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ABSTRACT
The rapid development of cyber-physical systems creates an increas-
ing demand for a general approach to risk, especially considering
how physical and digital components affect the processes of the
system itself. In risk analytics and management, risk propagation is
a central technique, which allows the calculation of the cascading
effect of risk within a system and supports risk mitigation activi-
ties. However, one open challenge is to devise a process-aware risk
propagation solution that can be used to assess the impact of risk
at different levels of abstraction, accounting for actors, processes,
physical-digital objects, and their interrelations. To address this
challenge, we propose a process-aware risk propagation approach
that builds on two main components: i. an ontology, which sup-
ports functionalities typical of Semantic Web technologies (SWT) and
semantics-based intelligent systems, representing a system with
processes and objects having different levels of abstraction, and ii. a
method to calculate the propagation of risk within the given system.
We implemented our approach in a proof-of-concept tool, which
was validated and demonstrated in the cybersecurity domain.

CCS CONCEPTS
• Information systems → Decision support systems; • Risk
→ Assessment and propagation;

KEYWORDS
Risk propagation, risk assessment, ontology-driven risk propaga-
tion, risk, ontology

1 INTRODUCTION
Risk is a pervasive phenomenon, depending on events that occur
in a connected world, where objects interact with each other and
cannot be taken in isolation. This structural aspect of risk-affected
environments motivates the large and successful application of
graph algorithms for analyzing how risk spreads in a given system.
The application of graph algorithms to assess the risk spreading
level in a system is commonly known as risk propagation [17]. Typ-
ically, risk propagation approaches are used in risk analytics and
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management to calculate the cascading effect of risk within a net-
work of nodes representing a system, and are aimed at supporting
risk identification, quantification, and mitigation activities.

At the current state, risk propagation techniques are applied in
different domains where processes play a central role. For instance,
risk propagation is broadly adopted to analyze how occurrences
of risk affect the sustainability of producer-consumer networks in
supply chains [6]. Similarly, the propagation of risk is used to assess
the impact of cyber-attacks on different assets of a given system
[18]. In this context, it has been widely recognized that one key
open challenge is to devise a risk propagation solution that can be
used to measure the cascading effect of risk in systems that involve
dependencies between processes and physical objects [10, 12]. For
instance, how can cybersecurity risk be propagated from a cyber
infrastructure to the business processes of an organization? How may
a machine breakdown affect the productivity of a company? Howmay
lead-time variability risk affect a supply chain or a manufacturing
environment? How can we quantify the risk of machinery energy
consumption deviation from the allowed thresholds and propagate the
risk to the business processes of the host organization?

All the above challenges can benefit from a process-aware1 ap-
proach to achieve better risk propagation. Such an approach should
be able to leverage knowledge about how different processes, ob-
jects, and activities connect with each other, in domain-specific
contexts (e.g., customer relationships, enterprise planning, cyber as-
sets, and supply chain), and also at a domain-agnostic level, by
covering concepts that are always present in different application
contexts.

This paper advances the state-of-the-art in the research of risk-
propagation techniques, by proposing a process-aware approach
that is aimed at facilitating the assessment of risk propagation
between processes and objects with different levels of abstraction.
The contribution leverages the combination of i. an ontology, which
supports functionalities typical of SemanticWeb technologies (SWT)2

and semantics-based intelligent systems, encoding a set of rules
to be used for representing the risk dependencies within a system
composed of objects and processes, and ii. a method to calculate the
propagation of risk within the represented system.We implemented

1Here, by adapting the definition provided in [9], we take “process-aware” as “regarding
systems that involve processes”.
2https://www.w3.org/standards/semanticweb/
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Figure 1: Process-aware risk propagation approach: overall view.

our approach in a proof-of-concept tool, which was validated in
the cyber-security domain.

The remainder of this paper is structured as follows. Section 2
lists the requirements that drove the design of our approach. Sec-
tion 3 describes the method embedded in our approach. In Section
4 we discuss some implementation aspects and we report on a
demonstration to validate our solution. Here we also discuss some
implications and limitations of the current implementation. Then,
in Section 5 we situate our contribution with respect to related
work. Finally, in Section 6 we reflect on our results and elaborate
on future work.

2 REQUIREMENTS
Following the design science paradigm [15], we grounded the design
of the proposed approach on a preliminary problem identification
activity. In this phase, we gathered feedback from 5 target users,
namely cyber-security experts, who have been involved in risk as-
sessment activities and that have been working on the identification
of risk causes and risk dependencies between business processes
and physical objects. We ran open-ended interviews and the main
open questions we asked were about: i. the relevance of an approach
for facilitating the assessment of risk and its propagation at different
levels of abstraction and ii. what is required to facilitate the assess-
ment of risk and its propagation. This preliminary step helped us in
improving our awareness of the problem, better understanding the
related work, and better identifying the features that our solution
should offer to the end-users. Experts’ feedback was also pivotal in
the definition of a set of functional (i.e., qualitative) requirements,
which are needed to design the approach and evaluate the artifact
in which our contribution is embedded.

We mapped the key features that specify what our approach
should do into the following functional requirements:

R1. The approach should be able to facilitate the task of prop-
agating a risk that was measured at the physical level of a
system (e.g., a machine breakdown), towards its business pro-
cess abstract level (e.g., company productivity). This involves
the capability to investigate how an attacker can compro-
mise both the infrastructure assets and the business process
goals of an organization.

R2. The approach should allow the users to easily assess risk
and, in particular, to easily access the risk propagation out-
put, possibly having visualization support to browse and
analyze the data. This means also being able to filter out
parts of the output according to ad hoc queries. Notice that
from the interviews came out that this requirement involves
also the risk propagation and quantification method being
explainable and understandable by domain experts.

R3. The approach should be able to support the users in iden-
tifying the root causes of risk, prioritizing the mitigation
activities, and suggesting a relevant remediation plan. This
will involve, also, for instance, the possibility to consider
different business objectives for the risk mitigation task (e.g.,
reducing the risk for a single activity, a single process, a
production line, or a factory).

R4. The approach should be able to keep track of risk propagation
over time. For instance, how does the propagation change
after applying a mitigation step? For the same processes and
objects, are there any different risk propagation phenomena
at different times?

R5. The approach should allow discovering if some elements
are at risk even if they are not “directly” connected. This
should happen by considering different types of relations be-
tween elements at risk, like causal dependencies or physical
connections. The goal of this requirement is to enable the
propagation of risk when an element is a part, for instance,
of a causal chain, or simply a component of a device.

3 APPROACH DESCRIPTION
The approach we propose is grounded on the standard definition
of risk provided in [16]. Accordingly, we use risk to “quantify the
possibility of reaching some given objectives”, where such a quantity
value is derived from the combination of the probability that a
certain risk event occurs (as a perturbation of the plan for reaching
the objectives) and a set of “severity values”. For example, suppose
that an attacker has read/write access to a database, namely, he can
damage the database integrity and confidentiality. The read/write
access represents the risk event and the severity values will be
associated with the database integrity and confidentiality features.
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Figure 2: 𝑆2 concepts and relations.

We employ here a simplified definition of risk as “an effect of
uncertainty on objectives”. Risk is a polysemic term, which covers
multiple phenomena including risk magnitude, risk assessment,
vulnerability, loss and threat events, etc. Moreover, it can be better
represented as a relational property (e.g., something is “at risk” w.r.t.
to a particular goal and in a particular context, e.g., one can be
at the same time at risk of missing a flight, at risk of contracting
COVID-19, etc.). An in-depth analysis and formalization of the risk
notion with regards to the proposed approach (by also leveraging
previous work as in [20, 22]), is part of the immediate future work.

In the scope of this paper, the main observation is that we calcu-
late the risk as 𝑅 = 𝑃 ∗ (𝑆1, ..., 𝑆𝑛), where 𝑃 provides the probability
that a risk event occurs, and each 𝑆 𝑗 encodes a severity value. In
the context of our solution, the propagation task will start from
a given risk value, associated to a given “risk event” (e.g., “device
damaging”). The whole approach is aimed at capturing how the risk
associated with this risk event can spread through all the elements
(objects and processes) involved (directly or indirectly) in the event
itself.

Figure 1 provides an overall view of our solution, composed of a
knowledge component and an analytics component.

3.1 Knowledge Component
The knowledge component holds an ontology (denoted in Figure
1 as Risk-Process Ontology), which is in turn divided into three
scopes. The first scope, what we call here 𝑆2, is composed of a set
of generic concepts and relations related to Risk, which are always
required independently of any specific business domain. The second
scope, 𝑆1, extends 𝑆2 with a set of domain-specific concepts and
relations. 𝑆1, is then mapped into the third scope 𝑆0, composed of a
use-case-specific types and instances.

Figure 2 provides a lightweight representation of 𝑆2, composed
of the minimal set of constructs required for the process-aware risk
propagation task. The main concept in this scope is ElementAtRisk
which stands for both process types, or objects at risk. For example,

an ElementAtRisk could be specialized in 𝑆1 by a concept repre-
senting a physical component of a system, such as a “machine”, or
a business abstract concept such as a “business activity”. We keep
implicit the different types of ElementAtRisk (as objects, process
types) including their interrelations, and that the ultimate scope
is with regards to business objectives, and values. However, since
here the main goal is to propose the overall approach, we take this
lightweight model, which will be extended in future work.

Within a system of ElementAtRisk, the risk is propagated from
one element to another according to their relations. Within the
current approach, in order to model risk propagation, we identified
two main types of relations. First, Dependency relations, which
are mainly used to model phenomena where the risk is propa-
gated through a workflow composed of processes. For instance,
two business activities can be connected by Dependency relations
like “triggers” or “causes”. Second, Abstraction relations, represent
cases where the risk is propagated from a lower to a higher level of
abstraction. For example, the risk of a physical machine can be prop-
agated to related business activities. Given a network of elements at
risk and their connections, we identify three types of Risk. We call
FollowedRisk the risk propagated through Dependency relations
and DirectedRisk the risk propagated through Abstraction re-
lations. TotalRisk, in turn, stands for the overall risk of an object,
considering both its DirectedRisk and FollowedRisk.

Notice that the knowledge component is aimed at supporting
risk calculation from different perspectives, which can be repre-
sented within 𝑆2 through the Measure concept and some ad hoc
attributes. For example, in a cybersecurity use case, the risk could
be quantified as from the CIA-triad standard [11], namely according
to its potential impact on availability, confidentiality, and integrity
of the related business activities; while in sustainability use-case,
one can propagate the risk of a carbon-footprint just focusing on
the deviation from the machine level to the process level. Finally,
the knowledge component allows the user to control the amount
of risk propagated from one element to another via the Importance
concept, which is used to weight any given relation. For example,
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Figure 3: Risk propagation steps: running example.

a confidentiality risk that was measured over a device and prop-
agated to its correlated business activity should not necessarily
be propagated to the following activity. In that case, the system
supports omitting the propagation of a confidentiality risk from an
activity to the following by setting an Importance of zero.

3.2 Analytics Component
Once the Risk-Process ontology is set, the analytics component is
used for a data extraction step that consists of querying the ontology
through the 𝑆2 constructs. The data extraction step returns a labeled
property graph structure [7] where each node represents an instance
of an ElementAtRisk and each edge represents an instance of a
Relation. The Risk and Importance values are then represented
as vectorized properties of nodes and relationships respectively.
Notice that, the proposed approach assumes that the risk over the
leaf nodes (elements with a lower level of abstraction) is given prior
to the risk propagation task.

Once the labeled property graph is generated, risk propagation
can be performed. This task is performed in two steps, where, at
each step, the graph is traversed via a Depth-first Search (DFS) algo-
rithm [2]. A risk propagation for a single node is in turn defined
according to a risk function denoted as max_per_aspect. In the
proposed method we take a worst-case scenario approach by quan-
tifying the risk according to the maximal risk per perspective. For
example, in a case where a business activity depends on two devices,
and each has a different availability risk. A worst-case scenario ap-
proach assumes that both devices could be compromised by an
attacker, and a shutdown of at least one device will disable the
correlated activity. Thus, the propagated risk towards the business
activity is set according to the maximal availability risk of both
devices. The risk function gets a bag of vectors ordered by the
different risk perspectives and returns the maximal value for each
perspective. Notice that, in the future, we plan to support multiple
risk functions set in 𝑆2.

Figure 3 provides an example of a risk propagation task and the
two steps of which it is composed. The risk in the running example
is a vector composed of four values, where each value represents
a risk quantification from a different perspective. For example, in

a cyberattack the following device perspectives could be affected:
confidentiality, integrity, safety, and availability.

1 In the first step of the risk propagation task, the DirectedRisk
(see

−−→
𝐷𝑅 in Fig. 3, Step 1) is propagated from the leaf nodes

to the nodes with a higher level of abstraction using the
Abstraction relation. The bag of vectors for each node
is composed of the DirectedRisk vectors of the incom-
ing nodes (

−−→
𝐷𝑅𝐵 and

−−→
𝐷𝑅𝐶 ), multiplied by the corresponding

Importance vectors (
−→
𝐼𝑉𝐴𝐵 and

−→
𝐼𝑉𝐴𝐶 ) over the incoming

edges. The multiplication is an element wise, namely, each
element in the DirectedRisk vector is multiplied with the
corresponding element in the Importance vector.

2 Once the DirectedRisk is propagated across the graph, the
second step occurs according to two main sub-steps:

2.1 The FollowedRisk vector of a node (denoted as
−−→
𝐼𝐷𝑅) is

calculated. In this case, the bag of vectors for each node
is composed of the TotalRisk vectors (denoted as

−→
𝑇𝑅)

of its incoming nodes multiplied by the corresponding
Importance vectors over the incoming edges. Notice that,
the FollowedRisk vector over leaf nodes is set to zero.

2.2 The TotalRisk of a node is calculated. In that case, the bag
of vectors is composed of its FollowedRisk and Directed-
Risk vectors. Once the risk propagation task is concluded,
the results are updated in the Risk-Process ontology.

Finally, the analytics component also accounts for another step,
what we call here “risk assessment”. Here, the ontology can be
queried to assess and analyze the risk state of the whole system,
namely the risk of the ElementAtRisk with the highest level of
abstraction. Furthermore, through the risk assessment step, it is
possible to return an alert considering the deviation of the quanti-
fied risk from a pre-defined threshold (denoted as a cardinal risk).
Similarly, an analyst could use this step to analyze what is the ele-
ment at cardinal risk, identify the risk’s root causes, and prioritize
mitigation steps accordingly. Still, the proposed approach enables
the detection of elements at risk, even if their directly connected
elements are not at risk. For example, a manual activity could be
affected by a cyberattack since it is followed by another activity that
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Figure 4: A subgraph of the case scope (𝑆0).

depends on a device at risk of being compromised. Similarly, this
type of propagation is applicable in recently Log4j3 supply-chain
attack.

4 IMPLEMENTATION AND
DEMONSTRATION

This section discusses implementation details, and reports on a
demonstration to validate the proposed approach.

Implementation. The knowledge component is deployed on Neo4J
graph database platform4, the analytics component and the whole
pipeline orchestration are implemented as a Python5 application
which interacts with Neo4J via an ad hoc Neo4J python library6.
The program and the database interact at three main stages, as
described in Figure 1. First, the import of the ontology into the
database (denoted as Ontology creation). Second, the export from
the database into the programmemory towards the risk propagation
task (denoted as Data extraction). Thirdly, the database update with
the risk propagation results (denoted as Ontology update).

To represent the ontology scopes, we adopted the Ontology Web
Language (OWL)7. The model’s concepts, relations, and attributes
are expressed as classes, object properties, and data properties, respec-
tively. 𝑆0 is expressed as classes’ individuals and their properties
assertions. Once the OWL file of the three scopes is constructed,
we import it to the database using the Neo4J NeoSemantics plu-
gin8. This plugin takes a Resource Description Framework (RDF)9

3https://logging.apache.org/log4j/2.x/
4https://neo4j.com/
5https://www.python.org/
6https://neo4j.com/docs/api/python-driver/current/
7https://www.w3.org/OWL/
8https://neo4j.com/labs/neosemantics/
9https://www.w3.org/RDF/

structure and transforms it into a Labeled Property Graph (LPG)
structure. In this structure, the constructs of the model and the data
are represented as nodes and edges within a graph database.

Demonstration. We demonstrate the approach through a cyber-
security risk assessment use case of a vehicle assembly manufac-
turing process. This example serves for showing how the proposed
approach can be used for quantifying the risk of devices being com-
promised by a cyberattack, and then measuring the impact over
the domain-specific risk scope.

In this scenario, the main concepts captured by the ontology
(see 𝑆2 and 𝑆1) can be grouped into a) a physical layer composed
of devices (denoted as CyberAsset) that could be compromised
by an attacker; b) potential intervention actions (denoted as Cyber-
Impact), which an attacker could perform over each device; c)
processes (each one grouped as as ProcessElement). Cyber as-
sets and process/activity elements are connected via relations of
type CorrelatedTo, process/activity elements are connected via
relations of type ComponentOf and FollowedBy. According to the
𝑆2 distinctions, CorrelatedTo and ComponentOf are classified as
Abstraction relations, FollowedBy is classified as a Dependency
relation. Considering the given conceptualization, the risk is then
measured over the different CyberImpact instances and propagated
to CyberAsset and ProcessElement instances. Notice that, in this
demonstration we measured risk according to the commonly used
CIA-triad for a cybersecurity risk assessment, where the risk vector
is composed of the perspectives of confidentiality, integrity, and
availability. For example, a denial-of-service CyberImpact holds a
substantial risk of availability, while a data manipulation Cyber-
Impact holds a substantial risk of integrity and confidentiality.
Since the risk is measured within an industrial facility, we extend
the standard approach with a safety perspective.

https://logging.apache.org/log4j/2.x/
https://neo4j.com/
https://www.python.org/
https://neo4j.com/docs/api/python-driver/current/
https://www.w3.org/OWL/
https://neo4j.com/labs/neosemantics/
https://www.w3.org/RDF/
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Table 1: An example of data extraction output.

Table 2: Number of case scope 𝑆0 nodes per 𝑆1 risk scope con-
cept

Figure 4 shows a snapshot of the case scope (𝑆0) instantiating the
ontology concepts. And Table 1 shows an example of the risk prop-
agation output of the represented graph. The FollowedBy (denoted
as light-grey nodes) and the ComponentOf (denoted as dark-grey
nodes) represent relations between process elements (denoted as
yellow nodes), which are represented by three processes, namely:
VehicleAssembly, DoorDisassembly and DashboardInstallation.
The graph provides then the common cyber assets for each Process-
Element as well. This is represented by the CorrelatedTo relation
(denoted as green nodes) between process elements and cyber as-
sets instances (denoted as pink nodes). As from Figure 4 Door-
Disassembly is connected with two CyberAsset instances, and
DashboardInstallation relates to just one instance. Finally, the
graph encodes the potential vulnerabilities of the selected cyber
assets, by connecting them to a set of threat instances, categorized
as CyberImpact (denoted as blue nodes), and each one associated
with a given risk vector10. The subgraph in Figure 4 shows also
that one CyberAsset instance (far left) is connected to 10 Cyber-
Impact instances, while the rest of the CyberAsset instances in the
subgraph are not connected, i.e., they can be considered as “secure”.

10Notice that each risk vector was derived by leveraging an ad hoc analysis step similar
to [3, 13]. A detailed explanation of this step and the multiple options that can be
adopted is out of the scope of this contribution.

Once the ontology is set and imported to Neo4J, we run the data
extraction step. Here, we use a cypher11 query to extract elements at
risk and the relations that are relevant to the risk propagation task.
The query uses 𝑆2 constructs to support various domain-specific
entities and relations and returns a set of records encoding a i)
relation between a source to a destination element, ii) the risk
vector over the source object, and the iii) importance vector of the
relation.

Table 2 reports the output of this step, providing the number
of nodes for each domain-specific risk scope concept. Notice that,
for clarity, we used here an importance vector of one for all the
relation instances. In that stage, the risk is associated only with
CyberImpact objects, namely, with the leaf nodes of the extracted
graph.

Finally, the data shown in Tab. 3 describes the output of the
risk propagation task, from the CyberImpact objects to the Cyber-
Asset objects, then to the ProcessElement objects given the 𝑆0
data extracted from the designed ontology. The far-right column
encodes the risk vectors for the CyberImpact instances (i.e., the leaf
blue nodes in the example of Fig. 4), where we labeled each instance
with a common potential threat in the cyber security context. For
instance, a device may stop for a certain period of time (B), or
a device may be damaged (C). Such a CyberImpact labeling was
grounded on previous research work analysis on attack techniques
for industrial control systems [1].

Discussion. Given the above demonstration, we see four main ob-
servations. The first is that the combination of the generic, domain-
specific, and case risk scope offers a solution to support R1 (see
Section 2). These three scopes together cover, indeed, physical and
business process level concepts. Notice that, even if the demon-
stration focuses on the specific cyber-security case, this does not
prevent the application of the approach over different domains
(which can be encoded by the domain-specific risk scope). Secondly,
the risk assessment step enables the user to browse, query, and

11https://neo4j.com/developer/cypher/

https://neo4j.com/developer/cypher/
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Table 3: Risk propagation output example. A: “Complex Change of Process Functionality”, B: “Short Term Stop Device”, C:
“Permanent Device Damage”, D: “Leak Project File”, E: “Limit Process Visibility”, F: “Change Field Device IOValues”, G: “Denial
of Service and Remote Management”, H: “Interfere Proper Process Flow”, I: “Change of Process Functionality”, J: “Manipulate
Business Visibility”.

analyze the input/output graphs by leveraging the Neo4J function-
alities, thus facilitating the user in all the risk assessment activities,
and fostering understandability, as required by R2. Thirdly, by
adopting the maximal risk per perspective, the main causes of risk
can be straightforwardly derived as a consequence of the propa-
gation process, thus addressing R3. Looking, for instance, at the
ProcessElement nodes in Table 3, we can see that the “DoorDis-
assembly” ProcessElement has a DirectedRisk which is caused
by three CyberImpact instances over the “192.168.250.210” Cyber-
Asset (denoted as “Complex Change of Process Functionality” (A),
“Permanent Device Damage” (C), “Leak Project File” (D)). Notice that
in this case, we have three risk causes, because of the maximal risk
per perspective we adopted, where, given a list of vectors, we make
one vector out of the maximum values (highlighted in grey in Table
3) for each index across all values. Differently, for what concerns
R4, the proposed implementation still needs to be extended. In the
current state, indeed, it is not possible to keep track and combine
the multiple risk assessment output over time, thus limiting the
analysis at different temporal snapshots. Finally, through the ex-
ploitation of dependencies and abstraction relations, the approach
is able to uncover “implicit” (followed) or “direct”/“explicit” risk
(see R5). For instance, considering Table 3, even if the “Dashboard
Installation” ProcessElement is not affected directly by a cyber
security risk, through our approach we can uncover that there is a
risk over that element, derived through its FollowedBy dependency
with “DoorDisassembly” object (see Fig. 4).

5 RELATEDWORK
There is a lively and quite growing interest in risk propagation (or
inheritance) techniques and their applications for risk assessment.
However, the research on the exploitation of ontologies for process-
aware risk propagation is much more restricted.

In this focused area of research, for what concerns the usage
of ontologies, the seminal work in [21] presents a solution that is

relevant to our proposal. The main contribution here is to show
how an ad hoc graph, i.e., the attack graph, generated through
the MulVAL approach, can be used to encode logical reasoning
methods and inference rules gathered by cyber-security experts.
Such a graph can then be exploited to quantify the cyber-security
risk of a system and infer what steps an adversary can perform
to reach a pre-defined target. In the same line of research, the
work in [5] develops a risk propagation ontology-based bayesian
network (BN) model to measure dynamic supply chain risk (SCR)
propagation, with the main purpose of quantitatively assessing the
impact of dynamic risk propagation within and between integrated
firms in global fresh produce supply chains. Similarly, the work
presented in [8] provides an ontology, created by leveraging the
knowledge of security experts, to apply risk propagation over a
given attack graph, by also supporting a score calculation.

These and similar approaches do not yet consider the impact of
risk at different levels of abstraction. For instance, the original Mul-
VAL approach [21] focuses on inferring the potential movements
of the attacker within an infrastructure layer, but cannot be used
to quantify the risk or propagate it across physical components
and business processes. In this regard, the first work that empha-
sizes the need to analyze this aspect and to apply risk propagation
from physical structures to internal economic processes within an
organization was the one presented in [19].

A few years after, moved by the same problem, the authors of
[4] presented an approach to assessing the cyber-attack impact on
business processes, by generating an interconnected graph of the
dependencies between vulnerabilities on hosts, relations between
services to hosts, and tasks to services. The authors encoded the
dependencies with a Datalog12 model, collecting a large set of
facts and rules, extracted via MulVAL. In this work, the method
proposed to calculate the impact score by propagating the impact
generated by the vulnerabilities to the impacted hosts, services, and

12https://docs.racket-lang.org/datalog/

https://docs.racket-lang.org/datalog/
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tasks, is similar to ours. However, in our approach, the knowledge
component is not designed to cover the cyber-security domain only,
thus making our solution different in terms of generality.

Similarly, the authors in [14] used an approach to assess the
mission impact of cyber-attacks on energy delivery systems, cyber-
physical systems, and enterprise applications, respectively. Finally,
recent research by [12] presented a method to propagate the risk
within a network of business processes and IT services, by trans-
forming the operational risk over the underlying IT services into
a financial risk over their related business processes. Still, these
two last reported works, even if going towards a process-aware
approach to risk assessment, lack in considering the phenomenon
from a cross-domain perspective, i.e., independently from the con-
text for which they were developed (i.e., cyber-security and IT
services).

6 CONCLUSION AND PERSPECTIVES
This paper presents an application that leverages the combination
of i) an ontology, encoding a set of rules to be used for representing
the risk dependencies within a system composed of objects and
processes and ii) a method to calculate the propagation of risk
within the represented system. By doing so we move towards the
development of a process-aware risk-propagation approach that is
aimed at facilitating the assessment of risk propagation between
processes and objects with different levels of abstraction.

Among the potential paths of research opened up by our re-
sults, we envision a series of future perspectives. A first perspective
concerns the extension of the Risk-Process ontology. We plan to
leverage previous work on risk and value modeling [22] and pro-
vide a well-founded ontology for process-aware risk propagation. A
second perspective concerns the implementation of different algo-
rithms for the calculation and the propagation of risk, considering
also different kinds of dependencies between the elements at risk
in the graph. A third perspective is to apply the approach over
multiple domains (e.g., finance and healthcare), where risk plays a
central role and pave the way for multiple case studies.
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