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Abstract—In this paper, it is shown that lower transmis-
sion/sampling rates can be used in human activity recognition
using channel state information (F1-scores > 85%) and that
extremely high sampling rates are unnecessary once the system
has been deployed. This is done by analysing the effects of
interpolating different sampling rates on Wi-Fi dynamic channel
state information for human activity recognition. While current
research focuses on training and testing with homogeneous and
very high sampling rates (> 100 Hz), this paper outlines some
issues with higher sampling rates and explores the impact of
training and testing with heterogeneous sampling rates in order
to advance more towards joint communication and sensing, where
one cannot be certain of the received data rate over time while not
knowing the exact training set due to weight sharing in Federated
Learning. This paper shows the effect of training and testing with
heterogeneous sampling rates (including interpolated datasets) on
convolutional neural networks in WiFi sensing.

Index Terms—joint comunication and sensing, channel state
information, human activity recognition, device-free sensing,
802.11n, data stability, scalability

I. INTRODUCTION

The desire to monitor the environment and its inhabitants
is increasing. This is can be seen in the research trends
to develop smaller and less obtrusive sensors, while entire
sensing solutions in pervasive computing are getting smarter.
The increase in intelligence of these systems is due to the
ever-decreasing size of physical hardware, which at the same
time is getting more powerful. This allows for more complex
and deeper neural networks, which are becoming the brain
behind intelligent computing and systems. Moreover, sensing
technologies are expanded from physical sensing into truly-
unobtrusive, or device-free, sensing.

One of these promising device-free sensing techniques is ra-
dio frequency-based sensing through channel state information
in the Wi-Fi frequency range. It has been a steadily growing
field over the past decade and is applicable in many domains of
human activity recognition [1]–[3], vital sign monitoring [4]–
[6], and localization [7]–[9]. Wi-Fi channel state information
leverages the multi-path propagation of Wi-Fi point-to-point
networks, as the same signal can traverse different paths and
arrive multiple times at the same endpoint, albeit with different
phases and amplitudes. These can be analyzed in both time and
frequency domain in order to create insight about changes in
the enviroment.

Currently, most research involving RF-based sensing looks
at the boundaries of what is physically possible with any
given static sampling/transmitting frequency. This sampling
frequency commonly ranges between 101 and 103 Hz (1 kHz).
These higher frequencies are determined by the Nyquist rate
which is considered anywhere between 300 [10] and 800 Hz
[11], depending on the highest frequency of the human activity
to be monitored. However, this depends on the data gathered
and processing methods: phase is more sensitive to smaller
and rapid movements than amplitude, and classification of the
frequency domain may require higher sampling rates for de-
tailed analysis than analysing the temporal domain. Therefore,
the defined Nyquist frequency applies is dependent on these
combinations. For classification purposes, interpolation can be
used to predict missing data points when the rate is above the
Nyquist rate, and research has shown lower sampling rates can
be used for vital sign monitoring [12], [13] and human activity
recognition [8], as most human activities and vital signs span
the range of 2 - 5 Hz in human activity recognition.

In order to truly facilitate joint communication and sensing,
current sensing techniques should be optimized to work in
real-life scenarios, where one cannot assume to always receive
packets following a steady stream - or in other words, always
receive enough data to use the same sampling frequency
to collect data. Furthermore, in the future, large-scale Wi-
Fi sensing deployments may employ decentralized federated
learning in order to reduce resource consumption (only sharing
weights and not the training data) and increase privacy. In
this case, even when the received data is collected at the
Nyquist rate of the activity and can thus be interpolated, the
knowledge of which sampling frequency was used for training
the received weights may be unknown.

A. Problem statement

Most research in human activity recognition using channel
state information is dependent on a static stream of data in the
range of 101 and 103 Hz, where only minor inconsistencies are
considered and interpolated. However, in order to achieve joint
communication and sensing, a symbiotic relationship would
need to be created, in which sensing happens when there is
data to transmit; or rather, sensing happens when data is being
transmitted. This means that the sampling rate used for training



(Ftrain) could differ considerably from the sampling rate of
an actual received stream of packets (Ftest).

Furthermore, while the received signal can successfully
be interpolated above the Nyquist rate (examples given in
this paper), in complex mutli-receiver setups covering larger
areas (e.g. whole building or large space) employing federated
learning, the knowledge of which sampling rate was used to
train or optimize the original weights may be lost, as only
the weights itself are shared. Therefore, gaining insights in
the impact of heterogeneous sampling rates for training and
testing on overall system performance could be key to enable
autonomous Wi-Fi sensing nodes in decentralized federated
learning, as it could enable nodes to detect weights trained at
different sampling rates either choose not taint their current
weights, or in the future employ smart techniques to combine
these weights.

Additionally, the radio-frequency spectrum is an increas-
ingly scarce resource and flooding it with unnecessarily high
sampling rates is thus undesired. Moreover, to achieve joint
communication and sensing, it is important that any device
can participate in both communication and sensing. This also
includes lightweight IoT devices with minimum computing
resources and power, which in turn means fewer data samples
(thus lower transmitting or sampling rates).

B. Contributions

Based on the aforementioned problems, this paper provides
insight into lower sampling (and thus transmission) rates and
the performance on human activity recognition to reduce
bandwidth and neccesarily flooding the wireless environment.
Additionally, it explores the combination of different sampling
rates for training and testing and their impact to enable
heterogeneous transmission and recognition sampling rates
(e.g. different devices).

The main contributions of this paper are to gain insight into:

• The effect of cross-sampling frequencies on both training
and testing sets to simulate more variable network traffic,
including training with lower sampling rates.

• Verifying the findings found in this paper by applying the
methodology to different types of datasets.

The rest of the paper is organised as followed: § II outlines
current trends in regards to sampling rates, § III describes
the process of data collection, § IV explains the methodology,
§ V and § VI highlight and discuss results found, § VII target
limitations and directions for future work, and finally § VIII
concludes this paper.

II. STATE OF THE ART

As discussed in § I, most research focuses on high sampling
rates (> 100 Hz), with only a few focusing on lower sampling
rates. In this paper, we will outline current trends regarding
sampling rates used in channel state information for human
activity recognition in recent literature.

A. Comparative analysis of sampling rates in literature

Widely available channel state information datasets are
collected using sampling frequencies over 100 Hz and some
offer a comparative analysis for different sampling rates (in
such a way that Ftrain = Ftest). The related works covered
here are based on human activity recognition in a real-life
scenario, thus focusing on regular activities (e.g. walking,
sitting, eating), rather than specific or niche scenarios (e.g.
human-computer interaction [14] or sign language [15]).

To the authors’ best knowledge, the dataset employing the
highest sampling frequency has been collected by Wang et
al. [10], as it is collected at 2,500 Hz. A total of eight
activities were collected, mostly resembling activities of daily
living (including running/walking, sitting, opening a refrig-
erator, brushing teeth) for 25 volunteers (aged 19-22). The
authors calculated the minimum sampling rate as 600Hz, by
employing the Nyquist sampling rate defined as Fs ≥ 2fha
and by observing no human movement was found over 300Hz
in the channel frequency response power while collecting the
dataset. It was found that above the Nyquist sampling rate, the
performance did not degrade significantly (94.8% and 96.5%
for 800 and 2,500 Hz, respectively). Under the sampling rate,
performance seems to degrade, with 87% for 400 Hz. For
classification, spectrograms were used, meaning that a lower
sampling rate does not result in a differently shaped input, but
rather a lower resolution of the spectogram.

Yousefi et al. [16] collected a dataset at 1,000 Hz, moni-
toring activities related to lying down, falling, walking, and
sitting, resulting in a total of six classes. It is noted by the
authors that 1,000 Hz is ”a good trade-off between capturing
fast movements and computational cost”. The authors mention
”severely degraded performance” at a sampling rate of 50 Hz.
The authors use an LSTM for classification and input a 90-
dimensional vector (namely 3 antennas × 30 subcarriers) and
an accuracy of 75% is reached. Per trial, only one activity was
recorded, meaning each activity is surrounded by ”empty” data
in which nothing occurs.

A dataset containing information for line-of-sight and non-
line-of-sight environments was collected by Alsaify et al. [1]
and used a sampling rate of 320 Hz. The collected data
contains three environments, 30 subjects, five experimental
setups, 12 activities and 20 trials. While the paper itself does
not include any accuracy metrics, future research done by the
author using that dataset included these metrics [17], [18].
Using two environments, six activities, and 20 participants,
an F1-score of ≥ 91% was reached using an SVM with the
original 320 Hz. No information is given on the effect of
downsampled signals on the performance.

Wiar, collected by [19], is sampled at 30 Hz, which is
significantly lower than the others. The authors differentiate
between upper-body activities (10 classes), lower-body activi-
ties (2 classes), and whole-body activities (4 classes), most
of which are related to activities of daily living. In total,
10 participants participated and three locations (rooms) were
considered. Like Yousefi et al. [16], the activity time is shorter



than the actual time frame, resulting in the activity being
surrounded by ”empty” data. Using the 30 Hz sampling rate,
different machine learning methods were employed, including
CNN and LSTM, for three participants. These achieved an
accuracy of 0.91 and 0.92 on average, respectively.

B. Sampling rates in recent literature

To explore the recent advances in sampling rates in liter-
ature, different types of applications are included, such as
gestures, vital sign monitoring, and localization.

In recent years, most research has shifted into higher (≥
100 Hz) sampling rates. Alizadeh et al. [11] used the dataset
collected by Wang et al. [10] at a sampling rate of 1 kHz, as
they calculated the Nyquist sampling rate for human activity
monitoring at 800 Hz by calculating the Doppler frequency
shift for running and walking targets. An accuracy of 94%±
1.4% was achieved by employing a time-series LSTM-RNN
model.

Gao et al. [20] compared the performance of WiGesture
over different sampling rates. Data was collected indepen-
dently for each sampling rate, meaning no downsampling was
used. The signal was originally captured at 400 Hz, which
resulted in an accuracy of 0.9. When the sampling rate is set
to 50 > Fs > 400 Hz, the accuracy drops minimally for all
digits (to > 0.8). For most classes, when the sampling rate is
set to 50 Hz or below, the accuracy drops to 0.55− 0.6.

For general human activity recognition, most papers con-
sider sampling rates over 100 Hz. Chen et al. [3], Shalaby
et al. [2], Li et al. [21], and Muaaz et al. [22] all employ
1,000 Hz sampling frequency for human activities successfully
with varying techniques, number of participants, and number
of activities. Cheng et al. [23] used 800 Hz for human activity
recognition successfully. Yang et al. [24], Cui et al. [25], Li
et al. [26], and Hwang et al. [27] set the sampling rate to 500
Hz.

Less research explores lower sampling rates, such as 100
Hz and below. Zeeshan et al. [8] used a 100 Hz sampling rate
to achieve joint localization and human activity recognition.
For an omnipotent model, the authors report an accuracy of
0.99 for both activity recognition and localization, while for
a model that has not seen all classes, the accuracy drops to
0.93 for activity recognition. For vital sign monitoring, Wang
et al. [28] used 20 Hz for phase analysis to achieve a good
performance. Additionally, 10 Hz was also used to achieve
resilient respiration rate monitoring by Wang et al. [12]. Li et
al. successfully monitored the heart rate using 10 Hz [13]. For
human activity recognition, Shruti et al. used 20 Hz to reduce
the false negative rate of six different activities. Yang et al. [29]
used a comparable rate (30 Hz) with a focus on reducing data
by selecting the most sensitive antenna and enhancing active
data streams, while limiting the effect of inactive streams.

As can be seen, there is a wide range of sampling rates being
used in research, with most being over 100 Hz. However, for
problems outlined in § I-A, this is undesirable and an effort
should be made to find a way to use a minimal sampling rate.

III. DATA ACQUISITION

Fig. 1: Schematic of the experimental setup. Furniture and
other obstructions removed for clarity. Note that this image is
not to scale, but the distances mentioned are correct.

1) Hardware and software: Each transceiver node for this
research was modified to fit an Intel Ultimate Wi-Fi Link
5300 NIC and three antennas. The Intel NIC was chosen
in order to use the open CSI platform by D. Halperin, W.
Hu, A. Sheth, and D. Wetherall [30]. The access point was
put in the injector mode, while the receivers were placed
in monitor mode (conforming to the 802.11n specifications).
Channel 64 was chosen with a center frequency of 5.32 GHz.
The transmitter injected random packets at a frequency of
Forig = 100 Hz using all three antennas. This results in a
CSI matrix of 3x3x30.

2) Participants: The total data was collected from twenty-
one healthy participants (11F, 10M), with an average height
of 173.52± 8.89cm and an average weight of 67± 11.25kg.

3) Activities: The selected activities were associated with
agitation monitoring in Alzheimer patients (based on the
SOAPD scale). Six micro-activities were selected based on
this scale, namely flipping objects, kicking table leg, rubbing
table top, sitting and standing, nervously tapping on leg or
armrest, and wringing the hands.

All nodes are visualised in Fig. 1, with ni being the
identifier used in the remainder of the paper. The two locations
location L0 and location L1 are also highlighted. Note that
any obstructions (e.g. furniture or kitchen appliances) have
been removed from the schematic, but were stationary over
the experiments.

IV. METHODOLOGY

Wireless signal propagation is heavily affected by environ-
mental components causing reflections, diffraction, refraction,
and scattering. Every channel between two antennas can take
a different path, resulting in more or fewer obstacles and
environmental influences. The states of these channels can be
logged in a channel state information matrix H.

This matrix has a two-dimensional shape of NT × NR

elements (number of transmitting and receiving antennas, re-
spectively), where each element Hij is defined as an amplitude
and phase of the arrived signal between any T and R This
relation is expressed as Hij = ||Hij ||ej∠Hij , where ||Hij || is
the received amplitude and ∠Hij the received phase, given as
a+ bj by the used software



A. Spline interpolation

Spline interpolation is used for interpolating the down-
sampled signal. Low-order polynomials are used between
subsequent data points, rather than a high-order polynomial
between all the points. Note that the assumed time frame for
these interpolations is a window of 1 second. Four different
interpolation techniques are averaged (if the minimum number
of required data points was available), namely cubic (Fs >= 4
Hz), quadratic (Fs >= 3 Hz), linear (Fs >= 2 Hz), and
previous point replication (Fs >= 1 Hz).

conv 0
(98x88x16)

conv 1
(47x42x32)

conv 2
(23x21x64)

FC×2
(128)

SOFT

Fig. 2: Visualization of the neural network used in this
research. Note that every convolutional layer (yellow) is fol-
lowed by a leaky ReLU and dropout layer prior to the pooling
layer (red).

B. Convolutional neural network

A single network was used for training, but it was split in
three different networks were trained and tested to validate the
test results, with an increasing depth to simulate the activation
layers. The training and testing set were randomly generated
three times per classification trial, while each trial used 10-fold
cross-validation. It should be noted that the main purpose of
this paper is not to find the best convolutional neural network,
but rather explore the effect of downsampling training and
testing sets.

For each training set, three different training sets were
generated: one where all data was considered, one where every
odd or even frame was considered, and finally one where
only frames modulo 5 were considered. This was done to
reduce the temporal dependency of the training set and thus
to reduce chances for overfitting. These are not individually
discussed. Rather, these were compared to ensure they had
similar performance. As this turned out to be the case, these
were all aggregated in the remainder of the paper.

For each trained network, the weights were randomly ini-
tialized and optimized using the Adam algorithm for a total
of 250 epochs. The learning rate was set to 1 ∗ 10−3 with a
learning rate decay of 0.

V. RESULTS

Fig. 3 shows the effect of different sampling frequencies for
either training or testing, with the opposite one fixed to Forig:
for a and b, the testing rate was downsampled, while for c
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Fig. 3: Visualization of the effect of downsampling testing set
(top row) and training set (bottom row) of the self-collected
dataset when training with Fs = 100 Hz for both location L0

(left column) and location L1 (right column) averaged over
N = 21 participants over all randomization trials and 10-
fold cross validation (30 classifications per person). Horizontal
lines show the average accuracy for Ftrain = Ftest = 100 Hz.
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Fig. 4: Figure showing the results of interpolation using
four techniques on aggregated down-sampled data over both
location L0 and location L1. These results are aggregated
over different participants using different data segmentation
(regular, skip-1, and skip-4) for N = 21 and all different
interpolation techniques due to similar performance.

and d the training rate was downsampled. Additionally, ob-
servations were made for two different locations of activities,
namely location L0 (a, c) and location L1 (b, d).

It can be seen that for location L0 node n0 remains more
stable than node n1 and node n2 (0.5−0.8 and 0.2−0.55, re-
spectively) when looking at downsampled testing data between
25 and 50 Hz. Below 25 Hz, the F1-scores are < 0.6, below
10 Hz < 0.3, and below 5 Hz it becomes random guessing
(0.2) for ∀n ∈ N . Likewise, for downsampled training data,
node n0 has a slightly higher performance than node n1 and
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Fig. 5: Performance of different sampling rates for training
and testing sets without interpolation (left) and showing the
effect of interpolation on the performance (right).

node n2 (+0.05). Unlike the downsampled training set, the
accuracy does not seem to fall below 0.3 for Fs < 25. It can
be observed that all nodes seem to stabalize more for Fs ≥ 25
Hz, with only node n1 dropping significantly between Fs = 10
and Fs = 10, from an F1-score of 0.5 to 0.39.

For location L1, node n1 achieves the highest performance
when considering the downsampled testing sets, with F1-
scores of 0.6, 0.5, and < 0.35 for Fs = 50, 25, and< 10
Hz, respectively. Node n0 is overall the worst performer (−0.4

compared to node n1 on average). Comparable to location L0,
the average performance is slightly higher for a downsampled
training set +0.05 on average.

For both locations, ∀n ∈ N achieved an F1-score > 0.9
for Ftrain = Ftest = Forig.

The effects of previous, linear, quadratic, and cubic inter-
polation are averaged in Fig. 4, due to being close in perfor-
mance. Here, it can be observed that the original performance
can be restored by using any spline interpolation technique
outlined in § IV-A.

For Fs ≤ 10, the performance is in some cases restored,
but the average is usually lower than Forig. This is likely
due to losing some information from the activities. While the
performance overall is still significant (F1-score > 0.8) for
lower sampling rates Fs < 5 Hz, certain participants may
finger tap more rapidly than once every 0.2 seconds when
nervous. It should be noted that quadratic and cubic (c and
d, respectively) require Fs > 2 as they require more than 2
sampling points, and thus there is no value given for Fs = 2.
Therefore, for comparison reasons, no interpolation is done
for Fs < 5 Hz.

The effect of downsampling with different sampling rates
for the training and testing set can be seen in Fig. 5. Results
per sampling rate for Ftest are visualized per Ftrain (a,c,e,g,i
for Ftrain = 100, 50, 25, 10, 5, respectively). It can be seen
that for Ftrain = Ftest performance remain high (> 0.8).
For Ftrain = 5, 10, and 25 Hz, the average performance is
higher than for Ftrain = 50 or 100 Hz, namely 0.61 and 0.47,
respectively.

The vertical black line in Fig. 5. represents the case where
Ftrain = Ftest. It can be seen that for Ftrain > Ftest, the
performance degradation is less severe: on the right side of
the line, the drop off is less steep (less performance lost per
Hz).

As with Fig. 4, it can be seen interpolation approximates
the original performance Fig. 5 (b,d,f ,h, and j). Between the
comparison in Fig. 3, 4, and 5, it appears the latter has more
outliers. This is due to the averaging of participants, nodes,
and locations, which are individually plotted in Fig. 3 and 4.

VI. DISCUSSION

As can be seen in § V and Fig. 3, the performance for ∀n ∈
N for l ∈ L is quite similar for Ftest = Ftrain = 100 Hz.
While the magnitude of accuracy drops is different depending
on the location when downsampling, the overall degradation
follows a similar curve. This implies each node learns similar
features from the performed activities (albeit in different
gradients) and are thus similarly affected by downsampling.
Better performance can thus be seen for node n0 in location L0

and node n1 in location L1, as these are being less affected
by the extra distance between node and location. Due to
the comparable behaviour for ∀n ∈ N for l ∈ L and the
focus of the paper being looking at the broader effect of
downsampling over any node and location, results between
nodes and locations are aggregated from here on.



Three cases can be identified worth discussing when con-
sidering training and testing with different sampling rates,
namely Ftrain = Ftest (case 1), Ftrain > Ftest (case 2),
and Ftrain < Ftest (case 3).

• Case 1. When Ftrain = Ftest, the overall performance
is comparable to Forig (F1-score ≈ 0.85). This is inline
with literature, where a successful performance can be
received with lower sampling rates as long as the sam-
pling rates are equal to one another. This corresponds to
Fig. 5 a, c, e, g, and i, where Ftrain = Ftest.

• Case 2. When Ftrain > Ftest, the overall performance
ultimately drops to random guessing (F1-score of 0.167).
This effect is greatest when the difference between the
two rates is highest (Ftrain = 100 Hz and Ftest = 5 Hz,
5 a). Likewise, the drop in performance is lesser when
the sampling rates are closer, with a minimum effect
seen when the two are closest, namely Ftrain = 10Hz,
Ftest = 5 Hz (Fig. 5 g). It is likely that when the
sampling rate of the training set is higher, the features the
neural networks extracts are better preserved with similar
sampling rates. This explains why for drastically lower
sampling rates for the test set with a higher sampling
rate for the train set (e.g. 5 and 50 Hz, respectively) the
accuracy drops off after 25 Hz for both Ftrain = 50, 100,
as these are far away from the remaining sampling rates
(25, 10, 5). These effects are visualized in Fig. 5.

• Case 3. When Ftrain < Ftest, the overall performance
impact seems lesser than for Case 2. For the largest
difference in rates (Ftrain = 5 Hz and Ftest = 100 Hz, 5
i) an F1-score of 0.39 is measured. While not usable as is,
this is still twice as high as random guessing. In certain
cases, either with fewer classification classes or more
diverse activities (e.g. anomaly detection), this implies
devices with different transmission rates can use the same
neural network, reducing cost resources. Additionally, it
can be observed that when the sampling rates are closer
(25−5 Hz) in favour of the test set, the performance does
not degrade as much and in some cases is even higher (g
and i). This implies that it is easier to train on features
from a lower resolution training set and finding these
features in a higher resolution testing set (Ftrain < Ftest)
than vice versa (Case 2). This may be attributed to it
being easier to extract already trained features from a
high resolution image, rather than finding high resolution
features in a low resolution image.

Outliers in the results can be found for Ftrain = 5, 10 Hz
and Ftest = 5, 10 Hz, where the accuracy for both is higher
when testing with a sampling rate slightly higher than the
training rate (+0.05 to +0.1). This could be due to the training
set providing more possible data points for the training set to
be mapped to while testing.

Overall, without applying interpolation, these results imply
training a convolutional neural network network slightly under
the expected received signal rate seems most optimal. This is
due to a combination of having similar rates for training and

testing is beneficial in all three cases, where Ftrain = Ftest

achieve the highest performance. However, in joint commu-
nication and sensing one cannot assume that the data rate
is always the same. Comparing case 2 and case 3, overall
higher performance is achieved when Ftrain is slightly lower
than Ftest, within the range of 10 Hz. Moreover, the slope
of the loss in performance for case 2 and 3 is different and
this feature could potentially be used to identify the original
training rate of the received weights in federated learning.

The same and sometimes slightly higher performance is
gained when interpolating the downsampled signal as shown
in Fig. 4 and Fig. 5 (b, d, f, h, and j). This is inline with current
knowledge and expectations that signals can be well replicated
interpolated as long as the sampling rate is gathered at the
Nyquist rate, which is around 5 Hz for these activities. It is
likely that spline interpolation can be seen as a filter: low-level
polynomials between a small set of points reduce the number
of outliers caused by noise in the noisy wireless environment
and thus reducing the overall variance. The reason this holds
for the lower sampling rates Fs < 10 Hz is that the activities
are significantly slow to still be distinctive.

With spline interpolation, a polynomial is applied over a
low number of data points, which corresponds to 1

F ′
s

seconds
(as discussed in § IV-A). So, in the case of F ′

s = 50 Hz,
this means over every 0.02 seconds. This window is relatively
small compared to the duration of an activity performed during
the experiments, which resulted in all interpolation methods
worked equally well.

VII. FUTURE WORK

This paper considered classification windows of 1 second,
which would result in blank frames (frames containing no
data) when the sampling frequency is below 5, or even 1 Hz.
Therefore, future research should consider longer classification
frames so that sampling frequencies below 1 Hz can be
explored, as these results imply interpolation could restore
the performance to a certain degree, likely depending on the
activity.

Another aspect of joint communication and sensing worth
exploring in human activity recognition is simulating proper
network behavior, especially the aspect of burst data and
more correct arrival time distributions (e.g. Poisson arrival
process). At times, receivers may receive a burst of a few
seconds, followed by a period of little to no packets. It is
worth considering how unsupervised networks can be adopted
to learn from the higher rates in order to classify (interpolated)
lower sampling rates.

VIII. CONCLUSION

This research has shown the impact of training and testing
with different sampling rates in device-free WiFi sensing. This
is a potential important aspect in joint communication and
sensing combined with federated learning, as many devices
will operate at different maximum transmission rates, not
know the original training parameters for the received weights,
or not have the resources to (re)train a network. Thus, being



able to use different sampling rates or identify the sampling
rate a neural network is trained at by comparing the perfor-
mances could be advantageous.

The results imply that lower sampling rates, or even differ-
ent rates across the training and testing set, can be used for
monitoring after interpolation and sensing does not need to
be dependent on high sampling rates using the scarce wireless
resources for human activity recognition (2−5 Hz), where the
Nyquist frequency is more realistically around 4− 10 Hz.

Finally, it appears lowering the sampling rate of the training
set has less of an impact on the overall performance. Especially
when the sampling rates are between 5−25 Hz and the training
set has a comparable rate than the testing set, the performance
could be likely be used in binary problems (e.g. presence or
anomaly detection).
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