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Neuroprosthetic implants are a promising technology for
restoring some form of vision in people with visual
impairments via electrical neurostimulation in the visual
pathway. Although an artificially generated prosthetic
percept is relatively limited compared with normal
vision, it may provide some elementary perception of
the surroundings, re-enabling daily living functionality.
For mobility in particular, various studies have
investigated the benefits of visual neuroprosthetics in a
simulated prosthetic vision paradigm with varying
outcomes. The previous literature suggests that scene
simplification via image processing, and particularly
contour extraction, may potentially improve the mobility
performance in a virtual environment. In the current
simulation study with sighted participants, we explore
both the theoretically attainable benefits of strict scene
simplification in an indoor environment by controlling
the environmental complexity, as well as the practically
achieved improvement with a deep learning-based
surface boundary detection implementation compared
with traditional edge detection. A simulated electrode
resolution of 26 × 26 was found to provide sufficient
information for mobility in a simple environment. Our
results suggest that, for a lower number of implanted
electrodes, the removal of background textures and
within-surface gradients may be beneficial in theory.
However, the deep learning-based implementation for
surface boundary detection did not improve mobility
performance in the current study. Furthermore, our
findings indicate that, for a greater number of
electrodes, the removal of within-surface gradients and
background textures may deteriorate, rather than
improve, mobility. Therefore, finding a balanced amount
of scene simplification requires a careful tradeoff
between informativity and interpretability that may
depend on the number of implanted electrodes.

Introduction

Blindness is a common disability that causes
impaired daily living functionality and decreases
quality of life (Kempen et al., 2012; Stevens, White, &
Flaxman, 2013). Among all daily life activities, mobility
and obstacle avoidance are often reported to be the
most problematic (Van Der Geest & Buimer, 2015).
For many cases of blindness, there currently exists no
effective treatment. However, neuroprosthetic implants
are a promising technology for restoring some form
of vision via electrical neurostimulation in the visual
pathway (Chen, Wang, Fernandez, & Roelfsema, 2020;
Fernández, Alfaro, & González-López, 2020; Lewis et
al., 2016; Lewis, Ackland, Lowery, & Rosenfeld, 2015;
Riazi-Esfahani et al., 2014; Roelfsema, Denys, & Klink,
2018; Shepherd et al., 2013; Tehovnik & Slocum, 2013;
Tehovnik, Slocum, Smirnakis, & Tolias, 2009; Pezaris
& Reid, 2007). Using multiple electrodes, such implants

can activate a specific arrangement of visual neurons
based on camera input. This neural stimulation elicits
a perceived pattern of localized point-like flashes of
light, referred to as phosphenes, that can be used to
represent the surroundings. The greater the number
of implanted electrodes, the more phosphenes can be
elicited. In this study, we focus on cortical implants
that, compared with other types of implants, such as
retinal implants, are expected to have a wider range
of therapeutic applicability (Fernández, Alfaro, &
González-López, 2020), are less amenable to electrical
crosstalk (Davis et al., 2012; Wilke et al., 2011), and
can accommodate a larger number of electrodes.
For instance, recently, Chen, Wang, Fernandez, and
Roelfsema (2020) successfully implanted more than one
thousand cortical electrodes to achieve artificial visual
perception in macaque monkeys.

Although the artificially generated prosthetic percept
is relatively limited compared with normal vision,
it may provide some elementary perception of the
surroundings, re-enabling daily living functionality.
For mobility in particular, various studies have
investigated the benefits of visual neuroprosthetics in
a simulated prosthetic vision (SPV) paradigm with
sighted participants. Early work by Cha, Horch, and
Normann (1992) used a perforated mask over a CRT
monitor to create pixelized vision and demonstrated
that 625 simulated phosphenes may provide sufficient
information for visually guided mobility. More recent
studies report that adequate mobility performance
could be achieved with as few as 325 (Srivastava, Troyk,
& Dagnelie, 2009) or even just 60 (Dagnelie et al.,
2007) phosphenes in a simple environment. Note that a
conclusive interpretation of these results is complicated
by differences in the mobility task used and the realism
of the phosphene simulation.

Besides the number of implanted electrodes, another
factor that highly influences the usability of prosthetic
implants is the choice of image processing protocol
that transfers visual input to an appropriate electrode
activation pattern. The translation of complex visual
input into a phosphene percept (which by definition is
limited) requires an efficient reduction of information
and selection of the mere essential visual features
for a given task. This can be achieved with the use
of traditional computer vision approaches, such
as edge detection (Boyle, Maeder, & Boles, 2001;
Dowling, Maeder, & Boles, 2004; Guo, Yang, & Gao,
2018), but deep neural network models have also
gained increasing interest of prosthetic engineers
(e.g., Sanchez-Garcia, Martinez-Cantin, & Guerrero,
2020; Han et al., 2021; Bollen et al., 2019; Bollen, van
Wezel, van Gerven, & Güçlütürk, 2019; De Ruyter Van
Steveninck, Güçlü, van Wezel, & Van Gerven, 2020;
Lozano et al., 2020; Lozano et al., 2018). Various image
processing approaches have been proposed for mobility
in particular (Barnes et al., 2011; Dagnelie et al., 2007;
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Dowling, Boles, & Maeder, 2006; Dowling, Maeder,
& Boles, 2004; Feng & McCarthy, 2013; McCarthy et
al., 2015; McCarthy, Feng, & Barnes, 2013; Parikh,
Itti, Humayun, & Weiland, 2013; Srivastava, Troyk, &
Dagnelie, 2009; van Rheede, Kennard, & Hicks, 2010;
Vergnieux, Mace, & Jouffrais, 2014; Vergnieux, Macé,
& Jouffrais, 2017; Zapf, Boon, Lovell, & Suaning,
2016). A main line of research among these studies, is
focused on the extraction of geometric structure and
object contours for scene simplification. McCarthy
et al., for instance, proposed methods for extracting
scene structure (McCarthy, Feng, & Barnes, 2013)
and surface boundaries (McCarthy, Barnes, & Lieby,
2011) from disparity data. Based on quantitative and
qualitative image analysis, the authors suggest that
these methods may improve the interpretability of
prosthetic vision and could support obstacle avoidance.
To behaviorally evaluate the benefits of such scene
simplification approaches, Vergnieux et al. performed
experiments with SPV in a virtual environment
(Vergnieux, Macé, & Jouffrais, 2017). The study found
that visual simplification decreases virtual wayfinding
performance for normal vision, but improves the
performance with SPV. The highest performance with
SPV was achieved when the scene was reduced to only
the surface boundaries (i.e., a wireframe rendering).

The aforementioned literature provides solid
evidence that scene simplification, and particularly
contour extraction, can help to prevent “overcrowding”
(i.e., transmitting more visual features than can
be clearly interpreted from the limited phosphene
representation) and improves the interpretability of
prosthetic vision in a mobility task. Nevertheless, few
attempts have been undertaken to empirically test this
in a real-world setup, and there are some remaining
questions and challenges: first, complex scenes may
contain abundant textures and background gradients,
which complicate contour extraction with conventional
image processing applications. Although previous work
has demonstrated that intelligent scene simplification
methods may work in basic virtual environments
(Vergnieux, Macé, & Jouffrais, 2017) or when evaluated
as preconverted images and videos (Sanchez-Garcia,
Martinez-Cantin, & Guerrero, 2020; Han et al., 2021),
the implementation of a real-time, effective, and
practical image processing method in a real-world
complex visual environment is a pressing issue that
can bring research closer to the clinical situation.
Second, it is unclear to what extent scene simplification
contributes to improved mobility with SPV. Decreasing
the amount of visual information may, on the one hand,
increase interpretability by preventing overcrowding,
but, on the other hand, excessive deprivation of visual
information may also lead to impaired mobility. For
example, texture is an important cue that is used in
navigation (Gibson, 1950). Explicit investigation of this
trade-off between interpretability and informativity for

various phosphene resolutions may provide insight into
the essential components for visually guided mobility
with prosthetic vision.

In the current study, we empirically evaluate contour
extraction in a real-world indoor mobility task using
a simulation of cortical prosthetic vision. We test
two levels of contour-based scene simplification:
an edge-based representation, that extracts visual
gradients from all areas of the visual scene, versus a
stricter surface-boundary representation, in which all
within-surface information and background textures
are removed. With this comparison in mind, our
experiment is designed to address three study aims:
i) to explore the restorable benefits for mobility with
prosthetic vision and the required number of implanted
electrodes; ii) to examine the theoretically attainable
benefits of a stricter surface boundary representation by
removal of all within-surface gradients and background
textures; and iii) to test the feasibility of software-based
scene simplification using a pretrained deep neural
network architecture for real-time surface boundary
detection.

Materials and methods

Participants

We recruited 21 participants at the university campus
(Radboud University, Nijmegen, the Netherlands) who
had no prior experience with simulated phosphene
vision. Inclusion criteria were an absence of mobility
impairments, low susceptibility to motion sickness, and
normal or corrected to normal vision. One participant
was unable to perform the experiments owing to
virtual reality sickness and was, therefore, excluded
from the analysis. Demographics of the remaining 20
participants are displayed in Table 1. The conducted
research was approved by the local ethical committee
(REC, Radboud University, Faculty of Sciences) and all
subjects gave written informed consent to participate.

Experimental setup

The experiments were situated in a 3-m-wide
corridor in the basement of the university building.
Two 22-m-long mobility courses were prepared

Characteristics Median Interquartile range

Age, years 21 20.8–23.3
Height, m 1.84 1.75–1.87

Table 1. Summary of participant characteristics (n = 20).

Downloaded from jov.arvojournals.org on 03/09/2023



Journal of Vision (2022) 22(2):1, 1–14 de Ruyter van Steveninck et al. 4

Figure 1. Photos of the complex (left) and plain (right) obstacle
course. Both environments contained identical cardboard
boxes. In the complex environment, additional visual gradients
are created with wallpaper and tape.

containing seven small (30 × 50 × 90 cm) and six
large (30 × 75 × 180 cm) cardboard boxes that were
placed along the corridor and acted as obstacles.
In one of the two courses, which we refer to as the
“complex environment” (as opposed to the “simple
environment”); wallpaper and tape were used to provide
supplemental visual gradients to the floor, the walls, and
the obstacles (Figure 1 and Figure 2). A combination
of a laptop (Precision 7550, Dell Technologies) and
an attached-by-wire head-mounted virtual reality
device (Vive Pro Eye, HTC Corporation) was used
for the simulation of prosthetic vision. To eliminate
trip hazard, the participant was always accompanied
by one of the researchers and connection cables were
suspended in the air using a rod. Visual input was
captured by the inbuilt frontal camera of the headset
and was processed using Python (version 3.6.12)
making use of the OpenCV (version 4.4.0) image
preprocessing library (Bradski, 2000). During the
experiments, a low-quality version of the video input
and the displayed phosphene simulation was recorded
and saved for post hoc inspection. Trial duration and
collisions were registered manually. Furthermore,

after each trial, participants were asked to provide a
subjective rating on a 10-point Likert scale, indicating
to what degree they agreed with the statement that in
the current condition it was “easy to walk to the end of
the hallway while avoiding the obstacles.” In addition
to these primary end points, which were measured for
every trial, we also gave participants the opportunity to
comment on their general experience in an exit survey.
Relevant observations are discussed in the Results.

Image processing

Input frames were obtained from the inbuilt frontal
fisheye camera of the virtual reality device. Each frame
was processed separately. The frames were cropped
and resized to 480 × 480 pixels and depending on
the experimental condition, either conventional edge
detection was performed with the Canny edge detection
(CED) algorithm (Canny, 1986), or surface boundary
detection using SharpNet. We used the inbuilt OpenCV
CED implementation together with prior smoothing
using a two-dimensional Gaussian filter. In the CED
algorithm, gradient pixels are accepted as an edge
if the gradient is higher than the upper threshold
or if the gradient is between the two thresholds and
it is connected to a pixel that is above the upper
threshold (Canny, 1986). Based on qualitative visual
assessment and prior pilot experiments, we determined
the optimal lower and higher thresholds for our
environment to be equal to 25 and 50 (out of 255),
respectively, in combination with a sigma parameter
of 3.0 for the Gaussian smoothing. For the surface
boundary detection, we used the publicly available
implementation of the SharpNet model as described
in Ramamonjisoa and Lepetit (2019), which was
pretrained on the NYUv2 dataset (Silberman, Hoiem,
Kohli, & Fergus, 2012). On our laptop (graphical
processing unit: NVIDIA Quadro RTX 4000), this
model achieved a framerate of 18.3 Hz (standard
deviation, 4.15 Hz) using the PyTorch framework
(version 1.6.0) (Mazza & Pagani, 2017). In addition

Figure 2. Overview of the obstacle course setup. The yellow boxes indicate large obstacles and the green boxes indicate small
obstacles. Dashed lines indicate alternative box locations in other random route permutations. Out of all possible route layouts, a
selection of seven routes of similar difficulty (based on the shortest path length around the obstacles) were used, as well as their
mirrored versions.

Downloaded from jov.arvojournals.org on 03/09/2023



Journal of Vision (2022) 22(2):1, 1–14 de Ruyter van Steveninck et al. 5

Figure 3. Visualization of the image processing steps. (A) Input image. (B) Blurred image, using Gaussian smooting. (C) Edge mask,
produced using the Canny algorithm. (D) Simulated phosphene vision, based on the Canny edge mask. (E) Surface normals prediction
by the SharpNet deep learning model. (F) Surface boundary prediction by by the SharpNet deep learning model. (G) Surface boundary
mask produced using the SharpNet predictions. (H) Simulated phosphene vision, based on surface boundary mask.

to the raw object boundary prediction, the SharpNet
model provides an estimation of depth and surface
normals. To achieve optimal results, we combined
the contours on the surface normal estimation map
with the thresholded boundary prediction, which
yielded the best performance in pilot experiments.
The optimal threshold for the boundary detection was
determined at 94 (out of 255). A visualization of the
image preprocessing for one example frame can be
found in Figure 3.

Phosphene simulation

The previous literature reports phosphenes as
punctuate dots with a size of 0.2° to 2.0° of visual
arc (Bak et al., 1990; Schmidt et al., 1996). In our
experiments, phosphenes were simulated as white,
equally sized Gaussian blobs of roughly 0.3° of visual
arc (sigma, 2.0 pixels) on a rectangular grid in the
center of the virtual reality display (480 × 480 pixels;
roughly 35° of visual arc). The visual field of our
phosphene simulation is kept constant throughout
the experiment, as well as the phosphene sizes. The
number of phosphenes, however, is varied across
study conditions, which means, by consequence, that
the phosphene density is also different across study
conditions. Note that wherever we refer to the effects of
the phosphene resolution, this should be interpreted
as the combined effect of the number of phosphenes
and the phosphene density. Phosphenes could only take
binary values (“on” or “off”), as at this time, cortical
visual prostheses do not allow for systematic control
over phosphene brightness (Najarpour Foroushani,
Pack, & Sawan, 2018; Troyk et al., 2003). To mimic

biological irregularities in phosphene mapping,
distortion was added to the grid locations and a minor
(temporally constant) variation was applied to the
brightness of individual phosphenes.

Experimental procedure

The experiment was partitioned into three sessions,
starting with a training session (approximately 20
minutes) containing practice trials with the full
experimental setup, to allow the participants to get
acquainted with the simulated phosphene vision and
the experimental task. The remaining two sessions
started with two control trials, in which normal vision
was simulated by directly displaying the camera
input on the virtual reality-device, followed by eight
different phosphene conditions. The total duration
of the experiment was 2.5 to 3.0 hours. The study
conditions were designed to facilitate three types of
comparisons, which correspond with our study aims:
i) to obtain a general measure of restorability of
mobility performance and an indication of the required
number of implanted electrodes, we compared the
mobility performance with SPV at six different
phosphene resolutions with the performance in
a control condition with normal camera vision
(Figure 4). ii) To examine the theoretically attainable
benefits of a stricter surface boundary representation
where within-surface gradients and background are
removed, we compare the performance with CED
in the complex versus the plain visual environment.
iii) To assess the feasibility of obtaining such strict
scene simplification with real-time deep learning-based
surface boundary detection, we tested SharpNet at two
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Figure 4. Image processing and phosphene simulation in the
plain environment. (A) Input image. (B) Edge mask, produced
using the Canny algorithm. (C) Surface boundary mask
produced using the SharpNet predictions. (D–F) Comparison of
different simulated phosphene resoutions (10 × 10, 26 × 26,
and 50 × 50 phosphenes, respectively), with activations based
on the Canny edge mask.

different phosphene resolutions in both the complex
and plain visual environment. Here, the SharpNet
model was evaluated against CED as a control
condition. Based on the aforementioned literature
on overcrowding, we hypothesize that mobility in the
complex environment with a low phosphene resolution
(such as 26 × 26 phosphenes), can be improved with
deep learning-based scene simplification compared
with basic image processing with CED. An overview
of the study conditions can be found in Table 2. Note
that a representative selection of these conditions
was practiced in the training session (i.e., both low
and high phosphene resolutions, both environmental
complexities, and both image processing methods).
At the beginning of each trial, an auditory start cue
was presented to the participants. To encourage the
maximal performance achievable, as limited by the
visual input, instructions were to walk as fast as possible

while avoiding the obstacles. Between each trial, the
obstacles were systematically shuffled to match one of
seven predefined route layouts.

Randomization

In an effort to minimize systematic bias owing to
learning effects, or owing to characteristics of the route
layout, both the order of all phosphene simulations and
the order of the route layouts were randomized. For
corresponding phosphene simulation conditions, the
route layouts were matched but mirrored across the
two different visual complexity conditions. Similarly,
to allow for a clean comparison between the two
image preprocessing methods, the route layouts were
matched between the SharpNet and corresponding
CED conditions.

Statistical analysis

Statistical analysis was performed using the SciPy
statistics toolbox (version 1.3.2) for Python (Virtanen,
Gommers, & Oliphant, 2020). All three end point
parameters were standardized within participants (i.e.,
the mean was subtracted and results are divided by the
standard deviation) to decrease the variance caused by
interindividual differences in walking speed, avoidance
strategy, and subjective experience. The end point
parameters were found to be non-normally distributed
across participants, as assessed with the Shapiro–Wilk
test. Statistical hypothesis testing was performed using
the Wilcoxon signed-rank test. Alpha was set at 0.05
and adjusted with the Bonferroni method for multiple
planned comparisons. Six tests were performed to assess
the effect of scene complexity with CED-based SPV at
each phosphene resolution. Four tests were performed
to compare surface boundary detection with SharpNet
against edge detection with CED in each subcondition
that was measured (i.e., two phosphene resolutions and
two scene complexities).

Camera vision CED-based SPV SharpNet-based SPV

Two trials per session (one for each
visual complexity)

Two trials per session for each of the
following six phosphene resolutions
(one for each visual complexity):

• 10 × 10 phosphenes
• 18 × 18 phosphenes
• 26 × 26 phosphenes
• 34 × 34 phosphenes
• 42 × 42 phosphenes
• 50 × 50 phosphenes

Two trials per session for each of the
following two phosphene resolutions
(one for each visual complexity):

• 26 × 26 phosphenes
• 42 × 42 phosphenes

Total (two sessions): 4 trials Total (two sessions): 24 trials Total (two sessions): 8 trials

Table 2. Overview of study conditions and corresponding number of trials.
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Results

General results

Table 3 provides descriptive statistics for the obtained
data. We found a small but significant negative
correlation between the trial duration and the trial
number (Pearson’s R = –0.15; p < 0.001). On average,
SPV trials in the second session were performed 3.468
seconds faster compared with the first session. No
learning effects were found for number of collisions
and subjective rating. The average performance varied
across participants with a standard deviation of 7.748
seconds for the trial duration, 0.251 for number of
collisions, and 0.783 for subjective rating. Regression
analysis and subgroup analysis of the average collision
frequency did not reveal an effect of trade-off between
the number of collisions (accuracy) and trial duration
(speed).

Phosphene resolution

The results for the CED trials and the control
trials with camera vision are visualized in Figure 5.
Assuming an absolute minimal performance at a
resolution of 10 × 10 in the complex environment
and defining maximal performance as the result

Overall Control condition

Mean Std. Mean Std.

Trial duration (s) 31.02 13.79 16.74 4.438
No. of collisions 0.879 1.526 0 0
Subjective rating 6.130 2.331 9.363 0.660

Table 3. Descriptive statistics of the overall results and the
control condition with camera view. Std. = Standard deviation.

obtained with normal vision, more than half the
performance is restored at a resolution of 26 × 26
phosphenes (59.2% for trial duration, 90.2% for number
of collisions, and 52.6% for subjective rating) in the
simple visual environment. At the same resolution
of 26 × 26 phosphenes the performance was lower
in the complex visual environment (52.2%, 74.1%,
and 48.1%, respectively), which is effectively similar
to the performance in the simple condition at a lower
resolution of 18 × 18 (46.2%, 81.5%, and 38.8%,
respectively).

The effect of scene complexity

The p values for the Wilcoxon signed-rank test on
the effect of scene complexity with CED are displayed
in Table 4. Overall, the complexity-related decrease
in performance was found for all lower phosphene
resolutions, as evidenced by significant larger trial
durations (at resolutions 10 × 10 and 18 × 18), more
obstacle collisions (at resolutions 10 × 10, 18 × 18,
and 26 × 26) and lower ratings (at resolutions of
10 × 10 and 18 × 18). Notably, in the higher phosphene
resolutions this effect was absent or even opposite.
With a resolution of 50 × 50 phosphenes, participants
achieved a significantly lower trial duration in the
complex environment compared with the simple
environment.

The effect of image processing method:
SharpNet versus CED

The p values of the Wilcoxon signed-rank test on the
effect of image processing are provided in Table 5 and
the performance is visualized in Figure 6. For the 42 ×
42 phosphenes condition in the complex environment,
SharpNet trials were significantly longer (p< 0.001) and

Figure 5. Mobility performance with CED-based SPV. The simulated number of phosphenes is plotted against standardized trial
duration (left), standardized number of collisions (middle), and standardized subjective rating (right). Scene complexity is controlled
by comparing a simple environment with plain cardboard boxes against a complex environment with additional background and
surface textures. The dashed line indicates the average result for the control condition without SPV (i.e., normal camera vision).
Asterisk (*) indicates p < 0.0125, double asterisk (**) indicates p < 0.0025.
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Resolution 10 × 10 18 × 18 26 × 26 34 × 34 42 × 42 50 × 50

Trial duration <0.001 <0.001 0.044 0.765 0.145 <0.001
No. of collisions 0.003 <0.001 0.004 0.433 0.889 0.345
Subjective rating 0.039 0.002 0.124 0.078 0.221 0.039

Table 4. p Values for Wilcoxon signed rank test for evaluation of the effect of scene complexity with CED. With a Bonferroni correction
of α for six planned comparisons, findings are considered significant if p < 0.0083.

received a lower subjective rating (p < 0.001) compared
with CED. In the 26 × 26 phosphenes condition, no
significant performance differences were found in
the complex environment. In the simple environment
performance was worse for the SharpNet condition
compared with CED regardless of the phosphenes
resolution, as reflected by longer trial durations
(p < 0.001 for 42 × 42 phosphenes and p = 0.005 for
26 × 26 phosphenes) and a lower subjective rating (p
< 0.001 for 42 × 42 phosphenes, and p = 0.004 for
s 26 × 26 phosphenes).

User experience

After the experiment, participants had the
opportunity to indicate their personal experience in a
survey. Here we report some relevant observations. Of

Simple scene Complex scene

Resolution 26 × 26 42 × 42 26 × 26 42 × 42

Trial duration 0.005 <0.001 0.478 <0.001
No. of collisions 0.055 0.084 0.331 0.169
Subjective rating 0.004 <0.001 0.520 <0.001

Table 5. p values for Wilcoxon signed-rank test for evaluation of
the effect of image processing method. With a Bonferroni
correction of α for four planned comparisons, findings are
considered significant if p < 0.0125.

the respondents, 82.4% indicated that they experienced
a sufficient amount of practice during the practice
session versus 17.6% who indicated that more practice
trials would have been beneficial. Upon asking for
specific cues that influenced their navigation strategy,
94.1% of the respondents answered that they used the
object contours for recognizing obstacles and 47.1%
of the respondents indicated that, for some of the
trials, choices in navigation were based on chance or
intuition rather than understanding of the visual input.
Furthermore, 53.0% of the respondents explicitly
indicated to make use of apparent differences in lines
and textures on the floor, boxes, and walls. In the other
comments section, some participants mentioned that
the (in)ability to perceive depth strongly influenced
the performance for that trial, where one of these
participants indicated specifically that forward motion
and head movements sometimes contributed to the
perception of depth. Some participants indicated that
their strategy depended on the number of phosphenes
for that trial.

Discussion

In this study, we evaluated indoor mobility
performance with a real-world simulation of prosthetic
vision and contour extraction-based image processing.
Beside a general evaluation of the restorable mobility
performance at different phosphene resolutions, we
assessed the inherent, theoretically attainable benefits

Figure 6. Results of the SharpNet trials with deep-learning based surface boundary prediction versus edge detection with the Canny
algorithm. Standardized trial duration (left), standardized number of collisions (middle), and standardized subjective rating (right) are
plotted for two phosphene resolutions and two levels of environmental complexity. The complex environment contained additional
background and surface textures where the simple environment consisted of plain cardboard boxes. Asterisk (*) indicates p < 0.0125,
double asterisk (**) indicates p < 0.0025.
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of decreasing scene complexity via the removal of
background textures and within-object gradients.
Furthermore, we investigated whether such scene
simplification can be achieved practically using a
deep neural network approach for surface boundary
detection. In this section we provide a discussion on our
findings and point out some of the current limitations
and directions for future research.

Mobility with simulated cortical prosthetic
vision

The found minimal resolution of 26 × 26 phosphenes
for adequate restoration mobility in a simple scene
(e.g., 90.2% of obstacle avoidance with normal vision)
is comparable with or moderately higher than previous
studies that report a minimum of 60 (Dagnelie et
al., 2007), 325 (Srivastava, Troyk, & Dagnelie, 2009),
or 625 (Cha, Horch, & Normann, 1992) simulated
phosphenes. The varying results may be related to
the prior experience and amount of practice by the
study participants, differences in the mobility task,
and the implementation of the phosphene simulation.
Dagnelie et al. (2007) found that subjects with previous
experience with SPV (≥10 hours) demonstrate
improved performance compared with inexperienced
subjects, achieving similar results at a lower phosphene
resolution. In the experiments by Srivastava, Troyk,
and Dagnelie (2009), participants were asked for up
to nine laboratory visits. In the current study, despite
a majority of participants (82.4%) who indicated
to have a sufficient amount of practice, we found a
slight but significant improvement in average trial
duration over the course of the experiment. This
finding means that our results may be influenced by the
relatively short exposure to SPV compared with the
aforementioned studies. Another factor that may have
limited the performance of our participants compared
with previous studies is found in the simulation of the
phosphenes. In the current study, phosphenes could
take binary states (on or off), whereas Dagnelie et al.
(2007) and Srivastava, Troyk, and Dagnelie (2009) used
eight or four levels of grayscale intensities, respectively.
Although some relationship between stimulation
parameters and phosphene size has been established
(Brindley & Lewin, 1968), at this time cortical visual
prostheses do not allow for systematic control over
phosphene brightness (Najarpour Foroushani, Pack, &
Sawan, 2018; Troyk et al., 2003). The current simulation
with binary phosphenes, therefore, provides a valuable
addition to previous literature that do not implement
this constraint. Note that the field is developing rapidly
and results from further clinical work can guide SPV
research for the development of realistic phosphene
simulations, which, vice versa, can accelerate clinical
developments by answering fundamental questions

about prosthetic design (Najarpour Foroushani,
Pack, & Sawan, 2018). The curves in Figure 5 suggest
that—maybe unsurprisingly—even at higher phosphene
resolutions there remains a gap between SPV and
normal vision. This implies that, besides increasing the
number of electrodes, there are other challenges to be
taken before prosthetic vision approaches the quality
of normal sight. Even with the current technological
prospects, there are many design choices that influence
the usefulness. For example, in experiments with SPV,
Cha, Horch, and Normann (1992) demonstrated that,
in line with other low-vision research (Marron & Bailey,
1982), the distribution of simulated phosphenes across
the visual field can have an impact on mobility. Future
studies with SPV could further explore the impact of
using different electrode locations in the visual cortex
on the mobility performance.

The effect of visual complexity

Our results demonstrate that scene simplification via
the removal of background textures and within-object
gradients may improve mobility performance at lower
phosphene resolutions. In the higher phosphene
resolutions, this effect was absent or even opposite,
indicating an interaction between phosphene resolution
and visual complexity. On the one hand, these findings
confirm previous suggestions that low-resolution
prosthetic vision quickly gets overcrowded (Vergnieux,
Macé, & Jouffrais, 2017). A post hoc inspection of the
simulated prosthetic percept, as well as the responses
on the exit interview, revealed that overabundant
phosphene activity renders it almost impossible to
distinguish the floor, walls, and objects. In other
words, at low phosphene resolutions visual complexity
comes at the cost of interpretability. At the same
time, excessive removal of visual information at
higher phosphene resolutions may negatively influence
the visual processing abilities that are required for
mobility. Optic flow processing, for instance, which
depends on dynamic tracking of local visual patterns,
is an important requirement for the estimation of
ego-motion and heading (Lappe, Bremmer, & van den
Berg, 1999; Warren et al., 2001). Especially in low-vision
conditions, and even phosphene vision, the removal of
optical flow cues may have a negative impact on the
recognition of scene structure and foreground objects
(Pan & Bingham, 2013; Qiu et al., 2018). Besides
serving as dynamic cues for optic flow perception,
surface information, and background textures may
have also directly contributed to the detection of
foreground objects, by facilitating figure-ground
segregation (Caputo, 1996; Machilsen & Wagemans,
2011). Note that these specific interpretations regarding
the underlying visual processing remain somewhat
speculative, because the downstream visual processing
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of phosphene vision has been studied sparsely.
Yet, based on the performance measures and the
responses from the exit survey, we can conclude
that the representation of background textures and
surface gradients at higher resolutions of prosthetic
vision proves to be informative for mobility—at
least in the current environment. Combined, these
conclusions advocate for a balanced compromise
between informativity and interpretability. The optimal
amount of scene simplification should be a careful
choice that depends on the characteristics of the
implant and environmental context.

Feasibility of deep learning-based surface
boundary detection for scene simplification

Besides the theoretically attainable benefit of strict
scene simplification, which was tested by removal of
gradients and background textures in the environment,
we evaluated its practical feasibility through intelligent
image processing. Comparing SharpNet with CED,
no significant improvement in performance was
found in any of the study conditions. Looking at
the results in the complex environment, the relative
decreased performance with SharpNet in the higher
phosphene resolution (42 × 42 phosphenes) is in
line with the aforementioned analysis of the CED
trials and suggests that that removal of gradients
and background textures may not be beneficial at
higher resolutions. The absence of improvement in
the SharpNet trials with a lower phosphene resolution
(26 × 26 phosphenes), however, is unexpected; as for
low resolutions, a strict scene simplification method is
theorized to prevent overcrowding of the phosphene
representation (Vergnieux, Macé, & Jouffrais, 2017).
Even more unpredicted is the omnipresent performance
decrease in the plain environment, because in this
environment the behavior of the SharpNet model is
expected to be similar to CED—all visual gradients,
besides shadows, match object surface boundaries.
Rather than the inherent disadvantages of surface
boundary detection, these findings are likely to
be explained by poor achievement of the current
implementation. Here we summarize a few potential
issues. First, a post hoc inspection of the captured
image stream revealed poor prediction of the surface
boundaries by the SharpNet model. Please note that
the output of CED on images acquired in the plain
environment (Figure 4B) is effectively equivalent
to the ideal output of SharpNet in the complex
environment (compare with Figure 3G). The network
is trained on a naturalistic indoor image dataset and
the underperformance may reflect poor generalizability
to the current environment. Furthermore, based on
incidental reports from the exit survey and a post hoc
visual inspection of the videos, head movements seemed

to negatively influence the prediction performance,
indicating that the network might be sensitive to
motion blur. This factor occasionally caused obstacles
to remain undetected. Second, a potential problem
with the current SharpNet implementation is that it
is based on individual frame processing, resulting in
large frame-to-frame differences. The lack of dynamic
consistency may have cause a decreased interpretability
of the phosphene representations. Third, participants
might have experienced difficulties adjusting between
the two image processing strategies. Although
participants were trained during the practice session,
in equal amounts for both methods, by design, our
experiment contained fewer SharpNet trials compared
with CED trials. This relative underrepresentation may
have caused decreased familiarity with the SharpNet
condition. Last, the current image processing pipeline
is to some extent based on arbitrary choices. Although
the effects of specific parameter settings and processing
choices were evaluated visually and tested in behavioral
pilot experiments, it might be the case that a different
configuration would yield better results. The absence
of improvement with the deep learning based image
processing for prosthetic vision is regrettable, given the
potential that was demonstrated in other tasks such as
object recognition (Han et al., 2021; Sanchez-Garcia,
Martinez-Cantin, & Guerrero, 2020) and emotion
recognition (Bollen et al., 2019; Bollen, van Wezel,
van Gerven, & Güçlütürk, 2019). Other types of
preprocessing approaches have been proposed for
mobility in particular, including depth-based (Barnes
et al., 2011; McCarthy et al., 2015) or contour-based
(Dowling, Maeder, & Boles, 2004; McCarthy, Feng,
& Barnes, 2013; Vergnieux, Macé, & Jouffrais, 2017)
rendering, where a strict surface boundary-based (i.e.,
“wireframe”) representation was found to be most
effective in virtual mobility experiments (Vergnieux,
Macé, & Jouffrais, 2017). Although the results from
our physical scene simplification comparison (see
previous section) support the value of this approach
for lower phosphene resolutions, a feasible real-time
implementation for prosthetic vision remains to be
realized.

Limitations and future directions

To our knowledge, our study is the first that directly
parametrized visual complexity in a real-world mobility
experiment with SPV, by adding textures on objects
floors and walls. Despite these efforts in addressing
real-world visual complexity of indoor environments,
the current scene is still a controlled version of visual
navigation. A next step toward the assessment of the
requirements of SPV for daily life mobility would
require free navigation in interactive environments, with
realistic objects and visual cues for orientation. Future
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work could also further investigate other more specific
mobility-related problems such as stair climbing, curb
following, or avoidance of elevated objects. All of
these situations may be relevant to the clinical target
population. Furthermore, note that the navigation
strategies that were used by the sighted participants in
this simulation study may not capture some aspects of
clinical reality. For instance, long-term cane users or
people who have undergone blind rehabilitation may
be very proficient in the use of nonvisual cues, such
as haptic or auditory signals. It is also important to
consider potential differences in perceptual learning
between sighted and blind individuals, owing to
cortical reorganization (Horton, Fahle, Mulder, &
Trauzettel-Klosinski, 2017). Furthermore, we did
not measure eye movements and the participants in
our study were unrestricted in making saccades for
exploring the rendered scene. With the current state of
the technology, this will not be the case for prosthetic
vision users. The extent to which our results and those
from other SPV studies extrapolate to visual prosthetic
users remains to be tested in clinical studies. Another
limiting aspect of our study concerns the realism of
the phosphene simulation. Our SPV model of cortical
prosthetic vision simulates a hypothetical, future
visual prosthesis capable of producing idealized (small,
circular, nonoverlapping) phosphenes. Our simulation
did not incorporate the effects of cortical magnification
Brindley and Lewin, 1968; (Srivastava, Troyk, &
Dagnelie, 2009), where size and spacing are known to
increase as a function of foveal eccentricity. The same
holds for dynamic effects such as phosphene fading and
interactions when stimulating neighboring electrodes
(Brindley & Lewin, 1968; Dobelle, Mladejovsky,
& Girvin, 1974). Similar to this retinal equivalent
by Beyeler, Boynton, Fine, and Rokem (2017), an
interesting line of future work could focus on the
development of more realistic perceptual models of
cortical prosthetic vision. Last, some previous studies
investigated the effects of scene simplification compared
with direct grayscale pixel intensity mapping (e.g.,
Sanchez-Garcia, Martinez-Cantin, & Guerrero, 2020;
Vergnieux, Macé, & Jouffrais, 2017), a limitation of our
study is that we did not include this condition in our
experiments. Including grayscale intensity mapping as
a study condition would have enabled us to compare
the effect of contour-based scene simplification to a
less-restricted control condition with SPV.

Conclusion

Investigating suitable computer vision strategies
for scene simplification is an important step in the
development of visual prostheses. Our results suggest
that contour-based SPV with a resolution of 26 × 26

phosphenes provides adequate information for mobility.
Strict scene simplification with surface boundary
extraction may help to overcome visual overcrowding
at lower phosphene resolutions. However, the presence
of within-surface information and background textures
improves performance at higher phosphene resolutions.
Therefore, choosing a balanced amount of information
reduction is advised, depending on the number of
implanted electrodes. Currently, the implementation of
deep learning models for surface-boundary detection
in a real-time mobility task remains challenging and
future research and empirical validation is required to
further explore the potential of this approach.

Keywords: prosthetic vision, neuroprosthetics,
simulated prosthetic vision, mobility, obstacle avoidance,
edge detection, surface boundary detection, deep learning,
artificial intelligence
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