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Abstract
Wireless vital signs sensors are increasingly used for remote patient monitoring, but data analysis is often challenged by 
missing data periods. This study explored the performance of various imputation techniques for continuous vital signs 
measurements. Wireless vital signs measurements (heart rate, respiratory rate, blood oxygen saturation, axillary tempera-
ture) from surgical ward patients were used for repeated random simulation of missing data periods (gaps) of 5–60 min in 
two-hour windows. Gaps were imputed using linear interpolation, spline interpolation, last observation- and mean carried 
forwards technique, and cluster-based prognosis. Imputation performance was evaluated using the mean absolute error (MAE) 
between original and imputed gap samples. Besides, effects on signal features (window’s slope, mean) and early warning 
scores (EWS) were explored. Gaps were simulated in 1743 data windows, obtained from 52 patients. Although MAE ranges 
overlapped, median MAE was structurally lowest for linear interpolation (heart rate: 0.9–2.6 beats/min, respiratory rate: 
0.8–1.8 breaths/min, temperature: 0.04–0.17 °C, oxygen saturation: 0.3–0.7% for 5–60 min gaps) but up to twice as high for 
other techniques. Three techniques resulted in larger ranges of signal feature bias compared to no imputation. Imputation 
led to EWS misclassification in 1–8% of all simulations. Imputation error ranges vary between imputation techniques and 
increase with gap length. Imputation may result in larger signal feature bias compared to performing no imputation, and can 
affect patient risk assessment as illustrated by the EWS. Accordingly, careful implementation and selection of imputation 
techniques is warranted.
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Abbreviations
°C  degree Celsius
(A)E  (Absolute) error

Bpm  beats per minute
Brpm  breaths per minute
CBP  cluster-based prognosis
EWS  early warning score
HR  heart rate
IQR  interquartile range
LI  linear interpolation
LOCF  last observation carried forward
MAE  mean absolute error
MCF  mean carried forward
MPE  mean percentage error
RR  respiratory rate
SD  standard deviation
SI  spline interpolation
SpO2  blood oxygen saturation
Temp  axillary temperature
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1 Introduction

With the evolution of mobile health technology, the use of 
wireless sensors for remote vital signs monitoring is rap-
idly increasing. In a hospital ward setting, wireless moni-
toring provides the opportunity to measure vital signs con-
tinuously, which allows active notification of vital signs 
abnormalities and evaluation of trends [1, 2]. Accordingly, 
remote technologies have been deployed to assist early 
identification of patient deterioration in high-risk surgi-
cal or general ward patients [3, 4], and were proposed 
for monitoring of isolated patients during the COVID-19 
pandemic [5]. Furthermore, the continuous data can be 
used for automated analysis and risk modelling, aiming to 
support patient monitoring and clinical decision-making. 
Although standards for the analysis of continuous data 
in ward patients have not been established as of yet, the 
sensor data can, for example, be used for the objectifica-
tion of trends over time based on signal characteristics or 
for automated calculation of early warning scores (EWS) 
that are currently used as part of rapid response systems 
in ward patients [2, 6]. Likewise, the vital signs meas-
urements or extracted signal characteristics can be used 
as features for advanced event detection algorithms and 
(machine learning-based) risk prediction models that are 
increasingly being developed [7].

Despite the potential clinical benefits of remote con-
tinuous monitoring and corresponding risk modelling, the 
processing and interpretation of the data is still a major 
challenge and hampered by missing and poor quality data 
[8, 9], resulting in data loss of up to 50% [10, 11]. Meas-
urement disturbances or disruptions are often caused by 
motion artefacts, which occur frequently during continu-
ous wireless measurements in mobilizing patients [12, 13]. 
In addition, sensor malfunction or displacement and wire-
less connection issues can lead to artefacts or data loss [8, 
14]. In case the missing or erroneous data periods are not 
corrected adequately, these segments will hinder the evalu-
ation of vital signs abnormalities and trends. Furthermore, 
missing data segments will hamper feature extraction and 
thereby reduce the performance of event detection algo-
rithms, acuity scores, or risk prediction models that are 
used for clinical decision-making [7, 13–16].

In current practice, retrospective imputation is often 
applied to substitute periods of missing data or removed 
erroneous segments in physiological time series data for 
further analysis or risk modelling. Traditionally, imputa-
tion is performed using basic methods such as carry for-
ward techniques or replacement by the patient mean [17, 
18]. These basic methods are easy to interpret in clinical 
practice, and therefore widely used. Yet, various alter-
native imputation methods that model the dynamic or 

personal characteristics of the data have been described 
more recently, which may be better suited for the evalu-
ation of patterns or for personalized prediction models 
[16–19]. Although each imputation method has advantages 
and limitations, it is yet unclear how different imputation 
techniques perform when used for continuous vital signs 
monitoring in ward patients, and to what extent imputa-
tion could influence further analysis and clinical decision-
making. Therefore, the current study aimed to evaluate 
and compare the performance of various techniques for 
retrospective imputation of missing data periods, and to 
explore the impact of imputation on patient monitoring 
by illustrating the effects on the extraction of basic signal 
features and calculation of early warning scores.

2  Methods

2.1  Data collection

The current study has a retrospective observational study 
design. Continuous vital signs recordings were obtained 
from an existing study database, including data from 60 
adult patients that were admitted to the hospital ward for 
postoperative care after elective oesophageal or gastric sur-
gery or hip fracture surgery in the Hospital Group Twente 
(ZGT, Almelo, the Netherlands) between 2018 and 2019. 
Vital signs were obtained every minute using wireless sen-
sors connected to the Patient Status Engine (Isansys Lif-
ecare Ltd., Oxfordshire, UK). The chest-worn LifeTouch 
sensor was used for measurements of heart rate (HR) and 
respiratory rate (RR), and the LifeTemp (Isansys Lifecare 
Ltd., Oxfordshire, UK) sensor was placed under the arm-
pit to record axillary temperature (Temp). Blood oxy-
gen saturation (SpO2) was measured with a finger probe 
attached to the wrist-worn Nonin WristOx2 3150 (Nonin 
Medical Inc., Plymouth, MN, USA). Measurements were 
performed in parallel to standard care. Both caregivers 
and patients were blinded for the continuously measured 
vital signs data. Correct functioning of the sensors was 
checked regularly during office hours, and measurements 
were re-established after sensor repositioning, if needed. 
All data was uploaded to MATLAB (MathWorks, Inc.) 
for further analysis and simulation. Vital signs recordings 
were preprocessed by removing values that exceeded the 
expected physiological range [20] (HR > 200 or < 30 bpm, 
RR > 50 or < 5 brpm, SpO2 < 70%, Temp > 50 or < 30 °C). 
Likewise, samples reporting error codes provided by the 
system in case of measurement interruptions caused by 
sensor displacement or disconnection were removed. Fur-
thermore, a 4 min window-based median filter was applied 
[21].
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2.2  Data loss evaluation

To explore the degree of missing data in the current database 
and thereby evaluate the clinical relevance of data imputa-
tion, the percentage of the total recording time where one-
minute vital signs samples were missing before and after 
preprocessing was calculated. In addition, the amount and 
duration of missing data periods were assessed for each vital 
parameter. Interruptions longer than 4 h were not included 
in this count, as these comprise a major part of an eight-
hour nurse shift and were therefore not regarded as part of 
continuous measurements.

2.3  Missing data simulation

Missing data periods (‘gaps’) were simulated in real uninter-
rupted continuous vital signs recordings to evaluate the per-
formance of different imputation methods. Figure 1 provides 
an overview of the main steps of the simulation and evalu-
ation process. In each patient, a maximum of ten windows 
of three hours each was selected for analysis for each of 
the vital signs (‘analysis window’). Analysis windows were 
selected subsequently using a sliding window approach, 
allowing no overlap. Furthermore, windows were only 
selected in case the concerning vital sign measurement did 
not contain any missing values. The last two hours of each 
window was allocated as ‘simulation window’ and used for 
simulation of gap segments (Fig. 2). This simulation window 
size was selected based on the assumption that—although 
there is no consensus regarding the optimal monitoring fre-
quency [22]—the (average) vital signs values would ideally 
be updated at least every two hours to enable evaluation 
of the risk level of ward patients which typically deterio-
rate in a period of hours [23]. Gap segment simulation was 
performed by randomly generating one artificial period of 
missing data within the simulation window. Simulation was 
repeated 30 times per simulation window, and for gap seg-
ment lengths of 5, 10, 15, 20, 30, and 60 min, respectively. 
For each simulated gap segment, the one-hour window pre-
ceding the gap was assigned as the ‘pre-gap window’, which 
was used for extraction of prior data characteristics by some 
of the imputation techniques.

2.4  Imputation techniques

Five different imputation techniques were tested, including 
the last observation carried forward (LOCF), mean carried 
forward (MCF), linear interpolation (LI), and spline inter-
polation (SI) techniques [24], and a cluster-based progno-
sis technique (CBP). The first four methods were selected 
because these represent traditional and basic imputation 
methods that are widely used for physiological signal 
processing and imputation of vital signs [17, 18, 25–30], 

whereas the last method was selected to explore a more 
advanced technique performing personalized estimation of 
vital sign patterns [31]. The differences in imputation tech-
niques are illustrated in Fig. 3.

The LOCF technique substitutes all samples in the gap 
segment by the last sample value prior to the data gap. The 
MCF technique is a variant of the LOCF method, aiming to 
estimate the missing data based on a longer measurement 
period. Accordingly, the MCF technique uses the mean value 
of the one-hour pre-gap window to fill the gap segment. In 
the LI technique, the gap segment is substituted by a linear 
function, which is estimated using the latest sample value 
prior to the data gap and the first sample value after the gap. 
Similarly, the SI technique imputes the gap segment with a 
cubic spline function. The CBP technique is adapted from 
imputation methods described by Sun et al. [31], where a 
regression model is used to impute missing data using simi-
lar data segments obtained in similar patients. Details of the 
CBP technique and modifications that were made as com-
pared to Sun’s method are described in Supplementary file 1.

2.5  Performance evaluation

The performance of each imputation technique was assessed 
using the mean absolute error (MAE) and mean percent-
age error (MPE). The MAE and MPE were calculated for 
each simulated gap by respectively averaging the absolute or 
relative difference between the imputed data value ( ̂xi ) and 
corresponding original data value ( xi ) for all data samples 
( i ) in the gap segment with length l , following Eqs. 1 and 2:

As simulation was performed 30 times per analysis win-
dow for all combinations of simulated gap length and vital 
parameters, the  MAEgap and  MPEgap were averaged across 
these iterations to obtain the results per analysis window 
for each of these combinations. The  MAEgap values of all 
analysis windows were evaluated separately for the different 
gap segment lengths and different vital parameters, to evalu-
ate the range of performance for each imputation technique. 
The  MPEgap was used to explore differences in overall per-
formance between imputation techniques and between vital 
parameters.

Last, for each vital parameter, the median  MAEgap of all 
simulations performed in assessment windows with 10% 
lowest and 10% highest original mean value were com-
pared with the median  MAEgap of the remaining windows, 

(1)MAEgap =

∑l

i=1
�
�xi − x̂i

�
�

l

(2)MPEgap =

∑l

i=1

���
xi−x̂i

xi

���
l

∗ 100%
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aiming to explore the influence of vital sign levels on impu-
tation performance. Likewise, the  MAEgap was compared 

for assessment windows with highest and lowest standard 
deviation to investigate the effect of data variability.

Fig. 1  Overview of the missing data simulation process and evalu-
ation of imputation techniques. MAEgap mean absolute error of the 
imputed gap segment, MPEgap mean percentage error of the imputed 
data gap, AE2h-mean absolute error of the mean value of the two-hour 

simulation window, AE2h-slope absolute error of the slope of the two-
hour simulation window, E2h-EWS error of the EWS points assigned to 
the two-hour simulation window, EWS: early warning score, p param-
eter, w window, s simulation iteration, l gap length
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2.6  Clinical impact exploration

2.6.1  Effects on signal features

In clinical practice, the evaluation of vital signs measure-
ments by caregivers does not only rely on individual vital 
signs values but also involves evaluation of vital signs 
trends, i.e., whether vital signs are stable or increase or 
decrease over time [32]. Although there is still little evidence 
regarding the clinical value of automated trend assessment 
methods for vital signs monitoring, studies have indicated 

that basic trend metrics such as the average value or slope 
can contribute to clinical risk prediction models [33, 34]. 
To explore to which extent imputation may influence the 
extraction of signal features that could be relevant for trend 
identification or risk modelling, we compared the mean 
value and linear slope of the two-hour simulation window 
before and after imputation. Accordingly, the absolute 
error (AE) between the mean value of the original two-
hour simulation window and the mean value of the simula-
tion window with an imputed gap segment was calculated. 
resulting in the  AE2h − mean. In addition, the  AE2h − mean was 
also calculated for the simulation window after deletion of 
the gap samples, i.e., following an available-case analysis 
approach, which served as a reference for trend estimation 
without imputation. Like the  AE2h − mean, the absolute error 
was also computed for the slope  (AE2h − slope), for all impu-
tation techniques, and for the situation without imputation. 
For the  AE2h − slope, windows with an original absolute slope 
value < 0.0025 per hour were excluded as the slope feature 
was considered clinically irrelevant for stable measurements.

2.6.2  Effects on early warning scores

Early warning scores (EWS) are used widely in clinical 
wards to assess the risk of patient deterioration. Although 
many variants exist, the EWS is obtained by assigning points 
for every vital sign, where the number of points increases for 
larger deviations from their normal range. The EWS is cal-
culated as the sum of all assigned points and used to trigger 
further patient assessment or care escalation in case the total 
EWS exceeds a pre-set threshold [6]. Although vital sign 
measurements currently rely on nurse observations, there 
is growing interest to use sensor technologies for (partial) 

Fig. 2  Illustration of the windows used in the gap simulation pro-
cess. In each iteration of the simulation process, a missing data period 
(gap segment) of a predefined length (5, 10, 15, 20, 30, or 60 min) is 
generated at random within the simulation window and used to test 
imputation techniques. The pre-gap window is used to extract signal 
characteristics prior to the gap segment

Fig. 3  Illustration of the imputation of missing data by different imputation techniques. LOCF last observation carried forward, MCF mean car-
ried forward, LI linear interpolation, SI spline interpolation, CBP cluster-based prognosis
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automation of EWS measurements [2]. To investigate the 
possible consequences of imputation on the EWS, we inves-
tigated for each vital parameter to what extent the points 
assigned to the vital parameters obtained from the sensor 
recordings were affected by imputation. Accordingly, for 
each simulation, the mean value of the two-hour assessment 
window was categorized according to the criteria described 
in Table 1 before and after imputation. The criteria of HR, 
RR, and Temp were based on the Modified Early Warning 
Score (MEWS), which is widely used [13]. As SpO2 is not 
included in the MEWS, the SpO2 criteria were obtained 
from the National Early Warning Score (NEWS) criteria 
[18]. For each parameter, the error  (E2h − gap) between the 
points assigned to the original window and the window after 
gap simulation or imputation was assessed. Correspond-
ingly, the number of simulations which resulted in misclas-
sification of the EWS (i.e.,  E2h − gap ≠ 0) was calculated.

3  Results

3.1  Data collection

  The database included vital signs recordings obtained 
from 60 hospitalized post-surgical patients, of which 8 
patients were excluded due to incomplete demographical 

data. A total of 52 patients were included, of which 15 
patients experienced one or more complications (Clavien 
Dindo Class I–III) during the monitoring period. The 
demographics of the included patients are reported in 
Table 3 (Supplementary file 2).

3.2  Data loss

The original dataset of included patients contained vital 
signs recordings with a median duration of 119 h (IQR: 
93–147) per vital sign, resulting in a total of 6792 h of 
monitoring data. The median data availability in these 
recordings was 86% (IQR: 72–94%) for HR, 86% (IQR: 
72–94%) for RR, 46% (IQR: 38–61%) for SpO2, and 96% 
(IQR: 81–99%) for Temp. In total, 0.2% of the missing data 
was related to outlier removal whereas 60% was related to 
sensor displacement or disconnection as reported by the 
system. For the remaining missing samples, data was miss-
ing without further information. Figure 4 reports the num-
ber and total duration of missing data periods up to 4 h 
that was observed in the original dataset. Most of the gaps 
that were observed had a duration of 1–5 min, whereas 
larger gaps were observed less frequently. Nevertheless, 
the total duration of larger gaps was higher compared to 
short data gaps.

Table 1  Criteria for early 
warning score (EWS)

Parameter EWS points

3 2 1 0 1 2 3

Heart rate (bpm) ≤ 40 41–50 51–100 101–110 111–129 ≥ 130
Respiratory rate (brpm) ≤ 8 9–14 15–20 21–29 ≥ 30
Oxygen saturation (%) ≤ 91 92–93 94–95 ≥ 96
Temperature (°C) ≤ 34.9 35-38.4 ≥ 38.5

Fig. 4  Number and total length of missing data periods (gaps) with a gap length of up to 4  h observed in the vital signs recordings of the 
included patient population. HR heart rate, RR respiratory rate, SpO2 blood oxygen saturation, Temp temperature
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3.3  Missing data simulation

From the original data recordings, a total of 1743 three-hour 
analysis windows (497 for HR, 492 for RR, 264 for SpO2, 
490 for Temp) were eligible for simulation, with a median 
of 34 (IQR: 31–39) windows per patient. As gap simulation 
was repeated 30 times for each gap size in every analysis 
window, a total of 313,740 gaps were simulated.

3.4  Performance evaluation

Figure 5 reports the  MPEgap observed across all gap lengths 
for each parameter. For the HR, RR, and SpO2, the median 
 MPEgap and corresponding upper quartile ranges were low-
est for the LI technique followed by the CBP and LOCF 
techniques, but interquartile ranges were relatively large and 
overlapping. The median and upper quartiles of the  MPEgap 
were highest for the MCF and SI methods. The same perfor-
mance ranking was found for Temp, except for the fact that 
SI showed the second lowest median  MPEgap. Comparing 
results between vital parameters,  MPEgap ranges were largest 
for the RR with median  MPEgap ranging between 5.5% for 
LI to 9.7% for SI, followed by the HR (2.0% for LI to 4.1% 
for MCF), SpO2 (0.5% for LI to 1.0% for MCF) and Temp 
respectively (0.2% for LI to 0.7% for MCF).

Looking at the absolute errors across different gap sizes 
(Fig. 6),  MAEgap ranges increased with gap size for all vital 
parameters, in particular for the SI method. The order of 
performance was similar as found for the  MPEgap results, 
where LI showed the lowest median  MAEgap. The  MAEgap 

of the LI technique for gaps of 5 to 60 min ranged from 
HR: 0.9–2.6 bpm, RR: 0.8–1.8 brpm, SpO2: 0.3–0.7%, 
and Temp: 0.04–0.17 °C. For small gap sizes, highest error 
rates were typically found for MCF whereas large gap sizes 
showed highest errors for SI. The median  MAEgap reached 
values up to 6.5 bpm (SI technique) for the HR, 5.9 brpm 
for RR (SI technique), 2.1% for  SpO2 (SI technique), and 
0.31 °C for Temp (MCF technique) for gaps of 60 min.

Supplementary file 3 reports the  MAEgap ranges for all 
simulations performed in the assessment windows with 10% 
lowest and 10% highest mean value or standard deviation, 
respectively. For the HR and RR, the median  MAEgap and 
interquartile ranges were largest for windows with the high-
est mean value, and lowest for windows with lowest mean, 
whereas the opposite effect was observed for the SpO2 and 
Temp. For all vital parameters,  MAEgap ranges were lowest 
for windows with the lowest standard deviation and highest 
for the windows with the highest standard deviation.  MAEgap 
varied most between assessment window clusters for the 
MCF method, followed by the LOCF method.

3.5  Clinical impact exploration

3.5.1  Effects on signal features

The  AE2h − mean and  AE2h − slope obtained by comparing the 
mean value and slope of the simulation window before 
and after simulation are shown in Fig. 7 for the HR, and in 
Supplementary file 4 for RR, SpO2 and Temp. As for the 
 MAEgap, the  AE2h − mean and  AE2h − slope increased with gap 

Fig. 5  Mean Percentage Errors  (MPEgap) observed for imputation of 
missing data periods simulated in individual vital signs. The  MPEgap 
is shown as median with interquartile range, and described results 
found for all simulated gap lengths. LOCF  last observation carried 

forward, MCF mean carried forward, LI linear interpolation, SI spline 
interpolation, CBP cluster-based prognosis, HR heart rate, RR respir-
atory rate, SpO2 blood oxygen saturation, Temp temperature
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segment length. Comparing estimations of the two-hour 
window mean, the median  AE2h − mean and upper quartiles 
were lowest for the LI or CBP techniques for all gap sizes, 
although interquartile ranges highly overlapped with other 
techniques. For the slope, the LI technique was associ-
ated with the lowest median  AE2h − slope for almost all gap 
sizes, ranging between 0.05 and 0.8 bpm/hour for HR, 
0.04–0.5 brpm/hour for RR, 0.00–0.08%/hour for SpO2 
and 0.02–0.23 °C/hour for Temp for gaps of 5–60 min. 
Comparing trend estimations after imputation to estima-
tions based on non-imputed data, the median  AE2h − mean 
and  AE2h − slope of the LI and CBP method and correspond-
ing upper quartiles were lower as compared to performing 
no imputation for almost all gap sizes in all vital param-
eters. In contrast, in comparison to no imputation, median 
 AE2h − mean and  AE2h − slope and upper quartiles were larger 

for the highest gap size(s) for the LOCF and SI, and for all 
gap sizes for the MCF technique.

3.5.2  Effects on early warning scores

Figure 8 presents the percentage of simulations performed 
in each parameter where the EWS was misclassified (i.e., 
 E2h − gap ≠ 0) after gap simulation and imputation respec-
tively. Overall, imputation led to different EWS points in 
1–2% of all simulations for HR and Temp, and between 2 
and 7% for RR and 2–8% for SpO2. Changes were observed 
in both directions, where the number of simulations with 
increased points was comparable with the number of sim-
ulations with decreased points. In most cases, the EWS 
increased or decreased one level, resulting in  E2h − EWS of ± 1 
points for HR, RR, and SpO2 and ± 2 points for Temp (see 

Fig. 6  Mean Absolute Error  (MAEgap) observed for imputation 
of simulated missing data periods (gaps) of 5–60  min length. The 
 MAEgap is shown as median with interquartile range. LOCF  last 
observation carried forward, MCF  mean carried forward, LI  linear 

interpolation, SI  spline interpolation, CBP  cluster-based prognosis, 
HR  heart rate, RR  respiratory rate, SpO2  blood oxygen saturation, 
Temp temperature
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Table 1). Similar to the results presented for the extraction 
of signal features, imputation using the LI and CBP tech-
niques had a lower impact on EWS calculation compared 
to performing no imputation, whereas the LOCF, MCF, and 
SI methods showed more or higher changes in EWS points 
for several parameters.

4  Discussion

4.1  Main findings

This study explored the performance and related clinical 
impact of various techniques for imputing missing data 
periods in continuous vital signs recordings obtained using 
wearable wireless sensors in postoperative surgical patients. 
The results indicated that the performance of imputation 
techniques varied largely between simulation windows, and 
that imputation errors strongly increased with gap segment 
length. Of all vital parameters, imputation had the most 
impact on respiratory rate measurements as suggested by the 
percentage error rates. Although the error ranges found for 
the different imputation techniques overlapped, we observed 
structural differences between the median errors and cor-
responding interquartile ranges. The LI technique resulted 
in the lowest median errors and smallest error ranges com-
pared to the other imputation techniques. The largest median 
errors and error ranges were observed for the SI and MCF 
techniques. Similar results were found for the signal features 

extracted from the two-hour simulation window, where error 
ranges varied between and within vital parameters, tech-
niques, and gap lengths. The LI and CBP techniques led 
to lower median bias and a smaller interquartile range of 
the windows’ slope and mean as compared to the deletion 
of missing data periods. In contrast, however, the MCF, SI, 
and LOCF techniques were associated with a larger (range 
of) bias compared to performing no imputation for most gap 
sizes. Therefore, these techniques can have adverse effects 
on the accuracy of signal features, and create most uncer-
tainty in further analysis. Imputation led to an increase or 
decrease in the number of EWS points assigned to vital 
parameters in up to 8% of all simulations, which illustrates 
that imputation can affect clinical decision-making.

4.2  Implications

Missing data is a relevant issue in remote vital signs moni-
toring in ward patients, as observed by the large missing 
data rates observed in the present study and other studies 
[10, 11]. Although most data gaps observed in the original 
recordings had a short duration, larger gaps contributed most 
to the total duration of missing data, which indicates that 
imputation is relevant for gaps of variable lengths. The cur-
rent study highlights the importance of careful implementa-
tion and selection of imputation techniques, as error rates 
strongly varied between and within techniques, in particular 
for larger gap sizes.

Fig. 7  Absolute error of the mean value  (AE2h-mean) and the slope 
 (AE2h-slope) of the two-hour simulation window found for the heart 
rate (HR). The absolute error is shown as median with interquartile 
range for different imputation techniques and for the situation with-

out imputation. LOCF  last observation carried forward, MCF  mean 
carried forward, LI  linear interpolation, SI  spline interpolation, 
CBP cluster-based prognosis, No imp. no imputation,
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Although the performance ranges of imputation tech-
niques overlap, LI is suggested as the preferred method for 
retrospective imputation since this method showed the low-
est median error rates and corresponding interquartile ranges 
and therefore brings the lowest risks of high error rates. 
Furthermore, this method is simple and therefore relatively 
easy to implement and intuitively understood by clinicians. 
This finding is in line with other studies reporting that lin-
ear interpolation generally provides higher imputation accu-
racy in vital signs data compared to other methods [18], 
and improves the performance of classification models based 
on physiological data [16]. The CBP technique showed the 
second-best performance for most parameters. As the CBP 
technique relies on model training, it can be expected that 
the performance of this technique will improve with fur-
ther model optimization using larger datasets tailored to 
the population of interest. Since the CBP method estimates 
the dynamical characteristics of the missing data, this or 

similar personalized approaches may thereby be considered 
for intelligent models [15, 16].

In the investigation of the window slope and mean, 
we observed lower median errors and corresponding 
upper quartiles, compared to performing no imputation 
for the LI and CBP methods. Therefore, these techniques 
can improve the accuracy of signal feature extraction in 
measurements containing missing data periods and reduce 
the uncertainty in further data analysis. Conversely, we 
observed that the MCF, LOCF, and SI techniques were 
associated with larger error ranges as compared to per-
forming no imputation for some or all gap lengths and 
resulted most often in EWS misclassification. A possible 
explanation for these observations is that these methods 
do not (adequately) estimate the variability of data esti-
mations and are affected most by outliers prior to or after 
the data gap. Correspondingly, we observed that signal 
variability had the most influence on error rates in these 

Fig. 8  Percentage of simulations where (no) imputation led to a dif-
ferent number of EWS (early warning score) points assigned to indi-
vidual vital parameters, compared to the original data. The colors 
present the error of the EWS points  (E2h-EWS), indicating an increase 
(+ 1 or + 2 points) or decrease (−1 or −2 points) in EWS points. 

LOCF  last observation carried forward, MCF mean carried forward, 
LI  linear interpolation, SI  spline interpolation, CBP  cluster-based 
prognosis, HR  heart rate, RR  respiratory rate, SpO2  blood oxygen 
saturation, Temp temperature
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methods. Therefore, we do not recommend using these 
techniques for retrospective imputation. These findings are 
of clinical relevance, as the LOCF and MCF or similar 
imputation methods are commonly applied for vital signs 
imputation in early warning scores or other risk prediction 
models [25–29].

Independent of the technique that is selected, one should 
be aware that imputation by definition results in data uncer-
tainty, where the possible benefits—compared to performing 
no imputation at all—but also the risks for clinical decision-
making will depend on the size and variability of errors. 
The median percentage of errors found across all simula-
tions remained below 10% for each vital parameter, which 
indicates that the clinical risks of imputation are limited 
in most cases. Correspondingly, the risk that imputation 
affects the EWS points assigned to individual parameters 
was 1–8%, which could be reasonable in non-acute settings. 
On the other hand, the performance of the imputation tech-
niques varied considerably between simulation windows, as 
reflected by the large interquartile ranges, creating uncer-
tainty for further risk modelling. Besides, the relatively high 
upper quartiles indicate that there is a considerable risk of 
large imputation errors, in particular for larger gap sizes. 
Last, it is likely that missing data periods will be present 
simultaneously in multiple vital parameters, since measure-
ments often rely on the same sensor or data connection. In 
this case, the uncertainty of risk models that rely on multiple 
parameters—such as the EWS—will increase even more. 
For some clinical applications, these (risks of) high errors 
are unacceptable, for example when it compromises safety 
by underestimating risk in unstable patients. As such, it is 
highly important to assess when the use of imputation is no 
longer justified.

In practice, the clinical team has to decide which level 
of uncertainty is acceptable for which patient, and for how 
long. Obviously, the clinical condition of the patient and 
corresponding suspicion for deterioration is paramount, as 
this defines the required level of monitoring. For example, 
for patients that have been stable for 2 days and are nearing 
hospital discharge, it will suffice if the care team evaluates 
general vital sign trends or the risks computed by computer 
models only once every nurse shift. In these patients, the 
imputation of gaps of up to one hour could be acceptable, 
as the overall risks for clinical decision-making and patient 
safety will be limited. However, patients that have just been 
discharged from the intensive care unit are often less stable 
and have a larger risk of serious deterioration. Accordingly, 
vital sign levels and patient risks need to be assessed more 
frequently and with higher accuracy levels, as small vital 
deviations could be critical. In these cases, it can be decided 
to allow imputation only for data containing short gaps to 
restrict the uncertainty of data and corresponding decisions, 
especially because imputation errors seem to be larger in 

recordings with larger variability and more extreme meas-
urement values.

In any case, applying imputation should be weighted 
against alternative methods to compensate for missing data, 
such as performing weighted or available-case analysis, or 
abstaining from analysis or decisions in case of incomplete 
data [35]. In this consideration, relevant factors include not 
only the possible error rates but also the understandability 
for clinical staff, the computational time [16], and whether 
complete data availability is needed for clinically used algo-
rithms or for decision-making [36]. Last, the prevalence, 
duration, and nature of missing data should be taken into 
account. According to the classification of missing data 
as defined by Rubin [37], most of the tested techniques 
assumed data ‘missing completely at random’ (MCAR) and 
were also tested by randomly simulating missing data in the 
current study. However, MCAR assumptions may not always 
hold in clinical practice [38, 39]. Although technical distur-
bances such as connection issues are likely to occur com-
pletely at random, factors such as skin type or patient activi-
ties could systematically influence the likelihood of missing 
data related to sensor detachment or motion artefacts. In case 
the missingness is related to known factors and is not related 
to the signal characteristics of the vital parameter itself, data 
‘missing at random’ (MAR) can be assumed. Furthermore, 
situations where the reasons for missing data are unknown 
or where missingness is associated with (pathological) vital 
sign abnormalities can occur, for example when measure-
ments are disturbed by sweating in patients with fever or by 
motion artefacts related to delirium in deteriorating patients. 
In these cases, data is assumed to be ‘missing not at random’ 
(MNAR). As the performance of imputation techniques can 
be influenced in MAR and MNAR situations, as illustrated 
by the increased errors ranges found in data windows with 
larger variability or extreme vital sign levels, further inves-
tigation of the circumstances and possibilities to correct for 
these factors, for example by using accelerometry data, is of 
interest. Nevertheless, it should be realized that it will often 
be difficult to identify underlying reasons for missingness as 
context information is often lacking or cannot be objectified 
automatically. Therefore, it is recommended that the effects 
of imputation are validated in the intended care setting.

4.3  Limitations and recommendations

To our knowledge, this is the first study that evaluated impu-
tation techniques for wireless vital signs monitoring in a 
ward setting. The data used for simulation included many 
hours of recording but was obtained in a relatively small 
population including only two patient groups from one 
hospital. As vital signs characteristics vary between and 
within patient groups, this could specifically have influenced 
the results of the CBP method which relies on population 
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data. To minimize the selection bias, we used random and 
repeated gap simulation and limited the number of simula-
tion windows per patient. However, gap segments gener-
ated in the simulation iterations may have overlapped, in 
particular, for large gap lengths. Furthermore, gaps were 
only simulated in data segments with complete data to allow 
performance evaluation, and may therefore underrepresent 
situations where missing data is (most) likely to occur in 
real practice. Together, external validation of results in a 
larger dataset and for other patient groups is recommended, 
where MAR or MNAR scenarios are also explored in more 
detail. Besides, verification of the performance for other 
sensor systems is desired, taking into account the variable 
accuracy and different measurement techniques of wearable 
devices [40, 41].

By comparing estimations of the window slope and mean 
before and after imputation, we aimed to gain insights into 
the range of bias that can be expected when extracting signal 
features relevant for ward patient monitoring. Likewise, we 
explored possible consequences on clinical decision-making 
by evaluating changes in EWS points. However, as no stand-
ard guidelines for the analysis of continuous data in ward 
patients exist as of yet, these results are only illustrative. The 
effects were only investigated for single parameters, whereas 
a full EWS and other risk prediction models typically rely 
on multiple vital parameters and also include other clini-
cal variables. Besides, the signal features and EWS points 
were only obtained in two-hour windows, while dynamic 
characteristics vary per vital parameter and per individual 
due to differences in underlying (patho)physiology. Last, the 
effect of imputation was only studied for a limited range of 
gap sizes and was not explored for windows with multiple 
gaps or other data sampling frequencies. Therefore, depend-
ing on the diagnostic aims and data characteristics, it might 
be relevant to verify the effects of imputation on other sig-
nal features or when using shorter or longer data windows. 
Likewise, it is recommended to evaluate the performance 
of imputation techniques for patterns of clinical interest, for 
example by exploring pathophysiological data or by compar-
ing stable, linear, and non-linear trend patterns [19].

The current study only investigated a selection of impu-
tation techniques for retrospective monitoring, while many 
other techniques for imputing missing data in physiologi-
cal waveforms or data streams have been described [42]. 
Examples include Kalman-filters [19], Gaussian processes 
[15], probabilistic data recovery methods using data from 
related sensors [43], and neural networks [17]. Furthermore, 
we only investigated the performance of single imputation 
techniques, which by definition create bias and neglect vari-
ability of the missing values in risk models [35]. Methods 
that account for imputation uncertainty, such as multiple 
imputation or maximum likelihood methods, could be 
valuable to reduce bias in decision models [14, 38, 39]. 

Although the development and evaluation of these and other 
advanced imputation methods require in-depth analysis of 
missing data characteristics and relevant covariates—which 
was beyond the scope of this study—further investigation 
is highly recommended in future studies that aim to find 
the best imputation methods for a specific clinical decision 
model or for real-time monitoring. Likewise, it is of interest 
to investigate whether errors introduced by imputation meth-
ods can be predicted, for example, using historical signal 
characteristics, activity level, or prior signal quality. This 
knowledge may help to indicate the accuracy of imputed 
data and contribute to safe implementation. To encourage 
further investigation and development of imputation tech-
niques, the dataset used in the current study is available to 
other researchers on request.

4.4  Conclusion

Imputation of missing data periods in continuous vital signs 
recordings can be useful to facilitate data analysis for patient 
monitoring and risk modelling, but imputation errors vary 
strongly between cases and increase for larger gap sizes. 
Mean percentage errors differ between vital parameters and 
are highest for respiratory rate measurements. Although the 
studied imputation techniques showed overlapping error 
ranges, errors were structurally lowest for linear interpo-
lation, followed by the cluster-based prognosis technique. 
Correspondingly, these techniques had the lowest impact on 
signal features and calculation of early warning scores, and 
are therefore recommended for retrospective imputation of 
vital signs measurements. In contrast, spline interpolation 
or a mean- or last-observation carried forward technique 
were associated with larger ranges of signal features bias 
compared to performing no imputation, and can therefore 
increase the uncertainty for risk modelling. Further inves-
tigation of factors influencing imputation errors and evalu-
ation of (acceptable) risks for clinical decision-making is 
desired to promote safe implementation in clinical care.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10877- 023- 00975-w.

Authors contribution MCR, PMAS, YW, and HJH were contributors 
to the methodology, analysis, and writing of the manuscript. MCR and 
EAK contributed to the collection of patient data. All authors reviewed 
and approved the final manuscript.

Funding This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors.

Declarations 

Conflict of interest M.C. van Rossum, P.M. Alves da Silva, Y. Wang, 
E.A. Kouwenhoven, and H.J. Hermens declare that they have no con-
flicts of interest.

https://doi.org/10.1007/s10877-023-00975-w


Journal of Clinical Monitoring and Computing 

1 3

Ethical approval The current study was performed retrospectively using 
an anonymized database of the MoViSign study (NL65885.044.18) that 
was approved by The Medical Research Ethics Committee Twente. 
Informed consent was obtained from all individual participants 
included in the MoViSign study.

Consent to participate All included subjects included in the database 
provided written informed consent to use their data for current research 
purposes

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Areia C, Biggs C, Santos M, Thurley N, Gerry S, Tarassenko 
L, et al. The impact of wearable continuous vital sign monitor-
ing on deterioration detection and clinical outcomes in hospital-
ised patients: a systematic review and meta-analysis. Crit Care. 
2021;25:351. https:// doi. org/ 10. 1186/ s13054- 021- 03766-4.

 2. Michard F, Kalkman CJ. Rethinking patient surveillance on hos-
pital wards. Anesthesiology. 2021;135:531–40. https:// doi. org/ 10. 
1097/ ALN. 00000 00000 003843.

 3. Posthuma LM, Visscher MJ, Hollmann MW, Preckel B. Moni-
toring of high- and intermediate-risk surgical patients. Anesth 
Analg. 2019;129:1185–90. https:// doi. org/ 10. 1213/ ane. 00000 
00000 004345.

 4. Downey CL, Chapman S, Randell R, Brown JM, Jayne DG. The 
impact of continuous versus intermittent vital signs monitoring in 
hospitals: a systematic review and narrative synthesis. Int J Nurs 
Stud. 2018;84:19–27. https:// doi. org/ 10. 1016/j. ijnur stu. 2018. 04. 
013.

 5. Michard F, Saugel B, Vallet B. Rethinking the post-COVID-19 
pandemic hospital: more ICU beds or smart monitoring on the 
wards? Intensive Care Med. 2020;46:1792–3. https:// doi. org/ 10. 
1007/ s00134- 020- 06163-7.

 6. García-del-Valle S, Arnal-Velasco D, Molina-Mendoza R, Gómez-
Arnau JI. Update on early warning scores. Best Pract Res Clin 
Anaesthesiol. 2021;35:105–13. https:// doi. org/ 10. 1016/j. bpa. 
2020. 12. 013.

 7. Petit C, Bezemer R, Atallah L. A review of recent advances in 
data analytics for post-operative patient deterioration detection. J 
Clin Monit Comput. 2018;32:391–402. https:// doi. org/ 10. 1007/ 
s10877- 017- 0054-7.

 8. Weenk M, van Goor H, Frietman B, Engelen JL, van Laarhoven 
JHMC, Smit J, et al. Continuous monitoring of vital signs using 
wearable devices on the general ward: pilot study. JMIR Mhealth 
Uhealth. 2017;5:e91. https:// doi. org/ 10. 2196/ mheal th. 7208.

 9. Breteler MJM, KleinJan EJ, Dohmen DAJ, Leenen LPH, van 
Hillegersberg R, Ruurda JP, et al. Vital signs monitoring with 
wearable sensors in high-risk surgical patients: a clinical valida-
tion study. Anesthesiology. 2020;132:424–39. https:// doi. org/ 10. 
1097/ ALN. 00000 00000 003029.

 10. Breteler MJM, Huizinga E, van Loon K, Leenen LPH, Dohmen 
DAJ, Kalkman CJ, et al. Reliability of wireless monitoring using a 
wearable patch sensor in high-risk surgical patients at a step-down 
unit in the Netherlands: a clinical validation study. BMJ Open. 
2018;8:e020162. https:// doi. org/ 10. 1136/ bmjop en- 2017- 020162.

 11. Hernandez-Silveira M, Ahmed K, Ang S-S, Zandari F, Mehta T, 
Weir R, et al. Assessment of the feasibility of an ultra-low power, 
wireless digital patch for the continuous ambulatory monitoring of 
vital signs. BMJ Open. 2015;5:e006606. https:// doi. org/ 10. 1136/ 
bmjop en- 2014- 006606.

 12. Bent B, Goldstein BA, Kibbe WA, Dunn JP. Investigating sources 
of inaccuracy in wearable optical heart rate sensors. NPJ Digit 
Med. 2020;3:1–9. https:// doi. org/ 10. 1038/ s41746- 020- 0226-6.

 13. Hravnak M, Pellathy T, Chen L, Dubrawski A, Wertz A, Clermont 
G, et al. A call to alarms: current state and future directions in 
the battle against alarm fatigue. J Electrocardiol. 2018;51:44–8. 
https:// doi. org/ 10. 1016/j. jelec troca rd. 2018. 07. 024.

 14. Azimi I, Pahikkala T, Rahmani AM, Niela-Vilén H, Axelin A, 
Liljeberg P. Missing data resilient decision-making for health-
care IoT through personalization: a case study on maternal health. 
Futur Gener Comput Syst. 2019;96:297–308. https:// doi. org/ 10. 
1016/j. future. 2019. 02. 015.

 15. Clifton L, Clifton DA, Pimentel MAF, Watkinson PJ, Tarassenko 
L. Gaussian processes for personalized e-Health monitoring with 
wearable sensors. IEEE Trans Biomed Eng. 2013;60:193–7. 
https:// doi. org/ 10. 1109/ TBME. 2012. 22084 59.

 16. Kim S-H, Yang H-J, Kim S-H, Lee G-S. Physiocover: recovering 
the missing values in physiological data of intensive care units. 
Int J Contents. 2014;10:47–58. https:// doi. org/ 10. 5392/ IJoC. 2014. 
10.2. 047.

 17. Sharma P, Shamout FE, Abrol V, Clifton D. Data pre-processing 
using neural processes for modelling personalised vital-sign time-
series data. IEEE J Biomed Heal Informatics. 2021. https:// doi. 
org/ 10. 1109/ JBHI. 2021. 31075 18.

 18. Nickerson P, Baharloo R, Davoudi A, Bihorac A, Rashidi P. 
(2018). Comparison of gaussian processes methods to linear 
methods for imputation of sparse physiological time series. 2018 
40th Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society (EMBC), pp. 4106–9. https:// 
doi. org/ 10. 1109/ EMBC. 2018. 85133 03

 19. Gui Q, Jin Z, Xu W. (2014). Exploring missing data prediction 
in medical monitoring: A performance analysis approach. 2014 
IEEE Signal Processing in Medicine and Biology Symposium 
(SPMB), pp. 1–6. https:// doi. org/ 10. 1109/ SPMB. 2014. 70029 68

 20. Pimentel MAF, Clifton DA, Clifton L, Watkinson PJ, Tarassenko 
L. Modelling physiological deterioration in post-operative patient 
vital-sign data. Med Biol Eng Comput. 2013;51:869–77. https:// 
doi. org/ 10. 1007/ s11517- 013- 1059-0.

 21. Sow D, Biem A, Sun J, Hu J, Ebadollahi S. Real-time prognosis 
of ICU physiological data streams. Annu Int Conf IEEE Eng Med 
Biol. 2010. https:// doi. org/ 10. 1109/ IEMBS. 2010. 56259 83.

 22. Smith GB, Recio-Saucedo A, Griffiths P. The measurement fre-
quency and completeness of vital signs in general hospital wards: 
an evidence free zone? Int J Nurs Stud. 2017;74:A1–4. https:// doi. 
org/ 10. 1016/j. ijnur stu. 2017. 07. 001.

 23. DeVita MA, Smith GB, Adam SK, Adams-Pizarro I, Buist M, 
Bellomo R, et al. “Identifying the hospitalised patient in crisis”—
a consensus conference on the afferent limb of rapid response 
systems. Resuscitation. 2010;81:375–82. https:// doi. org/ 10. 1016/j. 
resus citat ion. 2009. 12. 008.

 24. Moritz S, Sardá A, Bartz-Beielstein T, Zaefferer M, Stork J. Com-
parison of different methods for univariate time series imputation 
in R. arXiv. 2015. https:// doi. org/ 10. 48550/ arXiv. 1510. 03924.

 25. Clifton L, Clifton DA, Pimentel MAF, Watkinson PJ, Tarassenko 
L. Predictive monitoring of mobile patients by combining clinical 
observations with data from wearable sensors. IEEE J Biomed 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s13054-021-03766-4
https://doi.org/10.1097/ALN.0000000000003843
https://doi.org/10.1097/ALN.0000000000003843
https://doi.org/10.1213/ane.0000000000004345
https://doi.org/10.1213/ane.0000000000004345
https://doi.org/10.1016/j.ijnurstu.2018.04.013
https://doi.org/10.1016/j.ijnurstu.2018.04.013
https://doi.org/10.1007/s00134-020-06163-7
https://doi.org/10.1007/s00134-020-06163-7
https://doi.org/10.1016/j.bpa.2020.12.013
https://doi.org/10.1016/j.bpa.2020.12.013
https://doi.org/10.1007/s10877-017-0054-7
https://doi.org/10.1007/s10877-017-0054-7
https://doi.org/10.2196/mhealth.7208
https://doi.org/10.1097/ALN.0000000000003029
https://doi.org/10.1097/ALN.0000000000003029
https://doi.org/10.1136/bmjopen-2017-020162
https://doi.org/10.1136/bmjopen-2014-006606
https://doi.org/10.1136/bmjopen-2014-006606
https://doi.org/10.1038/s41746-020-0226-6
https://doi.org/10.1016/j.jelectrocard.2018.07.024
https://doi.org/10.1016/j.future.2019.02.015
https://doi.org/10.1016/j.future.2019.02.015
https://doi.org/10.1109/TBME.2012.2208459
https://doi.org/10.5392/IJoC.2014.10.2.047
https://doi.org/10.5392/IJoC.2014.10.2.047
https://doi.org/10.1109/JBHI.2021.3107518
https://doi.org/10.1109/JBHI.2021.3107518
https://doi.org/10.1109/EMBC.2018.8513303
https://doi.org/10.1109/EMBC.2018.8513303
https://doi.org/10.1109/SPMB.2014.7002968
https://doi.org/10.1007/s11517-013-1059-0
https://doi.org/10.1007/s11517-013-1059-0
https://doi.org/10.1109/IEMBS.2010.5625983
https://doi.org/10.1016/j.ijnurstu.2017.07.001
https://doi.org/10.1016/j.ijnurstu.2017.07.001
https://doi.org/10.1016/j.resuscitation.2009.12.008
https://doi.org/10.1016/j.resuscitation.2009.12.008
https://doi.org/10.48550/arXiv.1510.03924


 Journal of Clinical Monitoring and Computing

1 3

Heal Informatics. 2014;18:722–30. https:// doi. org/ 10. 1109/ JBHI. 
2013. 22930 59.

 26. Khalid S, Clifton DA, Clifton L, Tarassenko L. A two-class 
approach to the detection of physiological deterioration in patient 
vital signs, with clinical label refinement. IEEE Trans Inf Tech-
nol Biomed. 2012;16:1231–8. https:// doi. org/ 10. 1109/ TITB. 2012. 
22122 02.

 27. Fang AH, Sen, Lim WT, Balakrishnan T. Early warning score 
validation methodologies and performance metrics: a systematic 
review. BMC Med Inform Decis Mak. 2020;20:1–7. https:// doi. 
org/ 10. 1186/ s12911- 020- 01144-8.

 28. Clifton L, Clifton DA, Pimentel MAF, Watkinson PJ, Tarassenko 
L. Gaussian process regression in vital-sign early warning sys-
tems. Annu Int Conf IEEE Eng Med Biol Soc. 2012. https:// doi. 
org/ 10. 1109/ EMBC. 2012. 63474 00.

 29. Tarassenko L, Hann A, Young D. Integrated monitoring and anal-
ysis for early warning of patient deterioration. BJA Br J Anaesth. 
2006;97:64–8.

 30. Morelli D, Rossi A, Cairo M, Clifton DA. Analysis of the 
impact of interpolation methods of missing RR-intervals caused 
by motion artifacts on HRV features estimations. Sensors. 
2019;19:3163. https:// doi. org/ 10. 3390/ s1914 3163.

 31. Sun J, Sow D, Hu J, Ebadollahi S. A system for mining tempo-
ral physiological data streams for advanced prognostic decision 
support. IEEE Int Conf Data Min. 2010. https:// doi. org/ 10. 1109/ 
ICDM. 2010. 102.

 32. Mok WQ, Wang W, Liaw SY. Vital signs monitoring to detect 
patient deterioration: an integrative literature review. Int J Nurs 
Pract. 2015;21:91–8. https:// doi. org/ 10. 1111/ ijn. 12329.

 33. Brekke IJ, Puntervoll LH, Pedersen PB, Kellett J, Brabrand M. 
The value of vital sign trends in predicting and monitoring clinical 
deterioration: a systematic review. PLoS One. 2019;14:e0210875. 
https:// doi. org/ 10. 1371/ journ al. pone. 02108 75.

 34. Zhu Y, Chiu Y-D, Villar SS, Brand JW, Patteril MV, Morrice 
DJ, et al. Dynamic individual vital sign trajectory early warning 
score (DyniEWS) versus snapshot national early warning score 
(NEWS) for predicting postoperative deterioration. Resuscitation. 
2020;157:176–84. https:// doi. org/ 10. 1016/j. resus citat ion. 2020. 10. 
037.

 35. Little RJA, Rubin DB. Statistical analysis with missing data. 
Hoboken: John Wiley & Sons; 2019.

 36. Dong X, Chen C, Geng Q, Cao Z, Chen X, Lin J, et  al. An 
improved method of handling missing values in the analysis of 
sample entropy for continuous monitoring of physiological sig-
nals. Entropy. 2019;21:274. https:// doi. org/ 10. 3390/ e2103 0274.

 37. Rubin DB. Inference and missing data. Biometrika. 1976;63:581–
92. https:// doi. org/ 10. 1093/ biomet/ 63.3. 581.

 38. Baraldi AN, Enders CK. An introduction to modern missing data 
analyses. J Sch Psychol. 2010;48:5–37. https:// doi. org/ 10. 1016/j. 
jsp. 2009. 10. 001.

 39. Sunny JS, Patro CPK, Karnani K, Pingle SC, Lin F, Anekoji M, 
et al. Anomaly Detection framework for wearables data: a per-
spective review on data concepts, data analysis algorithms and 
prospects.  Sensors. 2022;22:756. https:// doi. org/ 10. 3390/ s2203 
0756.

 40. Leenen JPL, Leerentveld C, van Dijk JD, van Westreenen HL, 
Schoonhoven L, Patijn GA. Current evidence for continuous vital 
signs monitoring by wearable wireless devices in hospitalized 
adults: systematic review. J Med Internet Res. 2020;22:e18636.

 41. Haveman ME, van Rossum MC, Vaseur RME, van der Riet C, 
Schuurmann RCL, Hermens HJ, et al. Continuous monitoring of 
vital signs with wearable sensors during daily life activities: vali-
dation study. JMIR Form Res. 2022;6:e30863. https:// doi. org/ 10. 
2196/ 30863.

 42. Moody GB. (2010). The PhysioNet/computing in cardiology 
challenge 2010: Mind the gap. 2010 Computing in Cardiology, 
pp. 305–8.

 43. Fekade B, Maksymyuk T, Kyryk M, Jo M. Probabilistic recov-
ery of Incomplete sensed data in IoT. IEEE Internet Things J. 
2018;5:2282–92. https:// doi. org/ 10. 1109/ JIOT. 2017. 27303 60.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/JBHI.2013.2293059
https://doi.org/10.1109/JBHI.2013.2293059
https://doi.org/10.1109/TITB.2012.2212202
https://doi.org/10.1109/TITB.2012.2212202
https://doi.org/10.1186/s12911-020-01144-8
https://doi.org/10.1186/s12911-020-01144-8
https://doi.org/10.1109/EMBC.2012.6347400
https://doi.org/10.1109/EMBC.2012.6347400
https://doi.org/10.3390/s19143163
https://doi.org/10.1109/ICDM.2010.102
https://doi.org/10.1109/ICDM.2010.102
https://doi.org/10.1111/ijn.12329
https://doi.org/10.1371/journal.pone.0210875
https://doi.org/10.1016/j.resuscitation.2020.10.037
https://doi.org/10.1016/j.resuscitation.2020.10.037
https://doi.org/10.3390/e21030274
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1016/j.jsp.2009.10.001
https://doi.org/10.1016/j.jsp.2009.10.001
https://doi.org/10.3390/s22030756
https://doi.org/10.3390/s22030756
https://doi.org/10.2196/30863
https://doi.org/10.2196/30863
https://doi.org/10.1109/JIOT.2017.2730360

	Missing data imputation techniques for wireless continuous vital signs monitoring
	Abstract
	1 Introduction
	2 Methods
	2.1 Data collection
	2.2 Data loss evaluation
	2.3 Missing data simulation
	2.4 Imputation techniques
	2.5 Performance evaluation
	2.6 Clinical impact exploration
	2.6.1 Effects on signal features
	2.6.2 Effects on early warning scores


	3 Results
	3.1 Data collection
	3.2 Data loss
	3.3 Missing data simulation
	3.4 Performance evaluation
	3.5 Clinical impact exploration
	3.5.1 Effects on signal features
	3.5.2 Effects on early warning scores


	4 Discussion
	4.1 Main findings
	4.2 Implications
	4.3 Limitations and recommendations
	4.4 Conclusion

	References


