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Abstract

We provide large deviations estimates for the upper tail of the number of triangles in
scale-free inhomogeneous random graphs where the degrees have power law tails with index
−α, α ∈ (1, 2). We show that upper tail probabilities for triangles undergo a phase transition.
For α < 4/3, the upper tail is caused by many vertices of degree of order n, and this probability
is semi-exponential. In this regime, additional triangles consist of two hubs. For α > 4/3 on
the other hand, the upper tail is caused by one hub of a specific degree, and this probability
decays polynomially in n, leading to additional triangles with one hub. In the intermediate
case α = 4/3, we show polynomial decay of the tail probability caused by multiple but finitely
many hubs. In this case, the additional triangles contain either a single hub or two hubs.
Our proofs are partly based on various concentration inequalities. In particular, we tailor
concentration bounds for empirical processes to make them well-suited for analyzing heavy-
tailed phenomena in nonlinear settings.

1 Introduction and main results

Many real-world networks were found to have degree distributions that can be approximated by
a power-law distribution, where the fraction of vertices of degree k scales as a power law with
infinite variance [38]. Therefore, random graph models that serve as benchmark for these real-
world networks therefore often focus on networks with power-law degree distributions. These
random graphs are constructed to have similar degree distributions as real-world networks, but
other graph properties are not prescribed by the model. The behavior of network properties of
random graph models with a prescribed degree sequence has therefore been an object of intensive
study [15, 19, 20, 26, 22, 41].

In this paper, we focus on the property of triangle counts. Triangle counts measure the tendency
of two neighbors of a vertex to be connected as well, allowing to analyze the network’s clustering
properties. While many real-world networks were found to be highly clustered, many random graph
models are locally tree-like, and therefore only contain few triangles in the large-network limit. In
power-law random graphs however, the random graphs may still possess a polynomial number of
triangles, and the average clustering coefficient vanishes extremely slowly in the network size [21].
Motivated by this slow decay of the average clustering coefficient, we focus on the question: How
unlikely is it that a power-law random graph contains a large number of triangles?

The tail probability for triangle counts in Erdős-Rényi random graphs has been studied exten-
sively since [24, 25, 28], and a matching upper and lower bound were finally provided in [9, 14]
when the random graphs are not too sparse, that is, when the average degree of each vertex tends
to infinity in the network size; see also [4]. For sparser Erdős-Rényi graphs with finite average
vertex degrees, [8] showed that the probability of observing many triangles is extremely small, and
that the unlikely event that a large number of triangles is present is driven by a localized almost
clique structure.

Significantly fewer results exist on large deviations for random graphs with heavy-tailed degrees.
Most existing work assumes light-tailed degree distributions, or a finite second moment [2, 8, 16],
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as this allows to write the connection probability in a product form of the weights of the two
involved nodes, while an infinite second moment makes this impossible. Under an infinite second
moment, the connection probability depends on both vertex weights in a way that cannot be split
into their individual contributions, creating so-called degree-degree correlations [35, 40]. Other
work focuses on a regime where the average degree grows [31], which is not applicable when the
tail of the degree distribution behaves like a power law with index −α, α ∈ (1, 2). Results on large-
deviations analysis for power-law random graphs are so far restricted to the Pagerank functional
[11, 32], and edge counts [27, 37].

In this paper, we derive tail asymptotics for the probability that the number of triangles is
larger than average for the sparse, power-law case with α ∈ (1, 2). Interestingly, we show that
there is a phase transition in the degree exponent α. When α < 4/3, the probability that the
number of triangles is larger than expected decays semi-exponential in the network size n. For
α ≥ 4/3 on the other hand, this probability decays polynomially in n. Furthermore, in contrast
to the non-power-law case, deviations of the triangle counts are caused by the presence of one or
more hubs of specific degree.

1.1 Model description

To give a precise description of our main results, we now provide a model description. We consider
the rank-1 inhomogeneous random graph (or hidden variable model). This model constructs simple
graphs with soft constraints on the degree sequence [7, 12]. The graph consists of n vertices with
non-negative weights Wi, i = 1, ..., n. These weights are an i.i.d. sample from the continuous
heavy-tailed distribution F (x),

F̄ (x) := P (W > x) = x−αL(x), x ≥ 0 (1.1)

for some slowly varying function L(x), α ∈ (1, 2).
We denote µ = E [Wi]. Then, every pair of vertices with weights (h, h′) is connected with

probability p(h, h′). In this paper, we take

p(h, h′) = min

(
hh′

µn
, 1

)
, (1.2)

which is the Chung-Lu version of the rank-1 inhomogeneous random graph [12]. This connection
probability ensures that the degree of a vertex with weight h will be close to h [7].

We are interested in the number of triangles 4n contained in a sample of the rank-1 homoge-
neous random graph. Denote

fn(u, v, w) = min
{ uv
µn

, 1
}

min
{vw
µn

, 1
}

min
{uw
µn

, 1
}
. (1.3)

The next result describes the growth rate of mn = E [4n], extending previous work [23, 36] on
the pure power law case.

Lemma 1.1. Let α ∈ (1, 2). mn = (1 + o(1))Hn3(F̄ (
√
n))3, with

H =
α3

6

∫ ∞
u=0

∫ ∞
v=0

∫ ∞
w=0

f1(u, v, w)u−α−1v−α−1w−α−1dudvdw. (1.4)

In particular, mn is regularly varying with index 3− 3
2α.

1.2 Main results and discussion

We are interested in the event that 4n deviates from its mean mn by a factor a > 0. It turns
out that there is a qualitative difference determined by the question whether mn is increasing to
∞ faster than n or not, which, due to Lemma 1.1, is determined by whether the parameter α is
bigger than or smaller than 4/3.
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(a) α < 4/3 or more than n triangles: exponen-
tial deviations, caused by many hubs of weight
of O(n) that form many triangles with one node
of constant weight.

(b) α > 4/3: polynomial deviations, caused by
one hub of weight of O(n(α+2θ)/(4(α−1))) that
forms triangles with vertices of lower degrees.
θ = 0 in Theorem 1.3.

Figure 1: Illustration of the events that cause polynomial and exponential deviations.

The case α > 4/3: single hub As we will see, an unusually large number of triangles will be
caused by one or more hubs. To determine how large a hub needs to be, we define for a > 0,

ca(n) := inf
{
c : n2 1

2

∫ ∞
0

∫ ∞
0

fn(x, y, c)dF (x)dF (y) ≥ mna
}
. (1.5)

Intuitively, ca(n) is the smallest size of a hub needed to create amn additional triangles. The next
lemma estimates its order of magnitude. Let f(n) ∼ g(n) denote f(n)/g(n)→ 1.

Lemma 1.2. ca(n) is regularly varying of index β = 1
4

α
α−1 . In particular, there exists a slowly

varying function L∗ such that

ca(n) ∼ L∗(n)nβa
1
2

1
α−1 (1.6)

for every a > 0.

The index β equals 1 at α = 4/3 and decreases in α. β equals 1/2 when α = 2. One can
show using extreme-value theory that the typical value of the largest weight in the random graph
is regularly varying with index 1/α. For all α ∈ (1, 2) we have β > 1/α. A hub of size ca(n) is
therefore a rare event, and our first main theorem confirms that it is the most likely rare event
leading to (1 + a)mn triangles when α > 4/3.

Theorem 1.3. Let α > 4/3 and a > 0. As n→∞,

P (4n > (1 + a)mn) = (1 + o(1))nP (W > ca(n)) . (1.7)

By applying a recent concentration result of Chatterjee [9], we show in Section 4 that it suffices
to investigate the asymptotics of P (Gn > (1 + a)mn), with

Gn = E [4n |W1, ...,Wn] . (1.8)

To analyze P (Gn > (1 + a)mn), we extend ideas from heavy-tailed large deviations theory (see
e.g. [13, 18, 29, 34, 42]) and formalize the intuition that a single big hub is needed. A major step
is to show that the event {Gn > (1 + a)mn} is much more unlikely when all nodes have weight
smaller than εca(n) for some suitable ε > 0. However, existing heavy-tailed large deviation tools
focus on essentially linear processes and are less suitable to apply to functionals of random graphs
which are essentially nonlinear as in (1.8).

For this reason we develop a different approach: we write the number of triangles as a functional
of the empirical distributions of the weights as in (2.1), and we derive a novel concentration result
(Proposition 2.2), building on a classical concentration result for weighted empirical processes
[39]. For a more precise statement we refer to (2.18). This approach seems promising for other
nonlinear functionals of heavy-tailed random variables, like U -statistics, or other observables of
random graphs. Examples of recent work on nonlinear large deviations in a light-tailed setting are
[4, 10].
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The case α < 4/3: many hubs For α < 4/3, the probability of a larger than average number
of triangles is semi-exponential instead:

Theorem 1.4. Suppose that P (W ≥ 1) = 1 and P (W > x) ∼ Cx−α for x ≥ 1, α ∈ (1, 4/3). For
any fixed a > 0,

lim
n→∞

logP
(
4n > n(3−α3/2)(C3H + a)

)
n1−α3/4 log(n)

= −
√

2a
α

4
. (1.9)

In this setting, a large number of triangles is caused by a sublinear (but polynomially growing
in n) number of vertices of weight µn. If P (W ≥ 1) = 1, a vertex of weight µn connects to all
other vertices with probability one. Thus, in pairs of two, these hubs form triangles with all other
vertices, see Figure 1a.

The square root of a can intuitively be explained by the fact that B vertices of weight µn
create nB(B − 1)/2 ≈ nB2/2 triangles. Indeed, each of the B2/2 pairs of vertices of weight at
least µn creates triangles with each of the n other vertices. Thus, with B =

√
2an1−α3/4 create

at least an(3−α3/2) triangles.
To prove an asymptotic upper bound, we will split all triples of nodes into three sets based

on the triangle weights and then construct an upper bound on the triangle counts with edges in
these weight groups one by one. Here we will use similar concentration bounds as developed in
the proof of Theorem 1.3 to get rid of the random weights, as long as these weights are sufficiently
small. For triangles containing larger weights, we will use properties of the function fn instead to
deal with the multiple sources of randomness.

The phenomenon of having a number of big hubs that is growing with n is non-standard in the
context of heavy tails; a related example appears in an exit problem for the sample average of a
random walk, where the number of big values required to avoid escaping a convex set for n time
units is logarithmically increasing with n [5].

We believe that it is possible to extend Theorem 1.4 to allow for non-trivial slowly varying
functions. In this setting, the denominator of the scaling will likely also include a term with L(n),
the slowly varying function evaluated at n, due to the fact that the main contribution is from
vertices of weight n. However, in the current proof we distinguish different types of triangles at
different scales of the weights. Proving such a statement with slowly varying functions then entails
showing that the contribution of the slowly varying functions at other scales that will appear in
the probabilities of these non-dominating triangles are small compared to the contribution of L(n),
which becomes rather technical, especially when L(n) oscillates.

Behavior at the boundary α = 4/3: multiple hubs The above two theorems show a stark
contrast in the way additional triangles are generated: if α > 4/3 they consist of two regular
nodes and one hub, and if α < 4/3, they consist one regular node, and two hubs. At the boundary
α = 4/3 both may occur. When α = 4/3, ca(n) defined in (1.5) is regularly varying of index 1,
as is mn. To avoid technical complications with slowly varying functions that can arise on the
boundary (for example, mn/n could be oscillating between 0 and∞), we assume that P (W > n) =
(1 + o(1))Cn−α, in which case mn ∼ C3Hn.

Depending on the value of a, a single big value of the weights Wi may not be enough to create
(1 + a)mn triangles, for which we now provide some intuition. If there are l hubs with a weight of
infinite size and n regular nodes, each hub forms a triangle with any of the µn edges, leading to
lµn additional triangles consisting of a single hub and two regular nodes. In addition, each of the
l(l − 1)/2 pairs of hubs form n triangles with the regular nodes. Therefore, if we wish to exceed
the number of triangles with a factor amn we need k(a) hubs where k(a) is defined as

k(a) := inf{l : lµ+ l(l − 1)/2 > aC3H}. (1.10)

To derive a precise result, we need to take into account that hubs have weight of O(n) rather than
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Figure 2: The exponent of Theorem 1.6 plotted against θ for several values of α.

∞. To this end, we define

Kl(z1, ..., zl) =
1

2µ

l∑
i=1

(
zi
µ
E
[
W 2I(W ≤ µ/zi)

]
+ E [WI(W > µ/zi]))

2

+

l∑
i=1,j>i

E
[
min{zi

µ
W, 1},min{zj

µ
W, 1}

]
, (1.11)

where I denotes the indicator function. This can be interpreted as the expected number of
additional triangles caused by l hubs of size zin, i = 1, ..., l. We can now formulate our main
theorem for α = 4/3. Let, for b > 0, Xb

i , i ≥ 1, be an i.i.d. sequence such that P(Xb
i > x) =

(x/b)−α, x ≥ b. Set η(a) as the smallest number η for which ((k(a)− 1)µ+K1(η) ≥ C3H(1 + a).
Note that η(a) > 0 if (k(a)− 1)µ+ (k(a)− 1)(k(a)− 2)/2 < aC3H.

Theorem 1.5. Suppose that P (W > x) ∼ Cx−4/3 and suppose that (k(a)−1)µ+(k(a)−1)(k(a)−
2)/2 < aC3H. Then

P (4n > (1 + a)mn) ∼ P(Kk(a)(X
η(a)
1 , . . . , X

η(a)
k(a) ) ≥ C3Ha)(nP (W > η(a)n))k(a). (1.12)

We prove Theorem 1.5 along similar lines as Theorem 1.3, namely by first showing the analogous
result for Gn. The technical condition (k(a)− 1)µ+ (k(a)− 1)(k(a)− 2)/2 < aC3H is needed to
be able to pin down the number of hubs that is required for Gn and 4n to be large.

Larger deviations We now show that larger deviations of an order of magnitude nθ from the
mean again induce a phase transition. First, the probability that a factor of nθ more triangles
than average are present decays regularly varying in n up until θ = (3/2)α− 2:

Theorem 1.6. Let α > 4/3 and θ ∈ (0, 3
2α− 2). Then cnθ (n) ∼ L∗(n)nβ+ θ

2
1

α−1 = o(n) for some
slowly varying L∗ and

P
(
4n > mn(1 + nθ)

)
∼ nP (W > cnθ (n)) . (1.13)

In particular, P
(
4n > mn(1 + nθ)

)
is regularly varying with exponent 1− αβ − α θ2 1

α−1 .

The proof of Theorem 1.6 follows the same steps as the proof of Theorem 1.3, but is at
several points slightly more technical. For readability we provide these additional technical details
separately in Appendix D.

Note that Theorem 1.6 applies up to θ = (3/2)α−2. Thus, the higher α, the larger the factor of
deviations that can still be computed with this theorem, as also shown in Figure 2. Furthermore,
Figure 2 illustrates that for larger values of α, a deviation of nθ is more likely than for smaller
values of α. That is, more degree inhomogeneity makes deviations of the triangle counts more
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unlikely. At first sight, this may be in contrast with the intuition that degree inhomogeneity makes
it more likely for extreme values of the weight sequence to appear, and therefore could make a
deviation of the triangle counts more likely. However, the average number of triangles is also larger
for low values of α, so that a lower number of triangles is required for higher values of α to get
the same deviating factor than for lower values of α.

Combining the upper bound (3/2)α − 2 for θ with the fact that E [4n] = O(n3−3/2α) shows
that the theorem applies until deviations of order n, as n3−3/2αn(3/2)α−2 = n. Intuitively, this is
because the inhomogeneous random graph has on average µn edges. A single high-degree vertex
can therefore only create µn triangles. However, the maximum possible number of triangles in a
graph on n vertices scales as n3.

We complement Theorem 1.6 by studying the cases where α < 4/3 or α > 4/3 and deviations
of more than a factor of n(3/2)α−2 from average:

Theorem 1.7. Suppose that P (W ≥ 1) = 1 and P (W > x) ∼ Cx−α for x ≥ 1. For γ ∈
(max(1, 3− 3/2α), 3) and α > 1 and a > 0,

lim
n→∞

logP (4n > anγ)

n(γ−1)/2 log(n)
=
√

2a
(3− γ

2
− α

)
< 0. (1.14)

The proof of this theorem is similar to the proof of Theorem 1.4, and can be found in Ap-
pendix C. The logarithmic asymptotics of Theorems 1.6 and 1.7 match at the boundary where
γ = 1 or θ = (3/2)α− 2. We expect that a similar theorem as Theorem 1.5 holds in this case.

There is a sharp phase transition for α > 4/3 between deviations up to a factor of n(3/2)α−2

(Theorem 1.6) and larger deviations (Theorem 1.7). Similarly to the smaller deviations, this phase
transition happens when the single hub scaling equals n. Indeed, for Theorem 1.6, the driving
event is one hub of magnitude n(α+2θ)/(4(α−1)). For θ = (3/2)α − 2, this means that one hub of
order n is necessary. A hub weight of µn already makes all connection probabilities equal to one,
so that increasing the hub weight further will not increase the number of triangles. Thus, to create
even more triangles, a larger number of hubs is necessary, explaining the phase transition between
Theorems 1.6 and Theorem 1.7.

Interestingly, in the regime of Theorem 1.7, a lower value of α makes the probability of nθ

more triangles than expected more likely than a higher value of α, contrary to the regime of
Theorem 1.6.

1.3 Organization of the paper

In Section 2, we analyze the behavior of Gn in the case α > 4/3, after having first developed a
concentration bound (Proposition 2.2). The tail behavior of Gn for the boundary case α = 4/3
is analyzed in Section 3. Section 4 completes the proofs of Theorem 1.3 and 1.5. The case with
many hubs, in particular Theorem 1.4 is proven in Section 5.

We collect several proofs with more standard and/or repetitive arguments in the appendices.
The proof of the lemmas presented so far, as well as proofs of various auxiliary results in the
subsequent three sections are given in Appendix A. Auxiliary results for Section 5 are proven in
Appendix B. Finally, Appendix C and D contain the necessary additional details which are needed
to complete the proofs of Theorem 1.7 and Theorem 1.6.

2 Nonlinear heavy-tailed large deviations

Let Fn be the empirical distribution function associated with the weights W1, . . . ,Wn and observe
that

Gn = n3

∫ ∞
0

∫ ∞
x

∫ ∞
y

fn(x, y, z)dFn(z)dFn(y)dFn(x), (2.1)

with fn as in (1.3). As a convention, integration regions are always of the form (x,∞), (y,∞),
etc. to avoid double counting. This section proves the following theorem.
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Theorem 2.1. If α ∈ (4/3, 2), then

P (Gn > mn(1 + a)) = (1 + o(1))nP (W > ca(n)) . (2.2)

This theorem serves as a major stepping stone towards the proof of Theorem 1.3, which will
be completed in Section 4. The proof of Theorem 2.1 consists of the following steps. Let

Fn(x) =
1

n

n∑
i=1

I(Wi ≤ x), x ≥ 0. (2.3)

1. Building on concentration results for weighted empirical processes, dating back to [39], we
construct an event of high probability on which we can bound Fn with a suitable function
F ∗n , which is essentially a mixture of F , and two large (in n) atoms.

2. To effectively use F ∗n , we develop some estimates for the expected number of triangles gen-
erated by one or two large hubs.

3. We combine both previous steps in constructing a sharp bound for Gn which holds with high
probability when there is no hub of size bigger than εca(n), for some ε > 0.

4. Using this sharp upper bound for Gn, we complete the proof of Theorem 2.1.

These four steps are worked out in the next four subsections.

2.1 Concentration of weighted empirical distribution functions

In this subsection, we construct a convenient upper bound for F̄n(x) = 1 − Fn(x). Set uniform
random variables Ui = F (Wi), i ≥ 1. Set FUn as the empirical distribution function for uniform
random variables. Define

h(x) = x(log x− 1) + 1. (2.4)

Then, Lemma 1 of [39] states, for λ ≥ 1, y ∈ (0, 1],

P

(
sup
t∈[y,1]

|FUn (t)/t| ≥ λ
)
≤ e−nyh(λ). (2.5)

Now, let
a(n) = F̄−1(1/n)n−δ,

for some δ > 0. By taking y = F̄ (a(n)) and λ = A+ 1 in (2.5) we get

P

(
sup

x<a(n)

| F̄n(x)

F̄ (x)
− 1| > A

)
≤ e−nF̄ (a(n))h(A+1). (2.6)

Let F̄ (x) = 1− F (x) and
b(n) = F̄−1(1/n)nδ.

Observe that (2.6) implies

P

(
sup

x∈[a(n),b(n)]

F̄n(x) > (1 +A)F̄ (a(n))

)
≤ e−nF̄ (a(n))h(A+1), (2.7)

as F̄n(x) is non-increasing. Finally, we investigate the range [b(n),∞). Let c > 0 and note that

P

(
sup

x∈[b(n),∞)

F̄n(x) > c/n

)
≤ P (F̄n(b(n)) > c/n) = P

(
n∑
i=1

I(Ui < F̄ (b(n))) > c

)
.
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We can use Lemma 2.3 from [37] to bound this and get

P

(
sup

x∈[b(n),∞)

F̄n(x) > c/n

)
≤ enF̄ (b(n))(nF̄ (b(n)))dce. (2.8)

Note that the bounds (2.6), (2.7), (2.8) hold for any continuous distribution F with support on
[0,∞). If F̄ (x) is regularly varying with index −α < −1, then a(n) is regularly varying with index
1/α − δ and b(n) is regularly varying with index 1/α + δ. This makes the upper bounds in (2.6)
and (2.7) go to 0 at a faster rate than polynomial.

If α > 1 and δ > 0 is such that 1/α+ δ < 1, the upper bound in (2.8) is regularly varying with
index −dce(1− 1/α+ δ), which can be made to go to 0 at any desired polynomial rate by picking
c appropriately large. We summarize our findings in the following proposition.

Proposition 2.2. For a fixed δ ∈ (0, 1/α− 1), c > 0, and A > 0 define the event En(A, c, δ) by{
sup

x<a(n)

F̄n(x)

F̄ (x)
≤ 1 +A, sup

x∈[a(n),b(n)]

F̄n(x) ≤ (1 +A)F̄ (a(n)), sup
x∈[b(n),∞)

F̄n(x) ≤ c/n
}
. (2.9)

Let β > 0. Then P (En(A, c, δ)c) = o(n−β) if dce > β(1− 1/α+ δ)−1.

Application to sample averages. To illustrate the use of Proposition 2.2, consider the sample mean
τn =

∫∞
0
xdFn(x); in particular the probability

P (τn > (1 + a)µ) . (2.10)

A classical result dating back to Nagaev [30] is that the most likely way this event occurs is by
a single big jump of size aµn and that this probability is regularly varying with index −(α − 1).
A critical step in the proof is to show that a jump of size at least εn is really necessary. In our
notation, this entails showing that for every β <∞ there exists an ε > 0 such that

P
(∫ εn

0

xdFn(x) > µ+ a

)
= o(n−β). (2.11)

A version of this result (which we actually need in Section 4), can be found in [33], and can also
be proven with Bennett’s inequality. We now show how (2.11) follows from Proposition 2.2. On
the set En(A, δ, c), the following upper bound holds for F̄n on x ∈ [0, εn]:

F̄n(x) ≤ (1 +A)F̄ (x)I(x < a(n)) + (1 +A)F̄ (a(n))I(a(n) ≤ x < b(n))

+
c

n
I(x ∈ [b(n), εn]). (2.12)

Informally, the random variable with distribution function Fn truncated at εx is stochastically
bounded by a random variable with distribution tail (1 + A)F̄ (x) on [0, a(n)), an atom of size
F̄ (a(n))− c/n at b(n), and an atom of size c/n at εn. Since we integrate against a non-decreasing
function, we see that, on En(A, δ, c),∫ εn

0

xdFn(x) ≤ (1 +A)

∫ a(n)

0

xdF (x) + (1 +A)b(n)F̄ (a(n)) + (c/n)(εn). (2.13)

This is smaller than µ+cε+o(1), since b(n)F̄ (a(n)) is regularly varying of index 1/α+δ−α(1α−δ) <
0. The desired result (2.11) now follows by choosing ε small enough so that cε < a.

Below, we apply this bounding technique to the nonlinear functional (2.1). We believe the
technique can be applied to other nonlinear functionals of Fn, like U -statistics, and other ob-
servables of inhomogeneous random graphs, such as clustering coefficients, degree correlations or
general subgraph counts.
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2.2 Estimating the number of triangles generated by large hubs

To successfully apply Proposition 2.2 to the particular nonlinear functional (2.1), we need several
auxiliary estimates. In particular, the following two lemmas will be convenient in the estimation
of various single and double integrals appearing in our upper bound of Gn, obtained after apply-
ing Proposition 2.2 to (2.1). These integrals approximate with high probability the number of
additional triangles caused by one or two hubs. Their proofs can be found in Appendix A.

Lemma 2.3. There exists a constant K1 such that the following holds. Let 1 > αc ≥ αb > 1/2.
Let b(n) be regularly varying of index αb and let c(n) be regularly varying of index αc with either
αc > αb or c(n) = b(n). Then

Sb,c(n) :=

∫ ∞
0

fn(x, b(n), c(n))dF (x) ∼ K1
b(n)

c(n)
F̄ (n/c(n)). (2.14)

In particular, Sb,c(n) is regularly varying of index −[α(1− αc) + αc − αb].

Lemma 2.4. There exists a constant K2 such that the following holds. Let 1 > αb > 1/2. Let
b(n) be regularly varying of index αb. Then

Sb(n) :=

∫ ∞
0

∫ ∞
x

fn(x, y, b(n))dF (y)dF (x) ∼ K2
n

(b(n))2
F̄ (n/b(n))2. (2.15)

In particular, Sb(n) is regularly varying of index −[2(α− 1)(1− αb) + 1].

2.3 Gn cannot be large without a big hub

In this section, we establish a key result, namely that the following nonlinear analogue of (2.11)
holds. Define Ln(z) as the number of Wi for which Wi > z.

Proposition 2.5. There exists an ε > 0 such that

P (Gn > (1 + a)mn;Ln(εca(n)) = 0) = o(nP (W1 > ca(n))). (2.16)

Proof. On the set Eε,cn , the following upper bound holds for F̄n on x ∈ [0, εca(n)]:

F̄n(x) ≤ F̄ ∗n(x), (2.17)

with F ∗n(x) defined by

(1 +A)F̄ (x)I(x < a(n)) + (1 +A)F̄ (a(n))I(a(n) ≤ x < b(n)) +
c

n
I(x ∈ [b(n), εca(n)]). (2.18)

Again, on the set Eε,cn , the random variable with distribution function Fn truncated at εx is
stochastically bounded by a random variable with distribution tail (1 + A)F̄ (x) on [0, a(n)), an
atom of size F̄ (a(n))−c/n at b(n), and an atom of size c/n at εca(n). We have that b(n)/ca(n)→ 0
[for δ small enough, to be specified later]. Since fn is nondecreasing in each coordinate, we see
that, on the set En(A, δ, c) ∩ {Ln(εca(n)) = 0},

Gn ≤ n3

∫ ∞
0

∫ ∞
x

∫ ∞
y

fn(x, y, z)dF ∗n(z)dF ∗n(y)dF ∗n(x). (2.19)

The next step is to evaluate the integral on the RHS, where we need to keep track of the value of
each of the 3 coordinates: they may be of (s)mall (< a(n)), (m)edium (b(n)) or (l)arge (εca(n))
value. There are 10 different combinations: (s,s,s), (s,s,m), (s,s,l), (s,m,m), (s,l,l), (s,m,l), (m,m,m),
(m,m,l), (m,l,l), (l,l,l). Thus, on the set En(A, c, δ) ∩ {Ln(εca(n)) = 0},

Gn
1 +A

≤ mn + n3F̄ (a(n))

∫ ∞
0

∫ ∞
x

fn(x, y, b(n))dF (y)dF (x)
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+ n3 c

n

∫ ∞
0

∫ ∞
x

fn(x, y, εc(n))dF (y)dF (x)

+ n3(F̄ (a(n)))2

∫ ∞
0

fn(x, b(n), b(n))dF (x)

+ n3(c/n)2

∫ ∞
0

fn(x, εca(n), εca(n))dF (x)

+ n3F̄ (a(n))
c

n

∫ ∞
0

fn(x, b(n), εca(n))dF (x)

+ n3(F̄ (a(n)))3fn(b(n), b(n), b(n)) + n3(F̄ (a(n)))2(c/n)fn(εc(n), b(n), b(n))

+ n3(F̄ (a(n)))(c/n)2fn(εc(n), εc(n), b(n)) + n3(c/n)3fn(εc(n), εc(n), εc(n)). (2.20)

Apart from the main term mn, we need to bound 9 terms in total. In what follows, we often use
that a(n) is regularly varying of index 1/α − δ, that F̄ (an) is regularly varying of index αδ − 1,
that b(n) is regularly varying of index 1/α+ δ, and that c(n) = ca(n) is regularly varying of index
αc = 1

4
α
α−1 . The last 4 terms are all bounded by at most O(n3αδ) since fn ≤ 1, and are therefore

o(mn). We now examine Terms 2–6 in more detail.

Term 2: Lemma 2.4 with αb = 1/α + δ yields that n3F̄ (a(n))
∫
fn(x, y, b(n))dF (x)dF (y) is

regularly varying of index 5−2(α+1/α)+δ(3α−2). For δ small enough, this can be made strictly
smaller than 3 − α3/2, using the fact that α + 1/α > 2 when α ∈ (1, 2). Thus, we can conclude
that, for δ sufficiently small,

n3F̄ (a(n))

∫ ∞
0

∫ ∞
x

fn(x, y, b(n))dF (y)dF (x) = o(mn). (2.21)

Term 3: invoking Lemma 2.4 with εca(n), and using definition (1.5) we obtain that

n3 c

n

∫ ∞
0

fn(x, y, εca(n))dF (x)dF (y) ∼ cε(α−1)2amn, (2.22)

for every ε > 0.

Term 4: invoking Lemma 2.3 with both sequences equal to b(n), and αb = αc = 1/α + δ, it
follows that n3(F̄ (a(n)))2

∫
fn(x, b(n), b(n))dF (x) is regularly varying of index 2−α+ δ3α, which

is smaller than 3 − α3/2 for a suitable choice of δ, as 2 − α < 3 − α3/2 for α < 2. Thus, we can
conclude that, for δ sufficiently small,

n3(F̄ (a(n)))2

∫ ∞
0

fn(x, b(n), b(n))dF (x) = o(mn). (2.23)

Term 5: invoking Lemma 2.3 with both sequences equal to εca(n) and αb = αc = 1
4

α
α−1 it follows

that n3(c/n)2
∫∞

0
fn(x, εca(n), εca(n))dF (x) is regularly varying of index 1 − α + α2/(4(α − 1).

This is strictly smaller than 3 − α3/2: the inequality 1 − α + α2/(4(α − 1) < 3 − α3/2 can be
rewritten into (α − 4/3)(α + 2) < 0 which is true due to our assumption α ∈ (4/3, 2). Thus, we
can conclude that, for δ sufficiently small,

n3(c/n)2

∫ ∞
0

fn(x, εca(n), εca(n))dF (x) = o(mn). (2.24)

Term 6: invoking Lemma 2.3 with sequences b(n) and εca(n), such that αb = 1/α + ε and
αc = 1

4
α
α−1 , it follows that this term behaves like behaves like Term 5, times an additional factor

which is regularly varying of index δ(1 + α) − ( 1
4

α
α−1 − 1

α ). As this factor converges to 0 for
sufficiently small δ, we conclude also that

n3F̄ (a(n))
c

n

∫ ∞
0

fn(x, b(n), εca(n))dF (x) = o(mn). (2.25)
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Concluding, we see that, for every A > 0, on the set En(A, δ, c) ∩ {Ln(εca(n)) = 0},

Gn ≤ (1 +A)mn(1 + 3cε(α−1)2a)(1 + o(1)) (2.26)

which is strictly smaller than 1 + a for A, ε sufficiently small. We conclude that

P (Gn > (1 + a)mn;En(A, δ, c) ∩ {Ln(εca(n)) = 0}) = 0

for sufficiently large n, so that

P (Gn > (1 + a)mn; {Ln(εca(n)) = 0})
≤ P (Gn > (1 + a)mn; {Ln(εca(n)) = 0};En(A, δ, c)) + P (En(A, δ, c)c) , (2.27)

which can be made to go to 0 at any polynomial rate by a suitable choice of c and ε, using
Proposition 2.2.

2.4 Proof of Theorem 2.1

Using a simple bound for binomial distributions (e.g. [37, Lemma 2.3]) one can show that

P (Gn > (1 + a)mn;Ln(εca(n)) ≥ 2) ≤ P (Ln(εca(n)) ≥ 2) = o(nP (X1 > ca(n))). (2.28)

In view of this estimate, Proposition 2.5 and symmetry of Gn as a function of the weights, it
suffices to show that

P (Gn > (1 + a)mn,Wn > εca(n) > Wi, i < n) = (1 + o(1))P (W > ca(n)) . (2.29)

Write Dn = {Wn > εca(n) > Wi, i < n} and

P (Gn > (1 + a)mn, Dn) = P (Gn > (1 + a)mn | Dn)P (Dn) . (2.30)

Next, we condition on the value of Wn/ca(n) given Dn:

P (Gn > (1 + a)mn | Dn)

=

∫ ∞
y=ε

P (Gn > (1 + a)mn | Dn;Wn = yca(n)) dP (Wn/ca(n) ≤ y | Dn) . (2.31)

We now state the following proposition, providing a version of the weak law of large numbers for
Gn, which will be proven later on.

Proposition 2.6. As n→∞,

P (Gn > (1 + a)mn | Dn;Wn = yca(n))→
{

0 y < 1,

1 y > 1
(2.32)

Applying Proposition 2.6 to (2.31), we see that

P (Gn > (1 + a)mn | Dn) ∼ P (W1 > ca(n) | Dn) , (2.33)

which together with (2.30) implies (2.29), proving Theorem 2.1.

Proof of Proposition 2.6. We first prove (2.32) for y > 1. For W z
i = WiI(Wi < z), define the

truncated mean mn(z) = E[gn(Xz
1 , ..., X

z
n)], and observe that (e.g. by inspecting the proof of

Lemma 1.1), for a(n) = F̄−1(n)n−δ,

mn(a(n)) = (1 + o(1))mn (2.34)
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if δ > 0 is small enough. Now, observe that, for any constant A > 0, with large probability, (2.6)
implies that F̄n(x) ≥ (1−A)F̄ (x) on x ∈ [0, a(n)]. On the intersection of this event with Dn and
Wn = yca(n) we can write, since a(n) ≥ εca(n) for n large enough,

Gn+1(W
a(n)
1 , ...,W a(n)

n , ycn(a)) ≥ n3

∫ a(n)

0

∫ a(n)

u

∫ a(n)

v

fn(u, v, w)dFn(w)dFn(v)dFn(u)

+ n2

∫ a(n)

0

∫ a(n)

u

fn(u, v, yca(z))dFn(v)dFn(u)

≥ (1−A)mn(a(n)) + (1−A)mnay
3−α3/2(1 + o(1)), (2.35)

where we applied also Lemma 2.4 with yca(n), the defining property of ca(n), and regular variation.
Since y > 1, there exists an A > 0 such that the RHS is larger than (1+a)mn with high probability,
in view of (2.34), which proves (2.32) for y > 1.

We proceed with y < 1. Fix y ∈ (0, 1) and let ε ∈ (0, y). Recall the definition (2.18) of F ∗n .
For any A > 0 we have with high probability on Dn

Gn+1(W
εca(a)
1 , ...,W εca(a)

n , ycn(a)) ≤ RHS of (2.20)

+ n2

∫ εca(n)

0

∫ εca(n)

u

fn(u, v, yca(z))dF ∗n(v)dF ∗n(u). (2.36)

As we have proven, the RHS of (2.20) is close to mn by taking ε sufficiently small. It therefore
suffices to show that the second term is strictly smaller than amn for n sufficientlly large. The
second term can be analyzed in a way similar to (2.20). In particular, we can upper bound it with

O(n2αδ) + n2(1 +A)Syca(n)(n) + n2(1 +A)
c

n
Sεca(n),yca(n)

+ n2(1 +A)F̄ (a(n))Sb(n),yca(n)(n).

Call the three main terms on the RHS of this expression Term A,B,C. Term B behaves similar to
Term 5 in the RHS of (2.20), and Term C behaves like Term 6 in the RHS of (2.20). In particular,
both terms are o(mn). Finally, Term A behaves like (1 + A)mnay

3−α3/2, in view of Lemma 2.4
with yca(n), the defining property of ca(n), and regular variation. Since y < 1, there exists an
A > 0 such that the last display is strictly smaller than amn for n sufficiently large, proving (2.32)
for y < 1.

3 The boundary case α = 4/3

Recall that, for b > 0, Xb
i , i ≥ 1, is an i.i.d. sequence such that P(Xb

i > x) = (x/b)−α, x ≥ b. Set
η(a) as the smallest number η for which ((k(a)− 1)µ+K1(η) ≥ C3H(1 + a). Note that η(a) > 0
when (k(a)− 1)µ+ (k(a)− 1)(k(a)− 2)/2 < aC3H.

The goal of this section is to prove the following theorem, which serves as a major stepping
stone towards Theorem 1.5.

Theorem 3.1. Suppose that P (W > x) ∼ Cx−4/3 and suppose that (k(a)−1)µ+(k(a)−1)(k(a)−
2)/2 < aC3H. Then

P (Gn > (1 + a)mn) ∼ P(Kk(a)(X
η(a)
1 , . . . , X

η(a)
k(a) ) ≥ C3Ha)(nP (W > η(a)n))k(a). (3.1)

A key step towards proving Theorem 3.1 is to show that k(a) hubs are really needed. Its proof
is a refinement of (and builds on) the arguments developed in the case α > 4/3.

Proposition 3.2. For every β > 0 there exists an ε > 0 such that

P (Gn > mn(1 + a), Ln(εn) < k(a)) = o(n−β). (3.2)
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Proof. Fix l < k(a) and observe that Gn ≤ Gn+l. Note that

P (Gn+l > mn(1 + a);Ln(εn) = l) =

(
n+ l

l

)
P (Gn+l > mn(1 + a);Wi < εn iff i ≤ n) . (3.3)

On the event {Wi < εn iff i ≤ n} we can write

Gn+l = Gn + n2
l∑
i=1

∫ εn

0

∫ εn

x

fn(x, y,Wn+i)dFn(y)dFn(x)

+ n

l∑
i=1,j>i

∫ εn

0

fn(x,Wn+i,Wn+j)dFn(x). (3.4)

We wish to use Proposition 2.5 with εca(n) replaced by εn to show that Gn is sufficiently close to
mn with high probability, but in the analysis of Term 5 in (2.20) we assumed that α > 4/3. For
α = 4/3, this term behaves as

n3(c/n)2

∫ ∞
0

fn(x, εn, εn)dF (x) ∼ nc2
∫ ∞

0

min{x, ε/µ}2dF (x) ≤ ε2nc2/µ

which is negligible as ε ↓ 0. In addition, Term 3 in (2.20) behaves like nC1(ε) when α = 4/3 and
ca(n) is replaced by εn which is negligible since C1(ε)→ 0 as ε ↓ 0. Based on this, and repeating
the arguments in the other terms in (2.20) for α = 4/3 and ca(n) replaced with εn, we obtain that
for every β <∞ and η > 0 there exists a c > 0 and ε > 0 such that

P (Gn > mn(1 + η);Wi < εn, i ≤ n) = o(n−β). (3.5)

We now analyze the second term in (3.4). By bounding Wn+i with ∞ we get

n2

∫ ∞
0

∫ ∞
x

fn(x, y,Wn+i)dFn(y)dFn(x) ≤ n

µ

(∫ εn

0

xdFn(x)
)2

≤ nµ. (3.6)

Combining this bound with the estimate (2.11) implies that for every β < 0 and η > 0 there exists
an ε > 0 such that

P

(
n2

l∑
i=1

∫ εn

0

∫ εn

x

fn(x, y,Wn+i)dFn(x)dFn(y) > n(lµ+ η);Wi < εn, i ≤ n
)

= o(n−β). (3.7)

The proof is now finished by bounding the last term in (3.4) by nl(l−1)/2, and combining it with
(3.5), (3.7), and (3.3), noting that lµ+ l(l − 1)/2 < aC3H since l < k(a).

Using a simple tail bound for binomial distributions we obtain

Proposition 3.3.

P (Gn > mn(1 + a), Ln(εn) > k(a)) = o(nk(a)P (W > n)
k(a)

). (3.8)

Define

Gn,l(z1, ..., zl) = n2
l∑
i=1

∫ ∞
0

∫ ∞
x

fn(x, y, nzi)dFn(x)dFn(y)

+ n

l∑
i=1,j>i

∫ ∞
0

fn(x, nzi, nzj)dFn(x). (3.9)

Our next proposition is the final main ingredient of the proof of Theorem 3.1.
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Proposition 3.4. The following convergence holds in probability:

1

n
Gn,l(z1, ..., zl)→ Kl(z1, ..., zl). (3.10)

Proof. Using definition (1.3), write the ith term of the first part of Gn,l(z1, ..., zl)/n as∫ ∞
0

∫ ∞
x

min{xy/µ, n}min{xzi/µ, 1}min{yzi/µ, 1}dFn(y)dFn(x).

We proceed by analyzing upper and lower bounds. For the upper bound, use min{xy/µ, n} ≤ xy/µ
to get the upper bound (

∫∞
0
xmin{xzi/µ, 1}dFn(x))2/µ. Furthermore,∫ ∞

0

xmin{xzi/µ, 1}dFn(x) =

∫ µ/zi

0

((zi/µ)x2 − x)dFn(x) +

∫ ∞
0

xdFn(x).

The first integral converges as Fn → F , and the second integral converges due to the weak law
of large numbers. The limit equals (zi/µ)E

[
W 2I(W ≤ µ/zi)

]
+ E [WI(W > µ/zi)]. This leads

to the desired upper bound. A lower bound follows by bounding min{xy/µ, n} from below by
min{xy/µ,K}, using that Fn → F and Fatou’s lemma, and then take K arbitrarily large. Finally,
note that each term in the second part of Gn,l(z1, ..., zl)/n converges to its desired limit using the
bounded convergence theorem.

Proof of Theorem 3.1. Abbreviate k = k(a). Using straightforward combinatorial arguments, it
suffices to show that

P (Gn,l(Wn+1, ...,Wn+k) > mna,Wi < εn iff i ≤ n)

∼ P(Kk(a)(X
η(a)
1 , . . . , X

η(a)
k(a) ) ≥ C3Ha)(P (W > η(a)n))k(a). (3.11)

We now write the probability on the LHS of the last display as∫
(ε,∞)k

P (Gn,l(z1, . . . , zk) > mna;Wi < εn, i ≤ n) d

k∏
i=1

P
(
Wi

n
≤ zi |Wi > εn

)
× P (W1 > εn)

k
. (3.12)

Now P (Wi/n ≤ zi |Wi > εn) converges to the continuous distribution P (Xε
i ≤ xi). Recalling that

mn ∼ nC3H, and applying proposition 3.4, we obtain that the integral in the last display converges

to P
(
Kk(a)(X

ε
1 , . . . , X

ε
k(a)) ≥ C3Ha

)
.

Because (k(a)− 1)µ+ (k(a)− 1)(k(a)− 2)/2 < aC3H, Kk(a)(ε,∞, . . . ,∞) = 0 for all ε < η(a).
Since Kk(a) is symmetric, a similar property holds for the other coordinates. Therefore, if ε < η(a),

P(Kk(a)(X
ε
1 , . . . , X

ε
k(a)) ≥ a) = (η/ε)−k(a)αP(C(X

η(a)
1 , . . . , X

η(a)
k(a) ) ≥ a). (3.13)

Furthermore, by regular variation,

P(W1 > εn)k(a) ∼ (η(a)/ε)k(a)αP(W1 > η(a)n)k(a). (3.14)

Putting everything together, we conclude that (3.11) holds.

4 Completing the proofs of Theorem 1.3 and 1.5

In this section we use the precise tail asymptotics for Gn, α > 4/3 in Theorem 2.1 and for α = 4/3
in Theorem 3.1, to complete the proofs of Theorem 1.3 and 1.5. Our argument will be based on
the identity Gn = E[4n | W1, ...,Wn], an argument showing that 4n and Gn are close, also in
the rare event context we consider. Our proof is based on asymptotic upper and lower bounds,
which are facilitated by two auxiliary lemmas. The first lemma is helpful for an asymptotic upper
bound.
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Lemma 4.1. For any ζ > 0 there exists some ε > 0, such that

P (4n ≥ (1 + ζ)Gn) ≤ exp(−nε). (4.1)

We prove this lemma in the next subsection, using a recent concentration bound from [9].
A crucial argument in the lower bound is to show that large hubs generate sufficiently many
additional triangles. This is covered by the next lemma.

Lemma 4.2. Let 4n(δ, a) be the number of triangles containing nodes i such that Wi ≤ n1/2+δ

for i < n and node n with Wn = ca(n). The following convergence holds in probability for α ≥ 4/3,
and δ > 0 such that 1/2 + δ < 1/α:

4n(δ, a)/mn → 1 + a. (4.2)

Let 4n,l(δ, z1, ..., zl) be the number of triangles containing nodes i such that Wi ≤ n1/2+δ for i > l
and Wn−i = nzi, i = 1, ..., l. The following convergence holds in probability as n→∞ for α = 4/3,
and δ > 0 such that 1/2 + δ < 3/4:

4n,l(δ, z1, ..., zl)/n→ C3H + Cl(z1, ..., zl). (4.3)

Proof of Theorem 1.3 and Theorem 1.5. The proofs of both theorems are similar. We first prove
an asymptotic upper bound. Write for ζ > 0,

P (4n > (1 + a)mn) ≤ P (4n ≥ (1 + ζ)Gn) + P (Gn/(1 + ζ) ≥ 4n ≥ (1 + a)mn)

≤ e−nε + P (Gn > (1 + (a− ζ)(1− ζ))mn) .

Consequently,

lim sup
n→∞

P (4n > (1 + a)mn)

P (Gn > (1 + a)mn)
≤ lim sup

n→∞

P (Gn > (1 + (a− ζ)(1− ζ))mn)

P (Gn > (1 + a)mn)

The RHS of this expression converges to 1 as ζ ↓ 0: for α > 4/3 this follows from Theorem 2.1,
and for α = 4/3 this follows from Theorem 3.1, in particular from (3.1): under our assumptions,

k(·) is continuous at a, and so are η(a) and P(Kk(a)(X
η(a)
1 , . . . , X

η(a)
k(a) ) ≥ C3Ha).

We proceed with the proof of an asymptotic lower bound. First, consider α > 4/3, and write,
for sufficiently large n

P (4n > (1 + a)mn) ≥ nP (Wn > ca+ζ(n))P (4n(δ, a+ ζ) > (1 + a)mn) .

By Lemma 4.2, P (4n(δ, a+ η) > (1 + a)mn)→ 1 for sufficiently small h, and we obtain

lim inf
n→∞

P (4n > (1 + a)mn)

P (Gn > (1 + a)mn)
≥ lim inf

n→∞

P (W > ca+ζ(n))

P (W > ca(n))
. (4.4)

The RHS converges to 1 as ζ ↓ 0 due to the properties of ca(n) in Lemma 1.2.
Next, consider α = 4/3, and write, for ζ > 0 and sufficiently large n

P (4n > (1 + a)mn) ≥ nk(a)P
(
Kk(a)(W1/n, ...,Wk(a)/n) > (a+ ζ)mn

)
· P
(
4n > (1 + a)mn | Kk(a)(W1/n, ...,Wk(a)/n) > (a+ ζ)mn

)
.

By conditioning on (W1/n, ...,Wk(a)/n) and applying the second part of Lemma 4.2, we see that

P
(
4n > (1 + a)mn | Kk(a)(W1/n, ...,Wk(a)/n) > (a+ ζ)mn

)
→ 1. Since, for sufficiently small

ζ > 0, k(a) = k(a+ ζ), we have that

P
(
Kk(a)(W1/n, ...,Wk(a)/n) > (a+ ζ)mn

)
∼ P(Kk(a)(X

η(a+ζ)
1 , . . . , X

η(a+ζ)
k(a) ) ≥ C3H(a+ ζ))(P (W > η(a+ ζ)n))k(a). (4.5)
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Consequently, using Theorem 3.1,

lim inf
n→∞

P (4n > (1 + a)mn)

P (Gn > (1 + a)mn)

≥ lim inf
n→∞

P(Kk(a)(X
η(a+ζ)
1 , . . . , X

η(a+ζ)
k(a) ) ≥ C3H(a+ ζ))(P (W > η(a+ ζ)n))k(a)

P(Ck(a)(X
η(a)
1 , . . . , X

η(a)
k(a) ) ≥ C3Ha)(P (W > η(a)n))k(a)

. (4.6)

Since η(·) is continuous at a, the RHS converges to 1 as ζ ↓ 0.

4.1 Proof of Lemma 4.1

The number of triangles 4n equals the sum of the indicators that i, j, k forms a triangle over all
i, j, k. In the proofs, we will often make use of a recent concentration bound from [9] to deal with
the dependencies of the presences of different triangles, which we state here for completeness:

Lemma 4.3 (Theorem 3.1 from [9]). Let F be a finite set and (Xi)i∈F , (X ′i)i∈F (Xi(j))i,j∈F be
collections of nonnegative random variables with finite moment generating functions, defined on
the same probability space, and satisfying the following conditions:

a) For all i, Xi ≤ X ′i.

b) For all i, the random variables X ′i and
∑
j∈F Xj(i) are independent.

c) For all i,
∑
j∈F Xj(i) ≤

∑
j∈F Xj.

d) There is a constant a such that for all i, when Xi > 0, we have∑
j∈F

Xj ≤ a+
∑
j∈F

Xj(i). (4.7)

Let λ =
∑
j∈F E

[
X ′j
]
. Then for any t ≥ λ,

P

(∑
i∈F

Xi ≥ t
)
≤ exp

(
− t

a
log
( t
λ
− 1 +

λ

t

))
. (4.8)

We will apply this lemma to the number of triangles, where Xijk(uvw) deals with the dependence
of the events that the triangle ijk is present and the event that the triangle uvw is present. To
carry out this idea, we need several additional supporting results.

The second preparatory lemma shows that edges between vertices of low weights appear in
relatively few triangles:

Lemma 4.4. Suppose that 1 < α < 2. Then, when K > n(2−α)/2+ε for some ε > 0,

P ({i, j} in ≥ K triangles |WiWj < µn) ≤ exp(−c1K), (4.9)

for some c1 > 0 and n sufficiently large.

The proof of this lemma is based on bounding the number of triangles for low-weight vertices
from above with a binomial random variable with the right probability, and can be found in
Appendix A.

Define the event Ew = {W1 = w1, ...,Wn = wn} and set gn =
∑
i<j<k fn(wi, wj , wk) as the

expected number of triangles conditional on specific values of the weights. Let 4n(w) be the
number of triangles on the event Ew. Finally, set for ζ > 0,

J(η) = (1 + ζ) log(ζ + 1/(1 + ζ))/3. (4.10)
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Lemma 4.5. There exists an ε > 0 such that, for ζ > 0, and all w = (w1, ..., wn):

P (4n(w) > (1 + ζ)gn) ≤ e−J(ζ)gn/n
2−α

+ e−n
ε

. (4.11)

Proof of Lemma 4.5. By Lemma 4.4, when wiwj < µn, and choosing K = n2−α,

P
(
{i, j} in ≥ n2−α triangles

)
≤ exp(−K1n

2−α), (4.12)

for someK1 > 0. This indicates that with probability at least 1−n2 exp(−K1n
2−α) ≥ 1−exp(−nε),

all edges between vertices of weights wiwj < µn are in at most n2−α triangles. We now work on
this event, which we call E ′.

We set Xijk = X ′ijk as the indicator that a triangle is present between vertices i, j, k. Fur-
thermore, we set Xijk(uvw) = Xijk when |{i, j, k, u, v, w}| ≥ 5. When |{i, j, k, u, v, w}| = 4, we set
Xijk(uvw) = Xijk when the overlap of ijk and uvw occurs at an edge with wuwv > µn, and we
set Xijk(uvw) = 0 otherwise or when {i, j, k} = {u, v, w}. Then,

∑
i,j,kXijk(uvw) and Xuvw are

independent. Indeed, when two triangles do not overlap at an edge, their presence is independent
conditionally on the weights, as the edge indicators are independent conditionally on the weights.
When the edge overlap occurs at an edge that is present with probability one, the presence of the
two triangles is still independent conditionally on the weights. In all other cases, Xijk(uvw) = 0,
which is also independent of Xuvw.

On the event E ′,
4n =

∑
i,j,k

Xijk ≤
∑
ijk

Xijk(uvw) + 3n2−α. (4.13)

Lemma 4.3 with a = 3n2−α, t = (1 + ζ)gn and λ = gn concludes the assertion.

Proof of Lemma 4.1. Recall that Fn(x) denotes the empirical weight distribution. Now by (4.16),

the event E1 = {supx<√µn | F̄n(x)
F̄ (x)

− 1| ≤ η} happens with probability of at least 1− e−nε for some

ε > 0. Fix some a < 1. On the event E1,

Gn ≥ n3(1− η)3

∫ √µn
a
√
µn

∫ √µn
a
√
µn

∫ √µn
a
√
µn

fn(u, v, w)dFn(u)dFn(v)dFn(w)

= (1− η)3
(∫ √µn

a
√
µn

w2dFn(w)
)3

≥ ε2n
3−3/2αL(

√
n)3 (4.14)

for some ε2 > 0. Now, write

P (4n > (1 + ζ)Gn) ≤ P (Ec1) + P (4n > (1 + ζ)Gn; E1) . (4.15)

The first term is asymptotically small. The second term can be bounded by applying Lemma 4.5,
using the lower bound (4.14) for Gn on E1 to conclude the assertion.

4.2 Proof of Lemma 4.2

To prove (4.2), we wish to apply Chebyshev’s inequality, which requires appropriate estimates for
the first two moments of 4n(δ, a). Note first that

E [4n(δ, a)] = (n− 1)3

∫
0<x<y<z<n1/2+δ

fn−1(x, y, z)dF (x)dF (y)dF (z)

+ (n− 1)2

∫
0<x<y<n1/2+δ

fn−1(x, y, ca(n))dF (x)dF (y).

Using this expression, and applying similar ideas as in the proofs of Lemma 1.1 and Lemma 2.4,
along with the definition of ca(n) it follows that E [4n(δ, a)] ∼ (1 + a)mn.
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We proceed by analyzing the second moment of 4n(δ, a) by using the concentration bound
Lemma 4.5, as well as a concentration bound for Fn. In particular, it follows from (2.6) that for
sufficiently small δ > 0 there exists an ε > 0 such that

P

(
sup

x<n1/2+δ

| F̄n(x)

F̄ (x)
− 1| > ζ

)
≤ e−nε . (4.16)

On the event En(ζ) = {supx<n1/2+δ | F̄n(x)
F̄ (x)

− 1| ≤ ζ}, Gn−1/n
2−α > nε for some ε > 0 for n

sufficiently large (see also the detailed computation in the proof of Lemma 4.5). In addition, using
the expression

4n(δ, a) = (n− 1)3

∫
0<x<y<z<n1/2+δ

fn−1(x, y, z)dFn−1(x)dFn−1(y)dFn−1(z)

+ (n− 1)2

∫
0<x<y<n1/2+δ

fn−1(x, y, ca(n))dFn−1(x)dFn−1(y),

we see that 4n(δ, a) < (1 + ζ)2(1 + a)mn with high probability, and therefore

E
[
4n(δ, a)2

]
≤ n6(2e−n

ε

+ e−J(ζ)nε) + (1 + ζ)4(1 + a)2m2
n. (4.17)

Next, fix δ > 0. Using Chebyshev’s inequality and the previous bounds we obtain for every ζ > 0,

lim sup
n→∞

P (|4n(δ, a)/E [4n(δ, a)]− 1| > δ) ≤ 1

δ2
((1 + ζ)4 − 1)).

The proof of (4.2) is now completed by letting ζ ↓ 0.
We now turn to the proof of (4.3) Note that

E [4n,l(δ, z1, ..., zl)] = (n− l)3

∫
0<x<y<z<n1/2+δ

fn−l(x, y, z)dF (x)dF (y)dF (z)

+ (n− l)2
l∑
i=1

∫
0<x<y<n1/2+δ

fn−l(x, y, (n− l)zi)dF (x)dF (y)

+ (n− l)
l∑

i=1,j>i

∫ n1/2+δ

0

fn(x, (n− l)zi, (n− l)zj)dF (x).

Observe that the second and third term in this expression are very related to the quantities
analyzed in Proposition 3.4. Using similar ideas as in the proof of Proposition 3.4 with Fn replaced
by F , it follows from the above expression that

E [4n,l(δ, z1, ..., zl)] /n→ Cl(z1, ..., zl). (4.18)

We proceed by analyzing the second moment of 4n,l(δ, z1, ..., zl), using concentration bounds. As

before, note that on the event En(ζ) = {supx<n1/2+δ | F̄n(x)
F̄ (x)

− 1| ≤ ζ}, Gn−l/n2−α > nε for some

ε > 0 for n sufficiently large.

Modify the definition of Gn−l,l in Proposition 3.4 to Gn
1/2+δ

n−l,l to truncate all integrals at n1/2+δ

rather than ∞, i.e.

Gn
1/2+δ

n,l (z1, ..., zl) = n2
l∑
i=1

∫
0<x<y<n1/2+δ

fn(x, y, nzi)dFn(x)dFn(y)

+ n

l∑
i=1,j>i

∫ n1/2+δ

0

fn(x, nzi, nzj)dFn(x). (4.19)

Again using Lemma 4.5, we obtain that, with high probability,

4n,l(δ, z1, ..., zl) ≤ (1 + ζ)(Gn−l +Gn
1/2+δ

n,l (z1, ..., zl)), (4.20)

which is in turn bounded by (1 + ζ)2n(C3H + Cl(z1, ..., zl)) with high probability. The proof is
now completed by using Chebyshev’s inequality, and letting ζ ↓ 0 as before.
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(a) Case 1: A ⊆ B3
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(b) Case 2: B3 ⊆ A.

Figure 3: Illustration of the sets A, B and B1, B2, B3

5 Many dominating hubs

To prove Theorems 1.4 and 1.7, we distinguish several types of vertices, based on the vertex
weights. Specifically, fix ζ > 2 and ε > 0, then

• Type A: Wi ≤ √µn,

• Type B3: Wi ≤ D1/αn(3−γ)/(2α) log(n(γ−3)/2+α)−1/α,

• Type B2: Wi ∈ [D1/αn(3−γ)/(2α) log(n(γ−3)/2+α)−1/α, n/ log(n)ζ/α],

• Type B1: Wi ≥ n/ log(n)ζ/α,

where we set

D =

√
2a

h(1 + ε)
, (5.1)

with h(·) as in (2.4). Now depending on γ and α, vertices of type A and B3 or type A and B2

may overlap, see Figure 3. In the proof of Theorem 1.4, we will therefore sometimes split up
the sets B3 or B2 at

√
µn to avoid this overlap. We denote the number of triangles between one

vertex from Bi one from Bj and one from Bk by 4Bi,Bj ,Bk . Similarly, we denote the number
of edges with one end in Bi and one end in Bj by EBi,Bj . The main strategy of the proof of
Theorem 1.7 is to split up the triangles into different types, and bounds their contributions. The
main contribution is from triangles of type B1B1Bi for i = 1, 2, 3, that is, triangles with two
high-degree vertices and one other vertex. We show that all other types of triangles appear less
often with high enough probability. Here we will use that the empirical weight distribution of B3

vertices is close to its mean with sufficiently high probability, to get rid of the randomness caused
by the weight sampling. On B2, we get rid of the random weights by using the fact that the
probability that a triangle appears is non-decreasing in the weights, so that we may assume that
all B2 vertices have weights n/ log(n)ζ/α.

Before we prove Theorem 1.4, we first provide several lemmas. We begin by recalling a variation
of Theorem A.1.4 in [1], to bound tail probabilities of sums of independent Bernoulli random
variables.

Lemma 5.1. Let Bi, i ≥ 1 be a sequence of independent Bernoulli random variables with pi =
P(Bi = 1) = 1− P(Bi = 0). Set mn =

∑n
i=1 pi. For every b > 0 we have

P(

n∑
i=1

Bi > (1 + b)mn) ≤ e−mnIB(b), P(

n∑
i=1

Bi < (1− b)mn) ≤ e−mnIB(−b), (5.2)

with IB(b) = (1 + b) log(1 + b)− b.
We next provide an elementary lemma that bounds the probability that polynomially vertices

have at least a given weight:

Lemma 5.2. Suppose that P (W > x) ∼ Cx−α. Then, for γ > 1− αβ and d, u > 0,

P
(
unγ vertices of weight > dnβ

)
≤ exp

(
− unγ log(nγ−1+αβ)

)
(1 + o(1)), (5.3)
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and

P
(
unγ vertices of weight > dnβ

)
≥ 1√

2n
exp

(
− unγ log(nγ−1+αβ)

)
(1 + o(1)). (5.4)

Proof. By (1.1), the probability that a vertex has weight at least dnβ is given by Cd−αn−αβ(1 +
o(1)), and is independent for each vertex. Thus, by Lemma 5.1,

P
(
nγ vertices of weight > cnβ

)
≤ exp

(
− unγ log

( unγ

Cn1−αβd−α

)
+ nγ − Cd−αn−αβ

)
(1 + o(1))

≤ exp
(
− nγ log(nγ−1+αβ)

)
(1 + o(1)). (5.5)

The second inequality follows similarly, using [3, Lemma 4.7.2] instead to get the lower bound.

We now provide bounds on the number of vertices in B1 and B2, N(B1) and N(B2) (we will
usually upper bound the number of B3 vertices by the total number of vertices n).

Lemma 5.3. Suppose that P (W > x) ∼ Cx−α. For K � n(γ−1)/2 log(n(γ−3)/2+α),

P (N(B1 ∪B2) > K) ≤ exp
(
−K log

( K

D−αn(γ−1)/2 log(n(γ−3)/2+α)

))
(1 + o(1)), (5.6)

and for K � n1−α log(n)ζ ,

P (N(B1) > K) ≤ exp
(
−K log

( K

n1−α log(n)ζ

))
(1 + o(1)). (5.7)

Proof. As the number of vertices of weight at least x� 1, Nx is binomial with parameters n and
Cx−α(1 + o(1)), Lemma 5.1 gives that

P (Nx > K) ≤ exp
(
−K log

( K

Cnx−α

)
+K − 1

)
(1 + o(1))

≤ exp
(
−K

(
log
( K

Cnx−α

)
− 1
))

(1 + o(1)). (5.8)

Plugging in the lower weight bounds for B1 ∪ B2 and for B1, n(3−γ)/(2α) log(n(γ−3)/2+α)−1/α

and n/ log(n)ζ/α respectively and noticing that under the given constraints on K the −1 in the
exponent is of lower order of magnitude, gives the result.

5.1 Bounding specific triangle and edge types

We now turn to investigating the number of edges and triangles between vertices of the groups A,
B1, B2, B3, that will later be used in the upper bound for the total number of triangles. We first
provide some lemmas that bound the number of edges and triangles between B3 vertices:

Lemma 5.4. Suppose that P (W > x) ∼ Cx−α. Let B3 be the set of vertices with weights at most

Qn = D−1/αn(3−γ)/(2α) log(n(γ−3)/2+α)−1/α. (5.9)

Then, for γ ∈ (1, 3)

P (4B3,B3,B3
> Knγ) ≤ n exp

(
−
√

2an(γ−1)/2 log(n(γ−3)/2+α))
)

(5.10)

when Knγ > (1 + ε)3C3Hn3−3/2α. Furthermore, for K > (1 + ε)2µn,

P (EB3,B3 > K) ≤ exp(−Dn(γ−1)/2 log(n(γ−3)/2+α)h(1 + ε)). (5.11)
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Proof. By (2.6), for all ε > 0 and with Qn as in (5.9),

P (E1) := P

(
sup

x∈[1,Qn]

|1− Fn(x)|
F̄ (x)

≤ (1 + ε)

)
≥ 1− exp

(
−Dh(1 + ε)n(γ−1)/2 log(n(γ−3)/2+α)

)
(1 + o(1)). (5.12)

As the number of edges and triangles are non-decreasing in the weights, on E1,

P (4B3,B3,B3
≥ K) ≤ P

(
4B3,B3,B3

≥ K | F̄n(x) = (1 + ε)F̄ (x) for x ∈ [1, Qn]
)
, (5.13)

and the same holds for edge counts.
Note that F̄n(x) = (1 + ε)F̄ (x) for x ∈ [1, Qn] may not always be possible for all values of n,

as F̄n(x) needs to be a multiple of 1/n for all x, but adding this restriction would only make our
bound tighter. Given the weight distribution F̄n(x) = (1 + ε)F̄ (x), the edge count is a sum of
independent Bernoulli random variables with mean at most (1 + ε)µn. Thus, on E1, Lemma 5.1
yields that for K > (1 + ε)2µn,

P (EB3,B3
≥ K) ≤ P

(
EB3,B3

≥ K | F̄n(x) = (1 + ε)F̄ (x) for x ∈ [1, Qn]
)

≤ exp
(
− (1 + ε)µn((1 + ε) log(1 + ε)− ε)

)
≤ exp(−

√
2an(γ−1)/2 log(n(γ−3)/2+α)), (5.14)

for γ < 3 and n sufficiently large. To obtain an upper bound for the triangle counts, we apply
Lemma 4.3. Let Xijk = X ′ijk denote the indicator that i, j, k forms a triangle. Now given the
weight distribution, Xijk and Xuvw are independent as long as |{i, j, k, u, v, w}| ≥ 5. Thus, we
define Xijk(uvw) = Xijk when |{i, j, k, u, v, w}| ≥ 5 and Xijk(uvw) = 0 otherwise. Then, for all
uvw, ∑

i,j,k,∈B3

Xijk ≤ du,B3
+ dv,B3

+ dw,B3
+

∑
i,j,k,∈B3

Xijk(uvw) (5.15)

where du,B3
denotes the degree of vertex u to other B3 vertices. As du,B3

≤ n for all u, on E ′,
by (5.15) and Lemma 4.3,

P (4B3,B3,B3
≥ Knγ) ≤ exp

(
− Knγ

3n
log
( Knγ

(1 + ε)3Hn3−3/2α
− 1 +

(1 + ε)3Hn3−3/2α

Knγ

))
≤ exp(−Dh(1 + ε)n(γ−1)/2 log(n(γ−3)/2+α)) (5.16)

for γ ≥ 1, as on E1, the mean number of triangles is bounded by (1 + ε)3Hn3−3/2α(1 + o(1)).
Plugging in the value of D then proves the lemma.

We now investigate vertices and triangles from B2 vertices. The proof of this Lemma follows
a similar structure as the proof of Lemma 5.4, and can be found in Appendix B.

Lemma 5.5. Suppose that P (W > x) ∼ Cx−α and that du ≤M for all u ∈ A. Then,

P
(
EA,B2 > n(γ+1)/2

)
≤ exp

(
− n(γ+1)/2

M
log
( n(γ−1)/2

K1N(B2) log(n)−ζ

))
, (5.17)

for some K1 > 0, where N(B2) denotes the number of B2 vertices. Furthermore,

P (4A,B2,B2 > nγ) ≤ exp
(
− nγ

M2
log
( nγ−1

3K1N(B2)2 log(n)−ζ

))
. (5.18)

To prove Theorem 1.7, we finally state a lemma that bounds the degree of type A vertices. Its
proof can also be found in Appendix B.
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Lemma 5.6. Suppose that P (W > x) ∼ Cx−α. Let F denote the event that all vertices of weight
at most

√
µn have degrees at most

M =

{
4
√
µn γ < 2

4nγ/3 γ ∈ [2, 3).

Then, for all D > 0,

P
(
F̄
)
≤ exp

(
−Dn(γ−1)/2 log(n(γ−3)/2+α)

)
. (5.19)

5.2 Proof of Theorem 1.4

Proof of Theorem 1.4. To prove this theorem, we lower bound the number of triangles with tri-
angles between two weight n vertices and one other vertex, and we upper bound by considering
triangles between vertices of weights in classes B1, B2, B3, and split into all possible cases, as
different types of triangles can be upper bounded by different terms.

Lower bound. As a lower bound of 4n, we compute the number of triangles with at least
one vertex of weight > µn. Note that as the minimal weight is at least 1, vertices of weight µn
connect to all other vertices with probability 1. The probability that at least

√
2an1−α3/4 vertices

of weights at least µn are present can be bounded by Lemma 5.2 as

P
(√

2an1−α3/4 vertices of weight > µn
)
≥ 1√

2n
exp

(
−
√

2an1−α3/4 log
(
nα/4

))
. (5.20)

Now,
√

2an1−α3/4 vertices of weight at least µn generate n(
√

2an1−α3/4)2/2 = an3−3/2α triangles.
Indeed, every pair of 2 vertices of weight at least µn forms a triangle with any of the other n
vertices, creating an3−3/2α triangles. Furthermore, the vertices of weight at most n1/α generate
C3Hn3−3/2α(1 + o(1)) triangles with high probability [21]. Therefore,

P
(
4n > n3−3/2α(C3H + a)

)
≥ 1√

2n
exp

(
−
√

2an1−α3/4 log
(
nα/4

))
(1 + o(1)). (5.21)

Thus,

lim inf
n→∞

logP
(
4n > n3−3/2α(C3H + a)

)
n1−α3/4 log(n)

≥
√

2a
(

1− α− 1− α3/4
)

=
√

2a
−α
4
. (5.22)

Upper bounds. When γ = 3 − 3/2α, B3 vertices have weights up to Dn3/4 log(nα/4)1/α. We
denote B′3 = B3 ∩ B. Then, B′3 ⊆ B and A ⊆ B3, as illustrated in Figure 3a. Therefore,
we distinguish the types of triangles B3B3B3, B3B3Bi, B1B1Bi, B

′
3BiBj , ABiBj , BiBjBk for

i, j, k ∈ {1, 2} and bound the number of these triangles one by one.
B3B3B3 triangles. For B3B3B3 triangles, we use Lemma 5.4 with D =

√
2a/h(1 + ε) to

obtain that for δ > ε,

P
(
4B3B3B3 > (C3H + a)n3−3/2α

)
≤ exp

(
−
√

2an1−α3/4 log
(
nα/4

))
. (5.23)

B3B3Bi triangles for i ∈ {1, 2}. We bound the number of B3B3Bi for i = 1, 2 by the number
of Bi vertices times the number of edges between B3 vertices. By (5.6) with γ = 3 − 3/2α and
D =

√
2a/h(1 + ε),

P (N(B1 ∪B2) > K) ≤ exp
(
−K log

( K√
2ah(1 + ε)−1n1−α3/4 log(nα/4)

))
. (5.24)

By (5.11) with D =
√

2a

P
(
EB3,B3

> n1−3α/8
)
≤ exp(−

√
2an(γ−1)/2 log(

√
2an(γ−3)/2+α)). (5.25)
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On the complement of this event, by (5.24),

P
(
4B3B3Bi > εn3−3/2α

)
≤ P

(
N(B1 ∪B2) > εn2−9α/8

)
≤ exp

(
− εn2−9α/8 log(δ−α/2n2−9α/8−1−α3/4)) log(nα/4)−1

)
≤ exp(−

√
2an(γ−1)/2 log(n(γ−3)/2+α)) (5.26)

for n sufficiently large and α < 4/3.
BiB1B1 triangles for i ∈ {1, 2, 3}. We now bound the number of BiB1B1 type triangles

i ∈ {1, 2, 3} by n times the number of pairs of two B1 vertices. This is the number of ways to
choose 2 type B1 vertices, and one other vertex. Thus, by (5.7),

P
(
4BiB1B1 > an3−3/2α

)
≤ P

(
N(B1) >

√
2an1−α3/4

)
≤ exp

(
−
√

2an1−α3/4 log
(√2an1−α3/4

n1−α log(n)ζ

))
. (5.27)

Thus, for fixed δ,

lim
n→∞

log
(
P
(
4AB1B1

> an3−3/2α
) )

n1−α3/4 log(n)
= −(1− 3α

4
) + (1− α) =

−α
4
. (5.28)

BiBjBk triangles for i, j, k ∈ {1, 2}. Any triple of vertices in B1 ∪ B2 have weights at least√
µn and thus form a triangle with probability one. Thus, an upper bound for these triangles is

the number of vertices in B2 ∪B1 to the power three.

P
(
4BiBjBk > εn(2−α)3/2

)
≤ P

(
N(B2 ∪B1)3 > εn(2−α)3/2

)
= P

(
N(B2 ∪B1) > ε1/3n(2−α)/2

)
. (5.29)

Now by (5.24)

P
(
N(B2 ∪B1) > ε1/3n(2−α)/2

)
≤ exp

(
− ε1/3n(2−α)/2 log

( ε1/3n(2−α)/2

√
2ah(1 + ε)−1n1−α3/4 log(nα/4)

))
≤ exp

(
−
√

2an1−α3/4 log(nα/4)
)
, (5.30)

when ζ > 1 and n is sufficiently large, since (2 − α)/2 > 1 − α3/4 for 1 < α < 4/3. Thus, for
ε, δ > 0, and n sufficiently large,

P
(
4BiBjBk > εn3−3/2α

)
≤ exp

(
−
√

2an1−α3/4 log
(
nα/4

))
(5.31)

for i, j, k ∈ {1, 2}.
B′3BiBj triangles i, j ∈ {1, 2}. Again, any triple of vertices in B′3BiBj have weights at least√

µn and thus form a triangle with probability one. Thus, an upper bound for these triangles is
the number of vertices of weight at least

√
µn squared times the number of vertices in B2 ∪B1.

P
(
4B′3BiBj > εn(2−α)3/2

)
≤ P

(
N(B2 ∪B1)N(≥ √µn)2 > εn(2−α)/2

)
. (5.32)

Now by (5.24)

P
(
N(B2 ∪B1) > n1−α3/4 log(n)ζ

)
≤ exp

(
−
√

2an1−α3/4 log(nα/4)
)
, (5.33)
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when ζ > 1 and n is sufficiently large. On the complement of this event, Lemma 5.2 yields

P
(
4B′3BiBj > εn(2−α)3/2

)
≤ P

(
N(B)2 > εn1−3α/8 log(n)−ζ

)
≤ exp

(
− εn1−3α/8 log(n)−ζ log(

εn1−3α/8 log(n)−ζ

n(2−α)/2
)
)

≤ exp
(
−
√

2an1−α3/4 log
(
nα/4

))
, (5.34)

since 1− 3/8α > 1− α3/4 for 1 < α < 4/3. Thus, for ε, δ > 0, and n sufficiently large,

P
(
4B′3BiBj > εn3−3/2α

)
≤ 2 exp

(
−
√

2an1−α3/4 log
(
nα/4

))
. (5.35)

AB2B2 triangles. We now consider AB2B2 triangles. By Lemma 5.5, for all ε > 0

P
(
4AB2B2

> εn3−3/2α
)
≤ exp

(
− εn

3−3/2α

K2n
log
( εn3−3/2α

3K1N(B2)2n log(n)−ζ

))
≤ exp

(
−
√

2an2−3/2α log(nα/4)
)
, (5.36)

for n sufficiently large when N(B2) < Cn1−α3/4 log(n)ζ/2 for some C > 0. Now by (5.33)

P
(
N(B2) > n1−α3/4 log(n)ζ/2

)
≤ exp

(
−
√

2an1−α3/4 log(nα/4)
)
, (5.37)

for ζ > 2.
AB2B1 triangles. We now bound the number of AB2B1 triangles by N(B1) times the number

of AB2 edges. By Lemma 5.5 with M = max(
√
n, nγ/3),

P
(
EA,B2

> n1−3α/8
)
≤ exp

(
−
√

2an1−α3/4 log(nα/4)
)

(5.38)

as long as N(B2) ≤ n1−α3/4 log(n)ζ , which happens with probability (5.33). Thus, by (5.7),

P
(
4AB1B2

> εn3−3/2α
)
≤ P

(
N(B1)EAB2

> εn3−3/2α
)

≤ P
(
N(B1) > εn2−9α/8

)
≤ exp

(
−
√

2an1−α3/4 log(nα/4)
)
, (5.39)

for α < 4/3 and ε > 0.
Thus, (5.23), (5.26), (5.31), (5.35) (5.36) and (5.39) yield that

P

 ∑
{i,j,k}6={3,3,3},{i,1,1}

4BiBjBk > εn3−3/2α

 ≤ K exp
(
−
√

2an1−α3/4 log(nα/4)
)
, (5.40)

for any ε > 0 and some K > 0. Combining this with (5.23) and (5.27)yields that for δ > ε,

P
(
4n > (H + a)n3−3/2α

)
≤ P

(
4B3B3B3

+4B1B1Bi > (C3H + a− ε)n3−3/2α
)

+K exp
(
−
√

2an1−α3/4 log(nα/4)
)

≤ (K + 1) exp
(
−
√

2an1−α3/4 log(nα/4)
)

+ P
(
4BiB1B1

> (C3H + a− 2ε)n3−3/2α
)
. (5.41)

Thus,

lim sup
n→∞

log
(
P
(
4n > (C3H + a)n3−3/2α

) )
n1−α3/4 log(n)

≤
√

2a− 2ε
(−α

4

)
. (5.42)

Letting ε ↓ 0 yields the result.
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[25] S. Janson and A. Ruciński. The deletion method for upper tail estimates. Combinatorica,
24(4):615–640.

[26] A. J. E. M. Janssen, J. S. H. van Leeuwaarden, and S. Shneer. Counting cliques and cycles
in scale-free inhomogeneous random graphs. Journal of Statistical Physics, 175(1):161–184,
feb 2019.

[27] C. Kerriou and P. Mörters. The fewest-big-jumps principle and an application to random
graphs. 2022.

[28] J. H. Kim and V. H. Vu. Divide and conquer martingales and the number of triangles in a
random graph. Random Structures and Algorithms, 24(2):166–174, 2004.

[29] T. Mikosch and O. Wintenberger. Precise large deviations for dependent regularly varying
sequences. Probability Theory Related Fields, 156(3-4):851–887, 2013.

[30] A. V. Nagaev. Limit theorems that take into account large deviations when Cramér’s condition
is violated. Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk, 13(6):17–22, 1969.

[31] R. I. Oliveira and G. H. Reis. Interacting diffusions on random graphs with diverging average
degrees: Hydrodynamics and large deviations. Journal of Statistical Physics, 176(5):1057–
1087.

[32] M. Olvera-Cravioto. PageRank’s behavior under degree correlations. Ann. Appl. Probab.,
31(3):1403–1442, 2021.

[33] S. Resnick and G. Samorodnitsky. Activity periods of an infinite server queue and performance
of certain heavy tailed fluid queues. Queueing Systems Theory Appl., 33(1-3):43–71, 1999.
Queues with heavy-tailed distributions.

[34] C.-H. Rhee, J. Blanchet, and B. Zwart. Sample path large deviations for lévy processes and
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A Additional proofs for Sections 1–4

Proof of Lemma 1.1. Note that f1 is absolutely continous, so there exists a function h such that
f1(x, y, z) =

∫ x
0

∫ y
0

∫ z
0
h(u, v, w)dudvdw. Now, write

6mn

n3F̄ (
√
n)3

=
1

F̄ (
√
n)3

∫ ∞
x=0

∫ ∞
y=0

∫ ∞
z=0

fn(x, y, z)dF (x)dF (y)dF (z)

=
1

F̄ (
√
n)3

∫ ∞
x=0

∫ ∞
y=0

∫ ∞
z=0

fn(
√
nx,
√
ny,
√
nz)dF (x)dF (y)dF (z)

=

∫ ∞
u=0

∫ ∞
v=0

∫ ∞
w=0

f1(u, v, w)dF̂n(u)dF̂n(v)dF̂n(w)

=

∫ ∞
u=0

∫ ∞
v=0

∫ ∞
w=0

h(u, v, w)
F̄ (u
√
n)

F̄ (
√
n)

dudvdw,

where we made the transformation u = x/
√
n (and similar for (v, w)) in the third step, with

F̂n(u) = F (
√
nu)/F̄ (

√
n). To show this integral converges we use the Potter bounds, which

imply that for each δ > 0 there exists a constant M such that F̄ (u
√
n)

F̄ (
√
n)
≤ Mu−α−δ, u < 1 and

F̄ (u
√
n)

F̄ (
√
n)
≤ Mu−α+δ, u > 1. Define the function d(u) = Mu−α−δI(u ≤ 1) + Mu−α+δI(u > 1).

Since for α ∈ (1, 2), the integral∫ ∞
v=0

∫ ∞
w=0

h(u, v, w)d(u)d(v)d(w)dudvdw

converges for δ sufficiently small, we can use dominated converge to conclude

mn

n3F̄ (
√
n)3
→ 1

6

∫ ∞
u=0

∫ ∞
v=0

∫ ∞
w=0

h(u, v, w)u−αv−αw−αdudvdw

=
α3

6

∫ ∞
u=0

∫ ∞
v=0

∫ ∞
w=0

f1(u, v, w)u−α−1v−α−1w−α−1dudvdw.

Proof of Lemma 1.2. Using Lemma 2.4 we know that, for a sequence b(n) regularly varying of
index αb,

n2

∫ ∞
0

∫ ∞
0

fn(x, y, b(n))dF (x)dF (y) ∼ K2
n3

(b(n))2
F̄ (n/b(n))2. (A.1)
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Now, choose b such that K2
n3

(b(n))2 F̄ (n/b(n))2 = amn. Dividing both sides of this equation with

n, and noting that yF̄ (y) has an asymptotic inverse h(y) which is regularly varying of index
−1/(α − 1) (cf. [6], Section 1.7), we see that b(n) ∼ n/h(

√
aµn/(nK2)). Since mn is regularly

varying of index 3−α3/2, b is regularly varying of index β > 1/2. The proof is now completed by
observing that ca(n) ∼ b(n). The asymptotic form of ca(n) and the dependence on a now follows
straightforwardly.

Proof of Lemma 2.3. For large enough n, b(n)c(n)� n so that we can write∫ ∞
0

fn(x, b(n), c(n))dF (x) =

∫ ∞
0

min{xb(n)/(µn), 1}min{xc(n)/(µn), 1}dF (x).

The RHS can be decomposed as follows:

b(n)c(n)

n2µ2

∫ µn/c(n)

0

x2dF (x) +
b(n)

µn

∫ µn/b(n)

µn/c(n)

xdF (x) + F̄ (µn/b(n)).

Call these terms I,II, III. We can use Karamata’s theorem to estimate Term I:

b(n)c(n)

n2µ2

∫ µn/c(n)

0

x2dF (x) ∼ L(µn/c(n))
1

2− α
b(n)c(n)

n2µ2
(µn/c(n))2−α.

This is regularly varying with index −[α(1 − αc) + αc − αb]. Term III is regularly varying of
index −α(1− αb) and is therefore of small order of term I if αc > αb, and behaves like Term I if
c(n) = b(n). Term II behaves like for some constant KII ,

b(n)

µn

∫ ∞
µn/c(n)

xdF (x) ∼ KII
b(n)

c(n)
F̄ (n/c(n)),

which is regularly varying of −[α(1 − αc) + αc − αb], like Term I. Inspecting the slowly varying
parts, it can be shown that the asymptotic behavior of Term I and Term II is the same up to a
constant.

Proof of Lemma 2.4. We write∫ ∞
0

∫ ∞
x

fn(x, y, b(n))dF (y)dF (x) = (1/2)

∫ ∞
0

∫ ∞
0

fn(x, y, b(n))dF (x)dF (y)

and we split the integral
∫∞

0

∫∞
0
fn(x, y, b(n))dF (x)dF (y) in two terms, where xy < µn (Term I),

and xy ≥ µn (Term II).

I =
1

µn

∫
xy<µn

xymin{xb(n)/(µn), 1}min{yb(n)/(µn), 1}dF (x)dF (y).

We break up Term I into 3 more regions: a region where both x, y are smaller than µn/b(n)
(Term Ii), a region where both x, y are larger than µn/b(n) (Term Iii), and the region where one
is smaller, and one larger (Term Iiii). For n large enough, µn/b(n) is much smaller than

√
µn, in

which case Ii equals

b(n)2

(µn)3
(

∫ µn/b(n)

x=0

x2dF (x))2 ∼ K b(n)2

(µn)3

(
(µn/b(n))2F̄ (µn/b(n))

)2
=
Kµn

b(n)2
F̄ (µn/b(n))2. (A.2)

This term is regularly varying of index −[(2αb − 1) + 2α(1− αb)].
For Term Iii, we can lower and upper bound the region by respectively including constraints

x <
√
µn, y <

√
µn, and by removing the constraint xy < µn. In both cases, we end up with the

square of an integral with the same asymptotic behavior, so we get

Iii ∼ 1

µn
(

∫ ∞
x=µn/b(n)

xdF (x))2 ∼ K

n
(n/b(n))2F̄ (n/b(n))2. (A.3)
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This term is regularly varying of index −[2(α − 1)(1 − αb) + 1], like Term Ii. Term Iiii can be
written as

2b(n)

(µn)2

∫
xy<µn,x<µn/b(n)<y

x2ydF (x)dF (y). (A.4)

Again, the constraint xy < µn is asymptotically irrelevant, leading to the behavior

2b(n)

(µn)2

(∫ µn/b(n)

0

x2dF (x)

)(∫ ∞
µn/b(n)

ydF (y)

)
∼ Kb(n)

n2
(n/b(n))3F̄ (n/b(n))2. (A.5)

Once more, this term is regularly varying of index −[2(α−1)(1−αb) + 1]. Note that [2(α−1)(1−
αb) + 1] < α if αb > 1/2.

We now turn to Term II. By bounding the two minima by 1, we see that

II =

∫
xy>µn

min{xb(n)/(µn), 1}min{yb(n)/(µn), 1}dF (x)dF (y) ≤ P (XY > µn) ,

with X,Y iid and regularly varying of index −α. Due to [17], the product is also regularly varying
of index −α. Since α > [2(α− 1)(1− αb) + 1], Term II is asymptotically negligible.

Proof of Lemma 4.4. For any given edge between vertices i and j of weights wi > wj such that
wiwj < µn, the number of triangles it is involved in is a binomial random variable with n − 2
trials and probability at most∫ ∞

1

min
(wiwk
µn

, 1
)

min
(wjwk
µn

, 1
)
dF (wk)

≤
∫ ∞

1

h(wi, wj , wk)w−αk L(wk)dwk

≤
∫ ∞

1

h(wi, wj , wk)w−α+δ
k dwk

=

∫ ∞
1

min
(wiwk
µn

, 1
)

min
(wjwk
µn

, 1
)
w−α−1+δ
k dwk, (A.6)

where h(wi, wj , wk) is a function such that
∫ wk

1
h(wi, wj , x)dx = min(wiwkµn , 1) min(

wjwk
µn , 1), and

where in the second inequality we have used the Potter bound on the slowly varying function L(x).
Now ∫ ∞

1

w−α−1+δ
k min

(wiwk
µn

, 1
)

min
(wjwk
µn

, 1
)
dwk

=

∫ µn/wi

1

w1−α+δ
k

wiwj
(µn)2

dwk +

∫ µn/wj

µn/wi

w−α+δ
k

wj
µn

dwk +

∫ ∞
µn/wj

w−α−1+δ
k dwk

=

((
µn
wi

)2−α+δ

2− α+ δ

wiwj
(µn)2

+

(
µn
wi

)1−α+δ

α− δ − 1

wj
µn

+
1

α− δ
(µn
wj

)−α+δ
)

(1 + o(1))

= (µn)−α+δ
( wα−1

i wj
(2− α+ δ)(α− δ − 1)

+
wα−δj

α− δ
)

(1 + o(1)). (A.7)

Now when wi ≥ wj and wiwj ≤ µn, this expression is maximized by wi = wj =
√
µn for 1 < α < 2.

Thus, the number of triangles {i, j} is involved in is a binomial random variable with probability
at most

C1(µn)−α+δ√µn−α+δ
(1 + o(1)) ≤ C2n

(−α+δ)/2, (A.8)

for some C1, C2 > 0 and n sufficiently large, where we have used that wiwj ≤ µn and that
wi > wj . Thus, the average number of triangles involving {i, j} is at most C2n

(2−α+δ)/2. When
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choosing δ sufficiently small such that C2n
(2−α)/2+ε � n(2−α+δ)/2, Lemma 5.1 yields that for

K > C2n
(2−α)/2+ε,

P ({i, j} in ≥ K triangles) ≤ exp(−c1K)(1 + o(1)), (A.9)

for some c1 > 0.

B Additional proofs for Section 5

Proof of Lemma 5.5. We first bound the number of AB2 edges. As the connection probability is
increasing in the vertex weights, the number of AB2 edges and A,B2, B2 triangles is stochastically
dominated by the number of such edges and triangles respectively when all B2 vertices have the
upper bound of their weights of n/ log(n)ζ/α. We therefore assume that all B2 vertices have
weights n/ log(n)ζ/α.

Now P (W > x) ∼ Cx−α implies that

P (W > x) ≤ C̃x−α, x ≥ 1 (B.1)

for some Ĉ > 0. By (B.1), the average number of AB2 edges can then be upper bounded by

N(B2)nĈ

(∫ log(n)
ζ
α

1

x−α−1 x

log(n)
ζ
α

dx+

∫ √n
log(n)

ζ
α

x−α−1dx

)
≤ K1N(B2)n log(n)−ζ , (B.2)

for some K1 > 0. Now, let Xij denote the indicator that i, j forms an edge and i ∈ A, j ∈ B2.
Define Xij(uv) = Xij when i 6= u and 0 otherwise. Because du ≤M ,∑

i∈A,j∈B2

Xij ≤M +
∑

i∈A,j∈B2

Xij(uv). (B.3)

Thus, by Lemma 4.3

P
(
EA,B2 > n(γ+1)/2

)
= P

 ∑
i∈A,j∈B2

Xij > n(γ+1)/2


≤ exp

(
− n(γ+1)/2

M
log
( n(γ−1)/2

N(B2) log(n)−ζ

))
, (B.4)

which proves the first part of the lemma.
Similarly, conditionally on the number of type B2 vertices, the average number of AB2B2

triangles can be bounded by

N(B2)2nĈ

(∫ log(n)
ζ
α

1

x−α−1
( x

log(n)
ζ
α

)2

dx+

∫ √n
log(n)

ζ
α

x−α−1dx

)
≤ K2N(B2)2n log(n)−ζ , (B.5)

for some K2 > 0.
Now, for all i ∈ A and j, k ∈ B2, let Xijk denote the indicator that i, j, k forms a triangle.

Let Xijk(uvw) = Xijk when i 6= u, and 0 otherwise. Then, Xijk(uvw) ≤ Xijk, and as edges

between j and k vertices have weights n/ log(n)ζ/α and therefore are present with probability one,∑
ijkXijk(uvw) is independent from Xuvw. Furthermore,∑

i,j,k

Xijk ≤ d2
u +

∑
i,j,k

Xijk(uvw) ≤M2 +
∑
i,j,k

Xijk(uvw). (B.6)

30



Therefore, Lemma 4.3 yields

P (4A,B2,B2
> nγ) ≤ exp

(
− nγ

M2
log
( nγ−1

3K1N(B2)2 log(n)−ζ
))
)
. (B.7)

Proof of Lemma 5.6. As the degree of a vertex of lower weights is stochastically dominated by
the degree of a vertex with higher weight, we assume that vertex i has the maximal weight

√
µn.

Given the weights, the degree of a vertex with weight
√
µn is a sum of independent Bernoulli

random variables with mean
∑
i min(Wi/

√
µn, 1). We now compute the probability of the event

that this mean is large. First of all,

Var
(
W1{W≤√µn}

)
≤ E

[
W 2

1{W≤√µn}
]
≤ Ĉ

∫ √µn
1

x1−αdx = Ĉ(µn)(2−α)/2(1 + o(1)). (B.8)

Thus, by Bernsteins’ inequality,

P

(
|
∑
i

Wi1{Wi≤
√
µn} − µn| > µn

)
≤ exp

(
− (µn)2

2nĈ(µn)(2−α)/2 + 2(µn)3/2

)
≤ exp(−(µn)1/2)

≤ exp(−n(γ−1)/2), (B.9)

for all α ∈ (1, 2) and γ ≤ 2. For γ > 2, and n sufficiently large, Bernstein’s inequality yields

P

(
|
∑
i

Wi1{Wi≤
√
µn} − µn| > n1/2+γ/3

)
≤ exp(− n1+2γ/3

(1 + o(1))2(µn)3/2
)

≤ exp
(
− n(γ−1)/2

)
. (B.10)

Thus,

P

(∑
i

Wi√
µn

1{Wi≤
√
µn} > 2

√
µn+ nγ/3

)
≤ exp

(
− n(γ−1)/2

)
. (B.11)

Thus, the probability that the mean degree of a vertex with weight Wi =
√
µn is at most 2

√
µn

or nγ/3 is at most exp(−n(γ−1)/2). On this event, the degree of a vertex of weight
√
µn is a sum

of indicators with mean at most 2
√
µn or nγ/3.

We use Lemma 5.1 and the union bound to show that for γ < 2

P
(
F̄
)
≤

n∑
i=1

P (di > 4
√
µn |Wi ≤

√
µn)

≤ nP (di > 4
√
µn |Wi =

√
µn) ≤ n exp(−2

√
µn(2 log(2)− 1)). (B.12)

Similarly, for γ > 2,

P
(
F̄
)
≤

n∑
i=1

P
(
di > 4nγ/3 |Wi =

√
µn
)
≤ n exp(−2nγ/3(2 log(2)− 1)). (B.13)

Thus, as γ/3 > (γ − 1)/2 for γ ∈ (1, 3),

P
(
F̄
)
≤ exp

(
−Dn(γ−1)/2 log(n(γ−3)/2+α)

)
. (B.14)
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C Proof of Theorem 1.7: many dominating hubs

Proof of Theorem 1.7. Lower bound. As a lower bound, we compute the number of triangles with
at least one vertex of weight > µn. By Lemma 5.2, the probability that at least nλ vertices of
weights at least µn are present can be bounded by

P
(
nλ vertices of weight > µn

)
≥ 1√

2n
exp(−nλ log(nλ+α−1))(1 + o(1)). (C.1)

Now, nλ vertices of weight at least µn generate n1+2λ/2 triangles. Indeed, every pair of 2 hubs
forms a triangle with any of the other n vertices, so n1+2λ/2 in total. Therefore,

√
2an(γ−1)/2

vertices of weight at least n create anγ triangles. Thus,

P (4n > anγ) ≥ 1√
2n

exp
(
−
√

2an(γ−1)/2 log
(γ − 3

2
+ α

))
(1 + o(1)). (C.2)

Upper bound. We now distinguish and bound different types of triangles.
BBB: all weights larger than

√
µn. Let Xu,v,w denote the event that u, v, w forms a triangle

and that wu, wv, ww >
√
µn. Then,∑

u,v,w

Xu,v,w ≤
∑
u,v,w

1{wu,wv,ww>√µn} =
(∑

u

1{wu>√µn}
)3

. (C.3)

By Lemma 5.2, when γ > 3− 3/2α,

P

(∑
u,v,w

Xu,v,w > εnγ

)
≤ P

(
ε1/3nγ/3 vertices of weight >

√
µn
)

≤ exp
(
− ε1/3nγ/3 log(nγ/3−(2−α)/2)

)
, (C.4)

by Lemma 5.2. Now for fixed ε > 0 and γ > 1 therefore

P (4BBB) ≤ exp
(
−
√

2an(γ−1)/2 log(n(γ−3)/2+α)
)
, (C.5)

for n sufficiently large.
AAA: all weights smaller than

√
µn. By Lemma 5.6, we may work on the event F , so that all

degrees are bounded by M = 4 max(
√
n, nγ/3). We aim to design two sets of indicators that deal

with the dependencies between the presences of different triangles, so that we can use Lemma 4.3.
Let Yuvw denote the indicator that u, v, w forms a triangle and that u, v, w have degree at most√
µn. Now Yuvw ≤ Xuvw. We now define a set of indicators Yxyz(uvw).

When |{x, y, z, u, v, w}| = 6, we set Yxyz(uvw) = Yxyz, and otherwise, we set Yxyz(uvw) = 0.
Now

∑
x,y,z Yxyz(uvw) is independent of Xuvw, as none of the entries of the summation depend on

the edges uv, uw, vw.
Furthermore,

∑
x,y,z Yxyz(uvw) ≤

∑
x,y,z Yx,y,z. Finally,∑

x,y,z

Yx,y,z ≤ 3M2 +
∑
x,y,z

Yxyz(uvw), (C.6)

as at most M2 triangles involve vertex u since its maximal degree is M . Thus, by Lemma 4.3,

P

(∑
u,v,w

Yuvw > εnγ

)
≤ exp(−εn

γ

M2
log(nγ−

(2−α)
2 )). (C.7)

Again, for γ > 1 and n sufficiently large this indicates that

P (4AAA) ≤ exp
(
−
√

2an(γ−1)/2 log(n(γ−3)/2+α)
)
, (C.8)
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as γ − 2γ/3 > (γ − 1)/2 for γ ∈ (1, 3).
ABB triangles.
To bound the number of these triangles, we split the B vertices into B1 vertices, B′2 = B ∩B2

and B′3 = B ∩B3. We first investigate the number of AB′3B
′
3 triangles. When B ∩B3 = ∅, we are

done. Otherwise, A ⊆ B3 and by (5.10), for γ > 3− 3/2α and D =
√

2a/h(1 + ε),

P
(
4A,B′3,B′3 > εnγ

)
≤ P (4B3,B3,B3 > εnγ) ≤ exp(−

√
2an(γ−1)/2 log(n(γ−3)/2+α)). (C.9)

We now bound the number of AB1B1 type triangles by n times the number of B1 vertices
squared. This is the number of ways to choose 2 type B1 vertices, and one other vertex. Thus,
by (5.7),

P (4AB1B1
> anγ) ≤ P

(
N(B1) >

√
2an(γ−1)/2

)
≤ exp

(
−
√

2an(γ−1)/2 log(n(γ−3)/2+α log(n)−ζ)
)
. (C.10)

Consequently,

lim
n→∞

log
(
P (4AB1B1

> anγ)
)

n(γ−1)/2 log(n)
=
√

2a
(γ − 3

2
+ α

)
. (C.11)

We bound the number of AB′3B
′
i for i = 1, 2 by the number of B′i vertices times the number of

edges between AB′3 vertices. Again, when B′3 is empty, we are done. Otherwise, A ⊆ B3, so that
by (5.11)

P
(
EA,B′3 > n(γ+1)/4

)
≤ P

(
EB3,B3

> n(γ+1)/4
)
≤ exp(−

√
2an(γ−1)/2 log(n(γ−3)/2+α)). (C.12)

On this event, by (5.6), and for n sufficiently large,

P
(
4AB′3B′i > εnγ

)
≤ P

(
N(B1 ∪B2) > εn(3γ−1)/4

)
≤ exp

(
− εn(3γ−1)/4 log(n(γ+1)/4 log(n(γ−3)/2+α)−1)

)
≤ exp

(
−
√

2an(γ−1)/2 log(n(γ−3)/2+α log(n)−α)
)
. (C.13)

We now bound the number of AB′2B1 triangles by N(B1) times the number of AB2 edges. By
Lemma 5.5 with M = max(

√
n, nγ/3), and for n sufficiently large

P
(
EA,B′2 >

ε√
2a
n(γ+1)/2

)
≤ P

(
EA,B2

>
ε√
2a
n(γ+1)/2

)
≤ exp(−

√
2an(γ−1)/2 log(n(γ−3)/2+α)) (C.14)

as long as N(B2) ≤ n(γ−1)/2 log(n)ζ . By (5.6) this happens with probability

P
(
N(B2) > n(γ−1)/2 log(n)ζ

)
≤ exp

(
− n(γ−1)/2 log(n)ζ log

(
log(n)ζ log(n(γ−3)/2+α)−1

))
≤ exp

(
−
√

2an(γ−1)/2 log(n(γ−3)/2+α)
)
, (C.15)

when ζ > 1 and n is sufficiently large. Thus, on the event of (C.14), by (5.7),

P
(
4AB1B′2

> εnγ
)
≤ P

(
N(B1)EAB′2 > εnγ

)
≤ P

(
N(B1) >

√
2an(γ−1)/2

)
≤ exp

(
−
√

2an(γ−1)/2 log(n(γ−3)/2+α log(n)−ζ)
)
. (C.16)
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We now consider AB′2B
′
2 triangles. By Lemma 5.5,

P
(
4A,B′2,B′2 > nγ

)
≤ exp

(
− nγ

M2
log(nγ/(3K1N(B′2)2n log(n)−ζ))

)
≤ exp

(
−
√

2an(γ−1)/2 log(n(γ−3)/2+α)
)
, (C.17)

as long as N(B2) ≤ n(γ−1)/2 log(n)ζ and γ > 1, which happens with probability (C.15).
Thus, (C.11), (C.9), (C.13), (C.16) and (C.17) yield that

lim
n→∞

log
(
P (4ABB > nγ)

)
n(γ−1)/2 log(n)

=
√

2a
(γ − 3

2
+ α

)
. (C.18)

AAB triangles. When bounding the number of AAB triangles, we work on the event F from
Lemma 5.6, so that all type-A vertices have degrees at most M = max(4

√
µn, 4nγ/3). Again, we

split the B vertices into B′1, B
′
2 and B′3.

We now bound the number of AAB′i triangles with i ∈ B′1 ∩ B′2. To do so, we first show that
the event E that there are at most n(γ+1)/2 edges between type A vertices happens with high
probability. Let X ′ij denote the indicator that an edge is present between i and j, let Xij be the
indicator that i, j ∈ A and that {i, j} is an edge. Finally, we define Xij(uv) = Xij when i, j, u, v are
all distinct, and set Xij(uv) = 0 when i or j overlaps with u or v. Then

∑
ij Xij(uv) is independent

from Xuv, and furthermore

EA,A :=
∑
ij

Xij ≤ du + dv +
∑
ij

Xij(uv) ≤ 2M +
∑
ij

Xij(uv) (C.19)

Then, Lemma 4.3 shows that

P
(
EA,A > n(3γ−1)/4

)
≤ exp

(
− n(3γ−1)/4

2nγ/3
log
(n(3γ−1)/2

3µn

))
< exp

(
−
√

2an(γ−1)/2 log(n(γ−3)/2+α)
)
, (C.20)

for γ ∈ [2, 3). Furthermore,

P (E) := P (EA,A > 4µn) ≤ exp
(
− 4µn

8K
√
µn

log
(4µn

3µn

))
< exp

(
−
√

2an(γ−1)/2 log(n(γ−3)/2+α)
)
, (C.21)

for γ ∈ [1, 2) and n sufficiently large.
We now condition on the event E . On this event, we can bound the number of AABi triangles

for i = 1, 2 by 4µn times the number of type Bi vertices for γ ∈ [1, 2). Thus, on E , by Lemma 5.2

P (4AABi > εnγ) ≤ P
(
N(B′2 ∪B1) > εnγ−1/(4µ)

)
≤ exp

(
− εnγ−1

4µ
log(nγ−1−(γ−1)/2)

)
≤ exp

(
−
√

2an(γ−1)/2 log(n(γ−1)/2−(2−α)/2)
)
, (C.22)

for γ ∈ [1, 2) and n sufficiently large. Similarly, for γ ∈ [2, 3), by Lemma 5.2

P (4AABi > εnγ) ≤ P
(
N(B′2 ∪B1) > εn(γ+1)/4

)
≤ exp(−εn(γ+1)/4 log(n(γ+1)/4−(γ−1)/2))

≤ exp
(
−
√

2an(γ−1)/2 log(n(γ−1)/2−(2−α)/2)
)
, (C.23)

for n sufficiently large.
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Finally, we bound the number of AAB′3 triangles. When B′3 is empty, we are done. Otherwise,
A ⊆ B3, and any AAB′3 triangle is also an B3B3B3 triangle, whose number can be bounded
by (C.9).

To conclude, (C.5), (C.5), (C.18), (C.22) and (C.23) with a limit of ε ↓ 0 yield that

log
(
P (4n > anγ)

)
≤ −
√

2an(γ−1)/2 log(n(γ−3)/2+α)(1 + o(1)). (C.24)

Combining this with (C.2) gives

lim
n→∞

logP (4n > nγ)

n(γ−1)/2 log(n)
=
√

2a
(γ − 3

2
+ α

)
. (C.25)

D Proof of Theorem 1.6

The proof follows the same steps as the proof of Theorem 1.3. To avoid unnecessary repetitions,
we restrict ourselves to indicating which steps require nontrivial modifications. First of all, the

asymptotic expansion cnθ (n) ∼ L∗(n)nβ+ θ
2

1
α−1 = o(n) follows from a straightforward modification

of the proof of Lemma 1.2, and the o(n) behavior follows from the inequality θ < 3
2α− 2.

The first major step is to prove that the analogue of Theorem 2.1 holds, with a replaced by
nγ . To establish this, we first show how to modify the proof of Proposition 2.5, in particular how
to manage the ten-term bound (2.20). The three terms that require modification are the third,
fifth and sixth term. For the third term, we can again invoke Lemma 2.4 to conclude that this
term behaves like cε(α−1)/2nθµn. For the fifth term, apply Lemma 2.3 with αb = αc = β + θ

2
1

α−1 ,

to conclude that this term is regularly varying with index 1− α+ α2/(4(α− 1)) + αθ/(2(α− 1)).
To show that the fifth term is of small order in n, it suffices to show that

1− α+ α2/(4(α− 1)) + αθ/(2(α− 1)) < 3− α3/2 + γ,

which is equivalent to
3α2 − 2α+ θ(4− 2α) < 8(α− 1).

This follows from the inequality θ < α3/2− 2. As before, the sixth term is of smaller order than
the fifth term, and therefore is also negligible as n grows large. This leads to the conclusion that

P
(
Gn > (1 + nθ)mn;Ln(εcnθ (n)) = 0

)
= o(nP (W1 > cnθ (n))), (D.1)

which is the desired extension of Proposition 2.5. The statement and the proof of Proposition 2.6
extends straightforwardly to handle the case where a is replaced by nθ. This readily leads to the
conclusion that

P
(
Gn > mn(1 + nθ)

)
= (1 + o(1))nP (W > cnθ (n)) . (D.2)

To derive the same estimate for 4n we use the same steps as in Section 4: the proof of the
asymptotic upper bound again follows from Lemma 4.1. To derive an asymptotic lower bound,
we need to modify the first part Lemma 4.2. In particular, we need that

4n(δ, nθ)/(mn(1 + nθ))→ 1 (D.3)

in probability. The proof of this statement follows by simply following the same steps as the first
part of Lemma 4.2, with a replaced by nθ. With the appropriate analogues of Lemma’s 4.1 and
4.2 in place, the proof of Theorem 1.6 follows straightforwardly.

35


	1 Introduction and main results
	1.1 Model description
	1.2 Main results and discussion
	1.3 Organization of the paper

	2 Nonlinear heavy-tailed large deviations
	2.1 Concentration of weighted empirical distribution functions
	2.2 Estimating the number of triangles generated by large hubs
	2.3 Gn cannot be large without a big hub
	2.4 Proof of Theorem 2.1

	3 The boundary case =4/3
	4 Completing the proofs of Theorem 1.3 and 1.5
	4.1 Proof of Lemma 4.1
	4.2 Proof of Lemma 4.2

	5 Many dominating hubs
	5.1 Bounding specific triangle and edge types
	5.2 Proof of Theorem 1.4

	A Additional proofs for Sections 1–4
	B Additional proofs for Section 5
	C Proof of Theorem 1.7: many dominating hubs
	D Proof of Theorem 1.6

