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Abstract. Patterns are recurrent structures that provide key insights
for Conceptual Modeling. Typically, patterns emerge from the repeated
modeling practice in a given field. However, their discovery, if performed
manually, is a slow and highly laborious task and, hence, it usually takes
years for pattern catalogs to emerge in new domains. For this reason,
the field would greatly benefit from the creation of automated data-
driven techniques for the empirical discovery of patterns. In this paper,
we propose a highly automated interactive approach for the discovery of
patterns from conceptual model catalogs. The approach combines graph
manipulation and Frequent Itemset Mining techniques. We also advance
a computational tool implementing our proposal, which is then validated
in an experiment with a dataset of 105 UML models.
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1 Introduction

For a while now, patterns have been widely used by the modeling community for
a range of different purposes, including to understand how languages are used in
practice [3,8]. Their popularity is evinced, among other factors, by the growing
number of pattern catalogs1 for different modeling languages. Pattern discovery,
however, if performed manually, is highly laborious and, hence, it usually takes
years for pattern catalogs to emerge. First, because of the sheer size of data to be
analyzed. Second, searching for patterns consists of cognitively demanding steps,
such as partitioning models into smaller fragments, calculating the frequency of
candidate patterns, and filtering out constructs of interest (e.g. when one is
looking for taxonomic structures in domain models).

In this paper we propose a highly-automated interactive approach for the
empirical discovery of patterns from conceptual model catalogs. In particular,
1 E.g. https://github.com/wilmerkrisp/patterns, http://www.bpmpatterns.org.
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we focus on the discovery of recurrent modeling structures that can be defined
by a fixed combination of the constructs of a language. Our approach, developed
using the Design Science Methodology [7], aims at supporting language designers
throughout all activities of the pattern discovery process, namely: i) input data
preparation, when the input conceptual models data are manipulated to feed the
mining process; ii) mining process customization, when the parameters for the
mining process are provided; iii) pattern mining, the actual mining process; and
iv) output assessment, when the user assess the discovered patterns. For this
purpose, we combine graph manipulation techniques with the Frequent Itemset
Mining algorithm [1].

We implemented our approach in a proof-of-concept application, which was
validated according to a set of requirements gathered from expert language
designers about what our approach should do, as well as how it should do it.
We tested these criteria using a catalog of 105 domain models [2] specified in
OntoUML [5], a pattern-based well-founded extension of UML Class Diagrams.

The remainder of this paper is structured as follows. Section 2 lists the
requirements that drove the design of our approach. Section 3 describes the pat-
tern discovery method embedded in our approach. In Sect. 4, we report on the
experiments we conducted to validate our solution. Then, in Sect. 5, we position
our contribution with respect to the state of the art. Finally, in Sect. 6, we reflect
on our results and discuss some future work.

2 Requirements

Following the Design Science methodology [7], we grounded the design of our
approach on a preliminary problem identification activity. In this phase, we inter-
viewed five senior researchers who developed conceptual modeling languages. We
asked them, in open-ended interviews, about: i) the relevance of an approach for
facilitating the empirical discovery of structural patterns in conceptual models
and ii) what is required to facilitate this discovery process. From their feedback,
we defined the following requirements:

– Interest (R1): the approach should be able to discover subjectively inter-
esting patterns. Here, the notion of “subjectively interesting” is inspired by
the work from Silberschatz and Tuzhilin [14], where a pattern is ranked as
interesting by a user if: a) it is considered exploitable for modeling activities,
b) it contradicts some user’s expectations.

– Customization (R2): the approach should support the manipulation of
input models so that one can look for a particular type of pattern. For
instance, from class diagrams, one should be able to filter out everything
but classes and generalizations to look for taxonomic patterns.

– Comprehension (R3): the approach should support the assessment and
analysis of the output patterns by generating human-readable visualizations
and providing their absolute frequency (i.e. how many times the pattern occurs
in all models of the catalog) and their model frequency (i.e. how many models
in the catalog have at least one occurrence of the pattern).
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– Reliability (R4): the approach should accurately calculate the absolute
and model frequencies for all the patterns it finds. More precisely, the ratio
between the number of occurrences retrieved by the approach and the number
of actual occurrences should be at least 0.5.

– Performance (R5): the processing and mining steps should happen in a
reasonable amount of time, even with a large set of models. By “a reasonable
amount of time” we mean an amount that would not discourage language
designers to interact with such a tool, and naturally, that is lower than the
time it would take for them to produce the same outputs manually. For now,
we are assuming a threshold of 5min to mine patterns from 100 models. By
“large set of models”, we mean between 100 and 10000 models, as we do not
expect model catalogs to be much bigger than that.

– Compatibility (R6): the approach should be generic enough such that it
works with any conceptual modeling language.

3 Discovering Frequent Patterns

We represent our approach as a workflow composed of 7 main tasks, whose
inputs, outputs, and dependencies are combined as from Fig. 1 below.

The first task is Filtering (0), where the user can select what language con-
structs to filter out from the models. For instance, in the case of OntoUML,
one may want to look for patterns only involving classes decorated with certain
stereotypes, or involving only classes, generalizations, and generalization sets.

The Abstraction (1) task allows the user to input a set of transformation func-
tions to be applied to the models, by which certain constructs can be abstracted
into more general constructs. For instance, in ArchiMate, business processes,
business functions, and business collaborations may be abstracted into business
internal behavior elements. This step allows users to look for more general pat-
terns that apply to several types of constructs.

Fig. 1. The frequent patterns discovery workflow.
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The Importing (2) task consists of taking a set of conceptual models M
encoded in a given language (e.g., UML or BPMN) and transforming each model
mi ∈ M into a graph gj . This may seem trivial at a first glance, after all, concep-
tual models are basically graphs. That, however, is not always the case. Consider,
for instance, the transformation of UML class diagrams into graphs. The simple
solution is transforming classes into nodes and generalizations and associations
into edges. Still, if we want to convert, generalization sets, association classes,
generalizations between associations, cardinalities, and several other constructs,
that no longer works. This task is language-dependent and requires an ad hoc
transformation for each source conceptual modeling language.

Discretization (3) takes each graph gj and splits it into graph partitions
gpk that represent subsets of the input conceptual model mi. We do this by
repeatedly executing the Kernighan Lin Bisection Algorithm [9], which splits a
graph into two balanced bisections2, until we obtain graph partitions with at
most N nodes–a threshold value provided by the user. Note, however, that we
lose some edges in the bisection process. To counter this effect, after generating
our graph partitions, we restore some removed edges back to them. A removed
edge el is restored to a partition gpk if gpk contains at least one of the two nodes
connected by el. If one such node is not part of gpk, it is also restored to it. This
discretization task is completely language-independent.

Through the Normalization (4) task, the graph partitions are relabeled and
indexed to enable the detection of patterns across them. The relabeling of the
graph partition occurs by firstly associating both a label and an index to each
node, where, originally, the node corresponds to an id and the label corresponds
to the language construct associated with that node. Once the relabeling is
applied, the index of the nodes with the same label is normalized (from 0 to n).
Normalization is also a language-independent task.

Embedding (5), still a language-independent task, converts normalized graph
partitions into item sets. Here each graph edge is transformed into an item, thus
enabling to mine all the information encoded by the node and the edge labels.
Notice that this allows accounting for the rich amount of information encoded by
conceptual models. For instance, an item can easily represent nodes and edges
labels, association source and target cardinalities, and edges directionality.

Figure 2 provides an example of how a conceptual model ‘.i ’ is converted
through the steps described so far. The importing step produces the graph shown
by ‘.ii ’. The discretization task produces the partitions shown by ‘.iii ’. The
normalization task produces the normalized partitions ‘.iv ’ and the embedding
returns the set of item sets represented by ‘.v ’.

Notice that each column of the item set table ‘.v ’ represents an item ij ,
namely a graph edge with the standardized nodes. Each record represents an
input partition graph. I1, for instance, encodes the left-side graph in of Fig. 2.‘.iii ’
and I2 encodes the graph on the right side. The index of the labels was stan-
dardized from “0” to “3” for the larger partition and from “0” to “2” for the

2 The bisections are balanced in terms of the number of nodes and edges.
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Fig. 2. From importing to embedding : .i input conceptual model, .ii transformed graph,
.iii graph partitions, .iv normalized graph partitions, .v set of item sets.

smaller one, thus enabling the detection of recurrent items across the item sets.
For instance, in ‘.v ’ both i1 and i2 occur in both I1 and I2.

The Mining (6) task represents the final part of the workflow and is aimed
at a) generating the candidate patterns and b) making the output accessible to
the user for the final assessment. This task allows for another interaction with
the user, who can select the frequency threshold for the output patterns (e.g.,
filter out patterns that occur less than 30 times) or some ad hoc parameters of
the mining algorithm (e.g., avoid sub-patterns with the same frequency). The
output of the mining task will then consist of a 1) list of the discovered patterns
in a format that eases the final assessment3; 2) a set of frequency measures, for
each output pattern, namely: 2.1) the absolute frequency, calculated as the num-
ber of pattern occurrences over the total number of item sets generated through

3 Example at https://purl.org/mining-cm-patterns/pattern-example.

https://purl.org/mining-cm-patterns/pattern-example
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embedding; 2.2) the model frequency, calculated as the number of pattern occur-
rences over the number of conceptual models used as inputs of the whole process.
For instance, given 5 models we can have a pattern occurring with an absolute
frequency of ‘10’, but the model frequency cannot be more than ‘5’.

4 Evaluation

To evaluate our approach, we implemented it as a Python command-line appli-
cation4 in which the user can interactively set up the process, manipulate the
data, and assess the output of the mining algorithm. The implementation is built
on top of two main packages, namely NetworkX and PrefixSpan. NetworkX is
a comprehensive, open-source, graph analytics and processing toolkit, indepen-
dently developed and maintained by a large and lively community of developers.
PrefixSpan is a very simple yet flexible implementation of the homonymous
algorithm. With this application, we evaluated our requirements by running the
following two experiments.

4.1 Experiment 1

This experiment assesses our solution w.r.t. R1, R2, R3, and R4.

(i) Data. As input data, we used 105 models from a catalog of OntoUML models
[2], a pattern-based language that extends UML Class Diagrams [5].

(ii) Setup. For the validation, we used, as “litmus test”, 6 common OntoUML pat-
terns, which were previously manually identified by the designers of the language
within multiple example models, retained to be useful for building OntoUML
models [6,13]. The selected patterns are represented in Fig. 3.

Fig. 3. OntoUML modeling patterns examples [13].

4 Source code is available at https://purl.org/krdb-core/mining-cm.

https://networkx.org/
https://pypi.org/project/prefixspan/
https://purl.org/krdb-core/mining-cm
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We run the application 6 times and we checked whether the proposed solution
is able to discover the pre-identified interesting patterns (R1). Moreover, we
checked the role of the customization steps in supporting the discovery process
(R2) and the level of comprehensibility of the outcome (R3). For each trial,
we selected different parameters. In the first three trials, we just customized
the number of nodes allowed in the graph partition, selecting 12, 8, and 4 as
reference sizes. The partition size parameters were selected based on the average
number of classes in OntoUML patterns. In the last three trials, we reused the
same partition parameters by filtering out stereotypes and edge types that are
not used in the pattern. Finally, we queried the input models to count the real-
existing number of occurrences for each pattern and we compared the results with
the occurrences found by our application. The level of reliability (R4) was then
simply calculated through an application of the Jaccard index J(A,B) = |(A∩B)|

|(A∪B)|
[4,16], where A is the set of manually found pattern occurrences and B is the
set of occurrences for the same pattern found by the process.

(iii) Results. Figure 4 resumes the output data of experiment 1. The first obser-
vation is that the approach is able to find the patterns we selected beforehand
(R1), which are clearly mapped into the output pattern graphs (R3). All the dis-
covered patterns (with examples of more complex patterns as well) can be found
at our git repository5. Secondly, it can be noticed that the partition parameters
have an impact on the reliability of the process. This seems to be dependent
on the structure of the pattern. For instance, in the case of hierarchical pat-
terns, such as phase, subkind, and category patterns (see Fig. 3), the discovery
better performs with larger graphs; differently, in the case of patterns that are
not characterized by a taxonomical structure, the behavior seems opposite (see
roleMixin, relator and characterization patterns). Moreover, in the trials where
the user interacts with the application to filter out information, the reliability
significantly improves in most of the cases, thus demonstrating the key role of
the customization features (R2) implemented in the approach. Finally, for what
concerns the reliability overall (R4), the current implementation is evidently
better in calculating the model frequency (for roleMixin and subkind patterns
we have 100% reliability). Still, considering taxonomic patterns, the approach
returns high Jaccard index scores w.r.t. the absolute frequency (the scores for
phase, subkind, and category patterns were 0.91, 0.9 and 0.7, respectively).

(iv) Threats to Validity. We see one main threat to our claim that our approach
is able to discover interesting patterns (R1). The risk stems from the selection of
patterns that in our experiment are relatively small and in other cases may have
a more complex structure, with more nodes and edges. However, the examples
we used are recognized as the most common in OntoUML and are very similar
in terms of size and structure to most of the OntoUML modeling patterns [13].
Moreover, by analysing the whole output of the trials we ran, we observed bigger

5 https://purl.org/mining-cm-patterns/experiment.

https://purl.org/mining-cm-patterns/experiment
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Fig. 4. Trial 1 results. Each chart shows the data for a pattern. Bars represent found
occurrences no.; the first six charts refer to absolute frequency data, while the last
six refer to model frequency data. The red line in each chart is the total number of
occurrences found with the queries. The blue and purple lines represent the jaccard
index for the absolute frequency and the model frequency, respectively. (Color figure
online)

but less frequent patterns than those presented in Fig. 3, thus suggesting that
the approach can discover more complex structures.

4.2 Experiment 2

The second experiment asseses our approach w.r.t. R5. Information about (i)
Data, (ii) Setup, (iii) Results and (iv) Threats to validity can be found in our git
repository6. In a nutshell, processing and mining the 105 models in our catalog
6 https://purl.org/mining-cm-patterns/performance.

https://purl.org/mining-cm-patterns/performance
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takes approximately 2min in a MacBook Pro (Retina, 13-in. Early 2015) with
CPU 2,7GHz Intel Core i5, 8GB RAM.

5 Related Work

There is extensive literature on pattern discovery and its applications in a variety
of domains, including software code and databases. The application of pattern
discovery techniques in conceptual models, however, is much more restricted.
In this focused area of research, the closest work to what we propose is that
of Skouradaki et al. [15], who designed a pattern mining algorithm for BPMN.
Still, the goal of our contribution is not to provide a new mining algorithm. Our
focus is indeed on the combination of well-established itemset mining (PrefixS-
pan) and graph manipulation techniques. Furthermore, a considerable amount
of effort from our side concerns the definition of an interactive process where
users can participate in the discovery activities, thus affecting the reliability of
the final output. Last but not least, we designed the approach with the scope of
covering different conceptual modeling languages, by keeping all the functions
of the approach as language-independent.

Ławrynowicz et al. [10] seek to discover domain patterns, related to specific
areas of information and independent of the modeling language constructs, that
recur across OWL ontologies by applying a tree-mining technique. The contri-
bution is divided into two main steps, which partially resemble aspects of our
strategy, namely: a transformation step - where ontology axioms are transformed
into tree structures; and an association analysis step - where co-occurring axioms
are extracted to discover ontology patterns. This research is applied over a set
of ontologies from the BioPortal repository and is very similar to ours in spirit.
However, our solution presents key differences. Firstly, for the mining step, we
adopted the frequent itemset mining algorithm, thus involving a completely dif-
ferent input preparation step. Secondly, we devised our approach with the main
goal of discovering structural modeling patterns, namely patterns defined simply
by the combination of constructs of a modeling language. In [10] the discovered
patterns concern primarily domain-specific information that may recur within or
across ontologies (e.g., what are the recurrent properties of the class “person”).
Again, the interaction capabilities we proposed are out of their scope.

In the same direction, Lee et al. [11] seek to discover domain patterns across
and within ontologies. However, to address this challenge, two different steps are
adopted: a step where sub-graphs are extracted through candidate generation
and chunking processes; a step where frequent sub-graphs mining [12] is adopted.
This work also focuses on domain-specific patterns and one of its priorities is to
allow the processing of large-scale knowledge graphs. Moreover, no account of
how to handle an interactive discovery process is provided.

Unlike the above-presented approaches, our goal is mainly to offer an interac-
tive tool for pattern discovery. Our approach finds recurrent modeling structures,
which do not represent necessarily examples of good or bad modeling practices.
Finally, one key aspect of our solution is to apply frequent itemset mining. This
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technique enables us to mine information (e.g., cardinalities, edge labels, class
labels vs. stereotypes) that, with more orthodox approaches (e.g., frequent sub-
graph mining [12]), which are mostly aimed at mining unlabeled undirected
graphs, could not be fully exploited.

6 Final Considerations

This paper presents an interactive approach for automating the empirical discov-
ery of modeling patterns in conceptual models by combining graph manipulation
techniques and frequent itemset mining. By doing so, we move towards automat-
ing the construction of pattern catalogs for modeling languages and we create a
mechanism for helping language designers to create higher-granularity primitives
in their languages, i.e., modeling patterns that can become part of the grammar
and tools of that language [6].

Based on the encouraging results from our evaluation with 105 OntoUML
models, we envision a series of next steps. First, we will test, in collaboration with
language designers, if our approach can find unexpected patterns in OntoUML.
Second, we are going to extend the set of constructs to be encoded in the input
graphs (e.g., generalization sets). Third, we will test our approach with models
encoded in different modeling languages, such as BPMN and ArchiMate (R6).
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