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Abstract In this paper we formulate the theory of nonlinear elasticity in a geo-
metrically intrinsic manner using exterior calculus and bundle-valued differential
forms. We represent kinematics variables, such as velocity and rate-of-strain, as
intensive vector-valued forms while kinetics variables, such as stress and momen-
tum, as extensive covector-valued pseudo-forms. We treat the spatial, material and
convective representations of the motion and show how to geometrically convert
from one representation to the other. Furthermore, we show the equivalence of our
exterior calculus formulation to standard formulations in the literature based on
tensor calculus. In addition, we highlight two types of structures underlying the
theory. First, the principle bundle structure relating the space of embeddings to
the space of Riemannian metrics on the body, and how the latter represents an
intrinsic space of deformations. Second, the de Rham complex structure relating
the spaces of bundle-valued forms to each other.
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1 Introduction

Identifying the underlying structure of partial differential equations is a funda-
mental topic in modern treatments of continuum mechanics and field theories in
general. Not only does every discovery of a new structure provide a better mathe-
matical understanding of the theory, but such hidden structures are fundamental
for analysis, discretization, model order-reduction, and controller design. Through-
out the years, many efforts were made to search for the geometric, topological and
energetic structures underlying the governing equations of continuum mechanics
and we aim in this paper to contribute to this search.

Geometric structure

The first endeavor in this journey began around 1965 by the work of C. Trues-
dell and W. Noll [1] on one side and V. Arnold [2] on the other side, where the
focus of the latter is on fluid mechanics. The common factor in both works was
differential geometry which introduced new insights to fluid mechanics and elas-
ticity in addition to simplifying many complications that are inherent in classical
coordinate-based formulations. The starting point in this geometric formulation
of elasticity is to represent the configuration of an elastic body as an embedding
ϕ : B → A of the body manifold B into the ambient space A .

From a conceptual point of view, an elastic body during a deformation process
is characterized by a few physical variables (e.g. velocity, momentum, strain, and
stress) and constitutive equations that relate these variables to each other. One of
the challenges in nonlinear elasticity is to understand the motion and deformation
separately. In literature there is an abundance of mathematical representations
addressing this issue, but usually feature the same physical variables. A recurrent
theme in the literature is to unify these different representations and show how
they are related to each other using tools of differential geometry.

One reason for this multiplicity of representations is that one can represent
each physical variable with respect to an observer attached to B (known as the
convective representation), an observer attached to A (known as the spatial repre-
sentation), or using two-point tensor fields on both B and A (known as the material

representation). Even though all three representations are equivalent, each has its
own advantages since some parts of the theory are more intuitive or have simpler
expressions in one representation compared to the others. Provided that one can
juggle between the three representations in a clear way that respects their geomet-
ric nature, there should be no problem in principle. In this respect, the differential
geometric concepts of pullback and pushforward have proven to be essential for this
smooth transition between the convective, material and spatial representations.

One of the important principles in geometric mechanics is that of intrinsicality
emphasized by Noll [3]. In his work, it was highlighted that the matter space B

should be conceptually and technically distinguished from any of its configurations
in the ambient space A . With this separation, one can identify which concepts are
intrinsic to the elastic body and which are dependent on some arbitrary reference

configuration. An important feature of this formulation is that the body manifold
B does not have an intrinsic metric and is merely a continuous assembly of parti-
cles equipped only with a mass measure. In other words, the body manifold is a
space that merely contains information about matter, but not of scale, angles or
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distances. On the other hand, a (constant) metric on B depends on the choice of
reference configuration and thus is a non-intrinsic property. Equipping the body
manifold with a Riemannian structure is in fact another source of multiplicity of
mathematical representations in the literature. One clear example of its conse-
quences is in representing strain and stress.

Intuitively speaking, strain is the difference between any two states of defor-
mation (i.e. a relative deformation) and not necessarily that one of them is an
unloaded (stress-free) reference configuration. In the literature one can find a very
large number of tensor fields that are used to describe the state of deformation.
The most common ones are the right Cauchy-Green and Piola tensor fields, used in
convective representations, and the left Cauchy-Green and Almansi tensor fields,
used in spatial representations. Using the Riemannian metrics on B and A one
can then define more tensorial-variants of these tensor fields by raising and low-
ering their indices. Each of these deformation tensor fields gives rise to a different
definition of strain and consequently a different stress variable. The stress rep-
resentations can be even doubled by distinguishing between mass-dependent and
mass-independent versions (e.g. the Kirchoff and Cauchy stress tensor fields in the
spatial representation).

Using tools from differential geometry, one can see that all the aforementioned
representations of deformation states are equivalent to only one intrinsic quantity!
Namely, the pullback of the Riemannian metric of A onto B by the embedding
ϕ. This time-dependent metric on B is an intrinsic quantity that allows one to
define strain without referring to an undeformed reference configuration. Based
on this geometric insight, it was further discovered by P. Rougee [4] that the
space of Riemannian metrics on B, denoted by M(B), played a fundamental role
in the intrinsic formulation of finite-strain theory. In particular, it was shown that
a point on the infinite-dimensional Riemannian manifold M(B) represents a state
of deformation while the rate of strain and stress are elements of the tangent and
cotangent spaces, respectively, at a point in M(B).

The construction of the Riemannian structure of M(B) has led to many find-
ings and is still an active area of research. The most profound one being that one
cannot simply define the strain to be the subtraction of two states of deforma-
tions (e.g. as in [5, Sec. 1.3]). Instead, one should take the curvature of M(B)
into account which led to the introduction of the logarithmic strain measure [6].
Another important finding is that the numerous objective stress rates used in
hypo-elasticity are equivalent to covariant differentiation on M(B) [7] and not all
of them are derivable from a Lie derivative as claimed in [5, Sec. 1.6].

Topological structure

An important feature of the geometric approach to continuum mechanics is the
separation between metric-dependent and topological metric-free operations. Iden-
tifying the underlying topological structure of the governing equations is funda-
mental for both analysis and discretization as well as it has the advantage of being
applicable to both classical and relativistic theories [8].

Physical variables in continuum mechanics are naturally associated to integral
quantities on either B or its configuration ϕ(B) in the ambient space. Mass, kinetic
energy, strain energy, and stress power are examples of such quantities. These
variables are in fact densities that should be integrated over B or ϕ(B) in order
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to yield a real number. This integration process is metric-independent and the
theory of integration over manifolds implies that the natural mathematical objects
to represent these densities are differential forms [9]. Similar to a function that can
be naturally evaluated at a point, a differential k-form can be naturally evaluated
on k-dimensional space.

In contrast to traditional formulations of continuum mechanics using vector
and tensor calculus, exterior calculus based on differential forms highlights this
difference between topology and geometry. Furthermore, it provides an elegant
machinery for differential and integral calculus that not only unifies numerous
operations and identities of tensor calculus, but also generalizes them to arbitrary
dimensions and coordinates.

It was shown by the work of Frankel [9] and Kanso et.al [10] that one needs
to use bundle-valued differential forms for representing solid and fluid mechanics
using exterior calculus. In particular, their work highlighted that tensor fields used
to represent the physical variables have in fact two legs that should be distinguished
from each other; a “form” leg and a “bundle-value” leg. The use of bundle-valued
forms clarified more the difference between the spatial and material representations
and showed that one can go back and forth by pulling-back or pushing-forward
the form leg only leaving the bundle-valued leg untouched.

An important application of studying the topological structure of continuum
mechanics is structure-preserving discretization which aims to develop numerical
schemes that represent the underlying smooth structures at the discrete level. The
celebrated de Rham complex is a typical example of such topological structure
which is fundamental for the development of Finite Element Exterior Calculus
[11] and Discrete Exterior Calculus [12]. The underlying complex structure of
linear and nonlinear elasticity has been thoroughly studied in [13,14,15] and its
application for developing numerical schemes is an active area of research [16,17,
18].

Objectives and main result of this paper

In this paper we focus on the formulation of nonlinear elasticity using exterior
calculus in a geometrically intrinsic manner. Throughout the paper we aim to
highlight the underlying geometric and topological structures of nonlinear elas-
ticity while treating the spatial, material and convective representations of the
theory. An overview of our formulation and the main result is depicted in Fig. 1.

The major contribution of this paper lies in its holistic approach that combines
1) the intrinsicality principle of [3], 2) the geometric formulation of deformation
using the space of Riemannian metrics M(B) by [4,6], and 3) the exterior calculus
formulation using bundle-valued forms by [10]. Compared to [4,6], the novelty of
our work lies in its coordinate-free treatment using exterior calculus. In addition,
we highlight the principal fiber bundle structure relating the space of Riemannian
metrics M(B) to the configuration space C of embeddings from B to A . This
hidden structure allows one to decompose the motion of the elastic body into a
pure deformation and a pure rigid body motion. In addition, it justifies why the
description of constitutive stress-strain relations can be most conveniently done
in the convective representation. Compared to [10,19], the novelty of our work is
that we treat all three representations of the motion, show how they are related
in exterior calculus, and emphasize their underlying de Rham complexes.
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Fig. 1: Overview of our intrinsic geometric formulation of nonlinear elasticity

Our formulation of nonlinear elasticity is distinguished by its minimalistic na-
ture which simplifies the theory to its essential intrinsic coordinate-free parts. We
show how the kinematics are naturally described using the tangent bundles TC

and TM(B) in addition to the space of vector fields Γ (TB) and Γ (TS), on B and
S respectively. This will include velocities and rate-of-strain variables. By identi-
fying these kinematic quantities with appropriate intensive vector-valued forms, the
momentum and stress variables will be naturally represented as extensive covector-

valued pseudo-forms, by topological duality. Furthermore, using Riesz representa-
tion theorem, we will construct appropriate Hodge-star operators that will relate
the different variables to each other. Not only does our intrinsic formulation reflect
the geometric nature of the physical variables, but also the resulting expressions
of the dynamics are compact, in line with physical intuition, and one has a clear
recipe for changing between the different representations. Finally, in order to target
a wider audience than researchers proficient in geometric mechanics, we present
the paper in a pedagogical style using several visualizations of the theory and
include coordinate-based expressions of the abstract geometric objects.

The outline of the paper is as follows: In Sec. 2, we present an overview of
the motion kinematics of an elastic body in an intrinsic coordinate-free manner
along with a separate subsection for the coordinate-based expressions. In Sec.
3, we discuss the deformation kinematics highlighting the role of the space of
Riemannian metrics for describing deformation of an elastic body. In Sec. 4, we
discuss the mass structure associated to the body which relates the kinematics
variables to the kinetics ones and highlight the intrinsicality of using mass top-
forms instead of mass density functions. In Sec. 5, bundle-valued forms and their
exterior calculus machinery will be introduced and shown how they apply to
nonlinear elasticity. In Sec. 6, we present the dynamical equations of motion

formulated using exterior calculus and then we show their equivalence to standard

formulations in the literature in Sec. 7. In Sec. 8, we discuss the principal bundle
structure relating the configuration space to the space of Riemannian metrics in
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(a) configuration (b) configuration space

Fig. 2: Illustration of the embedding ϕ : B → A of the elastic body B in the
ambient space A and its motion as a curve in the configuration space C .

addition to the underlying de Rham complex structure of bundle-valued forms.
Finally, we conclude the paper in Sec. 9.

2 Intrinsic motion kinematics

In this section we recall the geometric formulation of the kinematic variables and
operations that describe motion of an elastic body in a completely coordinate-free
manner. In such intrinsic treatment we do not identify the abstract body with a
reference configuration in the ambient space. We first describe the three represen-
tations of the motion and the various relations to go from one representation to the
other in a coordinate-free manner. The corresponding coordinate-based expression
will be presented in a separate section. It is assumed that the reader is familiar
with the geometric formulation of elasticity and differential geometry, especially
the topics of differential forms and fiber bundles. Due to its relevance to work, we
provide in the appendix a summary of fiber bundles while further background and
details can be found in [9,5,1].

2.1 Configuration and velocity

The geometric setting for an elastic body undergoing a deformation is as follows.
The material points of the body comprise mathematically a three-dimensional
compact and orientable smooth manifold B with boundary ∂B. This body manifold
is equipped with a mass-form µ̂ ∈ Ω3(B) representing the material property of mass
in the body, and we denote by X ∈ B a material particle. The ambient space in
which this body deforms is represented by a three-dimensional smooth oriented
manifold (A , g) with g denoting its Riemannian metric. Therefore following the
work of Noll [3], we completely split the body with its material properties from the
embodying space with its geometric properties. The structures of B and A express
these constant physical properties associated to each entity. In this work, we will
focus on the case dim(B) = 3. At the end of this paper we will comment on how
to treat other cases.

The configuration of the elastic body is represented by a smooth orientation-
preserving embedding ϕ : B → A , which represents a placement of the body in the
ambient space. With reference to Fig. 2a, we will denote the image of the whole
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body by S := ϕ(B) ⊂ A and we will denote by x ∈ S the spatial points of the
body. Since dim(B) = 3, also dim(S) = 3. The configuration space is thus the set
C := Emb∞(B,A ) of smooth embeddings of B in A which can be equipped with
the structure of a an infinite dimensional differential manifold [20]. A motion of
the elastic body is represented by a smooth curve cϕ : R → C , as illustrated in
Fig. 2b. Using the fact that an embedding is a diffeomorphism onto its image,
cϕ(t) =: ϕt represents a one-parameter family of diffeomorphisms ϕt : B → S.

The tangent vector to the curve cϕ at a given configuration ϕt is denoted by
ṽt ∈ TϕtC which defines a map ṽt : B → TS such that

ṽt : X ∈ B 7→
d

ds

∣∣∣∣
s=t

ϕs(X) ∈ Tϕt(X)S . (1)

Thus, the tangent space TϕtC is canonically identified with the (infinite-dimensional)
vector space Γ (ϕ∗TS), the space of vector fields over the map ϕ (i.e. sections of the
induced bundle ϕ∗TS as discussed in Appendix 10.1). We refer to ṽt ∈ Γ (ϕ∗TS) as
the material (Lagrangian) velocity field which describes the infinitesimal motion of
the body. This motion can be also described by the “true” vector fields vt ∈ Γ (TS)
or v̂t ∈ Γ (TB) (cf. Fig. 3) defined by

vt := ṽt ◦ ϕ−1

t , v̂t := Tϕ−1

t ◦ ṽt = Tϕ−1

t ◦ vt ◦ ϕt, (2)

with Tϕ−1

t : TS → TB denoting the tangent map of ϕ−1

t . While vt is referred to
as the spatial velocity field, v̂t is referred to as the convective velocity field. Using
the notation of pullbacks, the material, spatial and convective representations of
the body’s velocity are related by

v̂t = ϕ∗
t (vt), ṽt = ϕ∗

t,b(vt),

where by ϕ∗
t,b we mean pullback of the base point of vt considered as a map

vt : S → TS.
The material velocity field ṽt ∈ Γ (ϕ∗TS) is an example of a two-point tensor

field over the map ϕt : B → S (cf. Appendix 10.1). Another important example
of a two-point tensor field is the tangent map of ϕt which is usually denoted by
Ft ∈ Γ (T ∗B ⊗ ϕ∗TS) and called the deformation gradient. Thus, Ft := Tϕt. Note
that both ṽt and Ft are regarded as functions of X ∈ B and not x ∈ S. Thus, at

every X ∈ B, we have that Ft(X) : TXB × T ∗
ϕt(X)S → R defines a

(
0 1
1 0

)
two-point

tensor while ṽt(X) defines a
(
0 1
0 0

)
two-point tensor, both over the map ϕt.

2.2 Riemannian structure on B

While B represents the abstract (metric-free) assembly of material particles, its
embedding in the ambient space A is what enables observation and measurement
of physical properties and deformation using the metric (inner product) structure
of A which allows quantifying lengths and angles. The metric inherited by the as-
sociated configuration S = ϕt(B) from the ambient space A and its corresponding
Levi-Civita connection are denoted, respectively, by:

g : Γ (TS)× Γ (TS) → C∞(S), ∇ : Γ (TS)× Γ (T r
s S) → Γ (T r

s S).
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(a) spatial and convective velocity fields

s
p
a
ti
a
l

c
o
n
v
e
c
ti
v
e

m
at
er
ia
l

(b) commutative diagram

Fig. 3: Illustration of the body’s velocity field in its spatial representation vt ∈

Γ (TS) and its convective representation v̂t ∈ Γ (TB) and their corresponding com-
mutative diagram.

We will refer to g as the spatial metric and to ∇ as the spatial connection.
Every configuration ϕt ∈ C induces a Riemannian metric structure on B char-

acterized by

ĝ : Γ (TB)× Γ (TB) → C∞(B), ∇̂ : Γ (TB)× Γ (T p
q B) → Γ (T p

q B),

where ĝ := ϕ∗
t (g) denotes the convective metric defined such that

ĝ(û1, û2) = g(ϕt,∗û1, ϕt,∗û2) ◦ ϕt, ∀û1, û2 ∈ Γ (TB), (3)

while ∇̂ is the associated Levi-Civita connection of ĝ. For the case of vector fields
(i.e. p = 1, q = 0), ∇̂ is given by:

∇̂û1
û2 = ϕ∗

t (∇(ϕt,∗û1)ϕt,∗û2), ∀û1, û2 ∈ Γ (TB). (4)

The extension of the definition (4) to more general tensor bundles is done in the
usual manner using the Leibniz rule [21, Sec. 6.3]. We denote by M(B) the set
of all Riemannian metrics ĝ on B which plays an important role in finite-strain
theory, as will be shown later.

Remark 1 (Constant metric on B)

Note that it is quite insightful technically to differentiate between the abstract
body manifold with its intrinsic structure and its observations in the ambient space
[3]. In order to do so, one should refrain from identifying B with some reference
configuration ϕ0(B) for a given choice of embedding ϕ0 : B → A .

In many geometric treatments of nonlinear elasticity, one finds that the body
manifold is equipped with a constant Riemannian structure, denoted by G in [5,
22,23,24]. This metric is in fact inherited from A which can be seen from

G ≡ ĝ0 := ϕ∗
0(g),

and thus is a non-intrinsic quantity that depends on the arbitrary choice of the
reference configuration ϕ0.

This constant metric G usually makes appearance in the material represen-
tation only and its existence in fact adds unnecessary ambiguity to the theory.
For example, G is sometimes used to create tensorial variants (i.e. pull indices up
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or down) of variables represented in the convective description, making it non-
intrinsic. What usually causes more ambiguity is that usually it is assumed that
ϕ0 is some sort of identity map (between different spaces) and thus B is identically
ϕ0(B) and consequently G is the same as g, which makes no sense!

As we will show throughout this paper, one can formulate the governing equa-
tions of nonlinear elasticity without requiring this extra structure on B. Using
extensive variables in contrast to the more common intensive variables, we will
show later that even the material representation can be described in an intrinsic
manner.

While (g,∇) are used for spatial tensor fields and (ĝ, ∇̂) are used for convective
tensor fields, the analogous objects used for two-point tensors that appear in the
material representation are

g̃ : Γ (ϕ∗TS)× Γ (ϕ∗TS) → C∞(B), ∇̃ : Γ (TB)× Γ (T p
q B ⊗ ϕ∗T r

s S) → Γ (T p
q B ⊗ ϕ∗T r

s S).

The material metric g̃ is induced on B by a configuration ϕt ∈ C and is defined by
g̃ := ϕ∗

t,b(g) such that

g̃(ũ1, ũ2) = g(ũ1 ◦ ϕ−1

t , ũ2 ◦ ϕ−1

t ) ◦ ϕt, ∀ũ1, ũ2 ∈ Γ (ϕ∗TS). (5)

Furthermore, every ϕt induces on B the connection ∇̃ which allows covariant dif-
ferentiation of two point-tensors along true vector fields on B. For the case of a
vector field over the map ϕt (i.e. p = q = s = 0, r = 1), ∇̃ is constructed only using
the spatial connection ∇ by:

∇̃ûw̃ := ϕ∗
t,b(∇(ϕt,∗û)(w̃ ◦ ϕ−1

t )), ∀û ∈ Γ (TB), w̃ ∈ Γ (ϕ∗TS). (6)

On the other hand, the extension of the definition (6) to generic tensor bundles
requires the convective connection ∇̂ [25]. For instance, for the case p = r = 1, q =
s = 0 we have that ∇̃ûP̃ ∈ Γ (TB ⊗ ϕ∗TS) is defined by

∇̃ûP̃ (α̂, β̃) := û(P̃ (α̂, β̃))− P̃ (∇̂ûα̂, β̃)− P̃ (α̂, ∇̃ûβ̃), (7)

for any û ∈ Γ (TB), α̂ ∈ Γ (T ∗B), β̃ ∈ Γ (ϕ∗T ∗S). In elasticity, (6) is used for
covariant differentiation of the material velocity field, while (7) is used to define
the divergence of the first Piola-Kirchhoff stress tensor field.

Remark 2 (The material metric and connection)

i) While ĝt ∈ M(B) is a “true” time-dependent Riemannian metric on B with
∇̂ being its associated Levi-Civita connection, neither g̃ is a Riemannian metric
on B nor is ∇̃ the Levi-Civita connection of g̃.

ii) In the extension of ∇̃ for high order tensor fields in (7), the convective
connection ∇̂ on B is necessary. In principle, one could either use the time-varying
connection (4) associated to the current metric ĝt := ϕ∗

t (g) [25] or use the constant
connection associated to the reference metric G := ϕ∗

0(g) [24,5] (defined similar to
(4) using ϕ0 instead). While the former option allows a fully intrinsic description,
it suffers from the mixing of the convective and material representation. Thus, the
standard choice in the literature is to extend ∇̃ using the reference metric G.

iii) An important benefit of our formulation based on bundle-valued forms is
that we will extend the definition of (6) to high order tensor fields in a different
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way compared to (7) which will not require the metric structure of B. This point
will be discussed further in Remarks 6 and 12.

Each of the metrics above induces the standard index-lowering (♭ map) and
index-raising (♯ map) actions by associating to each vector field a unique covector
field, i.e. a section of the cotangent bundle, which we refer to as a one-form. By
linearity, these actions extend also to arbitrary tensor-fields. The appearance of
tensorial variants of physical variables occurs frequently in geometric mechanics in
general. For instance, the one-forms1 associated with the spatial, convective and
material velocity fields are defined respectively by

v♭(u) :=g(v, u) ∈ C∞(S), ∀u ∈ Γ (TS)

v̂♭(û) :=ĝ(v̂, û) ∈ C∞(B), ∀û ∈ Γ (TB)

ṽ♭(ũ) :=g̃(ṽ, ũ) ∈ C∞(B), ∀ũ ∈ Γ (ϕ∗TS).

With an abuse of notation, we shall denote the associated index lowering (♭) and
index raising (♯) maps to g, ĝ and g̃ by the same symbols as it will be clear
from the context. However, when we want to explicitly mention which metric is
used we will use the notation v♭ = g · v, v̂♭ = ĝ · v̂, ṽ♭ = g̃ · ṽ and conversely
v = g−1 · v♭, v̂ = ĝ−1 · v̂♭, ṽ = g̃−1 · ṽ♭.

2.3 Connection-based operations

The connection plays an important role in continuum mechanics and is used for
defining a number of key physical quantities and operations. In particular, 1) the
covariant differential, 2) the divergence operator , and 3) the material derivative,
which will be introduced next.

2.3.1 Covariant differential and divergence of tensor fields

Let P ∈ Γ (T r
s S), P̂ ∈ Γ (T p

q B), and P̃ ∈ Γ (T p
q B⊗ϕ∗T r

s S) be arbitrary tensor fields.
One important observation is that their covariant derivatives ∇uP, ∇̂ûP̂ and ∇̃ûP̃

along any u ∈ Γ (TS) and û ∈ Γ (TB) depend only on the values of u and û in
the point where the operation is evaluated as a section and not in any point close
by (which is in contrast to the Lie derivative operation for example). Thus, the
connections ∇, ∇̂, ∇̃ can be interpreted as differential operators

∇ : Γ (T r
s S) → Γ (T r

s+1S)

∇̂ : Γ (T p
q B) → Γ (T p

q+1B)

∇̃ : Γ (T p
q B ⊗ ϕ∗T r

s S) → Γ (T p
q+1B ⊗ ϕ∗T r

s S). (8)

In Sec. 5, we will show how these connections will be extended to define differential
operators for bundle-valued forms.

An important physical quantity that uses the construction above is the velocity
gradient which is a 2-rank tensor field defined as the covariant differential applied

1 In the same manner ṽ is not a true vector field, ṽ♭ is not a true one-form.
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to the velocity field. The spatial, convective and material representations of the
velocity gradient are denoted by

∇v ∈ Γ (T ∗S ⊗ TS), ∇̂v̂ ∈ Γ (T ∗B ⊗ TB), ∇̃ṽ ∈ Γ (T ∗B ⊗ ϕ∗TS)

Note that while ∇v and ∇̂v̂ are (1,1) tensor-fields over S and B, respectively, ∇̃ṽ

is a
(
0 1
1 0

)
two-point tensor-field over ϕ.

The connections ∇ and ∇̂ are by definition Levi-Civita connections compatible
with the metrics g and ĝ respectively such that ∇g = 0 and ∇̂ĝ = 0 at all points.
Similarly, the compatibility of ∇̃ and g̃ is straightforward to check, as we will
show later in Sec. 2.4. An important consequence of this compatibility is that
the index raising and lowering operations commute with covariant differentiation
[5, Pg. 80]. For example, the covariant form of the velocity gradients above are
equivalent to the covariant differential of their corresponding one-form velocity
fields. The spatial, convective and material covariant velocity gradients are given,
respectively, by

(∇v)♭ = ∇v♭ ∈ Γ (T 0
2S),

(∇̂v̂)♭ = ∇̂v̂♭ ∈ Γ (T 0
2B),

(∇̃ṽ)♭ = ∇̃ṽ♭ ∈ Γ (T ∗B ⊗ ϕ∗T ∗S).

(9)

These covariant velocity gradients will play an important role in subsequent
developments. One important property is that one can decompose ∇v♭ and ∇̂v̂♭

into symmetric and skew-symmetric parts as shown in the following proposition.

Proposition 1 The covariant differential of v♭ ∈ Γ (TS) and v̂♭ ∈ Γ (TB) can be

expressed as

∇v♭ =sym(∇v♭) + skew(∇v♭) =
1

2
Lvg +

1

2
dv♭, (10)

∇̂v̂♭ =sym(∇̂v̂♭) + skew(∇̂v̂♭) =
1

2
Lv̂ ĝ +

1

2
dv̂♭, (11)

with Lvg ∈ Γ (ST 0
2 S) and Lv̂ ĝ ∈ Γ (ST 0

2B) being symmetric (0,2) tensor fields over

S and B, respectively. Furthermore, the 2-forms dv♭ ∈ Ω2(S) ⊂ Γ (T 0
2 S) and dv̂♭ ∈

Ω2(B) ⊂ Γ (T 0
2B) are considered as generic (0,2) tensor field in the equations above.

Using Cartan’s homotopy (magic) formula

Lu = d ◦ ιu + ιu ◦ d, (12)

a corollary of the above identities is that

∇vv
♭ =Lvv

♭ −
1

2
dιvv

♭ (13)

∇̂v̂ v̂
♭ =Lv̂ v̂

♭ −
1

2
dιv̂ v̂

♭. (14)

Proof See Appendix 10.3.
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Remark 3 Note that identity (10) appears in [26] with a minus on the term 1
2dv

♭

instead of a plus. The reason in this discrepancy is due to the opposite convention
used in defining ∇v♭. While we consider the ∇ to be the first leg and v♭ to be the
second leg (cf. Table 1), the authors in [26] consider ∇ to be the second leg and
v♭ to be the first leg. Furthermore, identity (10) appears also in [10] without the
1
2 factor which is clearly incorrect.

The divergence of any spatial tensor field , for r ≥ 1, s ≥ 0, is constructed
by contracting the last contravariant and covariant indices of ∇P . Similarly, the
divergence of any convective tensor field P̂ ∈ Γ (T p

q B), for p ≥ 1, q ≥ 0, will be
constructed from ∇̂P̂ while the divergence of any material tensor field P̃ ∈ Γ (T p

q B⊗

ϕ∗T r
s S), for p ≥ 1, q, r, s ≥ 0, will be constructed from ∇̃P̃ . We will denote the

divergence of P, P̂ and P̃ respectively by

div(P ) ∈ Γ (T r−1
s S), d̂iv(P̂ ) ∈ Γ (T p−1

q B), d̃iv(P̃ ) ∈ Γ (T p−1
q B ⊗ ϕ∗T r

s S).

Examples of such tensor fields that will appear in this paper are the divergence
of the spatial and convective velocities div(v) ∈ C∞(S) and d̂iv(v̂) ∈ C∞(B), in
addition to the divergence of the stress tensors.

2.3.2 Material time derivative

Another important quantity in continuum mechanics that is also defined using
the connection is the material time derivative, denoted by Dt, which describes the
rate of change of a certain physical quantity of a material element as it undergoes
a motion along the curve cϕ. Thus, Dt is used for describing the rate of change
of two point tensor fields in the material representation. One can geometrically
define such derivative by pulling back the spatial connection along a curve similar
to the standard formulation of the geodesic equation on a Riemannian manifold
[7,27]. Two cases are of interest in our work, the material time derivative of the
material velocity ṽt and the deformation gradient Ft. For the reader’s convenience,
we include in Appendix 10.2 the construction for the case of a generic vector field
over a curve.

Let I ⊂ R be a time interval. For any fixed point X ∈ B, the configuration map
ϕt : B → S defines a curve ϕX : I → S in S. Similarly, one can consider the material
velocity to be a map ṽX : I → TS such that ṽX(t) = vt(ϕX(t)) ∈ TϕX(t)S. Thus,
we have that ṽX ∈ Γ (ϕ∗

XTS) to be a vector field over the map ϕX . Further, let
ϕ′
X : I → TS denote the tangent curve of ϕX . Then, the material time derivative
DtṽX ∈ Γ (ϕ∗

XTS) is defined as (cf. (99) in Appendix 10.2):

DtṽX (t) := (∇ϕ′

X(t)v)(ϕX(t)) ∈ TϕX(t)S .

By extension to all points in B, one can define Dtṽt ∈ Γ (ϕ∗
tTS).

A key quantity that is defined using the material derivative is the acceleration
vector field associated with the motion ϕt, denoted in the material representation
by ãt := Dtṽt ∈ Γ (ϕ∗

tTS). By defining the spatial and convective representations
of the acceleration by at := ãt ◦ ϕ−1

t ∈ Γ (TS) and ât := ϕ∗
t (at) ∈ Γ (TB), one has

that[23]

at = ∂tvt +∇vtvt, ât = ∂tv̂t + ∇̂v̂t v̂t.
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The extension of the material time derivative to the deformation gradient Ft ∈

Γ (T ∗B ⊗ ϕ∗
t TS) and higher order material tensor fields is more involved. The

reader is referred to [28] and [5, Ch. 2.4, Box 4.2]. A key identity that will be
used later is that the material time derivative of the deformation gradient DtFt ∈

Γ (T ∗B ⊗ ϕ∗
tTS) is equal to the material velocity gradient[28]

DtF = ∇̃ṽ ∈ Γ (T ∗B ⊗ ϕ∗TS). (15)

2.4 Coordinate-based expressions

While the motivation of this work is to formulate nonlinear elasticity using purely
geometric coordinate-free constructions as much as possible, it is sometimes in-
structive to understand certain identities and perform certain calculations using
coordinate-based expressions. Furthermore, the coordinate-based expressions are
essential for computational purposes. Nevertheless, caution should be taken as one
might be misguided by a purely coordinate-based construction. We believe both
treatments are complementary and the maximum benefit is achieved by switching
between them correctly.

The coordinate-based description of the motion is achieved by introducing
coordinate functions XI : U ⊂ B → R and xi : V ⊂ S → R , for i, I ∈ {1, · · · , 3},
that assign to each physical point X ∈ B and x ∈ S the coordinates (X1, X2, X3) ∈
R

3 and (x1, x2, x3) ∈ R
3, respectively. These coordinate systems induce the basis{

∂
∂xi

}
and

{
∂

∂XI

}
for the tangent spaces TxS and TXB, respectively, and the dual

basis {dxi} and {dXI} for the cotangent spaces T ∗
xS and T ∗

XB, respectively. In
what follows we shall use Einstein’s summation convention over repeated indices.

One in general needs not to use such coordinate-induced bases and one could
refer to arbitrary bases. In our work we shall opt for this generality. In particular,
the generic tensor fields P ∈ Γ (T 1

1 S), P̂ ∈ Γ (T 1
1B), and P̃ ∈ Γ (T 1

1B ⊗ ϕ∗T 1
1 S) are

expressed locally at the points x ∈ S and X ∈ B as

P |x = P i
j (x) ei|x ⊗ ej |x

P̂ |X = P̂ I
J (X) EI |X ⊗ EJ |X

P̃ |X = P̃ Ii
Jj(X) EI |X ⊗ EJ |X ⊗ ei|ϕ(X) ⊗ ej |ϕ(X),

where {ei|x} and {EI |X} denote arbitrary bases for TxS and TXB, respectively,
while {ei|x} and {EI |X} denote their corresponding dual bases such that their
pairing is the Kronecker delta symbol: ej |x(ei|x) = δji and EJ |X(EI |X ) = δJI . We

denote by P i
j ∈ C∞(S) and P̂ I

J , P̃
Ii
Jj ∈ C∞(B) the component functions of the

tensor fields in the arbitrary basis.
It is important to note the partial ϕ-dependence (thus time dependence) nature

of the basis for material tensor fields in contrast to spatial and convective ones.
This is a fundamental property and it implies that one needs to be cautious when
defining time derivatives of material quantities (cf. Sec. 2.3) and transforming
between representations in coordinates.

A summary of the local expressions of the motion kinematics quantities intro-
duced so far can be found in Table 1. For notational simplicity, we will omit the
time and base point dependency when writing local expressions, unless needed.
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Convective Material Spatial

Metric ĝ = ĝIJE
I ⊗ EJ g̃ = g̃ije

i|ϕ ⊗ ej |ϕ g = gije
i ⊗ ej

Velocity v̂ = v̂IEI ṽ = ṽiei|ϕ v = viei

Velocity v̂♭ = v̂IE
I ṽ♭ = ṽie

i|ϕ v♭ = vie
i

one-form v̂I := ĝIJ v̂
J ṽi := g̃ij ṽ

j vi := gijv
j

Velocity ∇̂v̂ = ∇̂I v̂
JEI ⊗ EJ ∇̃ṽ = ∇̃I ṽ

iEI ⊗ ei|ϕ ∇v = ∇iv
jei ⊗ ej

gradient ∇̂I v̂
J := ∂v̂J

∂XI + Γ̂ J
IK v̂K ∇̃I ṽ

i := ∂ṽi

∂XI + F
j
I (Γ

i
jk ◦ ϕ)ṽk ∇iv

j := ∂vj

∂xi + Γ
j
ikv

k

Covariant ∇̂v̂♭ = ∇̂I v̂JE
I ⊗ EJ ∇̃ṽ♭ = ∇̃I ṽiE

I ⊗ ei|ϕ ∇v♭ = ∇ivje
i ⊗ ej

velocity gradient ∇̂I v̂J := ∂v̂J
∂XI − Γ̂K

IJ v̂K ∇̃I ṽi :=
∂ṽi
∂XI − F

j
I (Γ

k
ij ◦ ϕ)ṽk ∇ivj :=

∂vj
∂xi − Γ k

ijvk

Acceleration â = âJEJ ã = ãjej |ϕ a = ajej

âJ := ∂t v̂
J + v̂I∇̂I v̂

J ãj := ∂tṽ
j + (Γ j

ik ◦ ϕ)ṽi ṽk aj := ∂tv
j + vi∇iv

j

Velocity
divergence

d̂iv(v̂) = ∇̂I v̂
I div(v) = ∇iv

i

Table 1: Local coordinate-based expressions of motion kinematics quantities

The tangent map F := Tϕt : TB → TS, which is commonly referred to as
the deformation gradient and denoted by F , and its inverse F−1 play a key role
in coordinate expressions of the pullback and pushforward operations. In a local
chart, F and F−1 are given by the Jacobian matrix of partial derivatives of the
components of ϕt and ϕ−1

t , respectively, in that chart:

F |X = F i
I(X)

∂

∂xi

∣∣∣∣
ϕt(X)

⊗ dXI |X , (16)

F−1|x = (F−1)Ii (x)
∂

∂XI

∣∣∣∣
ϕ−1

t (x)

⊗ dxi|x, (17)

where F i
I (X) :=

∂ϕi
t

∂XI (X) and (F−1)Ii (x) :=
∂(ϕ−1

t )I

∂xi (x) whereas

ϕi
t := x

i ◦ ϕt : B → R, (ϕ−1

t )I := X
I ◦ ϕ−1

t : S → R.

The time derivative of ϕi
t is equal to the components of the material velocity field in

the chart induced basis, i.e. ṽi(X) :=
∂ϕi

t

∂t (X). In a generic basis, the components
of F , F−1 and ṽ are related to the ones defined above using the usual tensor
transformation rules.

Using F and F−1, we can now relate the convective, material and spatial rep-
resentations as follows: In local coordinates, the components of the three metrics
are related by

ĝIJ = F i
IF

j
J g̃ij , g̃ij = gij ◦ ϕt.

The components of the velocities v, v̂, and ṽ are related by

vi = ṽi ◦ ϕ−1

t , v̂I = ((F−1)Ii ◦ ϕt)ṽ
i = ((F−1)Ii ◦ ϕt)(v

i ◦ ϕt).

While the components of the velocity one-forms v♭, v̂♭ and ṽ♭ are related by

vi = ṽi ◦ ϕ
−1

t , v̂I = F i
I ṽi = F i

I(vi ◦ ϕt).
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Furthermore, it is straightforward to assess in local components that

g̃(ṽ, ṽ) = g̃ij ṽ
iṽj = g̃ijF

i
IF

j
J v̂

I v̂J = ĝIJ v̂
I v̂J = ĝ(v̂, v̂). (18)

An essential ingredient for the local expressions (in a coordinate chart) of
operations based on ∇ and ∇̂ are the Christoffel symbols Γ i

jk and Γ̂ I
JK associated

with the spatial and convective metrics g and ĝ, respectively. See for example,
the application of ∇ and ∇̂ on v, v♭ and v̂, v̂♭ in Table 1, respectively. On the
other hand, caution is required when dealing with the material connection which
in general involves the deformation gradient F in addition to ∇ and ∇̂, as shown
in (6-7). For example, the local expressions of ∇̃ṽ and ∇̃ṽ♭ can be found in Table
1, wheres the rank-three material tensor field ∇̃P̃ ∈ Γ (T 1

1B ⊗ ϕ∗TS), introduced
before in (7), has local components

∇̃J P̃
Ij =

∂P̃ Ij

∂XJ
+ P̃KjΓ̂ I

JK + P̃ Ik(Γ j
ik ◦ ϕ)F i

J . (19)

As mentioned before in Remark 2, it is very common to use time-independent
Christoffel symbols Γ̂ I

JK derived from the reference metric G := ĝ0 when treating
material variables. In this way one can avoid mixing the convective and material
representations.

The connections ∇ and ∇̂ are naturally compatible with the metrics g and
ĝ respectively such that at any point one has that ∇kgij = 0 and ∇̂K ĝIJ = 0.
Similarly, the compatibility of ∇̃ and g̃ is straightforward to check since ∇̃K g̃ij =

F k
K(∇kgij ◦ ϕ) = 0. An important consequence of this compatibility is that the

index raising and lowering operations commute with covariant differentiation [5,
Pg. 80]. Therefore, we have that

∇jvi = ∇j(gikv
k) = vk∇j(gik) + gik∇jv

k = gik∇jv
k,

and similarly for ∇̂J v̂I and ∇̃J ṽi.

3 Intrinsic deformation kinematics

Now we turn attention to the kinematics of deformation and its geometric formu-
lation. We highlight in this section the important role of the space of Riemannian
metrics M(B) and how it intrinsically represents the space of deformations of the
body. This allows us to define the geometric representations of strain and rate-of-
strain. The principle bundle structure relating the configuration space C to M(B)
will be discussed later in Sec. 8.

3.1 Space of deformations

Analogously to a classical spring in R
3, the strain of an elastic body is roughly

speaking the difference between any two states of deformation. In light of Remark
1, the measurement of distances, and thus geometric deformation, is achieved using
the metric g inherited by S from the ambient space A . At every point x ∈ S, the
value of g at x determines an inner product of any two vectors attached to that
point and thus establishes a geometry in its vicinity. The only intrinsic way to
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Rigid body motion + Deformation Deformation only

Fig. 4: Illustration of the motion of the elastic body as both a curve on C and a
curve on M(B) using the map πg.

do the same directly on B is by the pullback of g by ϕ which gives rise to a ϕ-
dependent mechanism for measuring lengths and angles of material segments [4].
Therefore, the Riemannian metric ĝ := ϕ∗(g) ∈ M(B) serves as an intrinsic state
of deformation while the space of Riemannian metrics M(B) is the corresponding
space of deformations.

The state space M(B) has been extensively studied in the literature due to
its importance in the geometric formulation of elasticity. The interested reader is
referred to [4,6,29,30,7]. This space has been shown to have an infinite dimen-
sional manifold structure and is an open convex set in the infinite dimensional
vector space Γ (ST 0

2B) of symmetric (0, 2) tensor fields over B. Furthermore, it has
been shown that M(B) is itself a Riemannian manifold with constant negative
curvature [6].

Consider the map

πg : C → M(B)

ϕt 7→ ϕ∗
t (g) =: ĝt,

that associates to any configuration ϕt a Riemannian metric on B. With reference
to Fig. 4, a curve cϕ : t 7→ ϕt in the configuration space C (which represents a
motion of the elastic body) induces the curve cĝ : t 7→ ĝt = πg(ϕt) in the space of
metrics M(B). The tangent vector to the curve cĝ at any point ĝt ∈ M(B) can be
calculated using the tangent map of πg or equivalently using properties of the Lie
derivative as

TĝtM(B) ∋ ∂tĝt = ∂t(ϕ
∗
t g) = ϕ∗

t (Lvtg) = L(ϕ∗
tvt)

ϕ∗
t g = Lv̂t ĝt. (20)

Thus, the tangent space TĝtM(B) is canonically identified with the vector space
Γ (ST 0

2B). Furthermore, one can show that the tangent bundle TM(B) is in fact
trivial [7], i.e. it is equivalent to the product space TM(B) = M(B) × Γ (ST 0

2B).
This is in contrast to the tangent bundle TC of the configuration space which is
not trivial [23]. In Sec. 8, we will show how the map πg factors out rigid body
motions from cϕ, such that the curve cĝ represents only deformation of the body
which leads to the principle bundle structure relating C to M(B).

Remark 4 Note that at any point ĝ in the space of Riemannian metrics M(B), one
can arbitrarily change the tensor type of the tangent vector ∂tĝ. Thus, in principle



Intrinsic nonlinear elasticity 17

one can also identify TĝM(B) with the vector spaces Γ (ST 2
0B) or Γ (T

1
1B). We shall

later use this arbitrariness such that we identify TĝM(B) with vector-valued forms
and consequently T ∗

ĝM(B) with covector-valued forms.

3.2 Logarithmic strain measure

With the above construction, the strain can be now defined as the relative de-
formation between any states ĝ1, ĝ2 ∈ M(B). However, the space of deformations
M(B) does not have a vector space structure. For instance, the positive-definiteness
property of a metric in M(B) is not closed under subtraction [6]. Therefore, one
cannot simply define an arbitrary finite strain as the subtraction of ĝ1 and ĝ2,
while for example the classical Green St. Venant or Euler-Almansi strain tensor
fields are only valid for (infinitesimally) small strains [6].

The correct geometric definition of strain is the “shortest motion” between ĝ1
and ĝ2 on M(B), i.e. the geodesic connecting these two points. It has been shown
in [4,29,7] that this construction leads to the logarithmic strain measure defined
by:

δ̂(ĝ1, ĝ2) :=
1

2
Logĝ1

(ĝ2),

where Logĝ1
denotes the inverse of the Riemannian exponential map Expĝ1

:
Tĝ1

M(B) → M(B) corresponding to the geodesic flow starting at the point ĝ1 ∈

M(B).
Now if we turn attention back to the elastic body’s motion described by the

curves cϕ : t → ϕt and cĝ : t → ĝt, one can define at any t the convective strain
tensor field to be

δ̂t :=
1

2
Logĝ0

(ĝt),

as the relative deformation between the current state ĝt and a reference state ĝ0.
However, it is important to note that on the manifold M(B) there is no privileged
deformation state ĝ0 that would allow us to define the strain δ̂t in an intrinsic way.
One common choice is to select ĝ0 to be the initial value of the convective metric
at t = 0.

In hyper-elasticity, one usually proceeds by defining the strain energy func-
tional using δ̂t and then define stress as some “gradient” of this functional with
respect to δ̂t (i.e. the convective counterpart of the Doyle-Erickson formula). How-
ever, an energy functional defined using δ̂t or ĝt would only differ by a constant
offset that corresponds to the strain energy of the reference state ĝ0. The stress on
the other hand, is identical in both cases. Thus, when defining constitutive rela-
tions of the stress, as we shall show later, it suffices to use the state of deformation
ĝt.

3.3 Rate-of-strain

We finally conclude by presenting the rate-of-strain (1,1) tensor fields which in the
convective and spatial representations are denote, respectively, by

ε̂t ∈ Γ (T 1
1B), εt ∈ Γ (T 1

1S).
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Their corresponding 2-covariant variants are given by

ε̂♭t := ĝt · ε̂t =
1

2
Lv̂t ĝt ∈ Γ (ST 0

2B), ε♭t := g · εt =
1

2
Lvtg ∈ Γ (ST 0

2 S),

which are symmetric 2-rank tensor fields. From (10-11), one can see that the rate-
of-strain variables ε̂♭t and ε♭t are also equal to the symmetric component of the
covariant velocity gradients ∇̂v̂♭t and ∇v♭t , respectively. Furthermore, in line of
Remark 4, we can consider both ε̂♭t and ε̂t to be technically tangent vectors at the
point ĝt in M(B).

An interesting distinction between ε̂♭t and ε
♭
t is that only the convective variable

is a time-derivative of some deformation state-variable:

∂tĝt = 2ε̂♭t = 2 sym(∇̂v̂♭t), (21)

which is not the case for its spatial counterpart. In the material representation,
things get more interesting since symmetry of the velocity gradient ∇̃ṽ♭t cannot be
defined in the first place due to its geometric nature of being a two-legged tensor.
Consequently, one does not have a material rate-of-strain tensor field.

In summary, we conclude that only in the convective representation, one has a
proper geometric state of deformation, which along with its rate-of-change, encodes
the necessary information for an intrinsic description of deformation. We shall
come back to this point later in Sec. 6.5 when we discuss the constitutive equations
that relate stress to the deformation kinematics.

4 Mass and volume properties

Now we turn attention to the mass structure that is associated to the abstract man-
ifold B. This structure provides the link between kinematics and kinetics quantities
of an elastic body and is fundamental to the subsequent intrinsic formulation of
nonlinear elasticity we present in this paper. Therefore, we shall discuss it in detail
in this section.

4.1 Mass, volume and mass density

Following [30], we define the associated mass measure to B by a top form µ̂ ∈ Ω3(B)
that we refer to as the body (convective) mass form. This top-form assigns to any
U ⊆ B a non-negative scalar m(U) that quantifies the physical mass of U and is
defined by

m(U) :=

∫

U

µ̂ ∈ R
+.

For every embedding ϕt, there is an induced time-dependent mass form on S

defined by
µt := ϕt,∗(µ̂) ∈ Ω3(S),

such that, using the change of variables theorem, we have that

∫

ϕt(U)

µt =

∫

U

µ̂ = m(U). (22)
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We refer to µt as the spatial mass form.
It is important to note that the aforementioned two mass-forms are all that one

requires to formulate the governing equations of nonlinear elasticity in an intrinsic
way as we shall show later. The mass of B is a fundamental physical property that
is independent of its configuration in the ambient space A . Thus, it is assigned
to B a priori as an extra structure and it doesn’t inherit it from A . On the other
hand, to represent the mass forms µ̂ and µt as scalar-densities, one then needs
to introduce a volume measure which will allow us to define these scalar mass
densities as the ratio of mass to volume. Such volume measure is not intrinsic to
B and thus must be inherited from A via an embedding.

Given its inherited metric structure, any configuration S of the body has a
volume form ωg ∈ Ω3(S) that is induced by the Riemannian metric g. Since all top
forms on a manifold are proportional to each other, the time-dependent spatial
mass density function ρt ∈ C∞(S) is implicitly defined such that

µt = ρtωg. (23)

Similarly, the induced metric ĝt = ϕ∗
t (g) induces on B a volume form ω̂ĝt =

ϕ∗
t (ωg) ∈ Ω3(B) that allows one to define the time-dependent convective mass

density function ρ̂t ∈ C∞(B) such that

µ̂ = ρ̂tω̂ĝt . (24)

The spatial and convective mass densities are related by ρ̂t = ρt ◦ϕt, which follows
from comparing (24) to

µ̂ = ϕ∗
t (µ) = ϕ∗

t (ρtωg) = (ρt ◦ ϕt)ϕ
∗
t (ωg) = (ρt ◦ ϕt)ω̂ĝt . (25)

Now the interesting question is does one have another intrinsic representation
of the above mass top-forms and mass density functions that can be used for the
material representation of the motion? The answer is no ! If one needs to define
integral quantities (e.g. kinetic and strain energies) using material variables, then
the mass top form µ̂ suffices since it allows integration on B. For notational con-
venience, we shall denote the body mass form µ̂ by µ̃ when used for the material
representation, i.e. µ̃ ≡ µ̂. On the other hand, since B does not have an intrinsic
volume form, a material mass density function cannot be defined ! What can be
done in principle is to also use ρ̂t for the material representation. However, as men-
tioned before in Remark 2, such mixing of material and convective representations
is usually avoided. What is common in the literature is that one uses a reference
configuration ϕ0(B) that induces on B a reference metric G := ϕ∗

0(g) which in turn
induces the volume form ω̃G ∈ Ω3(B). Using this extra structure, one can define a
(time-independent) material mass density ρ̃ ∈ C∞(B) such that

µ̃ = ρ̃ω̃G. (26)

Using the Jacobian of ϕt, denoted by Jϕt ∈ C∞(B) and defined such that

ω̂ĝt = ϕ∗
t (ωg) = Jϕt ω̃G, =⇒ Jϕt = det(Ft)

(det(g) ◦ ϕt)

det(G)
, (27)

one has the standard relations between the material mass density and the other
representations: ρ̃ = Jϕt ρ̂t = Jϕt(ρt ◦ ϕt), which follows from substituting (27) in
(25) and comparing to (26). Table provides a summary of the mass and volume
quantities introduced in this section.
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Convective Material Spatial

Mass form [M] µ̂ µ̃ µt

Volume form [L3] ω̂ĝt ω̃G ωg

Mass density [M L−3] ρ̂t ρ̃ ρt

Table 2: The different representations of the mass and volume quantities. Time
dependency is denoted by a t-subscript and the physical units of mass and length
are denoted by [M] and [L], respectively.

Remark 5 (Orientation and pseudo-forms)

In order for the description of the mass of the body in (22) to be physically
acceptable, one requires that the integration of µ̂ and µt over their respective
domains to be invariant with respect to a change of orientation (e.g. using a right-
hand rule instead of a left-hand rule). This imposes that µ̂ and µt to change sign
when the orientation is reversed such that the integral always leads to a positive
value of mass.

This leads to two classes of differential forms: those that change sign with a
reverse of orientation, and those that do not. We refer to the former as pseudo-

forms and the latter as true-forms following [9]. Other terminology in the literature
include outer-oriented and inner-oriented forms [31,32] and twisted and straight

forms [33]. The mass forms µ̂ and µt are then imposed to be pseudo-forms. The
same also holds for the volume forms introduced above.

This distinction of the orientation-nature of physical quantities is a topic that
is usually neglected. However, for structure-preserving discretization, the exploita-
tion of this distinction is currently an active area of research. The interested reader
is referred to our recent work [34,35].

4.2 Conservation of mass and volume

The conservation of mass in the three representations of motion are summarized
in the following result.

Proposition 2 Let the curve cϕ(t) ∈ C denote a motion of the elastic body. Conser-

vation of mass requires that along cϕ(t) we have that

∂tµ̃ = 0, ∂tρ̃ = 0 (material)

∂tµ̂ = 0, ∂tρ̂t + ρ̂td̂iv(v̂t) = 0 (convective)

∂tµt + Lvtµt = 0, ∂tρt + Lvtρt + ρtdiv(vt) = 0 (spatial)

where d̂iv(v̂t) ∈ C∞(B) denotes the divergence of the convective velocity field and

div(vt) ∈ C∞(S) denotes the divergence of the spatial velocity field.

Proof See [20,5]. �

The conservation of mass expression in terms of µt states that the spatial mass
form µt is an advected quantity of the motion while its corresponding mass density
ρt is not. Furthermore, one can see that the evolution equation of the convective
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density ρ̂t depends on v̂t which explains why it is not appealing to use ρ̂t in the
material representation, as mentioned earlier.

In incompressible elasticity, one has the additional constraint that along cϕ(t)
the convective volume form is constant and equal to its value2 at t = 0. Conse-
quently,

0 = ∂tω̂ĝt = ∂t(Jϕt ω̃G) = ∂tϕ
∗
t (ωg) = ϕ∗

t (Lvtωg) = Lv̂t ω̂ĝt .

Since Lv̂t ω̂ĝt = d̂iv(v̂t)ω̂ĝt and Lvtωg = div(vt)ωg, the incompressibility condition
in the convective, material and spatial representations, respectively, is expressed
as

d̂iv(v̂t) = 0, ∂tJϕt = 0, div(vt) = 0.

As a consequence, from Prop. 2 one sees that in incompressible elasticity both
mass forms, volume forms and mass densities of the convective and material rep-
resentation become constant. Furthermore, they coincide with each other if the
reference configuration is chosen as the initial configuration. On the other hand,
in the spatial representation, the mass form, volume-form and mass density become
advected quantities of the motion.

4.3 Extensive and intensive physical quantities

From a thermodynamical perspective, the properties of any physical system can be
classified into two classes: extensive and intensive properties. Intensive properties
are those quantities that do not depend on the amount of material in the system
or its size. Examples of intensive quantities for an elastic body include velocity,
velocity gradient, acceleration and mass density. In contrast, the value of extensive
properties depends on the size of the system they describe, such as the mass and
volume of the elastic body. The ratio between two extensive properties generally
results in an intensive value (e.g., mass density is the ratio of mass and volume).

The distinction between intensive and extensive physical quantities is funda-
mental in our geometric formulation of nonlinear elasticity. The kinematic quan-
tities introduced in Sec. 2 and 3 are all of intensive nature. The mass properties
of the body relates these kinematics quantities to the kinetics ones, such as mo-
mentum and stress which will be introduced later. However, here one can choose
whether to represent the mass structure of the body using the extensive mass top-
forms or the intensive mass densities. In the first case, the resulting momentum and
stress representations are extensive, while in the second, they are intensive. The
common Cauchy, first and second Piola-Kirchhoff stress tensors are all examples
of intensive stress representations.

Based on the intrinsicality and technical advantage of mass top-forms com-
pared to mass densities, we shall opt in our work to represent kinetics in terms of
extensive quantities. We will demonstrate how this choice will yield a completely
intrinsic formulation of the governing equations with many technical advantages
compared to the more common descriptions. Next, we discuss the exterior calculus
tools needed for this formulation.

2 which is usually chosen as the reference configuration
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5 Exterior calculus formulation

There have been several attempts in the literature to formulate nonlinear elastic-
ity and continuum mechanics in general in a geometrically consistent way. The
approach we opt for in this work is to use exterior calculus for representing the
governing equations of nonlinear elasticity by formulating the corresponding phys-
ical variables as differential forms [10,26]. Compared to other approaches that rely
on tensor fields [24], tensor field densities [25], or tensor distributions [30], the
use of differential forms highlights the geometric nature of the physical variables
associated to their intrinsic integral quantities over the elastic body’s domain B

and its boundary ∂B. Furthermore, this natural geometric structure has proven
fundamental for deriving efficient and stable discretization schemes of nonlinear
elasticity by preserving this structure at the discrete level. The interested reader
is referred to [16] for numerical schemes based on discrete exterior calculus and to
[17,18] for schemes based on finite-element exterior calculus.

To formulate nonlinear elasticity using exterior calculus bundle-valued differ-
ential forms are required. They are a generalization of the more common scalar-
valued differential forms. While scalar-valued forms are only applicable for theories
that use anti-symmetric tensor-fields (such as electromagnetism), bundle-valued
forms will allow us to incorporate symmetric tensor fields, used for strain and
stress variables, as well as two-point tensor fields, used for the material represen-
tation of the variables. First, we start with a generic introduction to bundle-valued
differential forms and then we show how this applies to the nonlinear elasticity
problem. We refer the reader to Appendix 10.1 for an introduction to fibre bundles
and notations used.

5.1 Bundle-valued differential forms

Let M be a smooth manifold of dimension n and E →M be a smooth vector bun-
dle over M . Recall that a scalar-valued differential k-form on M is an element of
Ωk(M) := Γ (ΛkT ∗M), for k ∈ {0, · · · , n} (cf. Appendix 10.1). A E-valued differen-
tial k-form on M is a multilinear map that associates to each p ∈M an element of
ΛkT ∗

pM ⊗Ep, i.e. a k-form with values in Ep. We will denote the space of E-valued
differential k-forms by

Ωk(M ;E) := Γ (ΛkT ∗M ⊗id E).

For the case k = 0, an E-valued 0-form is simply a section of the bundle E,
i.e. Ω0(M ;E) = Γ (E). For the cases E = TM and E = T ∗M , we shall refer to
Ωk(M ; TM) and Ωk(M ; T ∗M) as vector-valued forms and covector-valued forms, re-
spectively.

Let N be another smooth manifold and F → N be a smooth vector bundle over
N . An F-valued differential k-form over the map f : M → N is a multilinear map
that associates to each p ∈ M an element of ΛkT ∗

pM ⊗ Ff(p). We will denote the
space of F-valued differential k-forms over f by

Ωk
f (M ;F) := Γ (ΛkT ∗M ⊗f F).
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For the case k = 0, Ω0
f (M ;F) = Γ (f∗F). For the case F = TN , elements of

Ωk
f (M ; TN) are

(
0 1
k 0

)
two-point tensor fields over f that we shall refer to as vector-

valued forms over f . Similarly, elements of Ωk
f (M ; T ∗N) are

(
0 0
k 1

)
two-point tensor

fields over f that we shall refer to as covector-valued forms over f .
A generic vector-valued k-form ζ ∈ Ωk(M ; TM) and a generic covector-valued

k-form X ∈ Ωk(M ; T ∗M) are expressed locally as

ζ = ζi ⊗ ei, X = Xi ⊗ ei,

where each ζi,Xi ∈ Ωk(M), for i ∈ {1, · · · , n}, is an ordinary k-form on M , while
ei|p denotes an arbitrary basis for TpM and ei|p denotes its corresponding dual
basis. This shows also that the combination is correspondent to a tensor product
giving rise to elements of the dimension n times the dimension for the defini-
tion of each ζi and X j which is also n. We shall notationally distinguish between
vector-valued and covector-valued forms in our work by denoting the latter using
upper-case symbols. A trivial vector-(or covector-) valued k-form is one which is
equivalent to the tensor product of a vector-field (or covector-field) and an ordi-
nary k-form. For example, we say that ζ ∈ Ωk(M ; TM) is trivial if it is composed
of a vector-field u ∈ Γ (TM) and a k-form α ∈ Ωk(M) such that

ζ = α⊗ u =

(
1

k!
αi1···ike

i1 ∧ · · · ∧ eik
)

⊗ ujej .

The usual operations such as raising and lowering indices with the ♯ and ♭ maps
as well as the pullback operators can be applied to either leg of a bundle-valued
form. Instead of using a numerical subscript to indicate which leg the operation
is applied to (as in [10]), we shall use an f-subscript to indicate the form-leg and
a v-subscript to indicate the value-leg. For example, for ζ = α⊗ u ∈ Ωk(M ; TM),
we have that ♭v(ζ) = α⊗ u♭ ∈ Ωk(M ; T ∗M) and i∗f (ζ) = i∗(α)⊗ u ∈ Ωk(∂M ; TM),
where i : ∂M →M denotes the inclusion map.

Wedge-dot and duality product

The wedge-dot product

∧̇ : Ωk(M ; TM)×Ωl(M ; T ∗M) → Ωk+l(M)

between a vector-valued and a covector-valued form is, by definition, a standard
duality product of the covector and vector parts from the value legs and a standard
wedge product between the form legs. For example, if one considers the trivial
forms ζ = α ⊗ u ∈ Ωk(M ; TM) and X = β ⊗ γ ∈ Ωl(M ; T ∗M) then ζ ∧̇ X :=
γ(u)α∧β ∈ Ωk+l(M). It is useful to note that the construction of ∧̇ does not use
any metric structure and is thus a topological operator. An important distinction
between the ∧̇ product and the standard wedge product of scalar-valued forms is
that the pullback map does not distribute over ∧̇ [36]. However, the pullback does
distribute over the form-legs as usual. For example, if we consider the inclusion
map i : ∂M →M , then we have that

i∗(ζ ∧̇ X ) = i∗f (ζ) ∧̇ i∗f (X ) ∈ Ωk+l(∂M). (28)
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The duality pairing between a vector-valued k-form ζ ∈ Ωk(M ; TM) and a
covector-valued n− k-form X ∈ Ωn−k(M ; T ∗M) is then defined as

〈X |ζ〉M :=

∫

M

ζ ∧̇ X ∈ R. (29)

In the same line of Remark 5, if the duality pairing (29) represents a physical
integral quantity that should always be positive, then the n-form ζ ∧̇ X should
be a pseudo-form. This requires that either ζ is a vector-valued pseudo-form and
X is a covector-valued true-form or that ζ is a vector-valued true-form and X is
a covector-valued pseudo-form. As we shall discuss in the coming section, we will
always have the second case in our work where this duality pairing will represent
physical power between a kinematics quantity, represented as a vector-valued true-
form, and a kinetics quantity, represented as a covector-valued pseudo-form.

Exterior covariant derivative

Let (g,∇) be the associated Riemannian metric and Levi-Civita connection to M ,
respectively. Similar to the property (8), the connection can be interpreted as a
differential operator on the space of vector-valued 0-forms, i.e. ∇ : Ω0(M ; TM) →
Ω1(M ; TM). Differentiation of generic vector-valued forms is achieved using the
exterior covariant derivative operator dk∇ : Ωk(M ; TM) → Ωk+1(M ; TM) which
extends the action of ∇.

The exterior covariant derivative dk∇ of any α ∈ Ωk(M ; TM) is defined by [19,
Ch. 3] [37, Def. 5.1.]

(dk∇α)(u0, · · · , uk) =
k∑

i=0

(−1)i∇ui(α(u0, · · · , ui, · · · , uk))

+
∑

0≤i<j<k

(−1)i+jα(Luiuj , u0, · · · , ui, · · · , uj , · · · , uk),

(30)

for all vector fields uj ∈ Γ (TM), for j ∈ {0, · · · , k}, where an underlined argument
indicates its omission. For a generic bundle-valued 0-form, d0

∇ is simply the co-
variant derivative, whereas for the case of scalar-valued k-forms d0

∇ degenerates
to the exterior derivative. Hence the name, exterior covariant derivative.

For illustration, the expressions of d0
∇,d

1
∇ and d2

∇ applied respectively to any
α ∈ Ω0(M ; TM), β ∈ Ω1(M ; TM), and γ ∈ Ω2(M ; TM) are given by

(d0
∇α)(u0) = ∇u0

α ∈ Γ (TM),

(d1
∇β)(u0, u1) = ∇u0

(β(u1))−∇u1
(β(u0))− β(Lu0

u1) ∈ Γ (TM),

(d2
∇γ)(u0, u1, u2) = ∇u0

(γ(u1, u2))−∇u1
(γ(u0, u2)) +∇u2

(γ(u0, u1))

− γ(Lu0
u1, u2) + γ(Lu0

u2, u1)− γ(Lu1
u2, u0) ∈ Γ (TM).

One key property of the exterior covariant derivative is that it satisfies the
Leibniz rule, i.e.

d∇(ζ ∧̇ X ) = d∇ζ ∧̇ X + (−1)kζ ∧̇ d∇X , ∀ζ ∈ Ωk(M ; TM),X ∈ Ωl(M ; T ∗M),
(31)
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where the first d∇ on the left-hand-side degenerates to an exterior derivative on
(k + l) forms. By combining the Leibniz rule (31) with Stokes theorem and (28),
the integration by parts formula using exterior calculus is expressed as

∫

S

d∇ζ ∧̇ X + ζ ∧̇ d∇X =

∫

∂S

i∗(ζ ∧̇ X ) =

∫

∂S

i∗f (ζ) ∧̇ i∗f (X ). (32)

Remark 6 (Local expression of exterior covariant derivative)

In local coordinates, the vector valued forms d0
∇α, d

1
∇β, d

2
∇γ above are ex-

pressed as

d0
∇α = αi

;ae
a ⊗ ei ∈ Ω1(M ; TM)

d1
∇β = 2βi[a;b]

(
ea ∧ eb

2

)
⊗ ei ∈ Ω2(M ; TM)

d2
∇γ = 3γi[ab;c]

(
ea ∧ eb ∧ ec

3!

)
⊗ ei ∈ Ω3(M ; TM), (33)

where the square brackets indicate anti-symmetrization and the semi-colon indi-
cates covariant differentiation such that αi

;a := ∇aα
i, βia;b := ∇bβ

i
a, and γiab;c :=

∇cγ
i
ab. Thus, one can see that the exterior covariant derivative is constructed via

an anti-symmetrization process of the covariant derivative on the form leg. Fur-
thermore, the covariant differentiation is applied to vector fields and not to higher
order tensor fields. For instance, γiab;c = ∂c(γiab) + Γ i

kcγ
k
ab. Thus, the component

functions γiab are differentiated as a collection of vector fields, indexed by a and
b, and not as a (1,2) tensor field. This is a fundamental difference between ex-
terior covariant differentiation and covariant differentiation of high-order tensor
fields (e.g. in (7)) which will have a significant impact on the intrinsicality of the
material equations of motion. This point will be further discussed in Remark 12.

Hodge star operator

In analogy to the standard construction for scalar-valued forms (cf. [11, Ch.6]), we
can construct a Hodge-star operator that maps vector-valued forms to covector-
valued pseudo-forms in the following manner. Let µ ∈ Ωn(M) be some top-form on
M . The duality product (29) defines a linear functional that maps Ωn−k(M ; T ∗M)
to R. By the Riesz representation theorem, we can introduce the Hodge-star op-
erator

⋆♭ : Ωk(M ; TM) → Ωn−k(M ; T ∗M),

such that
ζ ∧̇ ⋆♭ ξ = 〈ζ, ξ〉

g
µ, ∀ζ, ξ ∈ Ωk(M ; TM), (34)

where 〈·, ·〉
g
: Ωk(M ; TM)×Ωk(M ; TM) → C∞(M) denotes the point-wise inner

product of vector-valued forms treated as (1, k) tensor fields over M . The action
of ⋆♭ is equivalent to an index lowering operation using g on the value-leg and
a standard Hodge-operator with respect to µ on the form-leg. When needed, we
shall denote this dependency explicitly by ⋆♭[g,µ]. For example, if ζ = α⊗ u and
ξ = ᾱ ⊗ ū are trivial vector-valued k-forms, then ⋆♭ξ = ⋆♭(ᾱ ⊗ ū) = ⋆ᾱ ⊗ g · ū,

whereas
〈ζ, ξ〉

g
= gabu

aūbgi1j1 · · · gikjkαi1···ik ᾱj1···jk ∈ C∞(M),
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Convective Material Spatial
Ωk(B; TB) Ωk

ϕ(B;TS) Ωk(S;TS)
k = 0 v̂, â ṽ, ã v, a

k = 1 ∇̂v̂, ǫ̂ ∇̃ṽ, F ∇v, ǫ

Table 3: Bundle-valued differential forms representation of the kinematics physical
quantities

with gij , g
ij ∈ C∞(M) denoting components of the metric and inverse metric

tensors. Finally, we denote the inverse Hodge star of ⋆♭ by

⋆♯ : Ωn−k(M ; T ∗M) → Ωk(M ; TM).

Remark 7 (Material properties in Hodge-star)

It is important to note that the above definition of the Hodge star (34), the top
form µ is not necessarily equal to the volume form ωg induced by the metric, but
of course proportional to it by some scalar function. This general definition of the
Hodge star allows the incorporation of material properties as is done for example
in electromagnetism [38]. In the coming section, we will include the mass top-forms
of the elastic body, introduced in Sec. 4, inside the Hodge-star operator. In this
way, the Hodge-star will be used to map intensive kinematics quantities, expressed
as vector-valued forms, to extensive kinetics quantities, expressed as covector-valued
pseudo-forms.

Remark 8 (Extension to tensor-valued differential forms) The construction pre-
sented so far for vector-valued forms and covector-valued pseudo-forms can be ex-
tended to any complementary pair of (p, q)-tensor valued forms and (q, p)-tensor
valued pseudo-forms.While the wedge-dot product would be unchanged, the Hodge
star operator should be extended such that the value leg valence is transformed
from (p, q) to (q, p).

5.2 Application to nonlinear elasticity

In terms of bundle-valued forms, we can fully formulate the theory of nonlinear
elasticity as follows. First, all kinematics quantities introduced in Sec. 2 and 3 will
be treated as intensive vector-valued forms (cf. Table 3). In particular, convective
quantities will belong to Ωk(B; TB), spatial quantities will belong to Ωk(S; TS),
while material quantities will belong to Ωk

ϕ(B; TS).
The velocity fields will be treated as vector-valued 0-forms with the underlying

0-form being their component functions. Thus, we identify

Γ (TB) ∼= Ω0(B; TB), TϕC = Γ (ϕ∗TS) ∼= Ω0
ϕ(B; TS), Γ (TS) ∼= Ω0(S; TS).

The local expressions of all three velocities seen as vector-valued 0-forms is given
by

v̂ = v̂I ⊗ EI , ṽ♭ = ṽi ⊗ ei|ϕ, v = vi ⊗ ei

which is in contrast to their expressions seen as vector fields in (1). The spatial and
convective velocity gradients are considered as vector-valued 1-forms in Ω1(S; TS)
and Ω1(B; TB), respectively. Whereas the material representation of the velocity
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gradient as well as the deformation gradient (F ) are elements of Ω1
ϕ(B; TS). The

velocity one forms and covariant velocity gradients will be treated as covector-
valued (true) forms and are related to their covariant counterparts by applying
the ♭ operation to the value-leg:

v̂♭ = ♭v(v̂),

∇̂v̂♭ = ♭v(∇̂v̂),

ṽ♭ = ♭v(ṽ),

∇̃ṽ♭ = ♭v(∇̃ṽ),

v♭ = ♭v(v),

∇v♭ = ♭v(∇v).

As for the rate of strain tensor fields ε̂ and ε, we will consider them as vector-
valued one-forms and thus we identify TĝM(B) ∼= Ω1(B; TB). In this manner, we
can identify the cotangent space T ∗

ĝ M(B) by Ωn−1(B; T ∗B), which will be the
space of stresses as discussed later.

The most important technical advantage of our formulation using bundle-
valued forms is that the transition from one representation to the other has a
clear unified rule for all physical variables. In particular,

– the transition from the spatial to material representation is performed by
pulling-back the form-leg only using ϕ∗

f .
– the transition from the material to convective representation is performed by

pulling-back the value-leg only using ϕ∗
v.

– the transition from the spatial to convective representation is performed by
pulling-back both legs using ϕ∗ = ϕ∗

v ◦ ϕ∗
f .

The reverse transition is simply using the corresponding pushforward maps. There-
fore, we can rewrite the relations between the spatial, convective and material
velocity fields as

ṽ = ϕ∗
f (v), v̂ = ϕ∗

v(ṽ), v̂ = ϕ∗(v). (35)

Similarly, the velocity gradients are related by

∇̃ṽ = ϕ∗
f (∇v), ∇̂v̂ = ϕ∗

v(∇̃ṽ), ∇̂v̂ = ϕ∗(∇v). (36)

The same relations also hold for the velocity one-forms, the covariant velocity gra-
dients, and the accelerations. In fact, one has (by construction) the commutative
properties

∇̂ ◦ ϕ∗ = ϕ∗ ◦ ∇, ∇̃ ◦ ϕ∗
f = ϕ∗

f ◦ ∇, ∇̂ ◦ ϕ∗
v = ϕ∗

v ◦ ∇̃. (37)

The exterior covariant derivatives used for spatial, convective and material
variables are denoted, respectively, by:

dk∇ : Ωk(S; TS)→ Ωk+1(S; TS)

d̂k
∇̂

: Ωk(B; TB) → Ωk+1(B; TB)

d̃k
∇̃

: Ωk
ϕ(B; TS)→ Ωk+1

ϕ (B; TS). (38)

One defines dk∇ using the spatial connection ∇ in (30) by application on vec-

tor fields uj ∈ Γ (TS). As for d̂k
∇̂

and d̃k
∇̃
, they are defined using the convective

and material connections ∇̂ and ∇̃ , respectively, by application on vector fields
ûj ∈ Γ (TB). One important property of the exterior covariant derivative is that it
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Convective Material Spatial

Intensive
Kinematics

Ωk(B; TB) Ωk
ϕ(B; TS) Ωk(S; TS)

Extensive
Kinetics

Ωn−k(B; T ∗B) Ωn−k
ϕ (B;T ∗S) Ωn−k(S;T ∗S)

ϕ∗
v

⋆̂♭

ϕ∗

f

⋆̃♭ ⋆♭

ϕ∗
v

ϕ∗

f

Fig. 5: Our proposed formulation of nonlinear elasticity using bundle-valued forms

commutes with pullbacks [37] similar to the covariant derivative (37). Therefore,
we have that

d̂
∇̂

◦ ϕ∗ = ϕ∗ ◦ d∇, d̃
∇̃

◦ ϕ∗
f = ϕ∗

f ◦ d∇, d̂
∇̂

◦ ϕ∗
v = ϕ∗

v ◦ d̃
∇̃
. (39)

Using the associated mass top-form and metric of each representation we will
define three Hodge-star operators that allow us to relate intensive kinematics vari-
ables to extensive kinetics variables of the elastic body. These include the momen-
tum and stress variables. The spatial, convective and material Hodge stars will be
denoted respectively by:

⋆♭ : Ωk(S; TS)→ Ωn−k(S; T ∗S),

⋆̂♭ : Ωk(B; TB) → Ωn−k(B; T ∗B),

⋆̃♭ : Ωk
ϕ(B; TS) → Ωn−k

ϕ (B; T ∗S), (40)

with their metric and mass form dependencies stated by ⋆♭[g, µ], ⋆̂♭[ĝ, µ̂], ⋆̃♭[g̃, µ̃],
and constructed similar to (34). A consequence of such dependency is that the
spatial and convective Hodge stars will be time-dependent, which needs to be
considered when differentiating in time. A summary of our proposed geometric
formulation using bundle-valued forms is depicted in Fig. 5.

6 Dynamical equations of motion

Now we turn attention to the governing equations of motion of nonlinear elasticity
and the underlying energy balance laws using exterior calculus. The main feature
of these equations is that the momentum and stress variables will be represented
as extensive covector-valued pseudo-forms. In this paper, we do not present
a formal derivation of these equations but instead show their equivalence to the
common standard formulations in the literature. In this manner, we avoid over-
loading this paper with all the technicalities involved in the derivation process. In
a future sequel of this paper, we shall present the derivation of these equations
from first principles in the port-Hamiltonian framework and highlight the under-
lying energetic structure, similar to our previous works on fluid mechanics [39,40,
41,42].
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6.1 Overall energy balance

We start first by a generic statement of the balance of energy, or first law of ther-
modynamics, which is the most fundamental balance law from which the governing
equations can be derived in numerous methods, e.g. by postulating covariance [10],
by variational principles [26], by Lagrangian reduction[43], or by Hamiltonian re-
duction [23].

Let U ⊆ B denote a nice open set of the body and let Ekin and Eint denote the
kinetic and internal energies of that set, respectively. Furthermore, let Pst denote
the rate of work done (power) on the surface ∂U due to stress. The first law of
thermodynamics is then expressed as:

d

dt
(Ekin + Eint) = Pst, (41)

which states that the rate of increase of total energy of any portion U of the body
B equals the mechanical power supplied to that portion from surface traction on
its boundary ∂B. For simplicity, we will exclude any body forces, which can be
trivially added. We also focus only on the mechanical aspect of the motion. Thus,
for clarity of exposition, we exclude non-mechanical power exchange with other
physical domains (e.g. thermo-elastic and piezo-electric effects).

Each of Ekin, Eint, and Pst is an integral quantity that depends on certain
kinematics and kinetics variables in addition to the mass properties of the elastic
body. For physical compatibility, their respective integrands are required to be
psuedo-forms such that these integral quantities always have positive value under
a change of orientation of U . The explicit expression of the energy balance law
(41) depends on a number of choices:

1. Spatial, material or convective description

For both the material and convective representations the integration is per-
formed over U ⊆ B with respect to the mass measure defined by µ̂ = µ̃. In case
the spatial representation is used, the domain of integration will be ϕt(U) ⊆ S

and the mass measure is defined by µt.
2. The pairing operation and mathematical representation of kinematics and kinetics

quantities

The common choice in the literature is to use tensor fields [24] or tensor field
densities [25]. In our work we will be representing kinematics quantities as
vector valued forms while kinetics quantities as covector-valued pseudo forms.
Their corresponding pairing is given by the wedge-dot product (29).

3. Intensive or extensive description

The common choice in the literature is to separate the extensive mass structure
from both kinematics and kinetics variables, and thus representing both as
intensive quantities. What we aim for is to include the mass structure into the
kinetics variables such that they are extensive quantities.

6.2 Extensive representation of stress

In the exterior calculus formulation of continuum mechanics [9,10], one postulates
the existence of the stress as a covector-valued (n − 1) pseudo-form, in the same
manner one postulates the existence of the traction force field in the classic Cauchy
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Fig. 6: Extensive stress representation using bundle-valued forms

stress theorem. The convective, material and spatial representation of this stress
variable are denoted respectively by

T̂ ∈ Ωn−1(B; T ∗B), T̃ ∈ Ωn−1
ϕ (B; T ∗S), T ∈ Ωn−1(S; T ∗S),

which are related to each other by

T̃ = ϕ∗
f (T ), T̂ = ϕ∗

v(T̃ ), T̂ = ϕ∗(T ), (42)

as depicted in Fig. 6. In a local chart for n = 3, the stresses are expressed as

T̂ = (
1

2
T̂KAB EA ∧EB)

︸ ︷︷ ︸
=:T̂K

⊗EK , T̃ = (
1

2
TkAB EA ∧EB)

︸ ︷︷ ︸
=:T̃k

⊗ek|ϕ,

T = (
1

2
Tkab e

a ∧ eb)
︸ ︷︷ ︸

=:Tk

⊗ek, (43)

where each T̂K , T̃k ∈ Ω2(B) and Tk ∈ Ω2(S) is a two-form, while T̂KAB , TkAB ∈

C∞(B) and Tkab ∈ C∞(S) denote their respective component functions.
The pairing of stress, as a covector-valued form with velocity, as a vector-valued

form, results in an (n − 1) form that when integrated on any surface yields the
rate of work done by stress on that surface. With the stress being a pseudo-form,
the sign of the (n− 1) form, and thus the integral, changes automatically under a
change of orientation of the surface. This corresponds to the change of sign of the
surface normal in the classic approach [10].

In the spatial representation, this pairing would be expressed as v ∧̇ T ∈

Ωn−1(S). On the boundary of the spatial configuration ∂S, the surface stress
power would be expressed as Pst =

∫
∂S

i∗(v ∧̇ T ), where i : ∂S → S denotes the
spatial inclusion map. From (28), we could express Pst as

Pst =

∫

∂S

v|∂S ∧̇ T |∂S ,

where

v|∂S := i∗f (v) ∈ Ω0(∂S; TS), T |∂S := i∗f (T ) ∈ Ωn−1(∂S; T ∗S),
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denote the (partial) pullback of the spatial velocity and stress on the boundary
under the spatial inclusion map i : ∂S → S. The variables v|∂S and T |∂S represent
the boundary conditions of the problem.

Similarly, in the material representation one can show, using the change of
variables formula and the fact that ∂S = ϕ(∂B), that the surface stress power is
expressed by

Pst =

∫

∂S

v|∂S ∧̇ T |∂S =

∫

∂B

ϕ∗(v|∂S ∧̇ T |∂S) =

∫

∂B

ϕ∗
f (v|∂S) ∧̇ ϕ∗

f (T |∂S) =

∫

∂B

ṽ|∂B ∧̇ T̃ |∂B,

where

ṽ|∂B := i∗f (ṽ) = ϕ∗
f (v|∂S) ∈ Ω0

ϕ(∂B; TS) T̃ |∂B := i∗f (T̃ ) = ϕ∗
f (T |∂S) ∈ Ωn−1

ϕ (∂B; T ∗S)

denote the (partial) pullback of the material velocity and stress on the boundary
under the body inclusion map i : ∂B → B, which we also denote by i with an abuse
of notation.

Similarly, in the convective representation one can show, using duality in ad-
dition to (42) and (35), that the surface stress power is expressed by

Pst =

∫

∂B

ṽ|∂B ∧̇ T̃ |∂B =

∫

∂B

ṽ|∂B ∧̇ ϕv,∗(T̂ |∂B) =

∫

∂B

ϕ∗
v(ṽ|∂B) ∧̇ T̂ |∂B =

∫

∂B

v̂|∂B ∧̇ T̂ |∂B

where

v̂|∂B := i∗f (v̂) = ϕ∗
v(ṽ|∂B) ∈ Ω0(∂B; TB) T̂ |∂B := i∗f (T̂ ) = ϕ∗

v(T̃ |∂B) ∈ Ωn−1(∂B; T ∗B)

denote the (partial) pullback of the convective velocity and stress on the boundary
under the body inclusion map i : ∂B → B.

6.3 Extensive representation of momentum

Instead of expressing the motion of the body using the intensive velocity variable,
one can use instead the extensive momentum defined as the Hodge-star of the
velocity. The convective, material and spatial representations of this momentum
variable are denoted respectively by

M̂ := ⋆̂♭v̂ ∈ Ωn(B; T ∗B), M̃ := ⋆̃♭ṽ ∈ Ωn
ϕ(B; T

∗S), M := ⋆♭v ∈ Ωn(S; T ∗S),
(44)

which are related to each other by

M̃ = ϕ∗
f (M), M̂ = ϕ∗

v(M̃), M̂ = ϕ∗(M). (45)

In a local chart for n = 3, the convective, material and spatial momentum variables
are expressed as

M̂ = ĝIJ v̂
J µ̂︸ ︷︷ ︸

=:M̂I

⊗EI , M̃ = g̃ij ṽ
j µ̃︸ ︷︷ ︸

=:M̃i

⊗ei|ϕ, M = gijv
jµ︸ ︷︷ ︸

=:Mi

⊗ei, (46)

where each M̂I ,M̃i ∈ Ω3(B) and Mi ∈ Ω3(S) is a top-form.
The pairing of momentum, as a covector-valued form with velocity, as a vector-

valued form, results in an n-form that when integrated on any volume yields twice
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its kinetic energy. Thus, the kinetic energy of the whole body is expressed in the
spatial, material, and convective representations respectively as

Ekin =

∫

S

1

2
v ∧̇ M =

∫

B

1

2
ṽ ∧̇ M̃ =

∫

B

1

2
v̂ ∧̇ M̂. (47)

Remark 9 (Covector-valued forms vs. tensor densities)

Note that both the convective and spatial momentum variables are trivial
covector-valued forms that can be identified, respectively, with the tensor densities
µ̂⊗ v̂♭ and µ⊗ v♭. On the other hand, the material momentum is not trivial. Even
though one can express it equivalently as the tensor density µ̃⊗ ṽ♭, it is clearly not
an element of Ωn

ϕ(B; T
∗S), since ṽ♭ is not a true vector field. Furthermore, in order

for the spatial-to-material transformation in (45) to be valid, one must consider
the form-leg and value-leg of M to be Mi and ei, as indicated in (46), and not
as µ and v♭. Similarly, the material-to-convective transformation in (45) requires

the form-leg and value-leg of M̂ to be M̂I and EI and not as µ̂ and v̂♭. Thus, one
should keep in mind such technical differences when using bundle-valued forms
compared to tensor densities, used for example in [23,25].

6.4 Equations of motion

We now present the equations of motion for the spatial, convective and mate-
rial descriptions. Each description has a local balance of momentum relating the
momentum and stress variables in addition to one extra unique equation. The
spatial description has an advection equation for µ, the convective description has
an advection equation for ĝ, while the material description has a reconstruction
equation for ϕ. As mentioned earlier, we will not provide a formal derivation of
these equations in this paper. Instead, we delegate them to a future sequel and we
settle for showing their equivalence to each standard formulations in the literature.

Proposition 3 (Spatial) The equations of motion governing the extensive variables

(µ,M, T ) ∈ Ωn(S)×Ωn(S; T ∗S)×Ωn−1(S; T ∗S) are given by

∂tµ =− d(ιvµ), (48)

∂tM =− d∇(ιvµ⊗ v♭) + d∇T , (49)

where v = ⋆♯M ∈ Ω0(S; TS). Furthermore, the balance of the total energy is expressed

as
d

dt

∫

S

1

2
⋆♯ M ∧̇ M+ E(x,F, g) =

∫

∂S

v|∂S ∧̇ T |∂S , (50)

where E : S ×Ω1
ϕ(B; TS)×M(S) → Ωn(S) is the internal energy density function in

the spatial representation.

The first equation above represents the conservation of mass while the second
one represents the local balance of momentum in terms of the extensive variable
M. The form of the equations of motion in (48-49) is often called the conservation

form. In such equations one can see clearly that the mass flux is identified by ιvµ
while the momentum flux is identified by the covector-valued (n−1) form ιvµ⊗v

♭,
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which has the same geometric nature as the stress T [26]. The internal energy
density function E and its dependencies will be discussed later in Sec. 6.5.

Finally, one can show that the rate of change of the kinetic energy along tra-
jectories (µ(t),M(t)) of (48-49) satisfies

d

dt
Ekin =

∫

S

v ∧̇ d∇T , (51)

which states that the rate of change of kinetic energy is equal to the work done
due to stress forces and shows that the momentum flux term does not contribute
to the power balance [26].

Remark 10 (Advection form of momentum balance)

Consider the following identity relating the exterior covariant derivative with
the Lie derivative of a trivial covector-valued top-form [26]

Lu(ω ⊗ α) = d∇(ιuω ⊗ α) + ω ⊗ (∇u ∧̇ α), (52)

∀u ∈ Γ (TM), α ∈ Ω1(M), ω ∈ Ωn(M), while ιu : Ωk(S) → Ωk−1(S) denotes the
standard interior product of scalar-valued forms.

Using the (12,52) along with the identity ∇v ∧̇ v♭ = 1
2dιvv

♭, one can also
express the spatial equations of motion as

∂tµ =− Lvµ, (53)

∂tM =− LvM+ µ⊗
1

2
dιvv

♭ + d∇T , (54)

which is often referred to as the advection form of the equations. It is interesting to
note some resemblance between (52) and Cartan’s formula (12) for scalar-valued
forms.

Proposition 4 (Convective) The equations of motion governing ĝ ∈ M(B) and the

extensive variables (M̂, T̂ ) ∈ Ωn(B; T ∗B)×Ωn−1(B; T ∗B) are given by

∂tĝ = Lv̂ ĝ, (55)

∂tM̂ =
1

2
µ̂⊗ dιv̂ v̂

♭ + d̂
∇̂
T̂ , (56)

where v̂ = ⋆̂♯M̂ ∈ Ω0(B; TB). Furthermore, the balance of the total energy is expressed

as
d

dt

∫

B

1

2
⋆̂♯M̂ ∧̇ M̂+ Ê(X, ĝ) =

∫

∂B

v̂|∂B ∧̇ T̂ |∂B, (57)

Ê : B ×M(B) → Ωn(B) is the internal energy density function in the convective

representation.

Equation (55) represents the advection of the convective metric (with respect to
−v̂) while (56) represents the local balance of momentum in terms of the extensive

variable M̂. Finally, the rate of change of the kinetic energy along trajectories
(ĝ(t),M̂(t)) of (55-56) satisfies

d

dt
Ekin =

∫

B

v̂ ∧̇ d̂
∇̂
T̂ . (58)
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Proposition 5 (Material) The equations of motion governing ϕ ∈ C and the exten-

sive variables (M̃, T̃ ) ∈ Ωn
ϕ(B; T

∗S)×Ωn−1
ϕ (B; T ∗S) are given by

∂tϕ = ṽ, (59)

DtM̃ = d̃
∇̃
T̃ , (60)

where ṽ = ⋆̃♯M̃ ∈ Ω0
ϕ(B; TS). Furthermore, the balance of the total energy is expressed

as
d

dt

∫

B

1

2
⋆̃♯M̃ ∧̇ M̃+ Ẽ(X,F ) =

∫

∂B

ṽ|∂B ∧̇ T̃ |∂B, (61)

where Ẽ : B ×Ω1
ϕ(B; TS) → Ωn(B) is the material internal energy density function.

Equation (59) represents the reconstruction equation of the configuration ϕ whereas
(60) represents the local balance of momentum in terms of the extensive variable

M̃. Note that in contrast to (49,56), the momentum balance (60) is expressed in
terms of the material derivative. Finally, the rate of change of the kinetic energy
along trajectories (ϕ(t),M̃(t)) of (59-60) satisfies

d

dt
Ekin =

∫

B

ṽ ∧̇ d̃
∇̃
T̃ . (62)

6.5 Constitutive equation and internal energy

We conclude this section by discussing how constitutive equations for determining
the stress are included in our formulation. We do not aim for a concise treatment
of this involved topic in this paper. Instead, we aim to highlight here the form of
the equations in exterior calculus, the difference between the three representations,
and how only the convective representation of the constitutive equations allows a
complete description, following up the discussion of Sec. 3. Thus, for simplicity, we
only treat the case of pure hyper elasticity and neglect any memory or rate effects.
For an introduction to the subject of constitutive theory, the reader is referred to
[5, Ch.3].

6.5.1 Convective

Using the integration by parts formula (32) and combining (57) and (58), one can
see that the conservation of energy implies that the rate of change of the internal
energy should satisfy

d

dt
Eint =

∫

B

∇̂v̂ ∧̇ T̂ . (63)

Thus, for the equations of motion to be well-posed, one requires a closure relation
between T̂ , ∇̂v̂, and Eint. As discussed in Sec. 3, the convective metric ĝ allows an
intrinsic description of the deformation’s state. Thus, one can define the internal
strain energy as a functional of ĝ:

Eint[ĝ] :=

∫

B

Ê(X, ĝ), (64)
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where Ê : B ×M(B) → Ωn(B) is the internal energy density function, while de-
pendence of body points allows modeling non-homogeneous materials.

Using the identifications of the tangent and cotangent spaces TĝM(B) and
T ∗
ĝ M(B) as bundle-valued forms described in Sec. 5, the rate of change of Eint is

given by

d

dt
Eint =

∫

B

∂Ê

∂ĝ
∧̇ ∂tĝ =

∫

B

(∂tĝ)
♯ ∧̇

(
∂Ê

∂ĝ

)♭

, (65)

where ∂Ê
∂ĝ ∈ Ωn−1(B; TB) denotes the gradient of Ê with respect to ĝ, while the

sharp and flat operations are with respect to ĝ as discussed in Remark 4. Further-
more, using (9,11), one has that

∫

B

∇̂v̂ ∧̇ T̂ =

∫

B

(∇̂v̂♭)♯ ∧̇ T̂ =

∫

B

(
1

2
Lv̂ ĝ −

1

2
dv̂♭)♯ ∧̇ T̂ . (66)

Thus, from (20,65) and (66), in order for (63) to hold, under the condition that
(dv̂♭)♯ ∧̇ T̂ = 0, the convective stress T̂ should satisfy

T̂ = 2

(
∂Ê

∂ĝ

)♭

. (67)

Furthermore, the condition (dv̂♭)♯ ∧̇ T̂ = 0 is satisfied if

(α̂♯ ⊗ β̂) ∧̇ T̂ = (β̂♯ ⊗ α̂) ∧̇ T̂ , ∀α̂, β̂ ∈ Ω1(B). (68)

Equation (67) corresponds to the convective counterpart of the well-known Doyle-
Erickson formula [10] and (68) corresponds to the usual symmetry condition on
stress. Consequently, we have that

d

dt
Eint =

∫

B

∇̂v̂ ∧̇ T̂ =

∫

B

1

2
(∂tĝ)

♯ ∧̇ T̂ =

∫

B

ε̂ ∧̇ T̂ , (69)

with ε̂ denoting the convective rate of strain tensor field.
Combined with the equations of motion (55,56), the constitutive law (67) pro-

vides a complete set of equations that describe the motion of the elastic body in
an intrinsic manner. Due to his work highlighting the importance of M(B) in this
intrinsic formulation, we refer to the T̂ as the Rougee stress tensor similarly to [7].

Remark 11 Note that in (65) the wedge dot should have an alternating property
analogously to the standard wedge, so care must be taken when swapping the form
legs. However, since we are assuming n = 3, swapping a 1-form and a 2-form does
not change the sign of the product.

6.5.2 Material

Alternatively to (63), one can attempt to repeat the same line of thought above
for the material case. From (15,61,32) and (62), one has that

d

dt
Eint =

∫

B

∇̃ṽ ∧̇ T̃ =

∫

B

DtF ∧̇ T̃ . (70)
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This equation could immediately tempt one to think that the deformation gradient
is a suitable state of deformation and thus one could say that

Eint[F ] :=

∫

B

Ẽ(X,F ), (71)

where Ẽ : B ×Ω1
ϕ(B; TS) → Ωn(B) is the material counterpart of Ê. Consequently,

the material version of the Doyle Erickson formula would be [10]

T̃ =

(
∂Ẽ

∂F

)
, (72)

where
(

∂Ẽ
∂F

)
∈ Ωn−1

ϕ (B; T ∗S) denotes the gradient of Ẽ with respect to F .

However, the fundamental issue with this description is that unlike the con-
vective metric ĝ which characterizes the deformation component of the motion, F
characterizes the full motion. One way to see this is by comparing (15) and (21)
which indicates that ĝ is calculated by the time integration of the symmetric part
of the velocity gradient (and thus rate of strain) whereas F is calculated from the
full velocity gradient. Another way to see this is from the axiom of material frame
independence or objectivity [5]. This well known result indicates that for the in-
ternal energy Eint to be invariant under arbitrary spatial diffeomorphisms, then Ẽ

should only depend on ĝ and not F [5, Th. 2.10]. This axiom of invariance is in
fact equivalent to the factorization of rigid body motions in the principle bundle
structure relating C and M(B) which will be detailed later in Sec. 8. Therefore,
this asserts the importance of the space M(B) as the space of deformations.

6.5.3 Spatial

Following the standard construction of [5, Ch.3], the transition to the spatial
description is achieved by considering that ĝ = ϕ∗(g) can be interpreted as a
function of F and g . Consequently, one can consider Eint as the functional

Eint[F, g] :=

∫

S

E(x,F, g), (73)

where E : S ×Ω1
ϕ(B; TS)×M(S) → Ωn(S) is the spatial counterpart of Ê, defined

such that E(x,F, g) := ϕ∗(Ê(ϕ−1(x), ϕ∗(g))). Moreover using the chain rule, one
can show that the gradient of E with respect to g is given by

∂E

∂g
= ϕ∗

(
∂Ê

∂ĝ

)
∈ Ωn−1(S; TS).

Using the commutative property of the pushforward operation with contractions,
the spatial counterpart of (67) is given by

T = ϕ∗

(
T̂
)
= ϕ∗

(
2ĝ ·

∂Ê

∂ĝ

)
= 2ϕ∗(ĝ) · ϕ∗

(
∂Ê

∂ĝ

)
= 2g ·

∂E

∂g
= 2

(
∂E

∂g

)♭

. (74)

Furthermore, the symmetry condition (68) is inherited by σ̂ such that

(α♯ ⊗ β) ∧̇ T = (β♯ ⊗ α) ∧̇ T , ∀α, β ∈ Ω1(S). (75)
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Consequently, we have that

d

dt
Eint =

∫

S

∇v ∧̇ T =

∫

B

ε ∧̇ T , (76)

with ε denoting the spatial rate of strain tensor field.
By comparing (76) to (69) one can see a high resemblance which can cause a

significant confusion between the two descriptions of the constitutive equations.
This deceptive resemblance could lead one to incorrectly think that the metric g
acts as the state of deformation in the spatial description. However, g is a fixed
physical property of the ambient space and thus is neither a time-dependent state
not it is the integral of the rate-of-strain tensor ε♭ = 1

2Lvg ! This misunderstanding
can be clarified by explicating the arguments of the Doyle Erickson formula (74),
which could be written instead as

T = 2

(
∂E

∂g

)♭

[F, g],

to emphasize that the constitutive equations depend on both g and F , which
is indeed the combination that corresponds to ĝ, the true state of deformation.
Furthermore, with this explicit dependence, one can also see that the spatial con-
stitutive equation (74) combined with the equations of motion (48-49) are not
well-posed since one requires an extra evolution equation for the deformation gra-
dient F . However, this leads to a combination of the material and spatial descrip-
tions. This again highlights how only in the convective description can one have a
complete intrinsic formulation of the constitutive equations.

7 Relation with common formulations

In this final section we show the relation between our proposed exterior calculus
formulation and the standard ones in the literature, e.g. in [5,23]. The main dif-
ference lies in the choice of using the intensive mass density and velocity variables
instead of the extensive mass forms and momentum variables. Furthermore, com-
mon formulations represent the stress as an intensive 2-rank tensor instead of the
extensive stress variables we utilized.

In what follows we show how one can recover the usual intensive stress variables
from (T̂ , T̃ , T ) and how one changes between different representations. Then, we
derive the standard governing dynamical equations from the ones we presented in
Sec. 6.4.

7.1 From extensive to intensive stress

Analogous to the relation between the momentum and velocity variables in (44),
we can transform the covector-valued (n− 1) forms T̂ , T̃ , and T into the following
intensive stress variables:

τ̂ :=⋆̂♯ T̂ ∈ Ω1(B; TB) ∼= Γ (T 1
1B),

τ̃ :=⋆̃♯ T̃ ∈ Ω1
ϕ(B; TS) ∼= Γ (T ∗B ⊗ ϕ∗TS),

τ := ⋆♯ T ∈ Ω1(S; TS) ∼= Γ (T 1
1S),

(77)
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Convective Material Spatial

Mass and volume
dependency

T̂

Rougee

T̃ T

No dependency
τ̂ τ̃ τ

Mass dependency
σ̂

Convected

σ̃

1stPiola−Kirchhoff

σ

Cauchy

Table 4: Extensive and intensive stress representations

which can be interpreted as vector-valued 1-forms or equivalently mixed 2-rank

tensor fields. The standard 2-contravariant stress tensor fields are defined using
the mass densities as

σ̂ :=ρ̂ĝ−1 · τ̂ ∈ Γ (T 2
0B),

σ̃ :=ρ̃g̃−1 · τ̃ ∈ Γ (TB ⊗ ϕ∗TS),

σ :=ρg−1 · τ ∈ Γ (T 2
0S),

(78)

which are known as the convected, 1st Piola-Kirchhoff, and Cauchy stress tensor
fields, respectively. Other common stresses are the 2nd Piola-Kirchhoff stress Jϕσ̂ ∈

Γ (T 2
0B) and the Kirchhoff stress (Jϕ ◦ ϕ−1)σ ∈ Γ (T 2

0S), where Jϕ ∈ C∞(B) is the
Jacobian of ϕ.

In a local chart, the intensive stresses (77) and (78) are expressed as

τ̂ = τ̂JI EI ⊗ EJ , τ̃ = τ̃ jI EI ⊗ ej |ϕ, τ = τ ji ei ⊗ ej ,

σ̂ = σ̂IJ EI ⊗ EJ , σ̃ = σ̃Ij EI ⊗ ej |ϕ, σ = σij ei ⊗ ej ,

with the relation of their components to those of the extensive stress variables in
(43) given by

T̂KAB =τ̂JK µ̂JAB = ĝKM σ̂JM ω̂JAB ,

T̃kAB =g̃kjG
IM τ̃ jI µ̃MAB = g̃kj σ̃

Mj ω̃MAB ,

Tkab =τ
j
kµjab = gkmσ

jmωjab, (79)

where the indexed µ-symbols and ω-symbols denote the components of the mass
and volume forms, respectively (cf. Table 2).

By comparing the different component functions, one can observe that the
extensive stress variables (T̂ , T̃ , T ) possess mass and volume dependency, whereas
the mixed 2-rank tensor fields (τ̂ , τ̃ , τ) do not have such dependency and thus
represent pure stress information that is determined by the constitutive equations.
On the other hand, the stresses (σ̂, σ̃, σ) are also intensive similar to (τ̂ , τ̃ , τ),
however they differ by having mass dependency through the mass densities. A
summary of the different stress representations can be found in Table 4.

Another key distinction between the extensive and intensive stress variables is
the way in which the spatial, convective and material representation are related
to each other. While the extensive stresses are subject to clear intrinsic pullback
relations, characterized by (42), the intensive stress variables on the other hand
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do not have this advantage. In particular, the transformation from the spatial to
the convective representation is expressed locally as

τ̂JI = F i
I (F

−1)Jj τ
j
i , σ̂IJ = (F−1)Ii (F

−1)Jj σ
ij , (80)

and from the spatial to the material representation as

τ̃ jI = GIM g̃ij(F−1)Mm τmi , σ̃Ij = Jϕ(F
−1)Ii σ

ij , (81)

and from the material to the convective representation as

τ̂JI = ĝIKG
JM (F−1)Kj τ̃

j
M , σ̂IJ =

1

Jϕ
(F−1)Ij σ̃

Ji. (82)

From the above relations, one can observe that only the spatial-to-convective trans-
formation (80) is a pullback relation, i.e. one has that τ̂ = ϕ∗(τ) and σ̂ = ϕ∗(σ).
This is clearly not the case for (81) and (82) which require, in addition to pulling-
back one index, the use of the non-intrinsic quantities G or Jϕ. In the literature,
the relation between σ̃ and σ in (81) has been known as the Piola transformation,
which can be seen to be in fact a non-intrinsic operation. Again this is an important
technical advantage of representing stress as a covector-valued pseudo-form.

7.2 Governing dynamical equations

Theorem 1 (Spatial) The counterparts of equations (48,49) and (74) in terms of

the intensive variables (ρ, v, σ) ∈ C∞(S)× Γ (TS)× Γ (T 2
0 S) are given by

∂tρ = −Lvρ− ρdiv(v) (83)

∂tv = −∇vv +
1

ρ
div(σ) (84)

σ =2ρ
∂e

∂g
. (85)

Furthermore, the balance of the total energy is expressed as

d

dt

∫

S

[
1

2
g(v, v) + e(x,F, g)

]
ρωg =

∫

∂S

σ♭(v, n)ςg, (86)

where e(x,F, g) ∈ C∞(S) denotes the internal energy function, σ♭ := g · (g · σ) ∈

Γ (T 0
2S) denotes the 2-covariant version of the stress, while n : ∂S → TS and ςg :=

tr(ιnωg) ∈ Ω2(∂S) denote, respectively, the unit normal vector field and the area form

on the boundary ∂S induced by the spatial metric g.

Proof i) The equivalence of (83) and (48) is standard and mentioned earlier in the
conservation of mass Proposition 2.

ii) The balance of momentum (84) is derived from (49) such that

⋆♯(∂tM) = ⋆♯(−LvM+ µ⊗
1

2
dιvv

♭) + ⋆♯d∇ ⋆♭ (τ).

First, using the Leibniz property of the time derivative, we can write

∂tM = ∂t(µ⊗ v♭) = µ⊗ g · (∂tv) + ∂tµ⊗ v♭.
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Second, using the Leibniz property of the Lie derivative and identity (13) we have
that

LvM = Lv(µ⊗ v♭) = µ⊗ Lvv
♭ + Lvµ⊗ v♭ = µ⊗ (∇vv

♭ +
1

2
dιvv

♭) + Lvµ⊗ v♭.

By combining the above two equations with the conservation of mass (48), one
has that

⋆♯
(
∂tM+ LvM− µ⊗

1

2
dιvv

♭

)
= ∂tv +∇vv

The exterior derivative of T is the covector-valued top-form expressed locally
as

d∇T =

(
3

3!
Tk[ab;c]e

a ∧ eb ∧ ec
)

⊗ ek,

similar to (33), where the semicolon is used as the (standard) shorthand notation
for covariant differentiation with respect to ∇. Using the relations (79), we have
that

3Tk[ab;c] = 3(τmk µm[ab);c] = 3(gkjσ
jmωm[ab);c].

Using the covariant derivative properties ∇g = 0 and ∇ωg = 0 and the total
anti-symmetry of the 3-form ωg, we have that

3Tk[ab;c] = 3gkj(σ
jm);[cωab]m = gkj(σ

jm);mωabc = gkj
1

ρ̂
(σjm);mµabc

Thus, we have that the exterior derivative of T to be equivalent to

d∇T = d∇ ⋆♭ (τ) = gkj
1

ρ
(σjm);mµ⊗ ek = µ⊗

1

ρ
(g · div(σ)) ,

and consequently ⋆♯d∇ ⋆
♭ (τ) = 1

ρdiv(σ). This concludes the derivation of (84) from

(49).
iii) In standard formulation, the internal energy function is usually expressed as

E(X,F, g) = e(X,F, g)µ, with e : S ×Ω1
ϕ(B; TS)×M(S) → C∞(S) being a scalar

function. The gradient of e with respect to g is the 2-contravariant tensor field

∂e
∂g ∈ Γ (T 2

0 S), and one can interpret its variant
(

∂e
∂g

)♭
∈ Γ (T 1

1S) ∼= Ω1(S; TS) as a

vector-valued 1-form. Consequently, it is related to the gradient of E with respect
to g by (

∂E

∂g

)♭

= ⋆♭
(
∂e

∂g

)♭

∈ Ω2(S; T ∗S).

In local coordinates, this is represented as

(
∂E

∂g

)j

ab

=

(
∂e

∂g

)jm

µmab.

Using (74) and µ = ρωg, then one has that

Tkab = 2gkj

(
∂E

∂g

)j

ab

= 2gkj

(
∂e

∂g

)jm

ρωmab.

By comparison to (79), one gets σjm = 2ρ
(

∂e
∂g

)jm
.
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iv) From the definition of the Hodge star operator (34), one can see that

⋆♯M ∧̇ M = v ∧̇ M = v ∧̇ ⋆♭ v = g(v, v)µ.

Using the definition of the wedge-dot operation and the fact that the boundary
normal is a unit vector, i.e. gmjn

jnl = δlm, the stress power Pst can be expressed
as

tr(v ∧̇ T ) =
1

2
tr(vkτmk µmabe

a ∧ eb) =
1

2
tr(vkτmk δlmµlabe

a ∧ eb)

=
1

2
tr(vkτmk gmjn

jnlµlabe
a ∧ eb) = tr(ρvkτmk gmjn

j)tr(
1

2
nlωlabe

a ∧ eb)

= tr(gmjgklσ
mlvknj)tr(ιnωg) = tr(σ♭(v, n))ςg,

which concludes the proof. �

Theorem 2 (Convective) The counterparts of equations (55,56) and (67) in terms

of the intensive variables (ρ̂, v̂, σ̂) ∈ C∞(B)× Γ (TB)× Γ (T 2
0B) are given by

∂tĝ =Lv̂ ĝ (87)

∂tρ̂ = − ρ̂d̂iv(v̂) (88)

∂tv̂ = − ∇̂v̂ v̂ +
1

ρ̂
d̂iv(σ̂) (89)

σ̂ =2ρ̂
∂ê

∂ĝ
(90)

Furthermore, the balance of the total energy is expressed as

d

dt

∫

B

[
1

2
ĝ(v̂, v̂) + ê(X, ĝ)

]
ρ̂ω̂ĝ =

∫

∂B

σ̂♭(v̂, N)ς̂ĝ , (91)

where ê(X, ĝ) ∈ C∞(B) denotes the internal energy function, σ̂♭ := ĝ ·(ĝ · σ̂) ∈ Γ (T 0
2B)

denotes the 2-covariant version of the stress, while N : ∂B → TB and ς̂ĝ := tr(ιN ω̂ĝ) ∈
Ω2(∂B) denote, respectively, the unit normal vector field and the area form on the

boundary ∂B induced by the convective metric ĝ.

Proof i) The counterpart of (88) in the extensive representation is ∂tµ̂ = 0 as
presented in Proposition 2.

ii) The balance of momentum (89) is derived from (56) such that

⋆̂♯(∂tM̂) = ⋆̂♯(
1

2
µ̂⊗ dιv̂ v̂

♭) + ⋆̂♯d̂
∇̂
⋆̂♭(τ̂).

Using (87) and the identities (14) and Lv̂ ĝ · v̂ = Lv̂ v̂
♭, one can show that

∂t(ĝ) · v̂ = ∇̂v̂ v̂
♭ +

1

2
dιv̂ v̂

♭,

and consequently

∂t(ĝ · v̂) = ĝ · ∂tv̂ + ∂t(ĝ) · v̂ = ĝ · ∂tv̂ + ∇̂v̂ v̂
♭ +

1

2
dιv̂ v̂

♭.
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Using the time independence property of µ̂ and (9), we have that

⋆̂♯(∂tM̂) = ⋆̂♯(µ̂⊗ ∂t(ĝ · v̂)) =∂tv̂ + ĝ−1 · (∇̂v̂ v̂
♭ +

1

2
dιv̂ v̂

♭)

=∂tv̂ + ∇̂v̂ v̂ + ĝ−1 · (
1

2
dιv̂ v̂

♭).

Using the fact that ⋆̂♯( 12 µ̂⊗ dιv̂ v̂
♭) = ĝ−1 · ( 12dιv̂ v̂

♭), we thus have that

⋆̂♯(∂tM̂ −
1

2
µ̂⊗ dιv̂ v̂

♭) = ∂tv̂ + ∇̂v̂ v̂.

Since ∇̂ĝ = 0 and ∇̂ω̂ĝ = 0, one can show, analogously to the spatial case in the

previous theorem that the exterior derivative of the convective stress T̂ is equal to

d̂
∇̂
T̂ = d̂

∇̂
⋆̂♭(τ̂) = ĝKJ

1

ρ̂
(σ̂JM );M µ̂⊗ EK = µ̂⊗

1

ρ̂

(
ĝ · d̂iv(σ̂)

)
,

where the semicolon is used as the shorthand notation for covariant differentiation
with respect to ∇̂. Thus, we have that ⋆̂♯d̂

∇̂
⋆̂♭(τ̂) = 1

ρ̂ d̂iv(σ̂). This concludes the

derivation of (89) from (56).

iii) The derivation of (90) from (67) is identical to the spatial case in Theorem 1
starting from Ê(X, ĝ) = ê(X, ĝ)µ̂.

iv) Finally analogously to the spatial case, using the fact that the normal is a
unit vector, i.e. ĝMJN

JNL = δLM , one has that

tr(v̂ ∧̇ T̂ ) = tr(ĝMJ ĝKLσ̂
MLv̂KNJ )tr(ιN ω̂ĝ) = tr(σ̂♭(v̂, N))ςĝ,

which concludes the proof. �

Theorem 3 (Material) The counterparts of equations (59,60) and (72) in terms of

the intensive variables (ṽ, σ̃) ∈ Γ (ϕ∗TS)× Γ (TB ⊗ ϕ∗TS) are given by

∂tϕ =ṽ (92)

DtF =∇̃ṽ (93)

Dtṽ =
1

ρ̃
d̃iv(σ̃) (94)

σ̃ =ρ̃ g̃−1 ·
∂ẽ

∂F
. (95)

Furthermore, the balance of the total energy is expressed as

d

dt

∫

B

[
1

2
g̃(ṽ, ṽ) + ẽ(X,F )

]
ρ̃ωG =

∫

∂B

σ̃♭(ṽ, ñ)ς̃G, (96)

where ẽ(X,F ) ∈ C∞(B) denotes the internal energy function, σ̃♭ := g̃ · (G · σ̃) ∈

Γ (T ∗B ⊗ ϕ∗T ∗S) denotes the 2-covariant version of the stress, while N : ∂B → TB

and ς̃G := tr(ιNωG) ∈ Ω2(∂B) denote, respectively, the unit normal vector field and

the area form on the boundary ∂B induced by the reference metric G.
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Proof i) Since we can identify M̃ by µ̃⊗ṽ♭, then one can use the time-independence
of µ̃ to write the momentum balance (60) as

DtM̃ = µ̃⊗ g̃ · (Dtṽ).

Thus, it follows immediately that ⋆̃♯(DtM̃) = Dtṽ.
The exterior derivative of T̃ is the covector-valued top-form expressed locally

as

d̃
∇̃
T̃ =

(
3

3!
T̃k[AB;C]E

A ∧EB ∧ EC

)
⊗ ek|ϕ,

where the semicolon is used as the shorthand notation for covariant differentiation
with respect to ∇̃. Using the relations (79), we have that

3T̃k[AB;C] = 3(g̃kmG
JM τ̃mJ µ̃M[AB);C] = 3(g̃kmσ̃

mM ω̃M[AB);C].

Recall from Sec. 2.4 that ∇̃g̃ = 0. Furthermore, one has that ∇̃ω̃G = 0 since ∇̃

was constructed using the connection coefficients of G and thus it is compatible
with the volume form induced by G (cf. Remark 2). Consequently, similar to the
spatial and convective cases, one has that

3T̃k[AB;C] = g̃km(σ̃mM );M ω̃ABC .

Thus, we have that the exterior derivative of T̃ to be equivalent to

d̃
∇̃
T̃ = d̃

∇̃
⋆̃♭(τ̃) = µ̃⊗

1

ρ̃

(
g̃ · d̃iv(σ̃)

)
,

and consequently ⋆̃♯d̃
∇̃
⋆̃♭(τ̃) = 1

ρ̃ d̃iv(σ̃). This concludes the derivation of (94) from

(60).
iii) Following the same line of thought as in the proof of the spatial case, we

have that Ẽ(X,F ) = ẽ(X,F )µ̃. The gradient of ẽ with respect to F , denoted by
∂ẽ
∂F ∈ Γ (TB ⊗ ϕ∗T ∗S), is related to the gradient of Ẽ with respect to F by

(
∂Ẽ

∂F

)

kAB

=

(
∂ẽ

∂F

)M

k

µ̃MAB .

Consequently, by comparison to (79) one gets σ̃Mj = g̃jkρ̃
(
∂ẽ
∂F

)M
k
.

iv) Finally analogously to the spatial and convective cases, using the fact that
the normal is a unit vector, i.e. GMJN

JNL = δLM , one has that

tr(ṽ ∧̇ T̃ ) =
1

2
tr(ṽkg̃kiG

LM τ̃ iLµ̃MABE
A ∧EB) =

1

2
tr(σ̃iM ṽk g̃kiω̃MABE

A ∧ EB)

=
1

2
tr(g̃kiσ̃

iM ṽkGMJN
JNK ω̃KABE

A ∧EB)

= tr(g̃kiGMJ σ̃
iM ṽkNJ)tr(

1

2
NK ω̃KABE

A ∧ EB)

= tr(σ̃♭(ṽ, N))tr(ιN ω̃G) = tr(σ̃♭(ṽ, N))ς̃G,

which concludes the proof. �
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Remark 12 (Intrinsicality of the material representation)

A very important distinction should be made between the extensive momentum
balance (60) and the intensive momentum balance (94). Both equations are in fact
a statement of Newton’s second law, i.e. the rate of change of momentum are equal
to forces due to stress. These forces are computed by spatial differentiation of the
stress tensor, represented by the exterior covariant derivative d̃

∇̃
in (60) and the

divergence operator d̃iv in (94). However, a key difference is that the extensive
representation (60) is intrinsic and independent of any reference configuration
while (94) is not.

The non-intrinsicality of (94) can be seen from the expression of d̃iv constructed
from the covariant differential ∇̃σ̃ in (7) which uses the Levi-Civita connection of
the reference metric G as explained in Remark 2. On the other hand, the exterior
covariant derivative d̃

∇̃
is constructed by anti-symmetrization of the covariant

derivative ∇̃ applied to a collection of covector fields, as explained in Remark
6, which does not require a reference metric (cf. the coordinate expression of ∇̃

applied to a covector field in Table 1 compared to ∇̃ applied to a second rank
tensor field in (19)).

This non-intrinsicality is a consequence of the fundamental difference between
the extensive stress tensor T̃ and its intensive counterpart σ̃ as depicted in (79).
The extensive mass form µ̃ incorporated in the definition of σ̃ is intrinsically defined
for the body manifold. On the other hand, σ̃ is constructed from the intensive mass
density ρ̃, which is depends on the reference configuration chosen.

8 Underlying structures

In this section, we conclude by emphasizing two types of structures underlying the
theory of nonlinear elasticity. Namely, 1) the principle bundle structure relating
the configuration space C to the deformation space M(B), and 2) the de Rham
complex structure relating the spaces of bundle-valued forms to each other.

8.1 Principal fiber bundle structure of C and M(B)

Recall from Sec. 3 the map πg : C → M(B) that associates to any configuration ϕt

a Riemannian metric on B. The curve cϕ : t 7→ ϕt in C characterizing the motion
of the body induces a curve cĝ : t 7→ ĝt = πg(ϕt) in M(B).

A key distinction should be made between the curve cϕ on the configuration
space C and its image cĝ = πg(cϕ) on the deformation space M(B). While cϕ
represents a motion of the body in the ambient space that consists of both rigid
body motion (i.e. simultaneous translation and rotation) and deformation, the
curve cĝ represents only the deformation component of the motion. This can be
seen from the fact that πg is a projectionmap that is not injective. Let η ∈ Isom(A )
be an isometry of the ambient space, i.e. η : A → A , such that, η∗g = g, which
represents physically a rigid body motion. If any two configurations ϕ1, ϕ2 ∈ C

are related by ϕ2 = η ◦ ϕ1 (equivalently ϕ1 = η−1 ◦ ϕ2), then we have that

πg(ϕ2) = ϕ∗
2(g) = (η ◦ ϕ1)

∗g = ϕ∗
1(η

∗g) = ϕ∗
1(g) = πg(ϕ1).
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se Space

Total

Space

Fig. 7: Principal fiber bundle structure of πg : C → M(B).

In this case, ϕ2 represents a superposed rigid body motion of the configuration ϕ1.
As shown in [44], this observation is a consequence of a geometric structure that

underlies the triplet (C , πg,M(B)), namely a principal fiber bundle structure which
can be formulated as follows. Let G := Isom(A ) denote the group of isometries
on A with the group operator being composition, which can be shown to be a Lie
group. Consider the right action of G on the configuration space C defined by:

⊳ : C ×G → C

(ϕ, η) 7→ ϕ ⊳ η := η−1 ◦ ϕ.
(97)

One can check that ⊳ is a free G-action since ∀ϕ ∈ C the only rigid body motion
that does not change ϕ is the identity of G.

For any ϕ ∈ C , we define its orbit under the action ⊳ as the set

Oϕ := {ϕ̄ ∈ C | ∃η ∈ G : ϕ ⊳ η = ϕ̄}.

Let ϕ ∼ ϕ̄ be equivalent if ϕ̄ ∈ Oϕ. It is straightforward to show that this is an
equivalence relation (i.e. reflexive, symmetric, and transitive). The orbit space of C

is defined as the quotient space C /G : {Oϕ|ϕ ∈ C } where each element Oϕ = [ϕ] is
an equivalence class of ϕ. Intuitively, the set Oϕ consists of all configurations ϕ̄ that
are rigid body motions of ϕ and thus they all have the same “shape”. Consequently,
each orbit Oϕ is associated to one deformation state ĝϕ := πg(ϕ) ∈ M(B) in a
bijective manner. Thus, we have that the map

ζ : M(B) → C /G

ĝϕ 7→ [ϕ],

is a diffeomorphism, which in addition satisfies ζ ◦ πg = π, where π : C → C /G

denotes the canonical projection map that maps a member of the set C to its
equivalence class. Therefore, this proves that the bundle πg : C → M(B) is a
principal fiber G-bundle.
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A consequence of this extra bundle structure that relates the right G-space C

and the space of deformations M(B) is that (locally) at any point ĝ ∈ M(B) is
attached a fiber that is isomorphic to G. This follows from the fact that π−1(Oϕ) =
Oϕ

∼= G since ⊳ is a free G-action. This principal bundle structure, depicted in
Fig. 7, is the formalization of how the full motion of the elastic body is represented
by the curve cϕ in the total space C , whereas its projection under πg to the base
space M(B) corresponds to the deformation component and motion along the
fibers corresponds to the rigid body component.

This motion along the fibers can be formulated geometrically for the curve
cϕ : t → ϕt as follows. Consider the tangent vector ṽt ∈ TϕtC to the curve and its
induced spatial vector field vt ∈ Γ (TS) defined in (2). Let the time dependent flow
generated by vt be defined as ψt,s := ϕt ◦ ϕs

−1 : ϕs(B) → ϕt(B). If each map ψt,s

is an isometry (i.e. an element of G) then vt is generated by an element of the Lie
algebra of G and is called a Killing vector field satisfying Lvtg = 0. In this case,
we have from (20) that

Lvtg = 0 =⇒ Lv̂t ĝt = ∂tĝt = 0.

In other words, if the tangent vector ṽt ∈ TϕtC in the total space is purely along
a fiber, then its pushforward under the map πg would be zero and thus would
correspond to a pure rigid body motion (cf. point ϕ2 in Fig. 7).

If a connection is given on the principal G-bundle πg : C → M(B), one could
uniquely decompose the tangent space TϕC as TϕC = VϕC ⊕HϕC , where the ver-
tical subspace VϕC is defined as the kernel of the tangent map of πg and represents
the rigid body motion, while the horizontal subspace HϕC would correspond to
the pure deformation. Based on this construction, one can define parallel trans-
port on C and covariant differentiation on M(B). Using the Riemannian structure
of M(B), one has a unique (Levi-Civita) connection that allows such operations.
Consequently, one can define geodesics between any two states of deformation on
M(B) and by doing so obtain a consistent definition of strain [6,29].

Remark 13 We emphasize that the principal bundle structure πg : C → M(B)
has been overlooked in the literature. Instead, the starting point in [4,6,29] was
the Levi-Civita connection on M(B). However, it would be interesting to investi-
gate in the future starting from a connection one-form on the principal G-bundle
and explore the insight it could provide for developing geometric time integra-
tion schemes, similar to [29]. Furthermore, it would be interesting to explore the
relation to the screw-theory formulation presented in [44].

8.2 De Rham complex structure

One key advantage of formulating nonlinear elasticity using bundle-valued forms is
that it highlights its underlying complex structure which is fundamental to many
analytical and computational tools. On the one hand, such structure provides
valuable information for solving and analyzing PDEs by linking its topological
and geometric properties. On the other hand, by extending this structure to gen-
eral Hilbert complexes using Sobolev spaces, one can identify suitable solution
spaces for mixed finite-element formulations of nonlinear elasticity leading to sta-
ble structure-preserving numerical schemes [18]. In what follows, we present the
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Ω3−k(B;T ∗B) Ω3−k
ϕ (B; T ∗S) Ω3−k(S;T ∗S)

Ωk(B; TB) Ωk
ϕ(B; TS) Ωk(S;TS)

Ω2−k(B;T ∗B) Ω2−k
ϕ (B; T ∗S) Ω2−k(S;T ∗S)

Ωk+1(B;TB) Ωk+1
ϕ (B; TS) Ωk+1(S;TS)

⋆̂♭
ϕ∗
v

d̂k
∇̂

⋆̃♭
ϕ∗

f

d̃k
∇̃

dk
∇

⋆♭

ϕ∗
v

d̂k
∇̂

ϕ∗

f

⋆̂♭
ϕ∗
v ⋆̃♭

ϕ∗

f ⋆♭

ϕ∗
v

d̃k
∇̃

ϕ∗

f

dk
∇

Fig. 8: Double de Rham complexes in three-dimensional space

vector-valued de Rham complexes for the spatial, material and convective represen-
tations. The same constructions can be trivially also extended to covector-valued
forms.

The sequence of vector spaces Ωk(S; TS) along with the differential operators
dk∇ comprise what is known in algebraic topology as a co-chain complex, provided
that dk∇ ◦ dk−1

∇
= 0. This condition is satisfied if and only if the ambient space

A is flat i.e. with no intrinsic curvature. This can be seen for the spatial exterior
covariant derivative since for any α ∈ Ω0(S; TS) and β ∈ Ω1(S; TS) we have that
[19]

(d1
∇ ◦ d0

∇(α))(u0, u1) = R(u0, u1)α,

(d2
∇ ◦ d1

∇(β))(u0, u1, u2) = R(u0, u1)β(u2)−R(u0, u2)β(u1) +R(u1, u2)β(u0),

where R denotes the curvature tensor of the connection ∇ on S ⊂ A . Hence,
d∇ is a differential operator that satisfies dk∇ ◦ dk−1

∇
= 0 if and only if A is a

flat space with R = 0. In addition, since the convective connection ∇̂ was in-
duced by ∇ through the map ϕt, one can show that the curvature of ∇̂ is given
by R̂ := ϕ∗

tR [19]. Thus, the flatness of A implies also that the convective exte-
rior covariant derivative satisfies d̂k

∇̂
◦ d̂k−1

∇̂
= 0, where the same conclusion holds

as well for the material exterior covariant derivative [19]. Consequently, each of
the pairs (Ωk(S; TS),dk∇), (Ωk(B; TB), d̂k

∇̂
) and (Ωk

ϕ(B; TS), d̃
k
∇̃
) gives rise to a

bundle-valued de Rham complex. We shall refer to these three complexes as the
spatial, convective, and material de Rham complex, respectively. All of the aforemen-
tioned complex structure for vector-valued forms is also applicable to vector-valued
pseudo-forms using the Hodge star operators (40), as depicted in Fig. 8.

Recall the commutative property of the exterior covariant derivative with pull-
backs (39) which is depicted in Fig. 9 showing the spatial, material and convective
de Rham complexes. This key commutative property indicates that ϕ∗

v and ϕ∗
f

are in fact complex isomorphisms. Thus, this indicates that any analytical result
holding for one complex, e.g. its de Rham cohomology groups, should have a coun-
terpart in the other ones. Additionally, as will be seen later, one can unify the three
representations of the governing equations of nonlinear elasticity and change from
one to the other in an elegant manner. This shows again the technical advantage
of using bundle-valued forms to mathematically represent nonlinear elasticity and
continuum mechanics in general.
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0 Ω0(S;TS) Ω1(S; TS) Ω2(S; TS) Ω3(S;TS) 0 (spatial)

0 Ω0
ϕ(B; TS) Ω1

ϕ(B; TS) Ω2
ϕ(B; TS) Ω3

ϕ(B;TS) 0 (material)

0 Ω0(B;TB) Ω1(B; TB) Ω2(B; TB) Ω3(B; TB) 0 (convective)

d0

∇

ϕ∗

f

d1

∇

ϕ∗

f

d2

∇

ϕ∗

f
ϕ∗

f

d̃0

∇̃

ϕ∗

v

d̃1

∇̃

ϕ∗

v

d̃2

∇̃

ϕ∗

v
ϕ∗

v

d̂0

∇̂
d̂1

∇̂
d̂2

∇̂

Fig. 9: Commutative diagram of the spatial, material and convective de Rham
complexes shown from top to bottom, respectively.

9 Conclusion

We presented in this paper a formulation of nonlinear elasticity using vector-valued
and covector-valued differential forms. All three representations of the motion have
been considered and the transformation of all physical variables from one repre-
sentation to the other has been geometrically identified. It has been emphasized
throughout the paper how an identification of the body with a reference configu-
ration in the ambient space is not needed for describing the equations of motion,
unless one represents the momentum and stress as thermodynamically intensive
variables in the material representation. The underlying de Rham complex and
principle bundle structure relating the configuration space C to the space of Rie-
mannian metrics on the body manifold M(B) have been highlighted, which em-
phasize the significance of M(B) as an intrinsic space of deformations.

In a sequel of this paper, we shall reformulate the theory of nonlinear elasticity
in the port-Hamiltonian framework which will highlight the energetic structure
underlying the equations of motion in addition to deriving these equations from
first principles using Hamiltonian reduction techniques.

10 Appendix

10.1 Fibre bundles

The theory of fibre bundles is essential for precisely defining the mathematical ob-
jects used to describe the physical quantities of nonlinear elasticity. These include
vector fields, tensor fields, differential forms, and two point tensor fields. In what
follows we provide a brief introduction of the topic. For further exposition see [20].

Let E,B be smooth manifolds and let π : E → B be a smooth surjection. Then
the triple (E, π,B) is called a fibre bundle over B, E is referred to as the total space,
B as the base space, and π as the projection map. The preimage of a point X ∈ B

under π is called the the fibre at X and denoted by EX := π−1(X). A frequent
notation for bundles is either (E, π,B), π : E → B, or simply E if it is clear from
the context. A bundle (E, π,B) is said to be trivial if it is isomorphic (as bundles)
to a product bundle (i.e. E = B ×F for some manifold F).
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The tangent and cotangent bundles are defined as the disjoint unions of all
tangent and cotangent space to B, respectively:

TB :=
⊔

X∈B

TXB, T ∗B :=
⊔

X∈B

T ∗
XB.

A type (p, q) tensor at X ∈ B is a multilinear map

ζ : T ∗
XB · · · T ∗

XB︸ ︷︷ ︸
p−copies

×TXB · · ·TXB︸ ︷︷ ︸
q−copies

→ R.

The bundle of all (p, q) tensors is denoted by

T p
q B :=

⊔

X∈B

T p
q,XB,

where T p
q,XB denotes the set of all (p, q) tensors at X ∈ B. The set of all totally

anti-symmetric (0, k) tensors at X ∈ B is denoted by ΛkT ∗
XB. The disjoint union

of all these spaces defines the bundle

ΛkT ∗B :=
⊔

X∈B

ΛkT ∗
XB ⊂ T 0

kB.

Similarly, one can construct the bundle of all symmetric (0,2) tensors denoted by
ST 0

2 B ⊂ T 0
2 B.

Now consider the two bundles (E, πE,B) and (F, πF,S) and the smooth map
f : B → S. We can combine the two bundles and define a new one over B as the
disjoint union

F⊗f E :=
⊔

X∈B

π−1
E

(X)⊗ π−1
F

(f(X)).

We emphasize in the notation of the new bundle its dependence on the map f .
An alternative notation for F ⊗f E is also F ⊗ f∗E. The same procedure can be
used to combine bundles over the same manifold (i.e. S = B) and the same point
(f = idB). In this case, the notational dependency on the map f = idB is usually
suppressed.

Consider the tensor bundles T p
q B and T r

s S over B and S, respectively. A type(
p r
q s

)
two-point tensor at X ∈ B over the map ϕ : B → S is a multilinear map[5,

Pg. 70]

ξ : T ∗
XB · · ·T ∗

XB︸ ︷︷ ︸
p−copies

×TXB · · ·TXB︸ ︷︷ ︸
q−copies

×T ∗
ϕ(X)S · · ·T ∗

ϕ(X)S︸ ︷︷ ︸
r−copies

×Tϕ(X)S · · · Tϕ(X)S︸ ︷︷ ︸
s−copies

→ R.

The bundle of
(
p r
q s

)
two point tensors over B will be denoted by T p

q B ⊗ ϕ∗T r
s S ≡

T p
q B ⊗ϕ T

r
s S. For the case p = q = 0, the bundle ϕ∗T r

s S is called the pullback or

induced bundle of T r
s S by ϕ, i.e.

ϕ∗T r
s S :=

⊔

X∈B

T r
s,ϕ(X)S .
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Let (E, π,B) be a fibre bundle, the map σ : B → E, such that π ◦ σ = idB,
is called a section of the bundle. The set of all sections of E is denoted by Γ (E).
For example, Γ (TB) is the set of vector fields, Γ (T p

q B) is the set of (p, q) tensor
fields, and Γ (T p

q B ⊗ ϕ∗T r
s S) is the set of two-point tensor fields on B. An element

ṽ ∈ Γ (ϕ∗TS) is called a vector field over the map ϕ while an element ω ∈ Γ (ΛkT ∗B)
is called a (scalar-valued) differential k-form. It is standard to denote Γ (ΛkT ∗B)
by Ωk(B).

10.2 Material time derivative

Let (M, g) be a Riemannian manifold with ∇ its Levi-Civita connection. Given a
curve c : I ⊂ R →M , a vector field along c is a map

ζ̃ : I → TM

t 7→ ζ̃(t) ∈ Tc(t)M.
(98)

One has that ζ̃ ∈ Γ (c∗TM) to be a section of the pullback bundle c∗TM . Let
ξ ∈ Γ (TM) be any vector field such that ζ̃(t) = ξ(c(t)) ∈ Tc(t)M (which in principle
doesn’t need to be defined on all of M but only along c). The covariant derivative

of ζ̃ ∈ Γ (c∗TM) along c is the vector field along c, denoted as Dζ̃
dt ∈ Γ (c∗TM), and

defined by

Dζ̃

dt
: I → TM

t 7→
Dζ̃

dt
(t) := (∇c′(t)ξ)(c(t)),

(99)

where c′ : I → TM is the tangent vector field of c with c′(t) ∈ Tc(t)M .

In continuum mechanics, the vector field Dζ̃
dt ∈ Γ (c∗TM) over c is referred to

as the material time derivative of ζ̃ ∈ Γ (c∗TM). Note that it is common to use a
different notation for covariant differentiation of vector fields along a curve than
that used for covariant differentiation of true vector fields. Other popular notations
are ∇

dt in [9] and Dt in [7]. In this work we shall opt for Dt to denote the material
time derivative.

Consider a chart (U, xi), such that U ⊂ M and xi : M → R. Let the curve
c have components ci(t) := xi ◦ c(t) ∈ R and c′(t) to be locally represented by
(ci(t), ċi(t)). If the components of ζ̃ are denoted by ζ̃i, then the components of Dtζ̃

are given by
(
Dtζ̃

)i
= ∂tζ̃

i + (Γ i
jk ◦ c)ċj ζ̃k.

10.3 Proof of Prop. 1

Let u, v, w ∈ Γ (TS) be any vector fields on the manifold S and consider the identity

Luv = ∇uv −∇vu, ∀u, v ∈ Γ (TS). (100)
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Using the fact that Luf = ∇uf = u(f),∀f ∈ C∞(S), the Leibniz rule for the Lie
derivative (over contraction and tensor product), the Leibniz rule for the covariant
derivative (over tensor product), and (100), one can show that

Lug(v,w) = Lu(g(v,w))− g(Luv, w)− g(v,Luw),

= ∇u(g(v,w))− g(Luv, w)− g(v,Luw),

= g(∇uv, w) + g(v,∇uw)− g(Luv, w)− g(v,Luw),

= g(∇uv −Luv, w) + g(v,∇uw − Luw),

= g(∇vu,w) + g(v,∇wu) = ∇vu
♭(w) +∇wu

♭(v). (101)

Now consider the coordinate free definition of the exterior derivative which can be
expressed using the Leibniz rule for the covariant derivative and (100) as

du♭(v, w) = v(u♭(w))−w(u♭(v))− u♭(Lvw) = ∇v(u
♭(w))−∇w(u

♭(v))− u♭(∇vw −∇wv)

= ∇vu
♭(w) + u♭(∇vw)−∇wu

♭(v)− u♭(∇wv)− u♭(∇vw) + u♭(∇wv)

= ∇vu
♭(w)−∇wu

♭(v). (102)

Summing (101) and (102) yields

2∇vu
♭(w) = 2∇u♭(v, w) = Lug(v,w) + du♭(v,w),

which proves (10) and (11) due to arbitrariness of (v,w).
Now consider

∇v♭(v) =
1

2
Lvg(v) +

1

2
dv♭(v).

Using Lvg(v) = Lvv
♭ and Cartan’s identity (12), one can show that

∇v♭(v) =
1

2
Lvv

♭ +
1

2
ιvdv

♭ =
1

2
Lvv

♭ +
1

2
Lvv

♭ −
1

2
dιvv

♭ = Lvv
♭ −

1

2
dιvv

♭,

which proves (13) and (14).
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