
Contents lists available at ScienceDirect

Int J Appl Earth Obs Geoinformation

journal homepage: www.elsevier.com/locate/jag

Modeling and mapping aboveground biomass of the restored mangroves
using ALOS-2 PALSAR-2 in East Kalimantan, Indonesia
Mst Karimon Neshaa,*, Yousif Ali Hussina, Louise Marianne van Leeuwena,
Yohanes Budi Sulistioadib
aUniversity of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands
bMulawarman University, Climate, Soil and Water Conservation Laboratory, Forestry Faculty, Center of Geospatial Information Infrastructure Development (CGIID/
PPIIG), Jl. Penajam Building B14 Kampus Gunung Kelua, Samarinda, Indonesia

A R T I C L E I N F O

Keywords:
Aboveground biomass (AGB)
Mangrove forests
HV polarization
Backscatter coefficients
ALOS-2 PALSAR-2
Linear regression model
K-fold CV
LLO CV

A B S T R A C T

Accurate estimation of forest aboveground biomass (AGB) using remote sensing is a requisite for monitoring,
reporting and verification (MRV) system of the United Nations Programme on Reducing Emissions from
Deforestation and Forest Degradation. However, attaining high accuracy remains a great challenge in the diverse
tropical forests. Among available technologies, L-band Synthetic Aperture Radar (SAR) estimates AGB with
reasonably high accuracy in the terrestrial tropical forests. Nevertheless, the accuracy is relatively low in the
mangrove forests. In this context, the study was carried out to model and map AGB using backscatter coefficients
of Advanced Land Observing Satellite-2 (ALOS-2) Phased Array L-band SAR-2 (PALSAR-2) in part of the restored
mangrove forest at Mahakam Delta, Indonesia. PALSAR-2 data was acquired with image scene observation
during the peak low tide on 30 July 2018 from Japan Aerospace Exploration Agency. The forest parameters
namely tree height and diameter at breast height were measured from 71 field plots in September-October 2018.
The parameters were used in mangrove allometry to calculate the field AGB. Finally, HV polarized backscatter
coefficients of PALSAR-2 were used to model AGB using linear regression. The model demonstrated a com-
paratively high performance using three distinct methods viz. independent validation (R2 of 0.89 and RMSE of
23.16 tons ha−1), random k-fold cross validation (R2 of 0.89 and RMSE of 24.59 tons ha−1) and leave location
out cross validation (LLO CV) (R2 of 0.88 and RMSE of 24.05 tons ha−1). The high accuracy of the LLO CV
indicates no spatial overfitting in the model. Thus, the model based on LLO CV was used to map AGB in the study
area. This is the first study that successfully obtains high accuracy in modeling AGB in the mangrove forest.
Therefore, it offers a significant contribution to the MRV mechanism for monitoring mangrove forests in the
tropics and sub-tropics.

1. Introduction

Forests have a critical role in global climate regulation (Pan et al.,
2011). Tropical forests are crucial in this regard as they sequester and
store relatively large amounts of carbon compared to other forests.
Moreover, mangroves sequester much more carbon per unit area than
the terrestrial forests in the tropics (Donato et al., 2011). On the other
hand, deforestation and forest degradation in the tropics contribute to
20 % of global anthropogenic CO2 emissions each year (Gibbs and
Herold, 2007; FFPRI, 2012). Again, mangroves alone account for 10 %
emissions despite occupying only 0.7 % of the tropical forests (Giri

et al., 2011).
As part of international efforts to reduce forest emissions, United

Nations Programme on Reducing Emissions from Deforestation and
Forest Degradation (UN-REDD) proposes an accurate measuring, re-
porting, and verification (MRV) mechanism of forest aboveground
biomass (AGB) (Gibbs et al., 2007). Notably, the application of remote
sensing (RS) techniques is central to realize the MRV mechanism of
forest AGB (FFPRI, 2012).

When it comes to mangroves, studies mostly used optical RS for
AGB estimation (Lu et al., 2004; Gibbs et al., 2007; Powell et al., 2010;
Hirata et al., 2014; Dube and Mutanga, 2015). Nevertheless, optical RS
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has a major setback to directly quantify vegetation characteristics
owing to its two-dimensional nature (Lucas et al., 2010). Besides, high
accuracy is constrained by AGB saturation at a low level of the optical
spectral bands (Lucas et al., 2015). Furthermore, the persistent clouds
all year round makes it difficult to obtain clear optical images in the
tropics (Asner, 2001).

LiDAR is an active RS technique correlated to AGB estimation with
high accuracy (Duncanson et al., 2010). A vegetation specific space-
borne LiDAR, Global Ecosystem Dynamics Investigation (GEDI) is
launched in December 2018 to capture forests in 3-dimension (3D)
(Blumenfeld, 2020). Level 1 and Level 2 GEDI data are recently made
available from January 2020 and Level 3 data will be available in mid-
2020. Level 4 GEDI data associated with AGB values are expected to be
available in early-2021 (Blumenfeld, 2020). However, clouds affect
LiDAR data acquisition, and areas persistently covered by clouds may
not be observed (Qi and Dubayah, 2016).

Radar, in contrast, is an active RS technique that can penetrate
clouds, provide day and night imaging in all weather conditions (Asner,
2001). Moreover, Synthetic Aperture Radar (SAR) provides 3D vege-
tation data (Lucas et al., 2010), making it a potential tool for AGB es-
timation in the tropics on a large scale (Hyde et al., 2007; Kaasalainen
et al., 2015). The long-wavelength L-band and P-band SAR are key for
AGB estimation as they are related to volume scattering (Mermoz et al.,
2014; Villard et al., 2016). Spaceborne P-band BIOMASS mission is yet
to fly in 2022 (ESA, 2019). Therefore, L-band SAR has been widely used
in tropical forests to date.

Nevertheless, only a handful of studies have been conducted for
mangrove AGB estimation using L-band SAR (Hamdan et al., 2014;
Pham and Yoshino, 2017; Pham et al., 2017, 2018). Besides, mangrove
studies show comparatively much low accuracy as opposed to inland
tropical forests (Mitchard et al., 2009; Nga, 2010; Odipo et al., 2016;
Sumareke, 2016; Masolele, 2018). Moreover, mangrove AGB saturation
is observed at a relatively low level ranging from 100 to 150 tons ha−1

(Lucas et al., 2007; Hamdan et al., 2014; Pham et al., 2018).
Notably, mangrove is a unique and complex forest with prop root

systems, inundated during high tide and the ground is muddy during
low tide (FAO, 2007). These unique attributes probably lead to high
uncertainties in mangrove AGB estimation. Taking these uncertainties
into account, we examined if cross (HV) and/or like (HH) polarized
backscatter coefficients of Advanced Land Observing Satellite-2 (ALOS-
2) Phased Array L-band SAR-2 (PALSAR-2) can model and map AGB
with reasonable accuracy in the mangrove forest at Mahakam Delta,
East Kalimantan, Indonesia. Additionally, we assessed the AGB sa-
turation level in relation to backscatter coefficients of ALOS-2 PALSAR-
2.

2. Data and methods

2.1. Study area

The study site covered approximately 105 ha between W longitude
117.560366° to E longitude 117.573216° and N latitude -0.533392° to S
latitude -0.543048° at Mahakam Delta, East Kalimantan, Indonesia
(Fig. 1). The dense mangrove vegetation of Mahakam Delta was con-
verted into shrimp ponds starting in 1992 and until 2001, about 80 % of
the mangroves were lost (Dutrieux, 2001). Nonetheless, plantation took
place since 2002 to restore the mangroves (Sidik, 2008). The study site
is in the restored mangroves in the sea-front areas at north distributary
zones representing quite a homogenous vegetation structure. Notice-
ably, the site is intersected by Mahakam River, several water channels,
and few shrimp ponds. Avicennia alba and Rhizophora spp. were the
dominant tree species in the site (Appendix Fig. A1).

2.2. Data collection

2.2.1. Biometric data collection
The field data were collected from 71 circular plots of 500m2

(12.62m radius) from 30 September to 24 October in 2018. The field
plots were established using purposive sampling due to the constraints
of accessibility and administrative permissions. Tree height and dia-
meter at breast height (DBH) were measured from each plot for the
trees with diameter>=10 cm. This is because trees< 10 cm in dia-
meter have no significant contribution to AGB estimates (Brown, 2002).

According to Clough et al. (1997) and Chave et al. (2005), DBH
should be measured above the prop roots of the Rhizophora spp. The
main stem height over the prop roots varied. Measuring DBH at 1.3 m
height from the buttress/stem base represented the main stem above
the uppermost prop roots (Appendix Fig. A1). The height of Rhizophora
spp. was measured from the prop roots on the ground to the top of the
trees as prop roots contribute to the backscattering of the L-band SAR.

In the case of Avicennia alba and other tree species, DBH was mea-
sured at 1.3m height from the ground (Appendix Fig. A1). There were
many multi-stem trees of Avicennia alba and Rhizophora spp. In this
case, each stem was considered as an individual tree (Clough et al.,
1997). The wood density of the trees was collected from the archive of
the World Agroforestry Indonesia database (World Agroforestry
Indonesia, 2018). The wood density data of this archive was measured
by Chave et al. (2005).

2.2.2. Acquisition of ALOS-2 PALSAR-2
One dual-polarized (HV and HH) PALSAR-2 image was obtained

from the Japan Aerospace Exploration Agency (JAXA) through the
Remote Sensing Technology Center of Japan. The image was right
looking, ascending and single look complex (SLC) level 1.1 product
acquired in stripmap mode with 4.29m pixel spacing and 40.562° in-
cidence angle. The image scene observation time was at 16:26 (UTC) on
30 July 2018 equivalent to local 01:26 a.m. representing the peak hours
of the first low tide started at 12:28 a.m. Scene observation was chosen
during the peak low tide to avoid the effects of inundation on PALSAR-2
backscattering. The total precipitation intensity at the Mahakam Delta
region was 136.9mm in July 2018 over 12 rainy days and it was
2.5 mm on 30 July following last rain on 22 July 2018 (Indriani et al.,
2019).

2.3. Pre-processing of ALOS-2 PALSAR-2

The PALSAR-2 image was converted to retrieve HH and HV polar-
ized backscatter coefficients known as normalized radar cross section
(NRCS) and expressed in decibels (dB). The conversion was performed
using Equation 1 proposed by Shimada et al. (2009) since it applies to
the SLC level 1.1 PALSAR-2 product recommended by JAXA (JAXA,
2019).

Eq. (1): Retrieval of backscatter coefficients of ALOS-2 PALSAR-2.

= + +product log I Q CF A1. 1 10. 10( )0 2 2

Where:
σ0 1.1 product=NRCS of SLC level 1.1 product in (dB)
I=Real part of SLC level 1.1product
Q= Imaginary part of SLC level 1.1product
CF=Calibration Factor = -83.0 dB
A=Constant, 32.0
Since the SLC SAR image is geometrically distorted (Small et al.,

2009), Range-Doppler Terrain Correction (30m) was applied to the
PALSAR-2 image for geometric correction. The image was re-projected
to the coordinate system of the study area (WGS_1984_UTM_Zone_50S).
The corrected image had a pixel spacing of 7m (Fig. 2a). Moreover, a
Lee speckle filter with a kernel size of 3× 3-pixel was applied to
smooth the speckle noise (Fig. 2b).
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2.4. Extraction of PALSAR-2 backscatter from field plots

The backscatter coefficients of PALSAR-2 were extracted from the
field plots (25m) using the 3× 3-pixel window (21m) as in Fig. 3 and
Appendix Fig. A2. A similar approach was followed in previous studies
(Hamdan et al., 2014; Sumareke, 2016; Masolele, 2018). The 4×4 or
5× 5-pixel window reduces the error of excluding backscatter from the
trees but smooths out the average backscatter within the plot
(Sumareke, 2016). Moreover, many plots included nearby water body
pixels in case of a 4× 4 or 5× 5-pixel window, further leveling out the
average plot backscatter in our study site.

2.5. Field AGB calculation

The field AGB was calculated using tree height, DBH and wood
density data in the allometry (Equation 2) proposed by Chave et al.
(2005) for the mangrove forests. The allometry was most appropriate as
we used wood density data developed by Chave et al. (2005). Utilizing
tree height was another decisive factor to choose this allometry.

Eq. (2): Allometric equation for field AGB calculation.

=Mangroves, AGB 0.0509 D^2 H

Where:
Mangroves, AGB=aboveground biomass of the mangroves

Fig. 1. Location of the study area with field plots indicated by red points (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article).

Fig. 2. HV polarized backscatter image after geometric correction (a) and speckle filtering (b).
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estimated in kilogram
D= tree DBH in centimeter
= wood density in gcm−3

H= tree height in meter

2.6. AGB and backscatter relationship

We applied a linear regression algorithm to estimate AGB using HH
and/or HV backscatter coefficients and implemented in R environment
for statistical programming (R Core Team, 2019). The linear algorithm
was used as it demonstrated higher accuracy in estimating AGB. Like-
wise, our data met the requirements of linear regression (Moore et al.,
2017). The accuracy of the relationship was assessed based on the
coefficient of determination (R2), root mean square error (RMSE) and p-
value.

2.6.1. Model development, validation and accuracy assessment
The best performing relationship was used to model AGB. The

model performance was evaluated using three different validation ap-
proaches. Initially, the dataset was randomly split into training and
validation using 60:40 ratio. However, it can provide a bias model es-
timation as data in the validation set is lost for the training dataset.
Moreover, accuracy fluctuates at every random model run.

Therefore, a repeated k-fold cross validation (CV) was applied
where the entire dataset was randomly split into 5 equivalent folds.
Then, five models were repetitively trained where one-fold data were
held out during each model run. The held back data were used to assess
the performance of the respective models. In this way, all data were
used both for training and validation. Nevertheless, k-fold CV does not
account for spatial overfitting.

Eventually, a target-oriented validation strategy, leave location out
(LLO) CV was applied to address the spatial overfitting of the model. In

this approach, the dataset was split again into five equal folds, but each
test fold was formed using the data of a complete location (LLO). Thus,
it predicted AGB outside the training locations. LLO CV was carried out
in CAST package (Meyer et al., 2018b) and k-fold CV in caret package
(Kuhn, 2019). An elaborate description and application of k-fold CV
and LLO CV for the model prediction can be found in earlier studies
(Micheletti et al., 2014; Gasch et al., 2015; Roberts et al., 2017; Meyer
et al., 2016; Meyer et al., 2018a).

2.7. Determination of AGB saturation point

AGB saturation level was defined where a clear pattern of AGB le-
veling off was found on the logarithmic regression slope of the back-
scatter coefficients against the field AGB (Equation 3). This approach
has been used in previous studies (Watanabe et al., 2006; Suzuki et al.,
2013; Masolele, 2018). The highest performing relationship was used to
determine the saturation level.

Eq. (3): Determination of AGB saturation point.

Slope = ΔY/ΔX

Where:
ΔY is the change in the backscatter coefficients in relation to

minimum backscatter coefficients and ΔX is the change in AGB with
respect to minimum AGB value

2.8. AGB mapping

The model equation based on LLO CV was applied to PALSAR-2
where every pixel value was converted to AGB following the equation.
A similar approach was followed for AGB mapping in the mangroves
(Hamdan et al., 2014) and terrestrial tropical forests (Sumareke, 2016;
Masolele, 2018).

3. Results and discussion

3.1. Descriptive results

The individual trees measured in the field plots totaled at 2407.
Among them, Avicennia alba was the most dominating tree species ac-
counting for approximately 60 %, followed by Rhizophora spp. at about
38 %. Few Xylocarpus granatum and Bruguiera gymnorhiza were also
found. The field AGB ranged from 28.30 to 346.20 tons haˉ¹ with a
mean of 136.30 tons haˉ¹. The HV backscatter coefficients ranged from
−23.01 to −14.54 dB.

3.2. AGB and backscatter relationship

The relationship between speckle filtered HV backscatter coeffi-
cients and AGB had a low accuracy at R2 of 0.57 and RMSE of
46.01 tons ha−1 with p-value< 2.3e-14 (Fig. 4a). However, the non-

Fig. 3. A 3×3-pixel window on PALSAR-2 image for extraction of plot back-
scatter coefficients.

Fig. 4. Relationship of AGB with speckle filtered HV backscatter coefficients (a) and non-speckle filtered HV backscatter coefficients (b); black dots represent field
AGB and orange dots depict predicted AGB.
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speckle filtered HV backscatter coefficients demonstrated a high accu-
racy to estimate AGB at R2 of 0.89 and RMSE of 23.72 tons ha−1 at p-
value<2.2e-16 (Fig. 4b). Therefore, we used non-speckle filtered
backscatter coefficients for AGB estimation and referred to “backscatter
coefficients” henceforth in this paper, if not stated otherwise.

The accuracy of AGB prediction using both HV and HH backscatter
coefficients was also high at R2 (adjusted) of 0.88 and RMSE of
23.63 tons ha−1 (p-value< 2.2e-16). On the contrary, the relationship
between HH backscatter coefficients and field AGB was very weak at R2

of 0.12 and RMSE of 66.07 tons ha−1 (p-value= 0.003).

3.2.1. Model development, validation and accuracy assessment
AGB was modeled using HV backscatter coefficients as it predicted

AGB with higher accuracy. The model using 60 % dataset demonstrated
a high accuracy at R2 of 0.89 and RMSE of 23.16 tons ha−1 at p-
value<2.2e-16 (Fig. 5a). The model validation using an independent
dataset (40 %) also depicted a comparable accuracy at R2 of 0.89 and
RMSE of 22. 69 tons ha-1 at p-value<2.3e-14 (Fig. 5b). This means that
the predictive performance of the model stayed intact when it was
applied to an independent dataset.

Similarly, the model performance using random k-fold CV was
parallel to the model performance using independent validation
(Table 1). Again, the LLO CV model in relation to unknown locations
depicted a comparable high accuracy (Table 1). The results of the LLO
CV imply that the model was almost equally able to predict AGB outside
the locations of the training data, thus overruling spatial overfitting.

To date, this is the first study to obtain such high accuracy in AGB
estimation in the tropical mangrove forest using PALSAR-2. Among
others, AGB estimation using non-speckle filtered HV backscatter
coefficients largely contributed to high accuracy (Section 3.2, Fig. 4b).
During speckle filtering, the values of water pixels and forest pixels
were averaged which degraded the true backscatter coefficients from
the mangroves (Fig. 2b) and eventually, resulted in low accuracy
(Fig. 4a). Therefore, the use of speckle filter needs consideration where
the forest is intersected by various water channels and it should not be
applied at the expense of the actual forest backscatter coefficients.

Moreover, the enhanced backscattering from the mangrove forest
has an important contribution to high accuracy in our study. This is
linked to the scene observation time during peak hours of low tide
when the forest is not inundated, but wet with high moisture content.
The moisture content significantly increases the dielectric constant of
objects (Richards, 2009). This, in turn, enhances the radar backscatter

from the wet forests as observed in prior studies (Ormsby et al., 1985;
Imhoff et al., 1986; Richards et al., 1987; Hussin, 1990; Wang et al.,
1995; and Ling and Dai, 2012).

The mangrove forest in our study is approximately 16 years old
similar to the studies in Vietnam (Pham and Yoshino, 2017; Pham et al.,
2017, 2018) and Malaysia (Hamdan et al., 2014). However, the mea-
surements of our forest parameters are comparatively high. This brings
to the point of an increase in volume scattering with the growth of the
trees (Le Toan et al., 1992). The tree growth strengthens the cross-po-
larization backscatter of L-band SAR as it can pass through the canopy
down to the ground (Proisy, 2000).

Remarkably, our study area represents a naturally growing native
plantation mangrove forest. Whereas, the mangrove is a managed
planted forest in Malaysia (Hamdan et al., 2014) and Vietnam (Pham
and Yoshino, 2017; Pham et al., 2017, 2018). These differences can lead
to variation in forest growth and probably contribute to the relationship
between backscatter coefficients and AGB.

Furthermore, 71 sample plots cover approximately all variations in
our small and quite homogenous study area. This could conceivably
contribute to the relatively high accuracy. While, AGB was estimated
for the entire Matang mangrove forest (41,000 ha) using 320 sample
plots (Hamdan et al., 2014). Again, 25 sample plots were used to esti-
mate AGB of about 125 km mangrove forest in Vietnam (Pham and
Yoshino, 2017; Pham et al., 2017, 2018)

In addition, high accuracy could be attributed to uncertainty re-
duction to a certain extent. For instance, we minimized scale mismatch
by taking larger field plots than pixel window for backscatter extrac-
tion. Besides, there is no temporal difference between PALSAR-2 image
and field data acquisition. Moreover, four additional measurements
apart from the plot center were taken to ensure the geolocation of the
plots. Details on uncertainty reduction can be found in previous studies
(Réjou-Méchain et al., 2014, 2019).

3.3. Determination of AGB saturation point

AGB leveled off at 0.01 dB reaching 216.9 tons ha−1 on the loga-
rithmic regression slope against the HV backscatter coefficients (Fig. 6).
This implies that AGB was saturated at approximately 217 tons ha-1.
The AGB saturation level is comparatively much high in our study than
that of earlier studies (Lucas et al., 2007; Hamdan et al., 2014; Pham
et al., 2018). Since the PALSAR-2 scene was observed during the peak
low tide, inundation does not induce saturation at a low AGB level in

Fig. 5. AGB model using HV backscatter coefficients (a) and AGB model validation using field AGB and estimated AGB (b); black dots denote field AGB while orange
dots represent predicted AGB.

Table 1
Model performance using independent validation (40 % dataset), k-fold CV and LLO CV.

Model Validation Intercept Coefficient: HV backscatter R2 RMSE P-value

AGB Model Independent validation 777.93 31.84 0.89 23.16 < 2.2e-16
K-fold CV 777.99 31.95 0.89 24.59 < 2.2e-16
LLO CV 777.99 31.95 0.88 24.05 < 2.2e-16
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our study as observed by Lucas et al. (2007).

3.4. AGB mapping

AGB was mapped in the study site (Fig. 7) using Equation,
AGB=777.99+31.95 HV derived from the LLO CV model (Table 1).
The AGB estimates ranged between 1–350 tons ha−1 and totaled at
13,719 tons (Table 2 and Fig. 8). Most of the AGB varied from 100 to
200 tons ha-1 (25 ha), followed by 200−300 tons ha-1 (21 ha). Mark-
edly, the estimated AGB range closely resembles the field AGB. The
accuracy of the estimation was observed at R2 of 0.89 and RMSE of
22.69 tons ha-1 (Fig. 5b). The range of AGB estimation is comparable to
the findings by Hamdan et al. (2014), whilst the average is higher in our
study. However, AGB estimation is higher in our study compared to the
study by Pham et al. (2018).

4. Conclusions

Our study reveals that HV backscatter coefficients of PALSAR-2
model AGB in the restored mangrove forest at high accuracy with R2 of
0.89 and RMSE of 23.16 tons ha−1. Moreover, AGB saturation is found
at a relatively higher level at around 217 tons ha−1. The AGB estima-
tion ranges between 1−350 tons ha−1 and strongly signifies the field

AGB in the study area. These findings suggest that cross-polarized
backscatter coefficients have a great potential to estimate AGB with
high accuracy in the restored and homogenous mangrove forests. Thus,
our findings can contribute to the MRV system of the UN-REDD
Programme.

Our model can be applied to other mangrove forests with similar
biophysical characteristics. However, our model may not be applicable
in the natural/non-restored mangroves with high AGB variation as the
relationship may not be linear. Therefore, more research should be
performed on natural mangroves where AGB varies significantly. With
the availability of new RS data specifically GEDI LiDAR biomass and P-
band SAR over the coming years, future studies might pave the way to
address this gap. Future research should also focus on modeling AGB
using multiple images to test the temporal consistency. Moreover, un-
certainty assessment should be a crucial part of future investigations.
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