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Abstract 
 
Rail wear management based on accurate rail wear prediction is essential for railway maintenance. 
The implementation of rail wear prediction models in maintenance decision tools is not yet 
available due to detailed modelling and the absence of direct coupling with operational 
conditions. A method that does not provide any confidence interval on the prediction is not very 
helpful if one wants to use the results of the prediction for maintenance decision-making and there 
is variation in the input. Therefore, in this study a wear prediction model that does take into account 
these limitations is used to predict the amount of rail wear with certain confidence bounds. The 
uncertainty in the output of the model is quantified. This is realized by considering probability 
distribution functions for the input parameters and analytical analyses. The results obtained from 
these analyses are then compared with field measurements and a good agreement is found. 
 
Keywords: rail, wear, maintenance, prediction, modelling. 
 

1 Introduction 
Rail wear is an inevitable damage mechanism of the railway tracks [1-3]. Although several detailed 
rail wear prediction models are available in literature, implementation of these models by 
infrastructure managers has not been realized yet. The reason for this is the absence of a rail wear 
model that couples the operational conditions as measured by infrastructure managers directly to 
the rail wear rate prediction. The models that are currently used and enable this coupling are data 
driven models which are based on historic data and experience from the past [4]. The disadvantage 
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of these models is that the rail wear rate prediction becomes unreliable for operational conditions 
that are different from the past. In order to ensure the reliability of the wear rate prediction the 
wear model as proposed by [5] is used in this study. This wear prediction model is argued to be 
efficient as it replaced the time-consuming vehicle dynamic simulations with meta-models. The 
limitation of this model is that it is deterministic. Hence, before it can be utilized for rail wear rate 
prediction such that it is accurate, reliable and efficient for infrastructure managers, the uncertainty 
of the prediction needs to be determined. Uncertainty is often expressed through probability 
distribution functions [6]. In this study the uncertainty propagation in the wear prediction model 
is calculated using an analytical approach. This is realized by considering probability distribution 
functions for the input parameters, and analyzing the effect of the input uncertainty on the model 
response variation. The results obtained from the uncertainty propagation approach are then 
compared with field measurements. The uncertainty calculation process can become very time 
consuming if a large number of evaluations is required, which is true for the considered case study. 
Therefore, an approach to reduce the number of evaluations is also proposed in this study.  
 

2 Methods 
The process of the rail wear prediction that is used is schematically depicted in Figure 1. The meta-
models in this process are in the form of second order polynomials and are defined as follows: 

 

𝑦𝑦(𝒙𝒙) =  𝛽𝛽0 +  ∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖=1 + ∑ 𝛽𝛽𝑘𝑘+𝑖𝑖𝑥𝑥𝑖𝑖2𝑘𝑘

𝑖𝑖=1 + ∑ ∑ 𝛽𝛽𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑘𝑘
𝑗𝑗>𝑖𝑖

𝑘𝑘−1
𝑖𝑖=1   (1) 

 
where 𝑦𝑦 is the wear area in mm2, 𝒙𝒙 is the vector of 𝑥𝑥𝑖𝑖 which are the various input parameters and 
𝛽𝛽𝑖𝑖 are the fitted model parameters. 
 

There are nine input parameters (𝑘𝑘 = 9) in the rail wear prediction model which include 
axle load, curve radius, vehicle speed, longitudinal and lateral stiffness of the primary bogie, rail 
profile geometry, material hardness, friction coefficient and rail cant. Furthermore, the rail profile 
geometry is represented by the vertical wear depth at the rail head.  
 

 

Figure 1: Rail wear estimation process by means of meta-models [5]. 
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The analytical approach of the uncertainty propagation analysis calculates the mean (𝜇𝜇) 
and standard deviation (𝜎𝜎) of the response (in this case the wear area) [7]. The input parameters 
are also represented by a mean and a standard deviation. The probability distribution function (pdf) 
of both the response and input parameters are assumed to be normally distributed. However, from 
field measurements it is evident that the pdfs for the vertical wear depth, the hardness and the 
friction coefficient are not normally distributed. In this case multiple normal distribution are 
combined to obtain the actual distribution. The formulations for 𝜇𝜇 and 𝜎𝜎 for a second order 
polynomial meta-model are as follows [7]: 

 

𝜇𝜇(𝑥𝑥) =  𝛽𝛽0 + �𝛽𝛽𝑖𝑖𝜇𝜇𝑖𝑖
𝑖𝑖∈ℜ

+ �𝛽𝛽𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖2
𝑖𝑖∈ℜ

+ � � 𝛽𝛽𝑖𝑖𝑗𝑗𝜇𝜇𝑖𝑖𝜇𝜇𝑗𝑗
𝑗𝑗∈ℜ,𝑗𝑗≥𝑖𝑖𝑖𝑖∈ℜ

+ ��𝛽𝛽𝑖𝑖 + �𝛽𝛽𝑖𝑖𝑗𝑗𝜇𝜇𝑗𝑗
𝑗𝑗∈ℜ

�𝑥𝑥𝑖𝑖
𝑖𝑖∉ℜ

+ � � 𝛽𝛽𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
𝑗𝑗∉ℜ,𝑗𝑗≥𝑖𝑖𝑖𝑖∉ℜ

  

      (2) 

𝜎𝜎2(𝑥𝑥) =  �𝛽𝛽𝑖𝑖𝑖𝑖
2𝜎𝜎𝑖𝑖4

𝑖𝑖∈ℜ

+ � � 𝛽𝛽𝑖𝑖𝑖𝑖
2𝜎𝜎𝑖𝑖2𝜎𝜎𝑗𝑗2

𝑗𝑗∉ℜ,𝑗𝑗≥𝑖𝑖𝑖𝑖∈ℜ

+ ��𝛽𝛽𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑖𝑖𝜇𝜇𝑖𝑖 + �𝛽𝛽𝑖𝑖𝑗𝑗𝜇𝜇𝑗𝑗
𝑗𝑗∈ℜ

+ �𝛽𝛽𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗
𝑗𝑗∉ℜ

�

2

𝜎𝜎𝑖𝑖2
𝑖𝑖∈ℜ

  

(3) 

Due to the large number of wheels it has been decided to divide the total number of wheels 
into 40 discrete bins (defined in terms of vehicle type, wheel type, axle load and vehicle speed) 
and then the evaluation of mean and standard deviation is performed for the obtained bins and 
subsequently accumulated.  
 

In order to validate the results of the prediction model the results of the predictions are 
compared with field measurements. For this purpose, a case study between the cities Weesp and 
Almere is selected. The rail profiles of the considered track are measured by means of the 
RailMonitor over a period of nine months. The rail profile measurements are conducted to 
determine the amount of rail material loss.  
 

3 Results 
As stated in the previous section, the analytical uncertainty propagation approach considers only 
normally distributed pdfs. However, the measured vertical wear depth, friction coefficient and 
material hardness distributions do not meet the requirements of a normal distribution, see Figure 
2. Therefore these distributions are approximated with multiple normal pdfs. An example of such 
an approximation with multiple normal pdfs is depicted in Figure 3 for the friction coefficient.  
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(a) (b) (c) 

Figure 2: Probability distribution functions for measured data. 

 

 
Figure 3: Multiple pdfs for the friction coefficient. 

 

The analytically predicted results for the considered case study are in agreement with the 
field measurements. Figure 4 compares the pdfs of the wear area for the analytical approach and 
the field measurements. From this figure it can be seen that the measured and predicted distribution 
functions for the rail wear area are not identical, but do have a considerable amount of overlap. 
The mean and standard deviation of the measured wear area are equal to 14.31 mm2 and 5.97 mm2, 
respectively, whereas the mean and standard deviation of the predicted wear area equal 20.81 mm2 
and 11.77 mm2. 

 
The large variation is due to the fact that rail wear is assumed to be uniform in the wear 

prediction model, which is not the case in reality. Local wear is induced due to velocity variations 
in the curve radius, braking, traction and hunting oscillation of the vehicle while entering and 
leaving the curve. Another source of the large variation is the (varying) friction coefficient. The 
wear prediction model can be improved by considering the actual pdf for the friction coefficient 
and including the above mentioned usage variations in the curved track. 
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Figure 4: Wear area results comparison. 

 

4 Conclusions and Contributions 
It can be concluded that for rail wear prediction the proposed analytical approach is effective for 
its computational efficiency and the lower number of evaluations required. Furthermore, the 
coupling between operational parameters and an efficient wear prediction model is achieved. The 
uncertainties have been evaluated through an analytical analysis and it can be concluded that the 
results from this analysis correspond to a large extent with the measured data.  
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