours (~38 days) with an average of 130.5 hours. CMORPH-CRT produced a duration of rainfall 

events triggering landslides ranging from 1 hour to 387 hours (~16 days) with an average of ~90 

hours. Note that the temporal resolution of the rainfall datasets to calculate the thresholds might 

partially contribute to the minimum duration of 1 hour.  

As for the accumulated rainfall (E) triggering landslides, measurements by automatic rain stations 

shows the values ranged from 0.2 mm to 314.6 mm with an average of 102.2 mm. GSMaP-GNRT 

showed accumulated rainfall between 0.2 mm and 755.4 mm with an average of 121.9 mm. 

CMORPH-CRT produced accumulated rainfall as low as 0.2 mm and as high as 390.3 mm, with an 

average of 92.3 mm.  

From the reconstructed rainfall events (D, E) for each dataset that triggered landslides in our 

landslide inventory, we calculated rainfall thresholds at several levels of exceedance probability. 

Table 4 presents equations of threshold curves defined from each dataset at several levels of 

exceedance probability, ranging from 1% to 50%. Close inspection of the equations shows that the 

station data generally produce the lowest thresholds at exceedance probability levels of 1%-20%. At 

exceedance probability levels of 20%-35%, station data exhibits only slightly lower thresholds than 

those derived from GSMaP-GNRT. However, station data produce slightly higher thresholds than 

GSMaP-GSMaP for D >17 hours, >1.3 hours, and >5.5 hours at exceedance probability levels of 40%, 

45%, and 50%, respectively. Compared to CMORPH-CRT, the station data exhibit higher thresholds 

for shorter rainfall duration but higher for longer duration. The rainfall duration cut-off of this 

transition rises as the exceedance probability level increases. For instance, at an exceedance 

probability level of 5%, the station data produce a lower threshold for D <15 hours, while at an 

exceedance probability level of 20%, the data exhibit a lower threshold for D <5 days. Comparing the 

thresholds derived from GSMaP-GNRT and CMORPH-CRT, at exceedance probability levels of 1%-

35%, GSMaP-GNRT consistently produces higher thresholds higher than CMORPH does, except for 

rainfall duration longer than ~11 days. At exceedance probability levels of 40%, 45%, and 50%, 
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CMORPH-CRT exhibits higher thresholds for rainfall duration longer than 7 days, 3 days, and ~6 days, 

respectively. 

Table 4. Equations describing rainfall ED thresholds at different exceedance probability levels (labelled as Tx) 
derived for Progo Catchment. E is accumulated rainfall (in mm) and D is rainfall duration (in hour). 

 

 

 

  

 

Using the remaining 30% of the landslide-triggering rainfall events and the landslide non-triggering 

rainfall events, we assessed the performance of the thresholds. Figure 5 represents one out of 100 

samples of derived rainfall thresholds at the exceedance probability level of 5% for three different 

datasets. The total number of rainfall events in each category of a contingency table for 

performance evaluation is also provided in Figure 5. Note that the number of landslide-triggering 

rainfall events captured by the three datasets might be different because rainfall data are 

sometimes unavailable. Figure 6 shows the constructed ROC describing the performance of the 

threshold at different levels of exceedance probability. It can be seen from Figure 5 that the 

Dataset Label Equation 

Automatic rain stations T1   𝐸 =  (−0.30 ± 0.19) × 𝐷(0.82±0.09) 
 T5    𝐸 =  (−0.10 ± 0.19) × 𝐷(0.82±0.09) 
 T10  𝐸 =  (0.01 ± 0.19) × 𝐷(0.82±0.09) 
 T15  𝐸 =  (0.09 ± 0.19) × 𝐷(0.82±0.09) 
 T20   𝐸 =  (0.15 ± 0.18) × 𝐷(0.82±0.09) 
 T25  𝐸 =  (0.20 ± 0.18) × 𝐷(0.82±0.09) 
 T30  𝐸 =  (0.25 ± 0.19) × 𝐷(0.82±0.09) 
 T35  𝐸 =  (0.30 ± 0.19) × 𝐷(0.82±0.09) 
 T40  𝐸 =  (0.34 ± 0.18) × 𝐷(0.82±0.09) 
 T45 𝐸 =  (0.35 ± 0.17) × 𝐷(0.82±0.09) 
 T50  𝐸 =  (0.37 ± 0.17) × 𝐷(0.82±0.09) 
GSMaP-GNRT T1    𝐸 =  (−0.07 ± 0.10) × 𝐷(0.79±0.03) 
 T5  𝐸 =  (0.08 ± 0.09) × 𝐷(0.79±0.03) 
 T10  𝐸 =  (0.17 ± 0.09) × 𝐷(0.79±0.03) 
 T15  𝐸 =  (0.22 ± 0.08) × 𝐷(0.79±0.03) 
 T20  𝐸 =  (0.27 ± 0.08) × 𝐷(0.79±0.03) 
 T25  𝐸 =  (0.31 ± 0.08) × 𝐷(0.79±0.03) 
 T30  𝐸 =  (0.34 ± 0.08) × 𝐷(0.79±0.03) 
 T35  𝐸 =  (0.37 ± 0.08) × 𝐷(0.79±0.03) 
 T40  𝐸 =  (0.38 ± 0.06) × 𝐷(0.79±0.03) 
 T45  𝐸 =  (0.35 ± 0.06) × 𝐷(0.79±0.03) 
 T50  𝐸 =  (0.39 ± 0.07) × 𝐷(0.79±0.03) 
CMORPH-CRT T1    𝐸 =  (−0.34 ± 0.11) × 𝐷(0.90±0.05) 
 T5  𝐸 =  (−0.19 ± 0.10) × 𝐷(0.90±0.05) 
 T10  𝐸 =  (−0.11 ± 0.10) × 𝐷(0.90±0.05) 
 T15  𝐸 =  (−0.05 ± 0.10) × 𝐷(0.90±0.05) 
 T20  𝐸 =  (−0.01 ± 0.10) × 𝐷(0.90±0.05) 
 T25 𝐸 =  (0.03 ± 0.10) × 𝐷(0.90±0.05) 
 T30  𝐸 =  (0.06 ± 0.10) × 𝐷(0.90±0.05) 
 T35  𝐸 =  (0.10 ± 0.10) × 𝐷(0.90±0.05) 
 T40 𝐸 =  (0.13 ± 0.10) × 𝐷(0.90±0.05) 
 T45  𝐸 =  (0.14 ± 0.09) × 𝐷(0.90±0.05) 
 T50 𝐸 =  (0.15 ± 0.09) × 𝐷(0.90±0.05) 
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automatic rainfall station dataset provides slightly better performance compared to GSMaP-GNRT, 

particularly at an exceedance probability level below 15%. CMORPH-CRT performs the worst for all 

exceedance probabilities.  

Further, a summary statistic of ROC in terms of AUC was calculated to be more objective. The results 

show that the AUC for automatic rainfall station, GSMaP-GNRT, and CMORPH-CRT are 0.72, 0.73, 

and 0.64, respectively. The AUC values also suggest that automatic rainfall station data and GSMaP-

GNRT have acceptable capacity in discriminating the occurrence/non-occurrence of rainfall events 

resulting in landslides, while CMORPH-CRT has poor capacity.  

Since the aim of defining rainfall thresholds is for an early warning system, it is essential to choose at 

which exceedance probability level the threshold provides the minimum number of false alarms (FP) 

and missed occurrences (FN). In other words, we find the threshold that maximises TPR and 

minimise FPR, and consequently maximises TSS, which is commonly applied (e.g., Leonarduzzi et al., 

2017; M. T. Brunetti et al., 2018b). Error! Reference source not found. presents TSS scores at 

different exceedance probability levels of rainfall thresholds for the three datasets. The figure shows 

that the maximum TSS for automatic rain station data is achieved when the threshold is defined at 

an exceedance probability level of 10%. For GSMaP-GNRT (CMORPH-CRT) data, the highest TSS is 

obtained by defining the threshold at an exceedance probability level of 20% (15%) which also 

maximises TPR value. 
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Figure 5. A sample of rainfall thresholds at an exceedance probability of 5% derived from automatic rain 
stations (a), GSMaP-GNRT (b), and CMORPH-CRT (c) datasets using the frequentist method. The number inside 
the square bracket denotes the number of rainfall events (E-D pairs) corresponding to the categories in a 
contingency table.  
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Figure 5. ROC curves built based on TPR and FPR skill scores for three datasets: automatic rain station 
(blue), GSMaP-GNRT (green), and CMORPH-CRT (orange). Each dot corresponds to the mean value of 
TPR and FPR skill scores of the repeated samplings. The labels beside the points represent the 
exceedance probability levels of rainfall thresholds. 

 

Figure 6. Values of True Skill Statistics (TSS) obtained at different exceedance probability levels of 
rainfall thresholds for the three datasets. 

 

5. Discussion 

This study was designed to estimate the empirical rainfall threshold for Progo Catchment based on 

rain gauge data and two SPPs, i.e., GSMaP-GNRT and CMORPH-CRT. Using the rain gauge data as 

ground truth for evaluating SPPs, this study found that the performance of GSMaP-GNRT and 

CMORP-CRT at an hourly time scale is less than excellent despite being corrected using gauge-based 

analysis data. Both SPPs tend to overestimate low-intensity rain and underestimate high-intensity 
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rain. Such tendency at the sub-daily scale was also reported for other regions with different climatic 

characteristics and varied topography, e.g., in Mexico (Bruster-Flores et al., 2019), Myanmar (Yuan 

et al., 2019), Ethiopia (Haile et al., 2013), and  Tibetian Plateau (Li et al., 2021). The same tendency 

still persist at a daily time scale in different mountainous regions around the world  (Derin et al., 

2016). These results may be explained partially by the fact that both SPPs correct their rainfall 

estimates using the NOAA Climate Prediction Center (CPC) daily gauge analyses (Chen et al., 2008), 

whose accuracy depends on the rain gauge network density (Chen et al., 2008; Barros and Arulraj, 

2020)  and the representativeness of the gauges (Derin et al., 2016). Moreover, both SPPs perform 

poorly over mountainous areas despite the high spatial resolution and incorporation of an 

orographic rainfall detection scheme. This result is likely related to the technical limitations of 

satellite sensors in detecting orographic rainfall regarding ground-clutter effects, heterogeneity in 

the vertical and horizontal structure of cloud systems, satellite viewing angle, and overpass 

frequency (Barros and Arulraj, 2020).  

The comparison results also show a weak correlation between SPP rainfall estimates and gauge 

observations. One explanation for this weak correlation is that the satellite algorithms failed to 

capture rainfall events with a duration shorter than or equal to satellite retrieval intervals (Haile et 

al., 2013). The point-area comparison also contributes to significant differences since high-intensity 

rainfall commonly occurs over an area much smaller than the SPP pixel size (Haile et al., 2013).  

Another finding is that GSMaP-GNRT failed to capture rain rate >30 mm/h. This finding reflects that 

of Turk and Xian (2013), who also found that GSMaP products do not well capture the rainfall 

extremes at a sub-daily scale. Turk and Xian (2013) suggested that the failure could be attributed to 

the effect of Kalman filtering that averages the extreme values. 

Aggregating rainfall into longer time scales results in better agreement between SPP and ground 

observations (e.g., Liu et al., 2020). Since the definition of rainfall events that trigger landslides 

includes accumulation of rainfall, hour-to-hour differences among the datasets are less significant 

than the total amount of rainfall accumulated during a rainfall event that potentially triggers 

landslides. Therefore, we also explore the determination of rainfall thresholds using the SPPs. 

Different from previous studies on rainfall thresholds for Indonesia that used daily rainfall for 

defining the thresholds for landslide EWS (Muntohar, 2008; Hidayat et al., 2019; Chikalamo et al., 

2020; Muntohar et al., 2021; Yuniawan et al., 2022), our study utilises higher temporal resolution 

datasets and applies more robust statistical analysis. The usage of high temporal resolution is 

favoured to avoid more false alarms at shorter and missed events and at longer durations when the 

thresholds are implemented for operational landslide EWS (Gariano et al., 2020). Rainfall events 

determined from automatic rain stations, GSMaP-GNRT, and CMORPH-CRT that resulted in 

landslides have a duration of up to ~12 days, ~38 days, and ~16 days, respectively. These results 

indicate that landslides in Progo Catchment can also be triggered by less intense but prolonged 

rainfall. On the other hand, the existing EWS for landslides limited the antecedent days up to 3 days 

to define the threshold (Hidayat et al., 2019; Yuniawan et al., 2022). Therefore, it is possible that the 

amount of rainfall triggering landslides was underestimated by the existing LEWS.  

The analysis of rainfall thresholds suggests that the rainfall measured at the stations performed 

slightly better than the estimated rainfall from GSMaP-GNRT, particularly at an exceedance 

probability level below 15% (Figure 6). Meanwhile, CMORPH-CRT performs the worst for all 

exceedance probabilities. These results accord with those of (M T Brunetti et al., 2018a), who 

compared various satellite-based rainfall products for landslide forecasting in Italy.  
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Based on TSS scores, the suitable exceedance probability for early warning purposes in Progo 

Catchment is 10% if it is based on the automatic rain station data. This value is slightly higher than 

the typical exceedance probability at which other studies applied the frequentist method, i.e., 5% 

(e.g., Vennari et al., 2014; Roccati et al., 2018; Leonarduzzi and Molnar, 2020) but within the 

threshold levels at 10%-25% suggested by Brunetti et al. (2018b). It is important to bear in mind that 

this direct comparison might be unfair because of the differences in data sources, resolution, 

climate, and the coverage area valid for the early warning. 

6. Conclusion 

This study aims to empirically determine the rainfall thresholds for landslides in Progo Catchment 

using various rainfall datasets via a frequentist approach. Our study is the first attempt to be more 

statistically rigorous than previous studies to determine the thresholds for a landslide-prone area in 

Indonesia. The results may assist the existing LEWS, which applies a fixed threshold limited to up to 

3-days of rainfall amount. Conversely, we offer a dynamic window of rainfall events to determine 

rainfall thresholds that show a range of possible rainfall conditions in terms of accumulation and 

duration that trigger the landslides in the Progo Catchment. 

Despite the high spatiotemporal resolution, both GSMaP-GNRT and CMORPH-CRT hourly products 

fail to capture high-intensity rainfall in Progo Catchment and overestimate light rainfall. This result 

seems to underline the challenge in remote sensing of rainfall in mountainous regions at appropriate 

spatial and temporal resolution for landslide studies, as Barros and Arulraj (2020) address. The poor 

capacity to detect high-intensity rainfall might limit the usage of SPP for hydrological modelling. 

Nevertheless, when accumulated to a duration of a rainfall event to derive the rainfall threshold, the 

overall performance of GSMaP-GNRT and automatic rain station data in Progo Catchment is 

comparable.  

Being limited to the landslide events that occurred in Progo Catchment, the thresholds here might 

not be directly adopted in other areas due to the climatic regime differences that influence the local 

rainfall characteristics. The derived thresholds bear uncertainties due to the biased landslide 

inventory, as the events in remote locations might not have been reported. Moreover, the 

calculation of rainfall thresholds is not differentiated by whether the landslides occurred in urban or 

suburban areas.  

For operational purposes, the thresholds defined here can adequately discriminate landslide-

triggering and non-triggering rainfall conditions in terms of accumulation and duration. Maximising 

the TSS score offer the level at which exceedance probability should be applied for early warning 

that produces the minimum false alarms and missed events.   

The major limitation of this study is that the satellite products have no prediction value, although 

the latency of the product is relatively short. Therefore, further study should be done using high-

resolution numerical weather prediction (NWP) models that generate weather forecasts. Since both 

satellite products and NWP output have their uncertainties, it is unlikely to translate the thresholds 

here to thresholds for NWP output. Further study could also be conducted to assess the 

performance skills of NWPs in forecasting large/mesoscale weather systems producing the rainfall 

events that eventually could help advance the landslide early warning system.  
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