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We present a case study on the application of formal methods in the railway domain. The case study is

part of the FormaSig project, which aims to support the development of EULYNX — a European standard

defining generic interfaces for railway equipment — using formal methods. We translate the semi-formal

SysML models created within EULYNX to formal mCRL2 models. By adopting a model-centric approach in

which a formal model is used both for analyzing the quality of the EULYNX specification and for automated

compliance testing, a high degree of traceability is achieved.

The target of our case study is the EULYNX Point subsystem interface. We present a detailed catalog of the

safety requirements, and provide counterexamples that show that some of them do not hold without specific

fairness assumptions. We also use the mCRL2 model to generate both random and guided tests, which we

apply to a third-party software simulator. We share metrics on the coverage and execution time of the tests,

which show that guided testing outperforms random testing. The test results indicate several discrepancies

between the model and the simulator. One of these discrepancies is caused by a fault in the simulator, the

others are caused by false positives, i.e. an over-approximation of fail verdicts by our test setup.
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1 INTRODUCTION

ProRail and DB Netz AG, two railway infrastructure managers, are interested in applying formal
methods to EULYNX.1 EULYNX is an initiative involving 11 other European railway infrastructure
managers to reduce the cost and installation time of signaling equipment. One of the primary
activities of EULYNX is the standardization of the interfaces between the interlocking – the central
device that controls most of the signaling infrastructure in an area – and field elements, such as
signals, points, and level crossings. The standardization efforts should improve the interoperability
between components from different suppliers, and thus lead to a significant reduction of life cycle
costs.

The correctness of the EULYNX standard and the conformance of the corresponding implemen-
tations to that standard are essential for the safety of future railway systems. The correctness
and conformance should be clearly established, which can be achieved using formal methods such
as model checking and automated testing. For this reason, a collaboration called FormaSig2 was
started in 2018 between ProRail, DB Netz AG, Eindhoven University of Technology, and the Uni-
versity of Twente. The aim of FormaSig is to apply a state-of-the-art model-centric approach, i.e.
to use the same formal model for verification and for automated testing of EULYNX implementa-
tions. The model-centric approach has gained traction because (i) only one formal model has to be
created instead of two and (ii) it means that the two activities become mutually reinforcing [25].

The EULYNX project has adopted the semi-formal SysML language [33] to specify the standard-
ized interfaces. In the case of a semi-formal specification model – as opposed to a natural language
specification – there is an opportunity to trace back weaknesses (ambiguities, inconsistencies, and
missing assumptions) that are exposed by a formal analysis more clearly and easily to elements
in the original design. This opportunity is explored in FormaSig via a translation from SysML
to mCRL2,3 a formal modeling language with accompanying analysis software; see Figure 1. The
translation also serves as the formalization of EULYNX, giving EULYNX specifications an unam-
biguous interpretation. This unambiguous interpretation is aligned with the intuition of signaling
engineers based on interviews with them.

The SysML tool used for EULYNX specifications, PTC Windchill,4 includes several non-standard
features such as a custom communication mechanism (pulse ports) and a specific action language.
A general translation from SysML to mCRL2 [8] was customized to support these features.

Case study. In this paper, we present a case study on the application of the FormaSig approach
to the EULYNX interface for point subsystems (also called ‘turnouts’ or ‘switches’). The FormaSig
approach will eventually be applied to other EULYNX interfaces, such as train detectors, light
signals, and so on. Future work will therefore be enhanced by the experiences and lessons learned
from the Point case study.

We extend – and improve upon – an earlier publication, in which we describe an early version
of the Point case study [10].

A point is a type of mechanical installation that guides trains from one set of rails to another.
This relatively simple function is described in EULYNX as the composition of a number of subcom-
ponents, and built upon a layer of composed subcomponents for generic functionality (connection
management, timeouts, power loss, etcetera). Consequently, the complexity of the EULYNX Point
interface is greater than one might expect, and analyzing it (either with formal methods or through
plain human understanding) becomes non-trivial.

1European Initiative Linking Interlocking Subsystems; see https://www.eulynx.eu.
2Formal Methods in Railway Signaling Infrastructure Standardization Processes.
3mini Common Representation Language.
4https://www.ptc.com/en/products/windchill/integrity/.
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Fig. 1. FormaSig setup. The formal model is obtained with an automated translation and then used for
model-checking and conformance testing.

We used the SysML-to-mCRL2 translation to obtain an mCRL2 model from the specification
of the EULYNX Point interface. The state space of this mCRL2 model is extremely large, and we
therefore performed symbolic model checking with the mCRL2 toolkit. For model-based testing, a
similar solution is not available in the mCRL2 toolkit, so we generated tests from only a part of
the Point state space.

For the verification, we elicited nine requirements from signaling experts for the Point interface,
and used mCRL2 to show that six of the requirements are met and two need a fairness assumption
(which led to a recommendation to clarify the EULYNX specification). The mCRL2 toolset was not
able to check the last requirement in a reasonable time frame.

To perform model-based testing, we preprocessed the partial Point state space by removing all
events except those that model interactions with the environment (the interlocking on one side
and motors and sensors of the point on the other). We manually mapped these interactions to the
inputs and outputs of a third-party software simulator of the EULYNX Point interface, developed
by the SIGNON Group.5 We implemented an integrated adapter and test generator. Using this
setup, we have executed 1,000 random tests and 1,000 guided tests. Measurements show that the
guided test suite was faster to execute and achieved better coverage than the random test suite.

The simulator failed several of the generated tests. In total, we discovered three (types of) dis-
crepancies between model and simulator. We confidently identified one of the discrepancies as an
error; that is, behavior of the simulator that should not be possible according to the Point specifi-
cation. Another discrepancy is caused by the fact that the model and the simulator do not have the
same granularity of inputs and outputs, a difference that we have made smaller but not yet elimi-
nated. The final discrepancy consists of false positives (incorrect fail verdicts) that are caused by
the fact that the Point state space is partial, and an unexplored state was reached.

Contributions. Our work on the Point case study has resulted in:

• A formal model in mCRL2 for the EULYNX Point interface specification;
• Safety requirements and their formalization in terms of modal μ-calculus formulas;
• Suggestions for quality improvements of the EULYNX standards, supported by a formal ver-

ification of the safety requirements using the mCRL2 model checker; and
• A model-based testing setup to automatically test an implementation for compliance to the

EULYNX standard.

5See https://signon-group.com/.
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This paper extends and improves on our earlier work [10], by presenting:

• A systematic method to automatically formalize EULYNX SysML models in mCRL2;
• A more detailed description of the requirements, including the corresponding μ-calculus

formulas;
• A different model-based testing approach, using on-the-fly test case generation;
• A test setup that executes tests between 16 and 32 times faster;
• A more detailed description of the testing setup; and
• Novel verification and testing results.

Related work. A significant amount of research has been put into the application of formal meth-
ods in the area of safety-critical railway systems [2, 17, 18, 26]. These include studies in which
a formal model is used for both verification and model-based testing [6, 7, 22–24]. However, the
aforementioned work is focused on interlockings and fixed railway layout configurations, whereas
FormaSig is concerned with the interaction between an interlocking and its field elements. More-
over, the interaction must conform to a standard, which can be more permissive than a (product)
specification.

More generally, researchers have been exploring the use of formal models for both verification
and testing since the start of the century [11, 25]. Over time, several challenges with this approach
have also been identified. In the case of cyber-physical systems, for example, it has been reported
that problems may not be discovered with formal methods when the abstraction level of a formal
modeling language is too high [46]. Part of FormaSig is to determine to which extent EULYNX is
affected by such weaknesses, and provide solutions, if necessary.

The formal specification language mCRL2 comes with a software toolkit [14] that supports
model-checking and which has been used successfully in the past for model-based testing (MBT)

in combination with TorX [38] and JTorX [3, 4]. In particular, an mCRL2-and-JTorX setup has been
used to automatically test an interlocking [7]. TorX and JTorX generate, execute, and evaluate tests
based on input-output conformance (ioco) theory [37, 39, 40]. Several other MBT approaches
exist [41], differentiated by aspects such as model scope, coverage criteria and test selection.

In this paper, we combine the automatic derivation of a formal model from a SysML model and
the usage of a single model for model checking and testing. These aspects together create a high
degree of traceability between semi-formal model, formal model, verification results and testing
results. Furthermore, we apply said techniques in an industrial case study.

Data sources. All models and requirements used in this case study are publicly available online
via a Zenodo repository, see https://doi.org/10.5281/zenodo.5075647. The repository also contains
the logs of all performed tests and the source code of the simulator.

Paper organization. The paper is organized as follows. Sections 2, 3 and 4 introduce the Point
subsystem, how it is specified in SysML and how we have derived a formal mCRL2 model from the
semi-formal SysML model, respectively. Verification of the Point interface is presented in Section 5.
Section 6 describes how we tested the software simulator of the Point interface, and the results.
Sections 7 and 8 conclude this work with discussion, conclusions, and future work.

2 POINT ARCHITECTURE IN EULYNX

A railway point (also known as a ‘turnout’ or ‘switch’) is a mechanical safety-critical installation
enabling trains to be guided from one set of rails to another (see Figure 2). Although implemen-
tations of points are country-specific, they all consist of one or more movable elements, which
are controlled by point machines and monitored by sensors. Point machines are essentially en-
gines moving the movable parts of a point. The positions of the movable elements determine the

Formal Aspects of Computing, Vol. 35, No. 1, Article 2. Publication date: March 2023.
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Fig. 2. Point at Broomhill station, Scotland [45]. Fig. 3. Schematic view of point positions, with mov-
able elements in red. The left picture shows a point
in the ‘left’ position, the right picture shows a point
in the ‘right’ position.

Fig. 4. Scope of the EULYNX Point interface. The connection between the interlocking and the object con-
troller runs over an IP network. The connection between the object controller and the point machines is not
specified by EULYNX but is typically electrical.

position of the point itself, namely ‘left’ or ‘right’ (see Figure 3), or ‘neither’ when changing from
one to the other.

A point is controlled by an interlocking. The interlocking controls all the points, signals, level
crossings, etcetera, in an area and ensures non-conflicting routes of trains.

EULYNX philosophy. In traditional points, the motors and sensors of the point machines are
directly connected to the interlocking. This makes the implementation of a point highly dependent
on the implementation of the interlocking, reducing interoperability.

A key innovation by EULYNX is to change this architecture by decoupling the interlocking
and the point machines and controlling the point over an IP network. The point machines are con-
trolled locally by an object controller, which in turn communicates with the interlocking. By decou-
pling the life cycles of the interlocking and trackside equipment and standardizing the interface,
EULYNX creates a larger European market for trackside equipment. Moreover, this decoupling
offers a higher resilience to cable failures, since IP packets can now be routed dynamically.

The messages exchanged over the network, the logic of the object controller and the interfac-
ing logic of the interlocking constitute the EULYNX Point interface (see Figure 4). Note that the
electrical connections between the object controller and the point machines are left unspecified.

High level architecture. The communication between the interlocking and the Point object con-
troller is distributed over three layers (see Figure 5): The first layer manages a channel that follows
the RaSTA protocol [44]. RaSTA is a safety-focused rail network protocol, described in the DIN VDE

Formal Aspects of Computing, Vol. 35, No. 1, Article 2. Publication date: March 2023.
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Fig. 5. Layers of communication between the interlocking and the object controller.

Fig. 6. Structure of the subcomponents of the EULYNX Point interface. Arrows indicate communication
channels between subcomponents.

V 0831-200 standard. The second layer extends the first layer with functionality for identifying the
(version of the) device on the other side. It also reports general failure modes, such as power loss.
The final layer adds point-specific commands and messages.

The first and second layer are shared by all interlocking and object controller interfaces; the
third is specific to the subsystem type at hand (point, light signal, etcetera).

Point-specific functionality. The object controller controls the point via one or more point ma-
chines. The two functions of the point-specific layer are steering the point to a requested position
and reporting the current position of the point to the interlocking. The output from the object
controller to the point machines is either ‘left’, ‘right’ or ‘stop’. The point machines, in turn, send
back the current position of the point. The position can have three possible values, ‘end position
right’, ‘end position left’ or ‘no end position’. Since each point machine detects and reports its own
position, there may not be consensus between point machines on the point position, in which case
the object controller reports a ‘no end position’ message to the interlocking.

Division in subcomponents. The EULYNX Point interface is modeled using nine subcomponents,
see Figure 6. The interface captures both the physical systems and their communication layers.

• The subcomponents F_SCI_SCP_Sec_SR and S_SCI_SCP_Prim_SR manage the RaSTA con-
nection: one on the side of the interlocking (S_SCI_SCP_Prim_SR) and one on the side of
the object controller (F_SCI_SCP_Sec_SR).

Formal Aspects of Computing, Vol. 35, No. 1, Article 2. Publication date: March 2023.
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Fig. 7. IBD that defines the ports of the ‘F_SCI_P_SR’ subcomponent of the EULYNX Point interface. Ports
have a name, a data type, and a direction (‘in’ or ‘out’).

• The subcomponents S_SCI_EfeS_Prim_SR and F_SCI_EfeS_Sec_SR are responsible for the
generic communication behavior of the second layer.
• The last pair of interlocking/object controller subcomponents (S_SCI_P_SR and F_SCI_

P_SR) implement the third layer, exchanging point-specific commands and messages.
Subcomponent F_SCI_P_SR relays point-specific messages to F_P3_Gen and ensures that
the position is reported in the initialization phase.
• The three remaining subcomponents are F_SMI_EfeS_SR, used for maintenance access,

F_EST_EfeS_SR, defining interaction with generic electronics, and finally F_P3_Gen, which
interacts with the point machines (not included in the figure). The subcomponent F_P3_Gen
performs two tasks in parallel: it monitors the current positions of the point machines and
reports the information to F_SCI_P_SR, and it steers the point to the position that was most
recently received from F_SCI_P_SR. When the generic layer reports a loss of connection or
another failure, F_P3_Gen stops reporting the position or moving the point.

3 SYSML MODELING OF POINT

EULYNX interface specifications are given in a dialect of SysML [33]. SysML is a popular sys-
tems engineering modeling language, closely related to the Unified Modeling Language (UML

[32]). SysML defines nine different diagram types, several of which are extended versions of UML
diagram types. Five are used in EULYNX specifications: Block Definition Diagrams (BDDs), In-

ternal Block Diagrams (IBDs), Use Case Diagrams (UCDs), Sequence Diagrams (SDs), and
State Machine Diagrams (SMDs).

To determine the complete behavior of the Point interface and to generate the complete mCRL2
model, IBDs and SMDs are sufficient. Below we show how they are used in EULYNX.

3.1 Internal Block Diagrams

IBDs are used to describe the ports of EULYNX subcomponents. Ports are essentially variables, with
a name and type. Ports are defined as either an input port, denoted by an arrow-in-a-box pointing
into the block, or as an output port, denoted by an arrow that points outwards. A subcomponent
cannot change the value of its input ports.

Figure 7 presents the IBD of the F_SCI_P_SR subcomponent, which intermediates between the
interlocking and Point hardware. Its header provides the name of the subcomponent, and the area
below the header lists input ports (‘T1_Cd_Move_Point’, for example) and output ports (such as
‘T2_Msg_Point_Position’).

Formal Aspects of Computing, Vol. 35, No. 1, Article 2. Publication date: March 2023.
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Fig. 8. IBD that defines how certain Point subcomponents are interconnected; a so-called “context”.

The IBD in Figure 7 also declares ten pulse ports: four input pulse ports, recognizable by their
‘PulsedIn’ type, and six output pulse ports, recognizable by their ‘PulsedOut’ type. Pulse ports are
an addition to SysML by EULYNX. They can have the value ‘TRUE’ or ‘FALSE’, just like Boolean
ports, but they automatically reset themselves from ‘TRUE’ to ‘FALSE’. They are frequently
accompanied by data ports; for example, when the T1_Cd_Move_Point pulse port of F_SCI_P_SR
becomes ‘TRUE’, it means that the value of the DT1_Move_Point_Target port is (temporarily)
valid and can be used to choose new behavior.

IBDs can also be used to define how EULYNX subcomponents are interconnected. In such an
IBD, the main block of the IBD does not define an individual subcomponent, but rather a context in
which the ports of multiple subcomponents are connected by (data) flows. Two ports can only be
connected to each other by a flow if they have the same type and opposite directions. An output
port may be connected to multiple input ports, if they have the same type; input ports, on the
other hand, may be connected to at most one output port. Input ports take on the data value of
the output ports to which they are connected.

We illustrate this way of using IBDs in Figure 8. As stated in the header, the diagram defines
the context called ‘SCI-P PDI SR’. The area below the header contains the subcomponents that are
included in this context; among them is the subcomponent from Figure 7, F_SCI_P_SR, which is
connected to the subcomponent S_SCI_P_SR with five flows. F_SCI_P_SR and S_SCI_P_SR have
flows that lead to two other subcomponents, as well as to two objects on the edge of the diagram,
labeled ‘SAP_SubS_EIL’ and ‘SAP_SubS_P’; these are interface flow ports, and can be used to com-
bine contexts.

If a port of a subcomponent is not connected to another port (anywhere in the specification),
it is connected to the environment. For an input port, this implies that its value can change
non-deterministically at any moment. Supposing that the IBD in Figure 8 is the only IBD of a
specification, the T20_Point_Position port of the F_SCI_P_SR subcomponent is manipulated by
the environment. This does not hold for the two T1_Cd_Move_Point ports, because they are
connected to each other.

Formal Aspects of Computing, Vol. 35, No. 1, Article 2. Publication date: March 2023.
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Fig. 9. SMD that defines the behavior of the F_SCI_P_SR subcomponent of the EULYNX Point interface.

3.2 State Machine Diagrams

The behavior of EULYNX subcomponents is defined by state machine diagrams (SMDs). Each
subcomponent must have exactly one corresponding SMD. We use the SMD of the F_SCI_P_SR
subcomponent as an example (see Figure 9).

The principal elements of an SMD are states. These are displayed as rounded rectangles, with a
header at the top with their name. States are connected by transitions, displayed as arrows with a
label. Transition labels may define a trigger, a guard, an effect, or some combination of the three:

• The trigger of a transition is a change event ‘when(c)’, which occurs when a Boolean expres-
sion ‘c’ changes from ‘FALSE’ to ‘TRUE’, or a timeout event ‘after(d)’, which occurs ‘d’ time
units after a state was entered. As an example of a change event, the outgoing transition of
the state ‘WATING’ (sic) can only happen when the value of the input port ‘T18_Start_Sta-
tus_Report’ has just changed from ‘FALSE’ to ‘TRUE’. Figure 9 does not contain an example
of a timeout event.

Formal Aspects of Computing, Vol. 35, No. 1, Article 2. Publication date: March 2023.
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• The guard of a transition is of the form ‘[g]’, where ‘g’ is a Boolean expression that must
hold in order for the transition to be enabled. There are two guards in Figure 9, namely in
the labels of the outgoing transitions of the state ‘STATUS_REPORTED’.
• The effect of a transition consists of a number of action language statements. For these state-

ments, EULYNX uses the Atego Structured Action Language6 (ASAL) which is tied to
the PTC Windchill tool. For an example, the outgoing transition of the state ‘WATING’ sets
the output port ‘T40_Send_Status_Report’ to ‘TRUE’ when the transition is executed.
ASAL is a fairly straightforward programming language, featuring typical constructs such
as variable assignments, if-statements, and while loops; we will not describe it in more detail
in this paper.

A transition may “fire” when its source state is active, its trigger (if any) is in effect, and its guard
(if any) holds. When a transition fires, its effect is executed; afterwards, the target state of the
transition becomes active and the source state of the transition becomes inactive (unless the source
state is equal to the target state).

Pseudo-states, internal transitions and composite states. In addition to states, there are also various
types of pseudo-states, such as ‘initial’, ‘final’, ‘choice’, ‘junction’, ‘fork’, and ‘join’ pseudo-states.
Pseudo-states are connected to each other and to regular states by transitions. Transitions that start
in a pseudo-state must not have a trigger. Furthermore, transitions that start in an active pseudo-
state must fire before transitions that start in a regular state. Figure 9 contains only two pseudo-
states, which are both initial. These are the small solid-black circles labeled ‘Initial0’ and ‘Initial1’.
Initial (pseudo-)states may never be the target of a transition, and they must be the source of exactly
one transition, which must not have a guard. Initial (pseudo-)states indicate the “first” behavior
that should be executed (by a state machine in its entirety or by a region inside a state machine).

States can also define internal transitions. These do not change the state of the state machine, but
only affect the values of the variables. Internal transitions are not visualized as an arrow; instead,
their label is listed inside the rounded rectangle of their state. Figure 9 shows three examples of
local transitions, all owned by the state ‘PDI_CONNECTION_ESTABLISHED’.

States can nest (i.e. contain) other states and pseudo-states. For example, ‘ESTABLISHING_PDI_
CONNECTION’ nests the states ‘WATING’, ‘REPORT_STATUS’, and ‘STATUS_REPORTED’, and
the initial state ‘Initial1’. States that nest other (pseudo-)states are called composite states.

4 FORMALIZING THE POINT INTERFACE IN MCRL2

To unlock the potential of verification and model-based testing, we need to be able to convert
EULYNX SysML models to a formal language (see Figure 1). This section explains how we formalize
EULYNX SysML models in mCRL2, the first contribution of this paper. Section 5.1 discusses how
the mCRL2 toolkit is used for model checking.

Extracting an mCRL2 model from a SysML model is non-trivial. Due to the interplay of pseudo-
states, nested states and change events, it can be hard to determine which transitions fire and in
what order. Formalization of a system specified in SysML is not a new challenge. Indeed, various
formalizations of SysML models have been proposed [15, 16, 29, 31, 34, 35]. However, the many
variants of semantic interpretation of diagrams and the many ways in which SysML diagrams can
be combined to describe the behavior of a composed system, make it difficult to apply existing
work in other contexts. This is also the case for EULYNX, which uses its own action language
and a port-based communication mechanism. We therefore developed a new formalization of the
EULYNX-specific dialect.

6https://support.ptc.com/help/modeler/r9.0/en/index.html#page/Integrity_Modeler/sysim/SySim_Atego_structured_

action_language.html.

Formal Aspects of Computing, Vol. 35, No. 1, Article 2. Publication date: March 2023.

https://support.ptc.com/help/modeler/r9.0/en/index.html#page/Integrity_Modeler/sysim/SySim_Atego_structured_action_language.html


A Case in Point: Verification and Testing of a EULYNX Interface 2:11

Fig. 10. Example of an LTS. The arrow without a label or source state points to the initial state. From this LTS,
it can be inferred that after starting a movement, either a timeout can occur (after which a new movement
may be initiated) or we arrive at some position (the one we were moving towards or not).

mCRL2. The mCRL2 toolkit is designed to model and analyze concurrent and distributed sys-
tems. The mCRL2 language is an ACP-style [5] process algebra and contains an expressive and
flexible data language containing several built-in primitive data types, such as integers, natural
numbers and booleans, together with common operations on them. Users can also define their
own abstract data types and operations.

The mCRL2 toolkit can transform complex models consisting of parallel interacting processes
into a linearized model in a normal form: a linear process specification (LPS) [21]. This step
removes all parallelism and applies various operators such as hiding and communication. The
semantic interpretation of an mCRL2 model is a labeled transition system (LTS), which can
be derived from a linearized specification. An example of an LTS can be found in Figure 10. By
translating from SysML to mCRL2 we indirectly associate an LTS with the EULYNX SysML model.

The mCRL2 toolkit contains tools for the verification of parameterized modal μ-calculus formu-
las, bisimulation reduction, counterexample generation, simulation and visualization. For more
information on mCRL2 we refer to mcrl2.org and [20].

Translation tool. In [8] we formalized the semantics of UML state machines with port-to-port
communication directly in the mCRL2 language, without assuming any particular action language.
This formalization in mCRL2 is a partial model generically specifying the semantics of state ma-
chines, which needs to be complemented by encoding a concrete set of state machines (and their
port connections) in the mCRL2 data language. To make this previous work suitable for EULYNX
SysML models, some extensions are necessary. The mCRL2 model containing the formalization [8]
needs to be extended with (i) the semantics of the action language and (ii) a set of concrete state
machines with port connections encoded in the mCRL2 data language. We could encode the state
machine diagrams and port connections of the EULYNX point interface manually in mCRL2, but
this would be inefficient and error-prone. Instead, we have built a tool that automatically converts
EULYNX models consisting of state machine diagrams and internal block diagrams to the correct
mCRL2 encoding. The internal block diagrams are preprocessed by recognizing which blocks occur
in multiple diagrams and combining the diagrams into one big overview of all the port connections.
We have also formalized ASAL in mCRL2.

SysML diagrams of the EULYNX point-specification are available in a proprietary format that is
defined by the PTC Windchill tool. We found that files in the PTC format were not straightforward
to parse, and also that the digital instances of the diagrams were not entirely consistent with how
these diagrams appeared in the EULYNX specifications in PDF format. A third party is developing
software to convert files in the PTC Windchill format to a format that is easier to parse. In the
mean time, we have avoided the issues mentioned above by introducing an intermediate format
(jEULYNX) for inputting SysML diagrams. jEULYNX is a DSL in Java which we intend to submit a
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paper on in the near future. For the Point case study, we transcribed SysML diagrams from PDFs
to jEULYNX by hand.

EULYNX adaptations to the mCRL2 formalization. To accommodate verification of EULYNX mod-
els we have enriched the mCRL2 model that encodes the semantics of SysML state machines in
two ways. We added selfloops with the label inState(c,s), where c is the name of a component
and s the name of a state machine state. These selfloops are necessary to verify properties that
refer to state machine states.

Secondly, we needed to adjust the semantics to accommodate pulse ports, which are boolean-
valued ports with a semantics deviating from other data types. Suppose that we have some pulse
output port X connected to input port Y. When a state machine sets port X to the value true, then
port X will automatically revert to false after a brief time, and so will Y. The exact semantics of
this mechanism is imprecise in EULYNX specifications. Our models do not model time explicitly,
but we can capture the semantics of pulse ports in an alternative way. Our interpretation is that X
and Y are true only in one atomic moment, during the communication from X to Y. The sender and
receiver may use pulse ports to trigger change events: if the receiver has a transition with trigger
‘when(Y)’, a change event is placed in the event queue.

Transition labels. The LTS with the mCRL2 model contains two types of labels that are of interest
for model checking: inState, which was previously mentioned, and send|receive. A transition
with the label send(c1,p1,v)| receive(c2,p2,v) indicates that component c1 sends value v
along port p1 to port p2 of component c2. The LTS contains other labels related to internal steps
of state machines, which can be considered unobservable. In process algebras, it is common to
abstract from such unobservable transitions by renaming the label to the special label τ .

Resolution of ambiguities. Variables, including ports, should have an initial value as otherwise
it might not be possible to evaluate ASAL expressions referencing those variables. In EULYNX,
all output ports and local variables are initialized in the transition from the initial state in the
root of the state machine. Input ports can then be initialized by looking up the initial value of
the connected output port. However, as discussed in Section 3.1, ports need not be connected, be-
cause they should interact with the environment (systems outside the scope). Input ports open to
the environment are therefore not initialized in EULYNX specifications. Our translation tool allows
manual specification of the initial value of these ports. For example, we choose the value ‘no end
position’ for the initial value of the detected position. Also notable is that we set the country code
to ‘The Netherlands’ (which disables some behavior that is specific to other EULYNX participants).

For input ports open to the environment, it is also not clear what values can be received while
the system is running. Our default interpretation is that any value in line with the data type of the
port is allowed. Our translation tool also allows us to disable or restrict selected input ports. For
the Point interface we disabled some input ports representing configuration parameters, such as
timeout durations and country settings. For ports with data type ‘String’ we restricted what values
can be sent. For the input port measuring the position of the point we allowed three values: ‘left’,
‘right’ and ‘no end position’. The input port allowing the interlocking to request a position was
restricted to ‘left’ and ‘right’.

Model versions. We created three formal models for the point interface, a full one for model based
testing and two partial ones for verifying. Splitting the model for verification significantly reduces
the state space. The following models were created (see Figure 6 to cross-reference component
names):

(1) Generic. A model containing only the components modeling the generic interface: S_SCI_
EfeS_Prim_SR, F_SCI_EfeS_Sec_SR, F_EST_EfeS_SR and F_SMI_EfeS_SR.
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Fig. 11. Overview the mCRL2 tool chain to verify EULYNX models.

(2) Point-specific. A model containing only the components modeling the point-specific inter-
face: S_SCI_P_SR, F_SCI_P_SR and F_P3_Gen.

(3) Full. A model containing the components S_SCI_EfeS_Prim_SR, F_SCI_EfeS_Sec_SR, F_
EST_EfeS_SR, F_SMI_EfeS_SR, S_SCI_P_SR, F_SCI_P_SR and F_P3_Gen. This model is used
for MBT; see Section 6.3.

Note that we consider the RaSTA protocol to be part of the environment in all three variants of
the model. We do this for two reasons: EULYNX does not specify the behavior of the RaSTA blocks
with state machines (so we would need to model these ourselves) and to reduce the state space.

Note that all three models contain a generic StateMachine process and generic data operations
which formalize the EULYNX-specific adaptations of pulse ports, the ASAL action language and
inState selfloops.

5 VERIFICATION

Formal verification techniques provided by mCRL2 make it possible to determine if the EULYNX
Point interface satisfies conditions ranging from deadlock freedom to obedience of the field ele-
ment to the commands of the interlocking. The conditions are proven by exhaustively checking all
reachable states of the model, which means that verification is among the most thorough methods
for assessing whether a model conforms to certain requirements.

In Section 5.1 we explore how requirements are verified using the mCRL2 toolkit. Sections 5.2
and 5.3 explain the method of eliciting requirements and the list of requirements, respectively. This
section culminates in Section 5.4, where we present and discuss the results of model checking the
EULYNX Point interface.

5.1 Model Checking with mCRL2

Figure 11 shows the verification procedure that we applied to the EULYNX Point interface. The
procedure starts with our formalization of the Point interface (from 1 to 2). Our formalization
outputs an mCRL2 model containing a number of communicating processes. The mCRL2 model
is converted to an LPS (3) (see Section 4), using the tool mcrl22lps, making it a suitable target
for mCRL2’s analysis tools. Computing the LPS only takes a few seconds for our models. We
can compute the number of states that the LPS represents – an indication of the complexity of
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behavior – and, more importantly, the conformance of its behavior to a set of requirements. The
latter is accomplished by the analysis of a parameterized boolean equation system or PBES

(5), which is computed with lps2pbes from the LPS and a single requirement (4) expressed in
modal μ-calculus. Note that we do not need to compute the LTS associated with the mCRL2 model
in order to verify requirements. Solving the PBES will indirectly explore (part of) the state space.

mCRL2 has algorithms for computing both state space size and conformance to requirements.
These algorithms must store large sets of states, which can be done in two ways. The “classic” way
is to store each state explicitly. The second way is to store states symbolically, drastically reducing
the representation of the state space. Note, however, that the development of mCRL2 tools that
use the symbolic approach has started recently, and that they are not yet documented. The tools
are based on existing (documented) theory [28, 30]. In [10], we only used the explicit state tools.

The size of our Point model has persuaded us to use the symbolic tools. More specifically, we use
lpsreach to compute the state space size and pbessolvesymbolic to solve PBESs. Unfortunately,
pbessolvesymbolic does not (yet) support counterexample generation. To obtain counterexam-
ples we still rely on the “classic” PBES solver pbessolve. This means that we cannot obtain a
counterexample when the state space is too large for pbessolve.

5.2 Requirements Elicitation

The EULYNX standard specifies, through sequence diagrams, several scenarios for the Point inter-
face. The model of the Point interface should at least admit the correct execution of these scenarios,
thus they can be interpreted as requirements for the Point interface. However, to assess the quality
of the EULYNX standard, we need to verify stronger requirements: rather than one scenario, we
want to verify that properties hold along all execution paths of the system. Eliciting such require-
ments is an explicit concern of the FormaSig project, as good requirements are essential to assess
the quality of EULYNX specifications.

A challenge in formulating pertinent requirements is that the prerequisite knowledge is, cur-
rently, split between the academic partners of FormaSig and the infrastructure managers: only the
former possess the skills to formulate formal requirements, and only the latter possess the signaling
domain knowledge. To overcome this challenge, we adopted an iterative process of requirement
elicitation. We started out by gathering background information and identifying hazards by inter-
viewing signaling experts. These general hazards were translated to initial requirements in natural
language. We then attempted to verify the refined requirements using the mCRL2 model checker.
For requirements that do not hold for the model we assessed whether the model contains an error
or the requirement is too strong. In the latter case we refined the requirement.

For example, we derived the following requirement: “When component F_EST_EfeS_SR signals
to component F_SCI_EfeS_Sec_SR that the object controller is not ready for a connection by send-
ing a message on port ‘T18_Not_Ready_For_PDI_Connection’, then component F_SCI_EfeS_Sec_SR
is not allowed to be in the state ‘PDI_CONNECTION_ESTABLISHED’ until a message on port ‘T21_
Ready_For_PDI_Connection’ is received.” By formalizing the requirement to a μ-calculus formula
and checking the mCRL2 model for this requirement, we found a counterexample in which the com-
munication over port ‘T18_Not_Ready_For_PDI_Connection’ happens while F_SCI_EfeS_Sec_SR
is in the state ‘PDI_CONNECTION_ESTABLISHED’. Clearly, the component needs some time to
process the message and move out of the state ‘PDI_CONNECTION_ESTABLISHED’.

We weakened the requirement to “When component F_EST_EfeS_SR signals to component F_SCI-
_EfeS_Sec_SR that the object controller is not ready for a connection by sending a message on port
‘T18_Not_Ready_For_PDI_Connection’, then component F_SCI_EfeS_Sec_SR will always eventually
move out of the state ‘PDI_CONNECTION_ESTABLISHED’ and not establish a connection again until
a message on port ‘T21_Ready_For_PDI_Connection’ is received.”
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The corresponding μ-calculus formula is:

%For any trace ending with a communication that the object controller is not ready for a connection

[true *.send(CompPortPair (BEQ_eest ,T18_Not_Ready_For_PDI_Connection ),Value_Bool (true))|receive(CompPortPair (BEQ_seec

,T18_Not_Ready_For_PDI_Connection ),Value_Bool (true))](

%when in PDI_connection established , move to not ready for connection

((<inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED )>true)

%least fixed point is used to express that all paths eventually lead to a state where we have exited

PDI_CONNECTION_ESTABLISHED . inState transitions are excluded as they allow infinite selfloops , making the

formula trivially false

=> (mu X. (([!( exists c:CompName ,s:StateName. inState(c,s))]X)

|| [inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED )]false)))

%greatest fixed point is used to express that on all paths a connection is not established until it is allowed

again by F_EST_EfeS_SR

&& (nu X. [!send(CompPortPair (BEQ_eest ,T21_Ready_For_PDI_Connection ),Value_Bool (true))|receive(CompPortPair (

BEQ_seec ,T1_Ready_For_PDI_Connection ),Value_Bool (true))]X

&& (<inState(BEQ_seec ,NOT_READY_FOR_CONNECTION)>true =>

[(! send(CompPortPair (BEQ_eest ,T21_Ready_For_PDI_Connection ),Value_Bool (true))|receive(CompPortPair (BEQ_seec ,

T1_Ready_For_PDI_Connection ),Value_Bool (true)))*. inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED )]false)))

Section 5.3 presents the derivation of nine requirements for the Point interface. Appendix A, lists
them again including the μ-calculus formulas. The appendix also includes a short introduction to
the μ-calculus.

5.3 Requirements

The two main hazards related to points are derailments and train-train collisions. The hazard of
derailment has many aspects. Physical failures of the track might lead to derailment. A high speed
in a tight curve could lead to derailment. Another possible cause is when a train goes over a point
that is not in a proper (left or right) end position. Since the object controller of the point controls
the movement of the point and informs the interlocking on the current position, correct behavior
of the point object controller is essential to prevent derailments.

Since points determine the route of trains, correct behavior of the object controller is also essen-
tial in preventing train-train collisions. The considerations for the object controller are again the
correct control of the movement and reporting of the position. The principle for movement of the
point is that only the interlocking knows when it is safe to move a point, so only the interlocking
can initiate a movement. Two principles apply to reporting the position of the point: the interlock-
ing should always be kept up to date concerning the position of a point; and when the position of
a point is unknown, it is always assumed not to have an end position (meaning that it is unsafe to
drive over the point).

We can derive the following hazards for the point specific interface:

(1) The object controller reports an end position that is not accurate.
(2) The object controller initiates a movement that was not expected by the interlocking.

These two hazards are countered by the following requirements:

ID REQ_P_001

Summary The object controller must report changes in position

Detailed description The position of the point is determined by combining the input from the point machines.

When all point machines report right the position is right. When all point machines report

left the position is left. In any other case the point does not have an end position. When the

position of the point is different from the last reported position, the new position must be

reported to the interlocking. This obligation is lifted if communication with the interlocking

is not possible due to a connection problem, power failure, etc. If the object controller cannot

report the changed position, the connection with the interlocking must be closed, so that the

interlocking knows that the position is unknown.
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ID REQ_P_002

Summary The object controller must not change position unless commanded by the interlocking

Detailed description The object controller may only instruct the point machines to move when this is commanded

by the interlocking. A movement command from the interlocking gives an authorization to

initiate movement in a certain position that ends when either a timeout occurs, the end

position is reached or a movement command for the opposing position is sent.

The main role of the generic interface is connection management. Initializing the connection
consists of a number of steps. Firstly, a RaSTA connection is established. Secondly, the interlocking
and object controller message each other to request a connection and exchange the version of the
EULYNX protocol that they are using. Finally, the current position of the point is communicated.
After these initialization steps, the connection is fully established and the interlocking and object
controller can freely send each other movement commands and position updates.

During initialization or when the connection is established, the connection can be aborted by
either side. When they encounter an error (which can occur non-deterministically in the model),
such as a power failure or timeout, they move to an error state and notify the other side by closing
the RaSTA connection. The connection can then be re-established using the normal procedure.

The main hazard related to the connection management is that a connection is wrongly estab-
lished or maintained. The reason that this would pose a risk is that the interlocking would continue
to believe it has a connection with the field element while it is no longer updated on the status of
the field element. A secondary hazard is that a connection is prevented from being established at
all. This might not be a direct safety hazard but could disrupt train services.

We can derive the following hazards for the generic interface:

(1) The object controller or interlocking has some reason to not be able to have a connection
but a connection is still established/maintained.

(2) A deadlock or livelock prevents the system from establishing a connection.

These two hazards are countered by multiple requirements, which are listed below. The second
hazard is countered by requirement REQ_PDI_004. The other requirements expand the first hazard
by specifying different scenarios in which the object controller or interlocking is not allowed to
establish a connection.

ID REQ_PDI_002

Summary Disconnect at version unequal

Detailed description Whilst establishing a connection, in the case that the object controller sees that the

interlocking uses a different version of the protocol, it sends a message to the interlocking

notifying the failed version check and moves to the state not ready for a connection.

ID REQ_PDI_003

Summary Disconnect at checksum unequal

Detailed description Whilst establishing a connection, in the case that the interlocking receives an incorrect

checksum (indicating a malformed message) from the object controller in the

Msg_PDI_Version_Check message, the interlocking terminates the connection.

ID REQ_PDI_004

Summary A connection remains possible

Detailed description As long as there is no telegram error (the reception of a malformed message, which may

occur non-deterministically in the model it always remains possible to reach

PDI_Connection_Established in the future.
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ID REQ_PDI_005

Summary Close connection on error

Detailed description At the moment a protocol error or telegram error occurs at either the side of the object

controller or the interlocking, both the interlocking and the object controller will

eventually move to PDI_Connection_Closed before reattempting a connection.

ID REQ_PDI_006

Summary Close connection when not ready

Detailed description When F_EST_EfeS_SR signals it is not ready for a connection, the object controller will

move to not ready for connection and only reattempts a connection after receiving a

message ready for connection.

ID REQ_PDI_007

Summary Close connection after timeout

Detailed description When S_SCI_EfeS_Prim_SR does not change in state PDI_Connection_Established after

entering state Establishing_PDI_Connection within the time

D2_Con_tmax_PDI_Connection, both S_SCI_EfeS_Prim_SR and F_SCI_EfeS_Sec_SR reach

PDI_Connection_Closed before reattempting a connection.

ID REQ_PDI_008

Summary One closes, both close

Detailed description When S_SCI_EfeS_Prim_SR and F_SCI_EfeS_Sec_SR are both in state PDI_Connection_

Established, and one leaves that state, the other will eventually leave the state as well.

5.4 Results & Performance

We used the toolchain described in Section 5.1 to measure the size of the state spaces and verify
the requirements. In this section we present the verification results.

All tests are run on a machine equipped with 4 12-core Intel Xeon Gold 6136 CPUs and 3TB of
RAM. To determine the size of the state space we use the symbolic tool lpsreach with 12 threads.
To solve PBESs we use the symbolic tool pbessolvesymbolic with 6 threads. The requirements,
point-specific mCRL2 model and generic mCRL2 model are all available in the Zenodo repository.
Table 1 shows the size of the state spaces and Table 2 lists the verification results.

State space exploration and verification are significantly slower for the point-specific model.
Further investigation revealed that one SysML component, F_P3_Gen, proves to be a bottleneck.
The number of states discovered per second during explicit state space exploration is also remark-
ably low for the F_P3_Gen component. Since F_P3_Gen is the only component featuring parallel
regions it is possible that some of the auxiliary data operations in the generic mCRL2 model defin-
ing the semantics of SysML (e.g. transition selection) are computationally more intensive in the
presence of parallel regions. Whether this can be improved needs further investigation.

Not all requirements hold for the model (see Table 2). We will go over these unsatisfied require-
ments and see why they do not hold.

Requirement REQ_P_001, which states that changes to the position of the point will always
eventually be reported to the interlocking, does not hold. Since the state space of the point-
specific model is too large for the explicit state tools we cannot generate a counterexample. How-
ever, we can gain insights by verifying slightly altered formulas. The formula REQ_P_001_1 (see
Appendix A) is true. REQ_P_001_1 only considers paths in which the environment is silent, remov-
ing loops of behavior. When F_P3_Gen wants to send the update position to F_SCI_P_SR, F_SCI_P-
_SR may be kept busy by continually receiving messages from F_SCI_EfeS_Sec_SR or S_SCI_P_SR.
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Table 1. Statistics on the Size of the State Spaces,
Computed with lpsreach

Model Size state space Time (s)

Generic PDI 1.14262 · 108 20

Point-specific 5.14198 · 1010 1829

Table 2. Results of our Requirement
Verification with pbessolvesymbolic

Requirement result Time (s)

REQ_P_001 false 5,507

REQ_P_001_1 true 3,188

REQ_P_002 ? ?

REQ_PDI_002 true 178

REQ_PDI_003 true 147

REQ_PDI_004 false 180

REQ_PDI_005 true 228

REQ_PDI_006 false 226

REQ_PDI_006_1 true 142

REQ_PDI_007 true 157

REQ_PDI_008 true 333

A fairness assumption would be needed to also make the communication between F_P3_Gen and
F_SCI_P_SR possible. EULYNX should add a fair scheduling requirement in its specification to
avoid undesired behavior.

For now, we are not able to verify REQ_P_002 due to the previously mentioned performance
issue with component F_P3_Gen.

Requirement REQ_PDI_004, stating that a connection always remains possible, does not hold.
By using the explicit state tools, we were able to obtain a counterexample, which showed that
two components can deadlock when trying to send a message to each other. Sending a message
usually results in adding an event to the event queue (see [8]). The event queue mostly acts as a
communication buffer, though state machines may also add events to their own queue by triggering
change events. The event queue of state machines is finite in our models; when the event queue
of a state machine is full, communication is no longer possible. When two components with a
full event queue want to send a message to each other, they get into a deadlock. In EULYNX it
is assumed that event queues are unbounded. However, unbounded event queues would cause
an infinite state space due to communications from the environment and therefore make model
checking unfeasible. Moreover, an event queue of arbitrary length can always be filled due to
communications from the environment. Hence, increasing the size of the event queue will not
remove the deadlock. In a model that includes timing, the probability of a deadlock should be
inversely proportional to the size of the event queue. However, it would be even better if the system
is designed to be more robust against bursts of communication. We have made the recommendation
to EULYNX to explicitly specify what happens when a buffers becomes full.

Requirement REQ_PDI_006 – stating that when the object controller is not ready for a
connection, the connection is closed and not established again until it is ready – also does not
hold. The counterexample produced by the explicit state tools shows us that a component may
not always eventually move to PDI_CONNECTION_CLOSED due to a loop of behavior of another
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component. The other component loops by receiving a value from the environment over and over
again. The requirement might hold under a mild component-based progress assumption, such as
justness [9, 43], which excludes unrealistic computations in which a component never gets the
chance to make progress. Adding justness assumptions to formulas in the context of EULYNX
mCRL2 models remains future work. Requirement REQ_PDI_006_1 (see Appendix A), which just
checks whether a new connection is not established, does hold.

6 MODEL-BASED TESTING

Model-based testing (MBT) is a technique for automatically generating, executing and evaluat-
ing tests [37, 39, 40], which has also been applied in the railroad domain [23]. The main prerequisite
of MBT is the availability of a model of the system-under-test in the form of an input/output-LTS,
or IOLTS: an extension of an LTS, in which a distinction is made between inputs (by convention
given names that end with a ‘?’) and outputs (with names that end with a ‘!’). Figure 12 shows an
IOLTS similar to the LTS from Figure 10, and Figure 13 and 14 show two other IOLTSs.

Test cases (or simply tests) generated from an IOLTS are essentially decision trees that track
which stimuli (‘?’) are sent to a system-under-test and which responses (‘!’) are expected. Branches
always end with a pass or fail verdict: when a test reaches a pass verdict, it terminates (and
another test can begin); when a test reaches a fail verdict, the tested system does not conform to
the model, and testing is typically stopped altogether.

When generating a decision tree from the IOLTS in Figure 13, one of the possible results is
depicted in Figure 15. At the start of this tree, one input is accepted and all outputs are rejected;
then, arrive_left! and timeout! are accepted (but only arrive_left! ends the test) whereas arrive_right!
is rejected; and after timeout!, the behavior can be tested a second time (arbitrarily or according to
some strategy, other behavior could be tested here, or the test could end with a pass verdict). Note
that if we were to use the decision tree to test a system that is described by the LTS in Figure 12,
the system would receive a fail verdict if it would move along the arrive_right! transition (due to
non-determinism, this does not necessarily happen).

Depending on how the decision tree of a test is generated, its branches may not be deep enough
to detect all discrepancies between a system-under-test and its model. For example, the decision
tree in Figure 15 fails in this regard because it does not give the IOLTS in Figure 14 a fail verdict
even though it behaves differently than the IOLTS in Figure 13. Full test coverage typically requires
multiple decision trees such that for each transition in the model IOLTS there exists a decision tree
that can reach that transition and confirms that the subsequent behavior can only correspond with
the target state of the transition in the model (the number of states of the system-under-test must
not exceed the number of states of the model, or such a conclusion cannot be drawn; this approach
also discounts non-determinism).

6.1 Automated Testing with mCRL2 models

We generate a decision tree for testing “on-demand”; that is, we add branches to it while we are
testing. We start with a new decision tree when we have reached a manually determined depth
that is suitable for the system-under-test in question. On-demand testing has the advantage that
we can keep testing as long as there is time available, or, similarly, that we test more behavior
the longer we test. By choosing according to a particular strategy which new branches to add and
when to start a new decision tree, we can focus more on parts of the model that contain more
behavior and/or that are more critical.

Naturally, we may only add branches that are consistent with the mCRL2 model, and we must
therefore obtain its explicit states and transitions through exploration. Exploration starts in S , the
set of states in which the system-under-test could currently be, and computes T (S ), the set of all
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Fig. 12. Example IOLTS that is the same as
the LTS from Figure 10, but with input labels
that end with ‘?’ and output labels that end
with ‘!’.

Fig. 13. Example IOLTS with input move_-

left?, and two outputs arrive_left!, and time-

out!.

Fig. 14. Example IOLTS that behaves differ-
ently than the IOLTS in Figure 13, but does
not receive a fail verdict from the decision
tree in Figure 15.

Fig. 15. Test case, expressed as a decision tree, that can be
generated from the IOLTS in Figure 13.

transitions with an input/output label that can be reached from one of the states in S , possibly via
internal transitions (τ transitions in an mCRL2 model: transitions without an input/output label,
representing actions that the system-under-test can do independently of the environment and that
cannot be observed). Given a used input or observed output a, the new value of S becomes the set
of target states of all transitions in T (S ) that have the label a.

Like the generation of decision trees for testing, exploration can be performed on-demand: it
is not necessary to explore the entire LTS, but only those parts that are reached by the tests that
we generate. We do not use on-demand model exploration because the performance of mCRL2 is
better on Unix platforms than on the Windows platform, on which our current system-under-test
runs. Instead, we explore the mCRL2 model in advance on a Unix platform, using breadth-first
search and limited by a time constraint, resulting in an incomplete LTS.

We then apply weak trace equivalence reduction [20]. Weak trace equivalence – also described
as stutter trace equivalence [1] – holds when one LTS produces the same traces as another LTS,
where a trace is a possible sequence of non-τ actions that can be encountered in an LTS. Weak
trace equivalence reduction is conveniently available in mCRL2, and prevents us from having to
consider internal actions during testing.
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Fig. 16. Overview of how we obtain a partial mCRL2 model for the purpose of model-based testing.

Assuming the absence of cycles of internal actions – which is reasonable for the system in ques-
tion – quiescence [36, 40] is preserved by weak trace equivalence reduction. Not preserved are
unexplored states: states without any outgoing transition, which are a part of incomplete LTSs by
definition. Clearly, tests will yield an incorrect fail verdict (a false positive) when such a state is
reached and a model-compliant system-under-test produces an output. We therefore cause tests
that receive a fail verdict while in a state without any outgoing transition to receive an unex-

plored verdict instead. However, the weak trace equivalence reduction may have merged some
unexplored states with explored states, adding transitions to the unexplored states and making our
method for detecting false positives an under-approximation. In other words, not all false positives
are automatically removed, and we have to determine for each failed test that it is indicative of a
fault in the test and/or simulator. (It is possible to mark unexplored states before the weak trace
equivalence reduction – with transitions with a special label for example – but we have not done
this at this stage of our research.)

Figure 16 gives an overview of the tool chain that we use to obtain an incomplete LTS for
automated testing. As for verification, we first parse the text-based mCRL2 specification (2) that has
resulted from our translation with mcrl22lps to an LPS (4), a process that we mention in Section 4.
Using information that is generated by our automated translation (3), we then use lpsrename to
rename all internal transitions of the system-under-test to the special action τ . We explore the new
LPS (5) for a certain amount of time with lps2lts, yielding the explicit (as opposed to symbolic)
states and transitions of an LTS that describes a part of the model behavior (6). We use ltsconvert
to reduce the LTS modulo weak trace equivalence. ltsconvert saves the new LTS (7) in the textual
Aldebaran format (developed for use in the formal analysis toolkit CADP [19]).

6.2 System-Under-Test

The target of our model-based testing activities is a software simulator of the EULYNX Point inter-
face, developed by the SIGNON Group. Normally, the simulator is intended for human interaction,
and therefore presents a graphical user interface (GUI); see Figure 17. Inputs are available as
buttons and drop-down boxes on the left, outputs are displayed as colored boxes and text fields on
the right, and controls to start and step through the simulation can be found at the bottom. The soft-
ware simulator is normally used by signaling engineers to explore the behavior of EULYNX models.

The SIGNON Group simulator was the best option for a system-under-test for our experiments,
since real implementations of EULYNX interfaces are currently not available. Just like our mCRL2
model, the simulator was generated from SysML semi-automatically, but there are sufficient differ-
ences between the semantic interpretations of the SysML diagrams that comparing the simulator
to the mCRL2 model is non-trivial.

The SIGNON Group provided us access to the source code so that we can programmatically
access the GUI elements and their data values. The source code of the Point simulator, in the
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Fig. 17. A view of the GUI of the Point simulator. Inputs are located on the left, outputs on the right, and
simulation controls at the bottom.

Fig. 18. Simplified class diagram of the Point simulator.

object-oriented programming language Visual Basic, is generated by the PTC Windchill software,
and depends on the PTC Windchill library ‘SySim’, which determines the “flow” of a simulation,
i.e. the times when data is read from or written to GUI elements and when the effects of SMD
transitions are applied. GUI elements are created and managed by ‘Form’, the main class of the
implementation, and they interact with the SySim library at the start of the program to define
which ports and blocks exist and how flows connect them. See Figure 18 for a simplified class
diagram of the simulator.

Modifications. We have modified the source code of the simulator to automatically execute tests
based on an mCRL2 sub-model. We have added three classes to the simulator, namely ‘TestGen-
erator’, ‘Model’, and ‘Adapter’. The class diagram in Figure 19 gives a simplified overview of the
relationships between the classes. We still make use of the ‘Form’ class, but only of its functional
behavior, not of its GUI. Because we affect the simulation only via (the functional parts of) its GUI
elements, it behaves as if manual testing were performed on the unmodified simulator.

‘TestGenerator’ contains the new entry point of the simulator, which creates an instance of Form
and which then makes calls to ‘DoTest()’ repeatedly. This method performs test steps until (i) an
unexpected output is detected, (ii) the simulator does not generate outputs and there are no avail-
able inputs according to the incomplete LTS, or (iii) a predetermined limit on the number of test
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Fig. 19. Class diagram of the modified source code of the Point simulator.

steps has been reached. Gathering information on the incomplete LTS is delegated to the ‘Model’
class; the conversion of mCRL2 actions to simulator inputs/outputs and vice versa is handled by
the ‘Adapter’ class. Another responsibility of ‘Adapter’ is the registration of simulator outputs, of
which it is notified by the OutputGUIElems themselves.

Language compatibility. Actions in the mCRL2 model are port-value pairs, because they set a
specific port to a certain value. We denote one such pair with (x ,v ), where x is the port and v
is its new value. The simulator, on the other hand, consumes/publishes the values of all ports
simultaneously each time that it takes an action. We must therefore express its actions as sets of
port-value pairs.

For example, the assignments in the transition in Figure 20 would result in a sequence of multiple
actions in the LTS of the mCRL2 model; see Figure 21. We make actions so fine-grained7 because
we want to model as much different interference behavior between state machines as possible. The
core of the simulator (SySim) also executes the assignments sequentially, but for GUI elements the
new values of the variables become visible at the same time (see Figure 22).

We make the language of the mCRL2 model and the language of the simulator compatible by
extracting one by one the port-value pairs from a simulator action. We base the order in which we
extract port-value pairs on a manual ordering of all ports; this works because EULYNX specifica-
tions are consistent in the order in which values are assigned to ports.

A related problem is that the simulator sends an update (x ,v ) to the GUI element of a port x
at every time step of the simulation, regardless of whether an assignment to x has occurred (in
which case v is its new value) or not (in which case v is its current value). It seems, therefore, as if
all simulator ports are updated at every step, which is not the case in the mCRL2 model. We can
greatly reduce this dissimilarity by ignoring GUI port updates that do not change the value of their
ports. This leaves situations in which the mCRL2 model can do an action (x ,v ) when the value of
port x already is v in both the mCRL2 model and the simulator. When such a situation occurs, we
greedily take the (x ,v ) action in the mCRL2 model, knowing that, for our specific mCRL2 models,
actions that are enabled before (x ,v ) are also enabled after (x ,v ). Alternatively, we could prevent
the mCRL2 model from producing (x ,v ) in the first place, but then we could not use the same
mCRL2 model for testing systems in which (x ,v ) is visible.

Test loop. We visualize the entire test loop in Figure 23. At the start of the loop (2), the actions that
are currently enabled are retrieved from ‘Model’. We determine each action (x ,v ) that is enabled

7Partially in response to our fine-grained interpretation of EULYNX actions, the EULYNX modeling standard has been

modified to state explicitly that all effects of a transition take place simultaneously; in other words, the semantics of the

simulator in this context have been officially adopted.
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Fig. 20. Transition from the STM in Figure 9. In
the effect of the transition, four assignments oc-
cur. Mem_Point_Position happens to be an inter-
nal variable, and assignments to it are not visible
to the environment.

Fig. 21. A possible occurrence of the assign-
ments from Figure 20 as actions in the LTS
that represents the mCRL2 model. The ac-
tions are expressed as a pair: the first element
is the assigned port, the second element is
the assigned value. Actions by parallel compo-
nents may interleave the assignment actions,
but the ordering of the assignment actions
must remain the same.

Fig. 22. From the outside, the effect of the transition from Figure 20 as produced by the simulator could be
accurately represented in an LTS with a single action expressed as a set of port-value pairs.

in the mCRL2 model and of which the GUI element that corresponds with the port x currently has
the value v (3); such actions are processed first (4). Afterwards, we check if the test has become
stuck (5), which happens when the simulator will not provide an output on its own – ‘last_output’
is equal to ‘NO_OUTPUT’ in that case – and when there are no enabled input actions.

If the test can continue, we choose (6) between stimulating the simulator with an input action (if
one is enabled) and observing outputs. When stimulating (7), an available input action is applied
to both ‘Adapter’ and ‘Model’, and ‘last_output’ is cleared. When observing, actions that were
detected because of value changes are retrieved from ‘Adapter’ (8). If there are none, we do a
time step and try again up to n times, where n is at least the number of time steps in the longest
timeout event of the simulator (we must ensure that timeout behavior is included in our tests). If
n attempts still do not produce any actions, we conclude that we must send a new input before the
simulator produces a new output (meaning that the simulator is quiescent). Naturally, this approach
is insufficient if the timeouts of the system-under-test do not adhere to their prescribed durations.
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Fig. 23. Behavior of the ‘DoTest()’ method of the ‘TestGenerator’ class.

We finish the test step or yield a fail verdict depending on whether the retrieved actions are
consistent with the incomplete LTS or not (9 to 11). Inconsistent behavior results in an unexplored

verdict when the incomplete LTS specifies no inputs and no outputs. (Remember from Section 6.1
that this is an under-approximation of false positives, meaning that there may be tests that receive
a fail verdict that should have received an unexplored verdict.)
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Table 3. Discrepancies Between the mCRL2 Model and the Point Simulator, and Their Causes

Discrepancy Cause

F_P3_Gen seems to produce the following outputs in the
wrong order:

(T4_Information_No_End_Position, TRUE)
and (D6_Detection_State, "NO_END_POSITION")

(T5_Information_End_Position_Reached, TRUE)
and (D6_Detection_State, "END_POSITION")

The outputs are extracted from the simulator
in an order that is different than their order
of appearance in the mCRL2 model.

When communication is interrupted or times out while
simulated S_SCI_EfeS_Prim_SR subcomponent is in the
state ‘ESTABLISHED_PDI_CONNECTION’, the
subcomponent produces the output (T12_Terminate_
SCP_Connection, TRUE), which is not possible in the
mCRL2 model.

An unexplored state was reached in the
mCRL2 model; in the full model, the output
is available.

Two minutes after the input (T1_Power_On_Detected,
TRUE), the simulated F_P3_Gen subcomponent produces
the output (T4_Information_No_End_Position, TRUE),
which is not possible (yet) according to the mCRL2
model.

The output is triggered by F_EST_EfeS_SR
moving to the state ‘INITIALISING’ 12.000
time steps (= 2 minutes) after entering the
state ‘BOOTING’. This is incorrect
(unspecified) simulator behavior.

At (12), we check if the test limit has been reached. We choose a value of LIMIT that is consid-
erably higher than the depth of the incomplete LTS; consequently, it is essentially impossible for
a test to receive a pass verdict.

Random vs. guided testing. The choice between stimulation and observation (6) and the choice of
an input (7) are both random in Figure 23. We also explore another strategy, which we call ‘guided’:
this strategy only makes choices that, according to the model, most quickly lead to the occurrence
of a predetermined transition (falling back on random choices when this transition is no longer
reachable). Note that the outputs of the system-under-test can prevent the guided strategy from
reaching its target transition.

6.3 Results & Performance

From the full mCRL2 model – which combines the generic layer of the communication with the
point-specific layer; see Section 4, Model versions – we generated according to the process de-
scribed in Section 6.1 an incomplete LTS over the course of ∼48 hours. The LTS consists of 151
states and 628 transitions (∼200.000 states and ∼1 million transitions before weak trace equiva-
lence reduction). We used the LTS to automatically perform 1,000 tests with the modified Point
simulator (machine: AMD Ryzen 5 3600, 3.59 GHz). We have done this both with random testing
and with guided testing.

After performing tests, we evaluated the results, and we repeated the tests if the cause of a failed
test was in the mCRL2 sub-model or in the test setup, and if it was feasible for us to fix it. We also
did this when the cause of a failed test was in the simulator and it was feasible for us to “bypass”
it (potentially discovering new causes of failure in the next iteration). Naturally, we recorded all
problems; we give an overview of these problems in Table 3.

First, we discovered that the order in which we extract outputs from the GUI elements of the
simulator was incorrect for the F_P3_Gen subcomponent. We fixed the ordering, and no more
problems of this nature were encountered.

Second, we found two situations in which our method to avoid false positives (by determining
whether one of the current potential states in the model has no outgoing transitions) was inad-
equate, so that simulator outputs were (incorrectly) being rejected by our testing algorithm. We
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Table 4. Metrics of Two Test Suites, One Based on Random Testing and One on Guided Testing

Method #Fails State coverage Transition coverage Avg. #steps Time (s)

Random 37 89 (59%) 313 (50%) 18.0 4305

Guided 51 90 (60%) 381 (61%) 7.6 903

have identified these situations as false positives by replaying the test by hand in the complete
mCRL2 model.

Our third and final finding is that the implementation of F_EST_EfeS_SR has an unspecified
timeout that causes it to autonomously enter a state ‘INITIALISING’, which, according to the state
machine diagram, can only be entered in response to events from the outside. We are confident
that this is incorrect behavior of the simulator, and suspect that the behavior is a remnant from an
older version of the simulator. We were able to identify the port that determines the length of the
illegal timeout, which can be set to MAX_INT to disable the event.

In the last series of tests that we executed, only tests that failed due to false positives remained.
We share several interesting metrics of these tests (see Table 4):

• The number of tests that were labeled with a fail verdict (all false positives).
• The number of states/transitions in the mCRL2 model that were encountered during testing,

and the percentage that this number is relative to the total number of states/transitions in
the mCRL2 sub-model. Note that we know in advance that some states and transitions are
unreachable because we prioritize certain outputs (actions that are enabled in the mCRL2
model but which do not cause changes in GUI elements of the simulator) over others. Still,
the shown values are a convenient metric for comparing the two test suites.
• The average number of steps (inputs/outputs) per test. This number gives us an impression

of the extent to which unexplored parts of the sub-model were reached.
• The time required for each test suite, providing a measure of efficiency.

We make the following general observations. First, as expected, neither test suite covered all
states/transitions of the model. Second, both test suites encountered differences between the model
and the simulator. The guided test suite encountered more differences than the random test suite,
which is consistent with the moderately greater coverage that the guided test suite achieves. Third
and finally, the guided test suite is over four times faster than the random test suite. This is ex-
plained partially by the fact that guided tests are more likely to stimulate the simulator with an
input instead of observing its outputs, which (since quiescence is a possible output) is a more ex-
pensive activity, on average. In addition, guided tests are probably much faster in reaching the
unexplored part of the mCRL2 model and stop; this suspicion is supported by the lower average
length of guided tests.

7 DISCUSSION

The case study in this paper is a step towards using formal verification to improve the EULYNX
standard and model-based testing to confirm compliance of delivered components. In this section
we reflect on improvements compared to [10] as well as on known and potential shortcomings in
our work.

In the Point case study, we have applied a procedure that follows the model-centered principle
of FormaSig (see Figure 1) to the EULYNX Point interface. Because we have automated several
steps in the procedure that had to be performed manually before, the procedure has become much
more efficient. For example, we now automatically generate the mCRL2 model from a number of
text files that define SysML diagrams, which is much easier than inputting the Point interface in
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mCRL2 directly. For now, producing these text files themselves is still a manual (and therefore
error-prone) process.

For performance reasons, we removed subcomponents from the mCRL2 model of Point when
verifying requirements that did not (directly) involve those subcomponents; for example, REQ_
PDI_002 was verified on a model from which point-specific behavior (S_SCI_P_SR, F_SCI_P_SR,
F_P3_Gen) was removed. Such optimizations are not always sufficient; for example, REQ_P_002
could not be verified after removing generic subcomponents from the model (the root of the bot-
tleneck seems to be located in the Point-specific F_P3_Gen subcomponent, arguably because of its
state machine’s parallel regions; see Section 5.4).

The verification results only inform us about the correctness of behavior modeled in EULYNX.
In particular, we cannot analyze whether EULYNX components interact correctly with their envi-
ronment (core interlocking, RaSTA, point machines) because we do not model the environment.
To illustrate that this may cause this method to miss errors, in a (still ongoing) case study of the
EULYNX Level Crossing interface we also modeled the behavior of RaSTA. Preliminary results
indicate a mismatch between the interface with RaSTA as modeled in EULYNX and as specified in
the RaSTA specification. This mismatch results in a deadlock, which is also present in the Point
interface. The deadlock was not discovered in the Point case study since, like EULYNX, we treated
RaSTA as part of the environment (as discussed in Section 4).

With regard to testing, we were able to improve performance considerably relative to our earlier
work [10]. The main reason for the improvement is that we are now hooking directly into the
source code of the system-under-test, instead of interfacing with its GUI. The number of test steps
has increased from approximately one every four seconds (on average) to four and eight test steps
per second for random and guided testing, respectively (remember that guided testing is faster
than random testing because it is more likely to stimulate the simulator instead of observing it;
see Section 6.3). In other words, we improved the performance of testing by a factor of 16 to 32.

Finally, the current test results clearly indicate some behavior of the simulator that is not found
in the EULYNX specification of Point; the simulator can therefore be said to contain a fault. Be-
cause the behavior occurs after waiting for 2 minutes, it is unlikely that the fault would have
been detected through manual testing, which clearly demonstrates the value of automated model-
based testing. On the other hand, the tests are generated from a partial LTS; consequently, there
is a significant amount of behavior of the EULYNX Point interface that is not covered. Moreover,
the partial LTS comes with unexplored states, which cause false positives that make the current
evaluation of test results non-trivial.

Threats to Validity

An important question arises when applying formal methods: Can we trust the results? For the
FormaSig project we identify the following possible points of failure:

(1) The translation from SysML to mCRL2;
(2) The encoding of SysML models in our framework;
(3) The formalization of requirements in the modal μ-calculus;
(4) The mCRL2 toolset;
(5) The test generation approach;
(6) The adapter between the mCRL2 model and the simulator.

For all hazards it holds that incorrectly failing tests and formulas that do not hold for the model
are not very severe (although they can be cumbersome to identify). For example, if a μ-calculus
formula evaluates to false, we simply check the counterexample provided by the tools and manu-
ally replay the scenario on the original SysML model.
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1. Translation from SysML to mCRL2. Establishing that the translation form SysML to mCRL2 is
fully correct is difficult due to complexity of the resulting mCRL2 model. At the moment we verify
the mCRL2 model produced by our translation framework by stepping through a part of the model
using lpsxsim, checking whether the behavior is as intended.

In the future we would like to align the semantics of our models to the Precise Semantics

of State Machines (PSSM). This is a standard from the OMG group, which also manages the
UML and SysML standards. PSSM very precisely (but not formally) specifies the semantics of state
machines and includes a test suite. As PSSM only specifies the behavior of a single state machine
we would need to add test cases that cover interaction between state machines over ports.

2. Encoding the SysML models. The measures taken to check the translation framework will also
catch errors in the encoding of the SysML models. Moreover, the translation framework itself
performs a number of sanity checks, such as whether state machine diagrams contain states that
are not connected to the initial state via transitions, or states without outgoing transitions.

3. Formalization of requirements. To mitigate the risk of specifying incorrect formulas we check
whether the formula is trivially true or false (which can be deduced from output of the pbessolve
tool). Moreover, the μ-calculus formulas are checked by multiple people from the FormaSig project.
In the future we would like to research formal (visual) requirements languages that can be under-
stood by signaling engineers, allowing them to validate the formalized requirements.

4. mCRL2 toolset. The correctness of our findings relies on the correctness of the mCRL2 toolset.
Verifying the correctness of the mCRL2 toolset is outside the scope of FormaSig.

5. Test generation. Our test generation algorithm is a custom implementation of well-known
MBT techniques. The custom implementation could contain errors, but this would more than likely
reveal itself during testing (especially guided testing). Essentially, we use the correct behavior of
the simulator to validate our test environment.

The test generation algorithm is configured with a maximum test depth LIMIT and with the
NO_OUTPUT limit (the number of times that the simulator must not produce an output before
we conclude that no output is coming). We never reach the maximum test depth, so LIMIT is
sufficiently high. We found a fault after a delay that is longer than the longest timeout event of
the simulator, which validates the reasoning behind the value chosen for the NO_OUTPUT limit.

6. Adapter. Our adapter between the model and the system-under-test is more complicated than
is typical because of the language differences (see Section 6.2, Language compatibility). The addi-
tional complexity may lead to an incorrect implementation, and – although the adapter is validated
to some extent by the successful test activities – it may be worthwhile to modify the mCRL2 model
so that the adapter can be simplified.

8 CONCLUSION AND FUTURE WORK

We have shown with our extended and improved case study of the EULYNX Point interface that our
automated translation produces mCRL2 models that are amenable to formal verification and model-
based testing. Among other things, we discovered that some requirements of the Point interface
only hold under fairness assumptions, and that there exist some discrepancies between the Point
model and the Point simulator, including one fault. We also gained insight into the scalability of
verification and automated testing.

Since the ultimate goal of FormaSig is to formally analyze all 10 EULYNX interfaces, we plan
to continue streamlining our approach for applying formal methods to EULYNX interfaces. In
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particular, we want to be able to extract SysML diagrams directly from PTC Windchill files instead
of transcribing them by hand to a text file. We also want to expedite requirement elicitation by
using diagrams to visualize modal μ-calculus formulas and mCRL2 counterexamples for signaling
experts. We have yet to select a suitable type of diagram; a possible candidate is the live sequence
chart [12].

More fundamentally, we will invest time in our formalization of SysML diagrams in mCRL2.
First, we intend to address a possible performance bottleneck caused by the way in which parallel
regions of state machines are modeled in mCRL2. Second, we want to add an option to our auto-
mated translation to produce an mCRL2 model in which actions that do not change a port value
(see Section 6.1, Language compatibility) do not occur, so that test execution becomes more reliable
and elegant. We may also change our mCRL2 models so that they produce simultaneous outputs,
so that they become directly language compatible with systems-under-test such as the Point simu-
lator (because the semantics of simultaneous outputs have been officially adopted by EULYNX in
the time between performing the experiments of the case study and finalizing the article). Third,
we want to explore making (a number of the) communication channels synchronous (as opposed
to asynchronous), in particular communication channels between subcomponents that in practice
will be executed on the same physical device. This would reduce the number of states, making ver-
ification easier. Fourth and finally, we want to investigate if we can add explicit time to our mCRL2
models, since we have come across several requirements with time constraints in the course of the
Point case study. This would require EULYNX specifications to provide more information than is
currently the case, such as the time it takes for a message to travel to its destination.

We also plan to improve our test setup. Naturally, testing based on an incomplete LTS that is
computed in advance is only a stepping stone towards a more effective approach, which would
involve either the computation of a complete LTS or an LTS that is explored on-demand. To this
end, we already started experimenting with the Windows Subsystem for Linux8 (WSL), which
makes it possible to achieve mCRL2 performance on the Windows platform that is comparable to
that of Unix platforms. If this performance is insufficient, we will work on combining symbolic
model exploration techniques with MBT.

After achieving an effective MBT method, our attention will be directed at improving the quality
of generated tests, where quality could be defined in various ways: it could be based on decision/
transition coverage (i.e. the fraction of the transitions of state machines or LTSs that tests touch
[13, 42]), or on the likelihood of tests to detect mutants [27], implementations to which random
mistakes are deliberately added.

APPENDICES

A REQUIREMENTS

This appendix lists all the requirements of Section 5.3 with all the μ-calculus formulas. Unlike in
other places in the paper, where we reference subcomponents by their type name, we give subcom-
ponents unique instance names in these formulas (this way, we can support multiple instances of
the same subcomponent type). Use Table 5 to convert the instance name of a subcomponent to its
type name, and vice versa.

8https://docs.microsoft.com/en-us/windows/wsl/about.
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Table 5. Type Names and Instance Names that
Correspond with each Other

Instance name Type name

BEQ_pe51 F_P3_Gen

BEQ_fp F_SCI_P_SR

BEQ_sp S_SCI_P_SR

BEQ_prim S_SCI_EfeS_Prim_SR

BEQ_seec F_SCI_EfeS_Sec_SR

BEQ_eest F_EST_EfeS_SR

BEQ_smi F_SMI_EfeS_SR

Brief Introduction to the μ-calculus

mCRL2 uses a first-order modal μ-calculus extended with data and regular formulas; see Table 6 for
the most important operators. We refer to the book on mCRL2 [20] for a more in-depth treatment
of the logic.

Table 6. Main μ-calculus Operators Besides Standard Logical Connectives

Operator Meaning

<a>ϕ Diamond operator; there exists an a-labeled transition to a state where ϕ holds

[a]ϕ Box operator; all a-labeled transitions lead to a state where ϕ holds

mu X. ϕ Least fixed point operator

nu X. ϕ Greatest fixed point operator

The diamond and box operators support regular formulas. The formula [true*]ϕ, from REQ_P_
001, expresses “ϕ holds after any trace from the initial state”; true represents any action label and
the * indicates a sequence of arbitrary length. Quantifiers can also be used in regular formulas: the
formula [!(exists st:StateName, c:CompName. inState(c,st))]ϕ, also from REQ_P_001, specifies that ϕ must hold
after any transition that is not labeled inState.
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ID REQ_P_001
Summary The object controller must report changes in position
Detailed description The position of the point is determined by combining the input from the point machines. When all point

machines report right the position is right. When all point machines report left the position is left. In any
other case the point does not have an end position. When the position of the point is different from the last
reported position, the new position must be reported to the interlocking. This obligation is lifted if
communication with the interlocking is not possible due to connection problem, power failure, etc. If the
object controller cannot report the changed position, the connection with the interlocking must be closed,
so that the interlocking knows that the position is unknown.

μ-calculus formula

% Once upon an arbitrary state vector:

[true *](%in which the point is in an end position

(<inState(BEQ_pe51 , ALL_LEFT)>true || <inState(BEQ_pe51 , ALL_RIGHT)>true) =>

% When PM1 or PM2 reports end position 'none ':

([ receive(CompPortPair (BEQ_pe51 , D21_PM1_Position ), Value_String (STR_NO_END_POSITION ))|

send(CompPortPair (BEQ_pe51_Environment , D21_PM1_Position ), Value_String (

STR_NO_END_POSITION ))]

(mu X. [!( exists st:StateName , c:CompName. inState(c,st))]X

%and require that always eventually the no_end_position is reported to the

interlocking

|| <receive(CompPortPair (BEQ_sp , T20_Point_Position ), Value_String (

STR_NO_END_POSITION ))|send(CompPortPair (BEQ_sp_Environment ,

T20_Point_Position ), Value_String (STR_NO_END_POSITION ))>true

%or the connection is no longer up

|| <inState(BEQ_pe51 ,WAITING_FOR_INITIALISING)>true

|| [inState(BEQ_fp ,PDI_CONNECTION_ESTABLISHED )]false

|| [inState(BEQ_sp ,PDI_CONNECTION_ESTABLISHED )]false)))

Alternative formula REQ_P_001_1 (see Section 5.4 for the rationale of this requirement):

% Once upon an arbitrary state vector:

[true *](%in which the point is in an end position

(<inState(BEQ_pe51 , ALL_LEFT)>true || <inState(BEQ_pe51 , ALL_RIGHT)>true) =>

% When PM1 or PM2 reports end position 'none ':

([ receive(CompPortPair (BEQ_pe51 , D21_PM1_Position ), Value_String (STR_NO_END_POSITION ))|

send(CompPortPair (BEQ_pe51_Environment , D21_PM1_Position ), Value_String (

STR_NO_END_POSITION ))]

% We examine all paths for which the environment is silent

(mu X. [!( exists st:StateName , c, env: CompName , p1, p2: VarName , v: Value.

(val(env in [BEQ_sp_Environment , BEQ_seec_Environment ,

BEQ_eest_Environment , BEQ_fp_Environment , BEQ_pe51_Environment ,

BEQ_prim_Environment ]))

|| inState(c,st))]X

%and require that always eventually the no_end_position is reported to the

interlocking

|| <receive(CompPortPair (BEQ_sp , T20_Point_Position ), Value_String (

STR_NO_END_POSITION ))|send(CompPortPair (BEQ_sp_Environment ,

T20_Point_Position ), Value_String (STR_NO_END_POSITION ))>true

%or the connection is no longer up

|| <inState(BEQ_pe51 ,WAITING_FOR_INITIALISING)>true

|| [inState(BEQ_fp ,PDI_CONNECTION_ESTABLISHED )]false

|| [inState(BEQ_sp ,PDI_CONNECTION_ESTABLISHED )]false)))
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ID REQ_P_002
Summary The object controller must not change position unless commanded by the interlocking
Detailed description The object controller may only instruct the point machines to move when this is commanded by the

interlocking. A movement command from the interlocking gives a pass to initiate movement in a
certain position that ends when either a timeout occurs, the end position is reached or a movement
command for the opposing position is sent.

μ-calculus formula

%Fixedpoint parameters track whether the object controller is allowed to move the

point and in which direction

nu X(allowed: Bool = false , direction: Value = Value_String (STR_LEFT)).

%When a movement command for the position left is received , we update parameters

allowed and direction to true and left , respectively

[send(CompPortPair (BEQ_sp ,DT1_Move_Point_Target ),Value_String (STR_LEFT))

|receive(CompPortPair (BEQ_fp ,DT1_Move_Point_Target ),Value_String (STR_LEFT))]

X(true ,Value_String (STR_LEFT))

%When a movement command for the position right is received , we update parameters

allowed and direction to true and right , respectively

&& [send(CompPortPair (BEQ_sp ,DT1_Move_Point_Target ),Value_String (STR_RIGHT))

|receive(CompPortPair (BEQ_fp ,DT1_Move_Point_Target ),Value_String (STR_RIGHT))

]X(true ,Value_String (STR_RIGHT))

%When movement of the point times out , it may no longer be moved. Parameter allowed

is set to false.

&& [send(CompPortPair (BEQ_fp ,T3_Msg_Timeout ),Value_Bool (true))

|receive(CompPortPair (BEQ_sp ,T3_Msg_Timeout ),Value_Bool (true))]X(false ,

direction)

%When the end position is reached , it may no longer be moved. Parameter allowed is

set to false.

&& [send(CompPortPair (BEQ_fp ,DT2_Point_Position ),direction)

|receive(CompPortPair (BEQ_sp ,DT2_Point_Position ),direction)]X(false ,

direction)

%When allowed is false or the direction is not right then the object controller may

not start a movement to the right

&& ((val(! allowed || (direction != Value_String (STR_RIGHT)))) => [send(CompPortPair (

BEQ_pe51 ,D11_Move_Right),Value_Bool (true))

|receive(CompPortPair (BEQ_pe51_Environment ,D11_Move_Right ),Value_Bool (true))

]false)

%When allowed is false or the direction is not left then the object controller may

not start a movement to the left

&& ((val(! allowed || (direction != Value_String (STR_LEFT)))) => [send(CompPortPair (

BEQ_pe51 ,D10_Move_Left),Value_Bool (true))

|receive(CompPortPair (BEQ_pe51_Environment ,D10_Move_Left),Value_Bool (true))]

false)

%For any other transition than the transitions above the parameters allowed and

direction stay the same

&& [!( send(CompPortPair (BEQ_sp ,DT1_Move_Point_Target ),Value_String (STR_LEFT))|

receive(CompPortPair (BEQ_fp ,DT1_Move_Point_Target ),Value_String (STR_LEFT)))

&& !(send(CompPortPair (BEQ_sp ,DT1_Move_Point_Target ),Value_String (STR_RIGHT)

)|receive(CompPortPair (BEQ_fp ,DT1_Move_Point_Target ),Value_String (

STR_RIGHT)))

&& !(send(CompPortPair (BEQ_fp ,T3_Msg_Timeout),Value_Bool (true))|receive(

CompPortPair (BEQ_sp ,T3_Msg_Timeout),Value_Bool (true)))

&& !(send(CompPortPair (BEQ_fp ,DT2_Point_Position ),direction)|receive(

CompPortPair (BEQ_sp ,DT2_Point_Position ),direction)

)]X(allowed ,direction)
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ID REQ_PDI_002
Summary Disconnect at version unequal
Detailed description Whilst establishing a connection, in the case that the object controller sees that the interlocking

uses a different version of the protocol, it sends a message to the interlocking notifying the failed
version check and moves to the state not ready for a connection.

μ-calculus formula

[true *.send(CompPortPair (BEQ_seec ,DT13_Result),Value_String (STR_note32match ))|

receive(CompPortPair (BEQ_prim ,DT13_Result),Value_String (STR_note32match ))]

%The object controller moves to the state Not_Ready_For_Connection before it is

allowed to succesfully establsish a connection

((nu X. ([ inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED )]false

&& [true]X)

|| <inState(BEQ_seec ,NOT_READY_FOR_CONNECTION)>true)

%The interlocking moves to the state Connection_closed before it is allowed to

succesfully establsish a connection

&& (nu X. ([ inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED )]false

&& [true]X)

|| <inState(BEQ_prim ,PDI_CONNECTION_CLOSED )>true))

ID REQ_PDI_003
Summary Disconnect at checksum unequal
Detailed description Whilst establishing a connection, in the case that the interlocking receives an incorrect checksum

(indicating a malformed message) from the object controller in the Msg_PDI_Version_Check
message, the interlocking terminates the connection.

μ-calculus formula

[true *. inState(BEQ_prim ,PDI_CHECKSUM_UNEQUAL )]

%The object controller moves to the state Not_Ready_For_Connection before it is

allowed to succesfully establsish a connection

((nu X. ([ inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED )]false && [true]X)

|| <inState(BEQ_seec ,NOT_READY_FOR_CONNECTION)>true || <inState(BEQ_seec ,

READY_FOR_CONNECTION )>true)

%The interlocking moves to the state Connection_closed before it is allowed to

succesfully establsish a connection

&& (nu X. ([ inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED )]false && [true]X)

|| <inState(BEQ_prim ,PDI_CONNECTION_CLOSED )>true))

ID REQ_PDI_004
Summary A connection remains possible
Detailed description As long as there is no telegram error, it always remains possible to reach

PDI_Connection_Established in the future.
μ-calculus formula

[true *]%after any trace

%we either have that PDI_Connection_Impermissible is inevitable

((<inState(BEQ_prim ,PDI_CONNECTION_IMPERMISSIBLE )>true

|| <inState(BEQ_seec ,PDI_CONNECTION_IMPERMISSIBLE )>true

|| <inState(BEQ_prim ,PDI_TELEGRAM_ERROR )>true

|| <inState(BEQ_seec ,PDI_TELEGRAM_ERROR )>true)

%or we can eventually establish a connection

|| (<true*>(<inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED )>true

&& <inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED )>true)))
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ID REQ_PDI_005
Summary Close connection on error
Detailed description At the moment a protocol error or telegram error occurs at either the side of the object controller or

the interlocking, both the interlocking and the object controller will eventually move to
PDI_Connection_Closed before reattempting a connection.

μ-calculus formula

[true *]((

(<inState(BEQ_seec ,PDI_TELEGRAM_ERROR )>true || <inState(BEQ_seec ,PDI_PROTobject

controllerOL_ERROR )>true) =>

(nu X. ([ inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED )]false && [true]X)

|| <inState(BEQ_seec ,NOT_READY_FOR_CONNECTION)>true))

&& (

(<inState(BEQ_prim ,PDI_TELEGRAM_ERROR )>true || <inState(BEQ_prim ,PDI_PROTobject

controllerOL_ERROR )>true) =>

(nu X. ([ inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED )]false && [true]X)

|| <inState(BEQ_prim ,PDI_CONNECTION_CLOSED )>true)))

ID REQ_PDI_006
Summary Close connection when not ready
Detailed description When F_EST_EfeS_SR signals it is not ready for a connection, the object controller will move to not

ready for connection and only reattempts a connection after receiving a message ready for connection.
μ-calculus formula

[true *.send(CompPortPair (BEQ_eest ,T18_Not_Ready_For_PDI_Connection ),Value_Bool (true))

|receive(CompPortPair (BEQ_seec ,T18_Not_Ready_For_PDI_Connection ),Value_Bool (

true))](

%when in PDI_connection established , move to not ready for connection

((<inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED )>true)

=> (mu X. (([!( exists c:CompName ,s:StateName. inState(c,s))]X)

|| [inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED )]false)))

%do not establish a connection until it is allowed again by F_EST_EfeS_SR

&& (nu X. [!send(CompPortPair (BEQ_eest ,T21_Ready_For_PDI_Connection ),Value_Bool (true)

)|receive(CompPortPair (BEQ_seec ,T1_Ready_For_PDI_Connection ),Value_Bool (true))]

X

&& (<inState(BEQ_seec ,NOT_READY_FOR_CONNECTION)>true => (

[(! send(CompPortPair (BEQ_eest ,T21_Ready_For_PDI_Connection ),Value_Bool (true))|

receive(CompPortPair (BEQ_seec ,T1_Ready_For_PDI_Connection ),Value_Bool (true)

))*] [inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED )]false))))

Subformula REQ_PDI_006_1 (see Section 5.4 for the rationale of this requirement):

[true *.send(CompPortPair (BEQ_eest ,T18_Not_Ready_For_PDI_Connection ),Value_Bool (true))

|receive(CompPortPair (BEQ_seec ,T18_Not_Ready_For_PDI_Connection ),Value_Bool (

true))]

(nu X. [!send(CompPortPair (BEQ_eest ,T21_Ready_For_PDI_Connection ),Value_Bool (true))|

receive(CompPortPair (BEQ_seec ,T1_Ready_For_PDI_Connection ),Value_Bool (true))]X

&& (<inState(BEQ_seec ,NOT_READY_FOR_CONNECTION)>true => (

[(! send(CompPortPair (BEQ_eest ,T21_Ready_For_PDI_Connection ),Value_Bool (true))|

receive(CompPortPair (BEQ_seec ,T1_Ready_For_PDI_Connection ),Value_Bool (true)

))*]

[inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED )]false)))

ID REQ_PDI_007
Summary Close connection after timeout
Detailed description When S_SCI_EfeS_Prim_SR does not change in state PDI_Connection_Established after entering state

Establishing_PDI_Connection within the time D2_Con_tmax_PDI_Connection, both
S_SCI_EfeS_Prim_SR and F_SCI_EfeS_Sec_SR reach PDI_Connection_Closed before reattempting a
connection.

μ-calculus formula

[true *](< inState(BEQ_prim ,PDI_INIT_TIMEOUT )>true =>

%The interlocking moves to the state Connection_closed before it is allowed to

succesfully establsish a connection

(nu X. ([ inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED )]false && [true]X)

|| <inState(BEQ_prim ,PDI_CONNECTION_CLOSED )>true))
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ID REQ_PDI_008
Summary One closes, both close
Detailed description When S_SCI_EfeS_Prim_SR and F_SCI_EfeS_Sec_SR are both in state PDI_Connection_Established,

and one leaves that state, the other will eventually leave the state as well.
μ-calculus formula

[true *]((

<inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED )>true

&& <inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED )>true) =>[true ](

((!< inState(BEQ_prim ,PDI_CONNECTION_ESTABLISHED )>true)

=> mu X. [!( exists c:CompName ,s:StateName. inState(c,s))]X || (<inState(

BEQ_seec ,PDI_CONNECTION_ESTABLISHED )>true))

&& ((!< inState(BEQ_seec ,PDI_CONNECTION_ESTABLISHED )>true)

=> mu X. [!( exists c:CompName ,s:StateName. inState(c,s))]X || (<inState(

BEQ_prim ,PDI_CONNECTION_ESTABLISHED )>true))))
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