UgameFeature: Automatic Code Generation for Unity Game Projects

Joshua Kritz®?, Mart de Roos®™®, Luis Ferreira Pires®¢, Jodo Luiz Rebelo Moreira

d

and Giancarlo Guizzardi®®

Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, The Netherlands

Keywords:

Abstract:

Model-Driven Engineering, Automatic Code Generation, Unity, Game Software.

Computer games are complex software systems, which means that their development requires some level of
programming skills. However, their design also involves the creation of game objects (characters, scenarios,
etc.), animations and story lines, which are designed by game domain experts, who in general have minimal
(or no) programming skills. Game engines have been developed to facilitate game development by reducing
programming efforts and enhancing productivity, but we observed that most of these engines still require
programming skills in order to be used. In this paper, we discuss how Model-Driven Engineering technologies,
particularly metamodelling and model transformations, can be used to facilitate game development. We define
a Domain Specific Language called UGameFeature to be used by game designers to define games that can be
automatically transformed into scripts that can be executed by the Unity game engine. In order to facilitate
the code generation step, we defined an intermediate metamodel, so that structural differences between the
UGameFeature metamodel and the Unity engine scripts can be accommodated by an intermediate model-
to-model transformation. We claim that with this approach we could define a streamlined process to go from
game design to game implementation, in this way surpassing the benefits already offered by game engines. We
also discuss some practical obstacles of applying MDE techniques and give recommendations to practitioners

who want to apply them in their projects.

1 INTRODUCTION

The game industry has been growing in the last years,
providing a total revenue of over US$ 170 billion in
2020 (Wijman, 2021), and attracting a lot of com-
mercial interest. Computer games are complex soft-
ware systems, which require some level of program-
ming skills in order to be produced. However, their
development also involves some creative design in
which game objects (characters, scenarios, etc.), an-
imations and story lines are defined. These tasks
are often performed by game designers with artistic
skills, but minimal or no programming skills. This
means that the game design and programming tasks
should somehow be separated from each other, simi-
larly to how HTML/CSS and programming languages
like JavaScript and Java are used in web applications
to separate layout from functionality, respectively.

a4l https://orcid.org/0000-0002-6661-6292
b https://orcid.org/0000-0001-5551-4488
https://orcid.org/0000-0001-7432-7653
4@ nhttps://orcid.org/0000-0002-4547-7000
¢ https://orcid.org/0000-0002-3452-553X

o

Kritz, J., de Roos, M., Pires, L., Moreira, J. and Guizzardi, G.
UgameFeature: Automatic Code Generation for Unity Game Projects.
DOI: 10.5220/0010990000003119

Games engines have been developed lately to fa-
cilitate game development by reducing programming
efforts and enhancing productivity. These engines
provide most of the code necessary to implement
games, and some of them do not require any pro-
gramming by supporting visual languages to describe
game objects and events, like Construct! or Stencyl”.
However, industry still favours more robust and ma-
ture engines that demand some programming skills,
like Unity® and Unreal* (Toftedahl, 2021). Unity is
the most popular engine amongst novice developers,
and therefore in this paper we use it as a game imple-
mentation platform.

This paper presents an approach based on Model-
Driven Engineering (MDE) technologies to facilitate
game development on top of the Unity game en-
gine. Using MDE will provide both a way to ab-
stract from programming language constructs and to
generate code (semi-)automatically (Brambilla et al.,

Uhttps://www.construct.net/en
Zhttps://www.stencyl.com/
3https://unity.com/
“https://www.unrealengine.com/en-US/

371

In Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2022), pages 371-378

ISBN: 978-989-758-550-0; ISSN: 2184-4348

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

2017). We defined a Domain-Specific Language
(DSL) called UGameFeature that allows game de-
signers to define their games in terms of game compo-
nents without having to worry about implementation
(programming) issues. We also defined an interme-
diate metamodel that represents the facilities of the
C#-based scripting language supported by Unity. The
structural differences between UGameFeature and the
scripting language have been accommodated by a
model-to-model transformation that we have also de-
fined. Finally, we defined a model-to-text transforma-
tion that generates game scripts that can be executed
by the Unity engine. This approach makes it possi-
ble to go from game design to game implementation
through a chain of automated steps, with potential
productivity benefits. This paper also discusses the
practical obstacles of performing these steps and give
recommendations to practitioners who want to apply
MDE techniques in their projects.

This paper is further structured as follows: Sec-
tion 2 describes the methodology applied in this work,
by introducing the artefacts and techniques, Section 3
presents and justifies the metamodels we developed,
Section 4 discusses our transformations, Section 5
discusses the transformation chain obtained by com-
bining the metamodels and the transformations and
how this transformation chain has been validated,
Section 6 discusses some related work and Section 7
gives our conclusions and identifies topics for future
work.

2 METHODOLOGY

This work has originated from a project that has been
performed by a group of Master students of a Model-
Driven Engineering course. This project has aimed at
developing an initial solution to offer proper abstrac-
tions to game designers and at the same time auto-
mate code generation. Our goal has been to support
the most relevant abstractions and to produce playable
games as prototypes, not complete game products.

Our solution starts with a model of a game and
generates code that can be executed by the Unity en-
gine. To achieve this, we developed the following
artefacts:

e The UGameFeature Domain Specific Language
(DSL) that allows game designers to describe
games. Since this is a simple proof-of-concept
only the UGameFeature metamodel has been fully
defined, which means that the concrete syntax of
this DSL has been ignored.

e The GameProgram metamodel that serves as an

372

intermediary component between the game design
and the game implementation.

e The U2P model-to-model transformations be-
tween the UGameFeature models (source) and the
GameProgram models (target).

o The M2T model-to-text transformation that gen-
erates the Unity script code from GameProgram
models.

This project has been implemented using the
Eclipse modelling tools. Both metamodels have been
specified using the Ecore tools in the Eclipse Mod-
eling Framework, the model-to-model transformation
has been written in the QVT Operational Mappings
language and the model-to-text transformation has
been written in Acceleo. Each artefact has been prop-
erly tested before being integrated in the final solu-
tion.

Figure 1 shows the transformation chain of the
project. A UGameFeature model that is an instance
of the UGameFeature metamodel is given as input to
the U2P model-to-model transformation, which gen-
erates a GameProgram model that is an instance of
GameProgram metamodel. The GameProgram model
is then used as input to the model-to-text transforma-
tion, which generates code in the scripting language
supported by Unity.

Each artefact of our solution is further dis-
cussed in the remaining sections. These artefacts
can be found at https://gitlab.utwente.nl/m7700446/
ugamefeature-mde.

3 METAMODELS

This section presents and justifies the metamodels de-
fined in this work.

3.1 UGameFeature Metamodel

Although some game design languages already exist,
as far as we could observe they are too close to the
programming level, so they are difficult to understand
by game designers with limited programming skills.
This inspired us to define the UGameFeature DSL,
which we discuss here in terms of its metamodel.

UGameFeature metamodel has been defined to
represent actions and components. Two main goals
have guided the definition of the UGameFeature lan-
guage elements: we should be able to define the most
basic games, like e.g., ’Super Mario’, using this lan-
guage, and the language should be easy to use by
game designers, i.e., the language should be intu-
itively appealing to them.

UgameFeature: Automatic Code Generation for Unity Game Projects

QVT OM Acceleo
transformation transformation
UGameFeature GameProgram
MetaModel ™. USes ”Ses/’ MetaModel uses hasOutput
L o
> U2pP M2T >
= . </>
UGameFeature , hasinput . GameProgram
Y p! hasOutput Model haslnput Executable

Model

code

Figure 1: Transformation chain.

The main metaclasses of this language are
GameObject, GUIelement and DataManager. A
GameObject in a game can be used to represent the
player, the enemies, the stage and everything that is
part of the game world. A DataManager contains
Data elements, which are the global information con-
cerning the game, like lives and scores, which are
used in all types of games. A GUlelement is not nec-
essary, but it is usually paired with a Data object to
show information to the player.

We also represent the actions of the game, which
are the global game events that are not necessarily
triggered by the player. In our metamodel, we de-
fined basic actions like the creation and destruction of
objects, addition of force to an object, and changes
to global variables. A Movement encapsulates actions
that allow the objects to move. Two types of move-
ments have been defined, namely platformer and top-
down. A Collision is defined in a game object and
can trigger an action. Figure 2 shows only the most
important metaclasses of the UGameFeature meta-
model, while the complete metamodel has 22 meta-
classes.

Figure 2 shows that a GameObject can perform
different types of actions, which can be distinguished
by how they are related to the GameObject element.
There are four alternatives, namely, through collision
triggers, as a start or update relation, or via an Ac-
tionKey. Start and Update are methods of the Unity’s
Monobehaviour class, where start defined the actions
to be executed when the object is created and up-
date defines actions executed in every frame of the
game. A collision trigger represents a contact be-
tween game elements, and it happens when an ob-
ject touches another specific object. Finally, the Ac-
tionKey represents the traditional player interaction in
which a player presses a button and something hap-
pens. In order to test the UGameFeature metamodel,
we represented a simplified version of *Super Mario’
and a Minefield game with this metamodel by using
the Sample Ecore Model editor. We concluded that
the UGameFeature metamodel was suitable for repre-
senting the main aspects of these games.

UgameFeature is still preliminary. Its metamodel
allows the definition of only small number of games
with limited features. In addition, there is the design
limitation that different GameObjects and different
components cannot reference each other in any way.
However, in our tests we designed complete games
with objects that interact with each other and showed
that it is possible to work around this limitation.

3.2 GameProgram Metamodel

The GameProgram metamodel has been defined to
capture the C# main programming concepts. Figure 3
shows the most important metaclasses of the Game-
Program metamodel, while the complete metamodel
has 20 metaclasses. Although it has been inspired by
the scripting language supported by Unity, the Game-
Program metamodel was defined to be as indepen-
dent as possible of any specific platform, so that it
could be used to model any program written in a C#-
based scripting language like the language supported
by Unity.

Program is the root metaclass of this metamodel.
A program consists of many Files, which in turn con-
tain Namespaces, which define programming scopes.
Inside a namespace, InternalTypes can be defined,
which can be either a Class, Struct, Interface, Enum or
Delegate. Each InternalType can be assigned to func-
tionality in a specific way. For example, a Contain-
ment may contain members, functions and construc-
tors. In case a Containment is a Class, it can extend a
superclass.

To denote types not defined in the program rep-
resented by the model, the program can also refer
to external types, which are imported from some
namespace and have an identifier. This allows classes
and interfaces to be imported, extended, and imple-
mented.

In order to test the GameProgram metamodel, we
represented the Unity scripts for the simplified *Su-
per Mario’ and Minefield games as instances of this
metamodel, and translated these models initially by
hand to the actual Unity scripts. We concluded that

373

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

{ 5] Movement [GameObject H Game [l pataManager
T speed : Elnt [0..1] movement = name : EString [0..1] dataManager = name : EString
[0.*] gameobjects
[0.] start —— S
[0.] guiElements
8 Colision 0.] colision [0.4] coftrols
A GameAction ‘ i] GUIEtement [1.1] data
= form : ColisionTypes = Square .
[0-] update = name : EString
= type : DataTypes = Integer
[0.] interaction = name : EString
| [Actionkey

= key : EString

= pressType : KeyType = Instant [1.*] execute

% DataChange

= value : EString [1..1] data

Figure 2: UGameFeature metamodel.

the GameProgram metamodel was suitable for rep-
resenting the main programming aspects required to
implement these games.

4 TRANSFORMATIONS

This section discusses the transformations developed
in this project.

4.1 U2P Model-to-Model
Transformation

The intermediate (GameProgram) metamodel was in-
troduced to represent the programming concepts of
a C#-based runtime environment, like the one sup-
ported by the Unity engine. This means that a
model-to-model transformation had to be developed
to solve the structural differences between the source
(UGameFeature) and target (GameProgram) meta-
models, while incorporating some implementation
details.

Although the GameProgram metamodel is quite
general in its representation of programming con-
cepts, the U2P model-to-model transformation has
been heavily centered around the support offered by
Unity. This has been necessary since the result-
ing GameProgram model should match the capabil-
ities supported by the Unity engine in order to be
executable. The transformation was defined using
the QVT Operational Mapping transformation lan-
guage (Object Management Group, 2016). Figure 4
shows the outline of the transformation in the Eclipse
Overview. The transformation consists of 8 map-
pings, 3 helpers, 3 queries and 9 properties.

In this transformation, each UGameFeature model

374

is transformed into one GameProgram model, which
has a program as root element. Due to our use of
Unity, we needed to create external types (as proper-
ties) for the native types of the Unity Engine names-
pace. Each game element (GameObject, GUIEle-
ment, or DataManager) of the source model is trans-
formed into a File and a Class in the target model.
Members and methods of a target class are created
based on the game actions and game components of
the element represented by the class. Each action or
component can create many members, but the meth-
ods are usually already present from the MonoBe-
haviour structure extended by the game classes and
so they only modify the body of their related meth-
ods. Methods are defined from the same relations
that bring about the action types. Methods start and
Update are both native methods for MonoBehaviour
classes, and the collision methods are created by col-
lision objects. From the action types, only ActionKey
does not define its own methods, since it only extends
the existing update method with an if statement. The
processing of the components that only modify meth-
ods was done using helpers. For example, the code in
Figure 5 represents the transformation of a UGame-
Feature Data into a get Method, to be included in the
DataManager Class.

We debugged and tested our transformation with
the models used to test the metamodels mentioned
in Section 3, which means that we applied the U2P
transformation to the UGameFeature model of the
simplified Super Mario and minefield games, and
compared the results with the GameProgram models
of these games, respectively. In this way, after all er-
rors were removed, we confirmed that the target mod-
els generated by the U2P transformation indeed cor-
respond to the intended ones, showing that the trans-

UgameFeature: Automatic Code Generation for Unity Game Projects

0.4] typedefs %] Internatype | B externalType |
= accessability : AccessModifier = public < importedFrom : EString
0.1] namespace S type: EType = class
] Namespace
[0.1] outerNamespace 7' namespace : EString (0. typedefs
£ using : Estring
@ getrullNamespace() : EString
1
[0.4] innerNamespaces 9 rypever
H struct 7 identifier : EString
= base: EPrmitiveType = int = specifer Specifer = none
@ getType(: EType
@ getName() : Estring
@ getNestedName() : EString
@ getQualifiedNamey): EString
0.1] owner @ getNamespace() : EString
0.4] implements
[MemberDef . {)
1 members 5] Containment

< identifier : EString
© accessability : AccessModifier = public B Class 0.1] baseType

= specifier : Specifier = none
4 S o
[0.1] owner
0.%] methods

J/[o.) constructors l

? getType() : EType
‘ [constructorDef B parameter B MethodDef @ getName() : EString
= accessability : AccessModifier = public 0.4 parameters 7 identifier : EString T identifier : EString [1.1] returnType @ gethestedName(: EString
= specifier : Specifier = none s = specifier : VarSpecifier = none [0.*] parameters = A = public T getQuali Estring
&7 body : EString = specifier : Specifier = none @ getNamespace() : Estring
5% body : EString

[1.1] type T

[1.1] type

Figure 3: GameProgram metamodel.

v | UgameTransform mapping Unity::Data::Data2Get(): Prog::MethodDef{
Z monoBehaviour : Prog:ExternalType accessability := AccessModifier::public;
returnType := toType(self.type);

L wector2 : Prog:ExternalType
identifier := "Get"+self.name.firstToUpper();

i ;i‘ib:i};;:E;?i'rj;:::wype body += “"return this."+self.name + ';';
L collider: Prog:ExternalType i .

I collision : Prog:ExtemalType Figure 5: M2M from Data to Method.

L gameObject : Prog:ExternalType

[template public generateMethad(method: MethodDef)]

£ image: Prog:ExtemalType [generateFunction{method. accessability,

i FIXED_MAMESPACE : String method. specifier,

main() method. returnType.getQualifiedName(),
Unity: Actionkey:SetActionKeyBody(in upd method.identifier,

Unity: Trigger:5etTriggerBody(in triggermet method.parameters,

. ;) . . method. _body)/]
Unity::GameAction:Action2Body(in creatiol [/template]

toType(in type:DataTypes) . .
toTypelin_typeEPrimitiveType) Figure 6: M2T from Method to code.

toType(in _type:TypeDef)

4., Unity:Game:Unity2Prog() script code in order to be executed by the Unity en-
4, Unity:GameQbject:GameObj2Class() gine. In order to obtain this script code, we defined
4, Unity:GUIElement:GUIElement2Class() a model-to-text transformation written in Acceleo”,
£ Unity:DataManager:DataManager2Class() which is an Eclipse-based code generation tool. Ac-
% Unity:Data:DataZMember() celeo is therefore a proper match for the other arte-

<, Unity:DatanData2Get()
<, Unity:DatazData25et()
4, InternalType:internal2File()

facts developed in this project, particularly the Game-
Program metamodel defined using Ecore.
Our Acceleo model-to-text transformation gener-

Figure 4: U2P model-to-model transformation outline. ates script code for the GameProgram model elements
according to a template. Since the GameProgram
formation has been correctly implemented. metamodel is conceptually very close to the program-

ming concepts of the runtime platform, this transfor-
mation ended up being quite straightforward. For ex-
ample, the code in Figure 6 is the template that trans-
form the Method class into code.

4.2 Code Generation

At this point, the GameProject model that represents
a game program still needs to be serialised in terms of Shttps://www.eclipse.org/acceleo/

375

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

Once the model-to-text transformation was devel-
oped, the final step of the transformation chain could
be tested. This has been done by generating code
from the GameProgram models of the simplified Su-
per Mario and Minefield games and importing the re-
sulting code into Unity projects. This procedure has
been used to debug the transformation, until no errors
remained. Therefore these tests also served as a proof
of concept for our transformation chain. The code
generated with our model-to-text transformation uses
some specific features of the Unity Engine, show-
ing that the generated program is compatible with the
Unity platform.

We are aware that these test procedures are
not comprehensive, however we made sure children
Game Objects and Prefabs could be used without
problems. Since these are powerful capabilities, by
enabling them in the code generation step we al-
low game developers to use some rather sophisticated
Unity capabilities.

S RESULTS

The final application was obtained by integrating the
metamodels and transformations in a single transfor-
mation chain. Although we have not produced a fully
encapsulated application that encompasses the whole
transformation chain, we rely on the Eclipse facilities
to perform the automated steps of the transformation
chain.

To use our application, a game designer needs to
define a model of a game using UgameFeature. Since
we refrained from defining a concrete syntax, this
model needs to be produced using the Ecore EMF ed-
itor. The definition of a concrete syntax is an obvious
necessary improvement of the application, but it has
been neglected for the time being since we were more
interested in demonstrating the core of the transfor-
mation chain (the metamodels and transformations).

A game designer can then execute the U2P trans-
formation on the game model in an Eclipse QVT
OM project, producing in this way the GameProgram
model. This can be done by running a QVT Opera-
tion Transformation Run Configuration in Eclipse that
triggers the transformation with proper input and out-
put models.

Once the GameProgram model is obtained, the
game designer can run the Acceleo transformation
that is defined in an Eclipse Acceleo project by using
an Acceleo Application Run Configuration that runs
Acceleo with the template to generate script code us-
ing the GameProgram model as input. Alternatively,
we could use Acceleo’s facilities to trigger transfor-

376

mations using an Ant build or a Maven script. Since
both transformations have been defined in the same
platform, even if we have two separate projects for
each transformation, respectively, the Acceleo project
can refer to the output of the QVT OM project re-
sult. This means that it is not necessary to copy the re-
sulting GameProgram model from one project to the
other. It would be convenient to have this transfor-
mation streamlined within an one-click application,
however we have not tried that as we focused on the
core of the transformation chain.

Once the files with script code have been gener-
ated with Acceleo, the last step is to import them into
a Unity project. The scripts have to be associated
to the GameObjects while also adding the necessary
components to match the restrictions described in the
model, i.e., having a RigidBody or collision boxes.
The game designer should keep notes of the names of
objects, and more importantly, the tags of those ob-
jects as they are usually referenced in the code, since
using names that do not match the names used in the
model will lead to errors. This step creates a game in
Unity as it was initially modelled by the designer.

Figure 7 shows a screenshot of a Unity project
to which the code generated with our transformation
chain has been imported. This project shows the sim-
plified Super Mario game that we used to test the fea-
tures of the project. The game designer defined the
four game objects shown in the screen (wizard, bat,
ghost, and amoeba) along with some game actions by
instantiating the UGameFeature metamodel. Later,
with the game scripts generated, the game designer
can configure the specific type of the game objects,
e.g., the wizard as Character and the others as Enemy.
At the bottom of the Unity IDE are the scripts gen-
erated by our project (Bullet, Character, etc.) and at
the left side, under SampleScene are the game objects
that were modeled. This game is playable and works
as intended, and has been generated without writing a
single line of scripting code.

This project had some practical obstacles, the
most notables were with the game metamodel and
implementation choice. Concerning the game meta-
model, it was challenging to define which of the game
components were both necessary and sufficiently sim-
ple for creating games. Balancing those character-
istics is an important factor when designing an ab-
stract game metamodel. Concerning the implemen-
tation choices, we had the obstacle that many of the
game features can be implemented in different ways,
and determining the most suitable implementation for
the automated creation was not simple. These chal-
lenges are the most stringent ones, not only for MDE
application in game development, but for MDE-based

= Hierarchy H ne & Game

+ - B >~ 1 @ @ & v g0 fHy v X W~ Gzmos ¥ o

< Sample:

Scripts

DataMana

) one
Bullet Character Enemy TextDiepla TextDispla e =

UgameFeature: Automatic Code Generation for Unity Game Projects

tor
Character
Tag Player = Layer Defa

Transform @

Default

Figure 7: Unity project of the simple Super Mario game example.

projects in any application domain.

Although our approach presents an abstraction of
the programming part of a game engine, the UGame-
Feature metamodel to be used by game designers was
inspired by the elements of the Unity game engine.
One clear future direction is to define an even more
abstract metamodel that can be conceived in collab-
oration with game developers, possibly through the
development of a reference ontology of games. In
addition, the development of metamodels of other
game engines, along with the transformations to/from
UGameFeature, can enable not only the code gener-
ation for the specific engines, but also facilitate the
interoperability among them.

6 RELATED WORK

In this section, we discuss some related work that
aimed at facilitating game programming by applying
MDE. The recent literature review on Model-Driven
Game Development (MDGD) (Zhu and Wang, 2019)
identifies over 30 initiatives, and classifies them into
some categories. The *Use game engines or equiv-
alent software’ category is the most relevant for us,
which covers four approaches based on Unity as main
tooling environment. Although the approach for de-
veloping serious games with Unity (Aouadi et al.,
2016) introduces an interesting DSL, it is oriented to
pedagogical experts, representing concepts like ludic
resources and activities. Another approach for devel-
oping serious games that uses Unity (Matallaoui et al.,
2015) extends the Gamification Modeling Language
and provides transformations for JSON. Although it
is a relevant work and generates 'ready-to-use’ code

(for an intermediary application), it only uses Unity
as a study case and is oriented to gamification rather
than gaming. The other two approaches are superfi-
cial and do not present implementation details.

GAMESPECT (Geisler, 2019) is a DSL with
aspect-oriented programming features that supports
game-specific DSLs, also providing a framework to
assist game engine users to balance their games.
This work overlaps with our approach in the attempt
to automatically generate code to assist the devel-
opers of a specific engine (Unreal Engine 4), thus
limiting the scope to this engine. Similarly, the
Domain-Specific Game Development approach (Fur-
tado, 2012) proposes a model-driven development
methodology meant to allow game developers to ef-
ficiently develop games by applying software product
lines, which enables the generation of games from the
same ’family’. Differently from our approach, both
approaches aim at assisting experienced developers,
in contrast to novice ones.

The MDGD approach presented in (do Prado and
Lucredio, 2015) combines multiple DSLs with design
patterns to provide flexibility and code generation in-
tegrated to manual coding for game developers. Al-
though it has a purpose similar to ours, the major dif-
ference is that their application needs to be combined
with manually created code, not removing the need
to program, which has been our main goal. Another
closely related work is the Casanova DSL (Abbadi
etal., 2015; Abbadi, 2017; Di Giacomo, 2018), which
was created to reduce the cost for developing games,
making coding easier for game developers. However,
this approach still offers a programming language that
requires its users (game designers) to write programs.

We observed that each of these initiatives reported

377

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

a positive impact on the productivity of game devel-
opment by using MDE. The main difference from our
approach is that they have aimed at assisting devel-
opers to obtain safer and better code, whilst our main
goal has been to abstract from programming issues so
that game designers are able to create games without
the need of writing any code.

7 CONCLUSIONS

MDE-based game development is not novel. The
main difference of our approach to others is that we
offer an abstraction of game programming aiming
at assisting novice game designers in creating their
games, without the need of changing the generated
code. Although this work is limited to the scope of
game development for the Unity engine, the results
presented here offer ample opportunities for reusabil-
ity, since we believe that they can be easily ported to
other engines and/or development methods. There-
fore, this approach has also potential for facilitating
interoperability of game engines.

In this paper, we claim that MDE can enable game
development without any manual code implementa-
tion, and that MDE allows faster creation of games.
Further, we argue that the UgameFeature DSL is sim-
ple enough for novice users to understand, yet use-
ful enough to represent simple games. Although in
this project we showed that this DSL allows the rep-
resentation of some popular (simple) games, future
work should include a usability evaluation with pro-
fessional game developers.

UgameFeature has limitations and its metamodel
should be improved to address them. The most im-
portant is the metamodel simplicity, as it allows to
model only a limited number of games. For example,
right now it is not possible to model multiple levels,
changing scenarios or animations. An improved ver-
sion of this language with these capabilities will allow
designers to model more elaborated games.

Alternatively, one could define an even more ab-
stract metamodel with concepts that are not neces-
sarily inspired by game engines, but in collaboration
with game developers, possibly through the develop-
ment of a game ontology. Instances of this ontology
could then be transformed to models that can be used
to generate code that runs in some game engine, as
the UGameFeature metamodel that allows the game
to be implemented in Unity. This discussion leads
to a more fundamental question in MDE, which is
how to determine the number of intermediary mod-
els that are required to transform an abstract model
that is sufficiently close to the *world of the domain

378

expert’ (game designer in this work) to the most con-
crete code that can be executed in some runtime envi-
ronment.

REFERENCES

Abbadi, M. (2017). Casanova 2, A domain specific lan-
guage for general game development. PhD thesis.

Abbadi, M., Di Giacomo, F., Cortesi, A., Spronck, P,
Costantini, G., and Maggiore, G. (2015). Casanova:
A simple, high-performance language for game devel-
opment. In Joint International Conference on Serious
Games, pages 123—-134. Springer.

Aouadi, N., Pernelle, P., Ben Amar, C., Carron, T., and Tal-
bot, S. (2016). Models and mechanisms for imple-
menting playful scenarios. In 2016 IEEE/ACS 13th In-
ternational Conference of Computer Systems and Ap-
plications (AICCSA), pages 1-8.

Brambilla, M., Cabot, J., and Wimmer, M. (2017). Model-
Driven Software Engineering in Practice. Morgan &
Claypool Publishers, 2nd edition.

Di Giacomo, F. (2018). Metacasanova: a high-
performance meta-compiler for domain-specific lan-
guages. PhD thesis.

do Prado, E. E and Lucredio, D. (2015). A flexible
model-driven game development approach. In 2015
IX Brazilian Symposium on Components, Architec-
tures and Reuse Software, pages 130-139.

Furtado, A. W. B. (2012). Domain-Specific Game Develop-
ment. PhD thesis.

Geisler, B. (2019). GAMESPECT: A Composition Frame-
work and Meta-Level Domain Specific Aspect Lan-
guage for Unreal Engine 4. PhD thesis, Nova South-
eastern University.

Matallaoui, A., Herzig, P, and Zarnekow, R. (2015).
Model-driven serious game development integration
of the gamification modeling language gaml with
unity. In 2015 48th Hawaii International Conference
on System Sciences, pages 643—-651.

Object Management Group (2016). Meta Object Facility
(MOF) 2.0 — Query/View/Transformation specifica-
tion. Standard formal/2016-06-03, Object Manage-
ment Group.

Toftedahl, M. (2021). Which are the most commonly used
game engines? Available on the site https://www.
gamedeveloper.com/.

Wijman, T. (2021). Global games market to generate $175.8
billion in 2021. Available on the site https://newzoo.
com/.

Zhu, M. and Wang, A. L. (2019). Model-driven game de-
velopment: A literature review. ACM Comput. Surv.,
52(6).

