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Information diffusion, spreading of infectious diseases, and spreading of rumors are fundamental processes
occurring in real-life networks. In many practical cases, one can observe when nodes become infected, but the
underlying network, over which a contagion or information propagates, is hidden. Inferring properties of the
underlying network is important since these properties can be used for constraining infections, forecasting,
viral marketing, and so on. Moreover, for many applications, it is sufficient to recover only coarse high-level
properties of this network rather than all its edges. This article conducts a systematic and extensive analysis
of the following problem: Given only the infection times, find communities of highly interconnected nodes.
This task significantly differs from the well-studied community detection problem since we do not observe a
graph to be clustered. We carry out a thorough comparison between existing and new approaches on several
large datasets and cover methodological challenges specific to this problem. One of the main conclusions is
that the most stable performance and the most significant improvement on the current state-of-the-art are
achieved by our proposed simple heuristic approaches agnostic to a particular graph structure and epidemic
model. We also show that some well-known community detection algorithms can be enhanced by including
edge weights based on the cascade data.
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1 INTRODUCTION

Many social, biological, and information systems can be represented by networks whose nodes are
items, and links are relations between them. In recent years, there has been a great deal of interest
in analyzing propagation processes arising on such network structures. Examples of such processes
are spreading of infectious diseases [31] and computer viruses [62], promotion of products via viral
marketing [34], propagation of information [56], opinion dynamics [49], and so on. Usually, a con-
tagion appears at some network node and then spreads to other nodes over the network’s edges.
In many practical scenarios, one can observe when nodes become infected, but the underlying net-
work is hidden. For instance, during an epidemic, a person becomes ill but cannot tell who infected
them; in viral marketing, we observe when customers buy products but not who influenced their
decisions. Another example is Twitter, which sells a stream of tweets to other companies, but the
social graph is not disclosed; for each retweet, only information about the cascade’s root node is
available. The hidden network inference problem received much attention recently [12, 20, 24, 55].
While these articles aim at recovering the actual network connections, such detailed information
may not be needed in many cases. Moreover, the unobserved network may not be unique or well
defined: Users may communicate via different social networks or offline. In many practical appli-
cations, only some global properties of the network are important. For example, in viral marketing,
one may wish to find the most influential users, while for recommendation systems, one may look
for groups of users with similar preferences.

In this article, we analyze the problem, which recently attracted interest in the literature [6, 54],
of inferring community structure of a given network based solely on cascades (e.g., information or
epidemic) propagating through this network. Communities are groups of highly interconnected
nodes with relatively few edges joining nodes of different groups, such as groups by interests
in social networks or pages on related topics on the Web [15]. Discovering communities is one
of the most prominent tasks in network analysis with many recent applications, for example, in
anomaly detection [42], financial systems [35], and dynamic brain networks [43]. Compared to the
traditional community detection, our work is quite different because we do not have the network
available to us, we have only cascade data observed on this network. For each cascade, we observe
only infected nodes and their infection timestamps. Leveraging cascade information for commu-
nity detection is important, for example, for preventing the spreading of fake news [67] and viral
infections such as SARS-CoV-2 [25].

The main contribution of this article is a thorough theoretical and empirical analysis of a devel-
oping area of inferring community structure based on cascade data, as stated formally in Section 3.
Specifically:

— We propose and analyze several new algorithms and compare them to the state-of-the-art.
In particular, we consider two types of approaches: based on likelihood maximization under
specific model assumptions and based on the clustering of a surrogate network (Section 4).

— We propose new evaluation benchmarks (real and synthetic graphs with natural and syn-
thetic cascades) and discuss important methodological questions on properly evaluating and
comparing algorithms (Section 5).

— Via extensive experiments on a variety of networks,1 we conclude that the most stable per-
formance is obtained by our proposed heuristics that are agnostic to a particular graph struc-
ture and epidemic model. These heuristics outperform more advanced approaches and work
equally well on different networks and epidemics of different types (Section 6).

1The source code is available at https://github.com/ostroumova-la/cascade_communities.
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Thus, our work significantly extends previous research on the subject: We analyze a compre-
hensive list of algorithms, we compare them empirically on several datasets with different cascade
types, and we thoroughly discuss critical methodological aspects of the problem at hand, such as
dealing with unobserved nodes, that have been overlooked in the literature.

A preliminary version of this article was presented in Prokhorenkova et al. [53]. The current
article substantially extends the previous work in several important directions: (1) significantly
extending and improving the experimental part by adding more datasets and more cascade mod-
els; most importantly, we add the Twitter data with real cascades and natural communities (Sec-
tion 5.1); (2) adding a new surrogate-graph-based method called CosineSim (Section 4.3.3) to sup-
port our claim that comparing advanced methods with simple solutions is essential; (3) analyzing
the problem of how to aggregate and compare results on several datasets of different properties
and sizes (Section 5.4), which is important for a systematic analysis on various data; (4) discussing
how to measure the quality of an algorithm, especially when the network is only partially ob-
served (Section 5.3)—a very important question that may affect research conclusions; and (5) also
investigating how to properly generate epidemic data for experiments (in case of not having real
cascades) (Section 5.2). To sum up, this extended version provides a thorough analysis of the prob-
lem of community detection based on cascade data and discusses some methodological questions
related to this task. We believe that our work would stimulate further theoretical and practical
research in this area.

2 RELATED WORK

In this section, we first discuss two topics that are closely related to our work and have been
extensively studied in the literature: inferring the edges of the underlying network based on cas-
cades and community detection in known graphs. Next, we address the state-of-the-art research
on community detection from cascades, which we use as baselines.

2.1 Network Inference from Cascades

A series of recent articles addressed the following task: by observing infection (activation) times
of nodes in several cascades, infer the underlying network’s edges. NetInf algorithm developed
by Gomez-Rodriguez et al. [21] is based on the maximization of the likelihood of the observed
cascades under the assumption of a specific epidemic model. To make optimization feasible, for
each cascade, NetInf considers only the most likely propagation tree. This algorithm was later
improved by MultiTree [24], which includes all directed trees in the optimization and has better
performance if the number of cascades is small. NetRate algorithm [19] infers not only edges
but also infection rates. NetRate builds on an epidemic model that is more tractable for theoret-
ical analysis. (We describe this model in Section 3.2.) For this model, the likelihood optimization
problem turns out to be convex. ConNIe algorithm [45] also uses convex optimization, with the
goal of inferring transmission probabilities for all edges. In [20, 23], it is additionally assumed that
the underlying network is not static, and the proposed algorithm InfoPath provides estimates of
the structure and temporal dynamics of the hidden network. KernelCascade [14] also extends
NetRate, where the authors use a less restrictive cascade model. The DANI algorithm [55] is in-
teresting because it explicitly accounts for the community structure to enhance the inference of
networks’ edges. There are some other recent network inference algorithms not covered here, e.g.,
[68] studies the methods for recovering a mixture of graphs and [27] proposes a new Bayesian
method; see also references therein.

2.2 Community Detection

Another direction closely related to the current research is community detection. For an overview
of classic results in this area, we refer the reader to several survey articles [8, 11, 15, 16]. Many
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community detection algorithms are based on optimizing modularity [48], which measures the
goodness of a partition for a given graph. Probably the most well-known and widely used greedy
modularity optimization algorithm is Louvain [7], which iteratively moves nodes or groups of
nodes from one community to another while improving modularity. Some of the methods dis-
cussed in this article use the Louvain algorithm.

In recent years, deep learning approaches became very popular for graph analysis [63]. Graph

neural networks (GNNs) are especially effective for node classification and graph classification
tasks. The main advantage of GNNs is their ability to naturally combine node features with graph
structure. GNNs have also been applied to community detection [60]. Relevant to our research are
works on unsupervised community detection [40]. Often, such approaches optimize soft modular-

ity loss function. However, in the absence of node features, graph neural networks are often not
superior to classic approaches.

Community detection algorithms most relevant to the current research are based on statistical
inference. Such methods work as follows: we assume some random graph model parameterized by
community assignments of nodes; then, for a given partition, we can compute the probability that
this model generated the observed network structure (i.e., likelihood); finally, a partition provid-
ing the largest likelihood is chosen. In the literature, several possible choices of the random graph
model and likelihood optimization methods were proposed. Early articles on likelihood optimiza-
tion assumed stochastic block model (SBM) or planted partition model (PPM), where the
probability that two nodes are connected depends only on their community assignments. Recently,
a degree-corrected variant of this model was proposed [32], and community detection methods
based on this model were shown to have a better quality [46, 50]. In a recent article [52], the inde-

pendent Lancichinetti–Fortunato–Radicchi(ILFR) model was proposed and analyzed. It was
shown that this model gives the best fit to a variety of real-world networks in terms of maximiz-
ing the likelihood. Additionally, [52] extended the Louvain algorithm for optimizing any likelihood
function.

Closer to the current work, [4, 29, 59] proposed to enhance community detection algorithms by
using the information about spreading cascades. However, to find clusters, the authors use both
the graph and the cascades. In contrast, the crucial assumption in our work is that the graph is not
observed; hence these methods cannot be applied. Another similar setting is considered in [58].
Here, it is assumed that we observe a trajectory of a Markov chain spreading on a hidden stochas-
tic block structure; the aim is to infer the clusters. Although the motivation is similar, our task is
more complicated in two aspects: (1) In [58], the transitions of the Markov chain are defined solely
by the membership in the communities, while in our work, we assume a hidden graph structure,
which significantly complicates the problem. (2) We consider cascades instead of chains and, in
particular, we do not know who infected whom. Recent work [64] studies analytically the prob-
lem of detecting two communities from interactions in a gossip model, where some agents never
change their state. In this work, we also leverage the (binary) states of the nodes, but the gossiping
protocol fundamentally differs from cascades, and the assumption of two communities is too re-
strictive for our purposes. Finally, [30] develops a Bayesian model for community detection based
on time series observed at each of the network’s nodes, without recovering the edges. However,
their time series have a very different structure from the cascade data used in the current article.

2.3 Community Inference from Cascades

To the best of our knowledge, the article [5] extended in [6] for the first time addressed the prob-
lem of community detection from cascades. In [5, 6], the cascade model includes the influence
of individual nodes, and a membership level of a node in each community is inferred using the
maximum-likelihood approach. The authors propose two algorithms: C-IC, which considers only
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participation of a node in a cascade, and C-Rate, which includes the time stamps but limits the
node’s influence by its community. Recently, [54] proposed an alternative maximum-likelihood
approach, which exploits the Markov property of the cascades. As an input, similarity scores of
node pairs are computed based on their joint participation in cascades. The R-CoDi algorithm in
[54] starts with a random partition, while D-CoDi starts with a partition obtained by DANI [55].
We use all four mentioned algorithms as our baselines. A recent work [61] addressed a follow-up
problem of cascade-based community detection when the cascade data are incomplete. They con-
clude that hiding information on the nodes that participate in many cascades considerably reduces
the quality of community detection, while hiding random or least active nodes has much smaller
effects.

A recent work by Peixoto [51] proposes to simultaneously recover edges and communities from
epidemic data and shows that the detection of communities significantly increases the accuracy of
graph reconstruction. Another research by Chen et al. [9] also uses cascade data to identify (over-
lapping) communities. However, in contrast to the current work, they focus solely on Facebook
and use more input data: post information, personal information, interpersonal relations, and so
on.

3 PROBLEM SETUP

3.1 General Setup

3.1.1 Cascades. We observe a set of cascades C = {C1, . . . ,Cr } that propagate on a latent undi-
rected network G = (V ,E) with |V | = n nodes and |E | =m edges. Each cascade C ∈ C is a record
of observed node activation times, i.e., C = {(vi , t

C
vi

)}nC

i=1, where vi is a node, tC
vi

is its activation
time in C , |C | = nC is a size of a cascade. Note that we do not observe who infected whom.

3.1.2 Communities. We assume that G is partitioned into non-overlapping communities: A =
{A1, . . . ,Ak },∪k

i=1Ai = V ,Ai∩Aj = ∅ for i � j. We expect to observe high intra-community density
of edges compared to inter-community density. In our experiments, the ground truth partitionsA
are available for all datasets (see Section 5.1). By observing only a set of cascades C we want to
find a partition A′ similar to A.

3.2 Cascade Models

3.2.1 SIR Model. The primary model for our experiments is a well-known Susceptible-

Infected-Recovered (SIR) model [33]. Each node in the network can be in one of the three states:
susceptible, infected, or recovered. An infected node infects its susceptible neighbors with a rate
α , and the infection is spread simultaneously and independently along all edges. An infected node
recovers with a rate β and then stops spreading infection in the network. For each cascade C , we
sample its infection rate αC from the Lomax (shifted Pareto) distribution to model a variety of cas-
cades: There can be minor or widely circulated news, small-scale epidemics or a global outbreak,
and so on. The source node of a cascade is chosen uniformly at random.

3.2.2 SI Model with Bounded Duration (SI-BD). In some cases, the SIR model might not be
tractable for theoretical analysis, so we assume a simpler diffusion model introduced in [19]. In
this model, just as in the SIR model, an activated node infects its neighbors after an exponentially
distributed time with intensity α , but there is no recovery rate. Instead, all nodes recover simulta-
neously at some threshold time Tmax , and the epidemic stops. For simplicity, we further assume
Tmax to be fixed, but our methods allow for varying Tmax for different epidemics.

3.2.3 Community-Based SI-BD Model (C-SI-BD). Another model that allows for a simpler the-
oretical analysis is based on the setting from [58]. It is assumed that the spreading does not occur
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over the edges of a graphG but depends solely on the community structureA. As before, the first
node of a cascade is chosen uniformly at random. Each activated node can infect all other suscep-
tible nodes independently after an exponentially distributed time. If a susceptible node belongs
to the same community, then the infection rate is αin ; otherwise, it is αout , αout < αin . Epidemic
stops at time Tmax .

We want to stress a principal difference between the first two models (SIR and SI-BD) and the C-
SI-BD model. C-SI-BD completely ignores the graph structure and takes into account only commu-
nity assignments. Mathematically, C-SI-BD is equivalent to an SI-BD model on a complete graph,
where the infection rate through the intra- and inter- community edges are αin and αout , respec-
tively. Then, all nodes within one community are exchangeable, so that at any point of time, the
cascade is completely described by the number of infected nodes in each community, and therefore
one can hope to recover the community assignments when the number of cascades is large. On
the other hand, SIR and SI-BD use explicit information on the structure of the underlying graph.
Usually, graph edges are correlated with community assignments, while the infection rate over all
edges is the same. As the number of cascades tends to infinity, one can get an asymptotically consis-
tent estimator of the graph edges, but this might still not be sufficient to recover the communities.
A well-known example of this phenomenon is the detectability threshold in the Stochastic Block
Model [13]. In this setup, the quality of recovered communities might not improve beyond certain
point, as the number of cascades grows. Such a setup is much more challenging but is realistic.

4 ALGORITHMS

4.1 Background on Likelihood Maximization

Recall that tC
i denotes the activation time for node i in cascadeC; we often omit the indexC when

the context is clear. Without loss of generality, for the first node of a cascade, we set ti = 0. Finally,
if a node i is not infected during an epidemic, then we set ti = Tmax .

Denote ΔC
i, j = Δi, j = |ti−tj |. The log-likelihood logL(C ) of the cascadeC for SI-BD with varying

infection rates (i infects a susceptible neighbor j after an exponentially distributed time with rate
αi, j ) is given in [19], Equation (7). For our purposes, it is convenient to write this expression as

logL(C ) = −
∑

i, j :i<j

αi, j Δi, j +
∑

i :ti ∈(0,Tmax )

log
∑

j :tj <ti

α j,i . (1)

Here, we substituted a general form of the SI-BD epidemic model to the formula from [19] and
took the logarithm.

The log-likelihood for all cascades is logL(C) =
∑

C ∈C logL(C ). We will next introduce a method
based on maximizing logL(C) under the cascade-based model.

4.2 ClustOpt

Consider the C-SI-BD model described in Section 3.2.3. Denote by a(i ) the community assignment
for a node i . Recall that C-SI-BD is equivalent to the SI-BD model used in [19] when the latter
is applied to a complete graph with αi, j = αin if a(i ) = a(j ) and αi, j = αout otherwise. The
log-likelihood in Equation (1) becomes

logL(C,A) = −(αin − αout )
∑

i, j :i<j,
a (i )=a (j )

Δi, j − αout

∑

i, j :i<j

Δi, j

+
∑

i :ti ∈(0,Tmax )

log
(
(αin − αout ) |{j : tj < ti ,a(j ) = a(i )}| + αout |{j : tj < ti }|

)
. (2)
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Note that in practice, Tmax is not known, so in the experiments, for each cascade, we set Tmax

to be the time of the last infection plus the average time difference between successive infections.
We propose the following algorithm to maximize Equation (2).

ALGORITHM 1: ClustOpt
(1) Find initial partition Ainit ;
(2) Find α̂in , α̂out = arg maxαin,αout

logL(C,Ainit );

(3) For fixed α̂in , α̂out , find Â = arg maxA logL(C,A).

Remark 1. Algorithm 1 was initially inspired by the idea of alternated maximization. Surpris-
ingly, our preliminary experiments have shown that repeating steps (2) and (3) multiple times does
not improve the performance if we start from a good initial partition Ainit in step (1). A possible
explanation is that although the maximization in Equation (2) does depend on αin and αout , it
is determined to a great extent byΔi j . Therefore, we do not need α̂in and α̂out to be precise; we
just need them to be good enough to find a high-quality Â in step (3). This is achieved when we
start with a reasonable initial partition. That is why having a good initial partition is important
for stable results.

Let us now discuss how the steps (1)–(3) are implemented.

Step (1): The algorithm is initialized with some reasonable initial partitionAinit . In the current
article, we propose to start from Cliqe(0) explained in Section 4.3.

Step (2): Without loss of generality, we set αin = (δ + 1)αout . Then, Equation (2) becomes

logL(C,A) = −αout δ
∑

i, j :i<j,
a (i )=a (j )

Δi, j − αout

∑

i, j :i<j

Δi, j

+
∑

i :ti ∈(0,Tmax )

log
(
δ |{j : tj < ti ,a(j ) = a(i )}| + |{j : tj < ti }|

)
+ ( |C | − 1) logαout . (3)

Using this, we can find optimal αout in terms of δ and A:

α̂out =

∑
C ∈C ( |C | − 1)

∑
C ∈C
(
δ
∑

i, j :a (i )=a (j ) ΔC
i, j +
∑

i, j ΔC
i, j

) . (4)

Now, we can resort to a numerical solution: For each δ , we set αout as in Equation (4) and find
such δ that maximizes Equation (3).

Step (3): We follow [52] and adapt the Louvain algorithm for the likelihood given in Equation
(2) by computing the gain in logL(C,A) obtained by moving a node v from one community to
another. Because of computational complexity, we consider only moving single nodes from one
community to another and do not attempt to move groups of nodes or merge communities. More
formally, we do the following. At the beginning, all vertices are grouped according toAinit . Then,
we iterate through all vertices: For each vertex i,we compute the gain in logL(C,A) coming from
putting i to the community of its neighbor and put i to the community with the largest gain, as long
as it is positive. We stop the process when we cannot improve logL(C,A) by such local moves.

Remark 2. In the preliminary version of this article [53], a more involved algorithm called
GraphOpt was presented. GraphOpt maximizes the likelihood under the SI-BD model rather than

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 4, Article 78. Publication date: January 2022.



78:8 L. Prokhorenkova et al.

the C-SI-BD model. It uses the expectation-maximization framework assuming that the graph
structure is a latent variable. This is a significantly more complicated task because the likelihood
must be computed over all possible realizations of the hidden graph. While GraphOpt shows ex-
cellent results in some cases, its performance is unstable, and its time complexity is unacceptably
large.

4.3 Clustering of Surrogate Graphs

This section presents simple yet effective methods that construct a surrogate graph Ĝ and then
cluster this graph by some community detection algorithm. We will mostly use the Louvain algo-
rithm [7]. This method is appealing for several reasons: It is efficient, gives stable results, and does
not require the number of clusters as an input (in contrast to, e.g., the spectral clustering).2

It is crucial that Ĝ does not need to be similar to G, it just needs to capture the community
structure on an aggregated level. Our experiments show that clustering of Ĝ often performs better
than first inferring G and then clustering it.

4.3.1 Path Algorithm. For each C ∈ C, let G∗ = G∗ (C ) be a path connecting subsequently acti-
vated nodes. Then, we obtain Ĝ by aggregatingG∗ (C ) over all cascades. This leads to the following
algorithm.

ALGORITHM 2: Path

(1) Construct weighted graph Ĝ, where the weight of each
edge e in Ĝ is the number of G∗ (C ) including e;3

(2) Find clusters in Ĝ using the Louvain algorithm.

While this algorithm cannot be formally justified, it has the following motivation. Assume that
C is generated by the SI-BD model. Then, in Equation (1), we set αi, j = α if i and j are connected
in G and αi, j = 0 otherwise. So, we obtain

log P(C |G ) = −α
∑

(i, j )∈E (G )

Δi, j + ( |C | − 1) logα +
∑

i :ti ∈(0,Tmax )

log |{j : tj < ti , (i, j ) ∈ E (G )}|. (5)

Now, for C ∈ C let us consider a graph G ′ with exactly |C | − 1 edges that maximizes the probabil-
ity P(C |G ′) in Equation (5). It is easy to check that G ′ is merely a path connecting subsequently
activated nodes, i.e., G ′ = G∗.

4.3.2 Clique. Another approach is to include all possible edges that could participate in the
cascade, weighing them by the proxy of their likelihood. Then, each cascadeC results in a weighted
clique of size |C |. The weights can be chosen, for example, as follows. For a cascadeC and two nodes
i, j, let us consider the probability PC (i, j ) = P(j was infected from i |C ). If ti > tj , then, obviously,
PC (i, j ) = 0. If ti < tj , then, as in [21], we assume that PC (i, j ) decreases exponentially with Δi, j ;
namely, PC (i, j ) = c j e

−aΔi, j , where c j is a constant depending on j. Since j was infected from

2We analyze the effect of a community detection algorithm on the performance of surrogate-graph-based methods by
comparing the results obtained with Louvain to those obtained using another clustering algorithm, Infomap [57] (see
Sections 5.5, 6.4).
3Weighting edges are important, since for large |C | unweighted union of edges can be a complete graph, with no mean-
ingful partition.
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exactly one previous node, we must have
∑

i :ti <tj
PC (i, j ) = 1. Therefore,

PC (i, j ) =
e−aΔi, j

∑
l :tl <tj

e−aΔl, j
. (6)

Parameter a essentially balances between paths and cliques: If a is large, we mostly take into
account subsequent nodes with small Δi, j ; for small a all pairs of nodes participated in C are
important.

Remark 3. Note that we directly model PC (i, j ) without making assumptions about the distribu-
tion of Δ′i, js . Although PC (i, j ) in Equation (6) is proportional to the exponential density function
ae−ax for x = Δi, j , recall that if we assume that infection times are exponentially distributed,
then a node is equally likely to get infected from any of the currently infected nodes due to the
memory-less property. Furthermore, similarly to Path, this algorithm cannot be formally justified
as optimization under a particular generative model. Indeed, if we assume a latent graph structure,
then the expressions for the a-posteriori probabilities, given C , that an edge exists, or that a node
has been infected through this edge, are much more involved than the simple expression (6); see,
e.g., the GraphOpt algorithm in [53].

Cliqe constructs Ĝ as the weighted graph with weight of {i, j} given by
∑

C ∈C (PC (i, j ) +
PC (j, i )), which, under our assumptions, is the expected number of times infections passed be-
tween i and j. To make Cliqe insensitive to the speed of epidemics, we take a = 1

Δ , where Δ is
the average time between infection times. (We average over all pairs of infected nodes belonging
to the same cascade.) We also consider Cliqe(0) with a = 0, which is a natural choice for the SI-
BD model because it mimics the memory-less property of exponential infection times. We noticed
that Cliqe is not too sensitive to varying a in a reasonable interval, while for too large a Cliqe
becomes very similar to Path.

ALGORITHM 3: Cliqe

(1) Construct weighted graph Ĝ with weight of {i, j} given by
∑

C ∈C (PC (i, j ) + PC (j, i ));
(2) Find clusters in Ĝ using the Louvain algorithm.

4.3.3 CosineSim. This algorithm is motivated by Ramezani et al. [54], where the authors use co-
sine similarity to get initial similarities of nodes. Then, instead of applying the procedure from [54],
we apply the Louvain algorithm to the obtained graph.

ALGORITHM 4: CosineSim

(1) Compute Vi =
(
1{vi ∈C1, ...,vi ∈Cr }

)r
j=1

;

(2) Construct Ĝ as the weighted graph with weight of {i, j} given by
〈Vi ,Vj 〉
|Vi | |Vj | ;

(3) Find clusters in Ĝ using the Louvain algorithm.

4.4 Baselines

MultiTree uses the algorithm from [24] to find an inferred graph Ĝ, which is then clustered by
the Louvain algorithm [7].

We also propose Oracle as a superior benchmark for all possible network inference algorithms.
Specifically, we construct a graph Ĝ consisting of all edges that participated in cascades (assuming
these edges are known, hence, the name Oracle). We cluster the obtained graph Ĝ by the Louvain
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Fig. 1. Overview of the algorithms. The proposed methods are Path, Clique, ClustOpt, and CosineSim.
Baselines are: C-IC and C-Rate [6], R-CoDi and D-CoDi [54], and MultiTree [24]. Oracle is a superior
benchmark for all network inference algorithms.

Table 1. Twitter Dataset

Dataset n k r avg(nC )
Twitter 18,470 2 29,998 3

algorithm. Let us stress that we do not consider Oracle as our competitor as it uses information
that is not available to other algorithms.

Finally, we used algorithms proposed for solving the same problem as in our work: C-IC and
C-Rate [6], as well as R-CoDi and D-CoDi [54]. We use the publicly available implementations
provided by the authors.

A summary of the proposed algorithms and the baselines is schematically represented in
Figure 1. Stage “Edges” refers to constructions that connect the cascade data to a (possibly sur-
rogate) network. Stage “Clusters” refers to obtaining communities.

5 EXPERIMENTAL SETUP

5.1 Datasets

For a fair comparison of all algorithms, we performed a series of experiments using synthetic and
real-world datasets.

The main dataset for our experiments is the collection of Twitter posts obtained from September
till November 2010 [10]. Importantly, this dataset combines both community assignments and
cascades. For community assignments, Twitter users are manually classified by political alignment.
The original dataset contains the following information about retweets: id of a user that started the
tweet, id of a user that retweeted, the timestamp, the list of hashtags, and the number of hyperlinks
included in the tweet. We processed the dataset to extract explicit cascades: Although no cascade
ids are present, we assumed that a cascade can be uniquely identified by the list of hashtags, source
user id, and the number of hyperlinks. Additionally, the timestamp of the first tweet is not known,
so we assumed that the time difference between the original tweet and the first retweet is the
same as between the first and the second retweets. This way, we obtained a dataset with about
18.5K nodes and 30K cascades. (We did not perform any further filtering.) The dataset statistics are
summarized in Table 1.
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Table 2. Real-World Datasets

Dataset n m k
Karate club [66] 34 78 2
Dolphins [41] 62 159 2
Football [48] 115 613 11
Political books [47] 105 441 3
email-Eu-core [39] 986 16,064 42
Newsgroup [65] 999 10,194 5
Political blogs [1] 1,224 16,715 2
Cora [44] 2,708 5,279 7
CiteSeer [18] 3,264 4,536 6

Table 3. Parameters Used for Synthetic Epidemics

Dataset α αin αout Lomax
Karate 0.15 0.09 0.009 12
Dolphins 0.14 0.047 0.0047 14
Football 0.07 0.083 0.0083 32
Pol-books 0.08 0.036 0.0036 26
Eu-core 0.016 0.012 0.0012 230
Newsgroup 0.032 0.0058 0.00058 105
Pol-blogs 0.017 0.0024 0.00024 216
Cora 0.14 0.0024 0.00024 23
CiteSeer 0.21 0.0019 0.00019 16

The second group of datasets contains real-world networks with ground truth community
assignments (see Table 2). For these datasets, we use generated epidemics (see Section 5.2) and
present the results aggregated over the datasets (see Section 5.4). We include many datasets of
different nature and sizes because we want to show that our conclusions generalize to different
scenarios.

Finally, we also add a synthetic dataset based on the LFR model [37], which is a standard syn-
thetic benchmark for networks with communities. This model generates graphs with power-law
distributions of node degrees and cluster sizes and includes the mixing parameter μ, which is the
fraction of inter-cluster edges. We generated a graph on 10K nodes with the power-law exponent
of the degree distribution 2.5, the power-law exponent of the cluster size distribution 1.5, mixing
parameter μ = 0.1, average degree 5, maximum degree 100, and community sizes between 100 and
600. (We obtained five clusters in total.)

5.2 Synthetic Cascades

For the LFR graph and the datasets described in Table 2, we generated the cascades according to
all models discussed in Section 3.2. Importantly, there are both edge-based and community-based
models.

Without loss of generality, we set β = 1 for the SIR model andTmax = 1 for SI-BD and C-SI-BD.
It remains to choose the parameters α , αin , αout , and the parameter of the Lomax distribution used
by SIR. We noticed that these parameters have to be carefully chosen to get an informative set of
cascades. Otherwise, we may either get cascades consisting of single nodes or cascades consisting
of almost all nodes. The following heuristics work well enough: For SIR and SI-BD, we choose
parameters so that the average size of a cascade is 2; for C-SI-BD, we take αin = 10αout and
choose αout such that the number of cascades consisting of one node is about 20%. In Table 3,
we list the parameters we used for all datasets. We plotted the obtained distributions of cascade
sizes (see Figures 3–5) and checked that they are similar to those observed in the literature for real
data [3, 17, 22, 36, 38] and for our Twitter dataset (see Figure 2).

Finally, we note that single-node cascades were removed from the generated epidemics.

5.3 Performance Measures

In this section, we discuss evaluating the quality of the obtained communities compared to the
ground truth. There are many similarity indices used in the literature for the comparison of par-
titions. We refer to a recent work by Gösgens et al. [26] for a systematic study and comparison
of popular indices. A critical drawback of many existing similarity measures is that they are bi-
ased with respect to cluster sizes, i.e., they prefer too small or too large clusters. For example, the
Normalized Mutual Information (NMI) [2, 15] is known to prefer smaller communities.
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Fig. 2. Distribution of cascade sizes, Twitter dataset.

Fig. 3. Distribution of cascade sizes, SIR model: density (left) and complementary cumulative distribution
function (right).

Fig. 4. Distribution of cascade sizes, SI-BD model: density (left) and complementary cumulative distribution
function (right).

Our particular task of evaluating cascade-based community detection has some additional diffi-
culties. Indeed, letV0 ⊂ V denote the set of all nodes that participated in cascades. In many realistic
scenarios, V0 contains only a small fraction of nodes in V . As a result, we obtain a partition of V0,
which has to be compared to the ground truth partition ofV . There are two possible approaches to
make the comparison: (1) restrict the ground truth partition only toV0 and (2) extend the obtained
partition from V0 to V , e.g., by assigning all nodes in V \ V0 to one cluster or individual clusters.
Note that the second option has the advantage of being more interpretable. (It shows how close
we are to the whole ground truth partition.) However, at the same time, it is vulnerable to biases:
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Fig. 5. Distribution of cascade sizes, C-SI-BD model: density (left) and complementary cumulative distribu-
tion function (right).

If a similarity index favors too large or too small clusters, then the assignments for the unknown
set V \V0 may significantly affect the obtained value.

To demonstrate the importance of choosing a proper similarity index, we perform a set of ex-
periments comparing different choices:

— Pearson correlation coefficient between the incidence vectors is an unbiased similarity
index advised by Gösgens et al. [26].4 Unbiased means that it does not give a preference to
either large or small communities. Pearson-sub is computed only using the pairs fromV0: We
measure the Pearson correlation coefficient between the vectors of length

( |V0 |
2

)
consisting

of 0s and 1s, where 1 means that two nodes belong to the same community and 0 means that
they belong to different ones. Pearson-all is computed on the whole dataset: We measure the
correlation between two vectors of length

( |V |
2

)
. For the ground truth partition, we know all

entries of the vector. In contrast, for our partition, we say that if u ∈ V0 and v ∈ V \V0, then
the corresponding entry is 0 (different clusters), and if u,v ∈ V \V0, then the corresponding
entry is 0.5 since we do not have any information about nodes in V \V0.

— NMI (normalized mutual information) [2, 15] is a widely used similarity measure, which
is known to prefer smaller communities. NMI-sub is computed only onV0, to compute NMI-

all we assign all nodes in V \V0 to one cluster labeled “unknown”.
— Jaccard index is known to be biased towards larger clusters. Jaccard-sub is computed onV0,

and to compute Jaccard-all, we say that all unknown nodes belong to different communities
(since marking them as one community would unreasonably increase the index).

— F-measure [28] is a harmonic average between precision and recall, where precision and
recall are defined in terms of node pairs. When we compute F-measure-all, we say that all
unseen nodes belong to different communities.

In most experiments, we use Pearson-sub as a primary measure since it is proven to be unbi-
ased [26]. However, for the Twitter dataset, we perform a comparison of all listed measures.

5.4 Aggregating Results over Datasets

In the experiments, we compare the algorithms using all datasets from Table 2, so it is essential
to be able to aggregate the obtained results so that we can compare the overall performance of
algorithms over a range of datasets. Moreover, we also want to show the dependence of the per-
formance on the number of available cascades. However, the same number of cascades (e.g., 1,000)

4Note that there are other good indices advised in [26], e.g., the S&S index. We use the correlation coefficient as it is more
widely used.
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can be sufficient to recover communities on a small dataset like Karate, while it can be far from
enough to recover communities on a larger CiteSeer dataset. The following heuristic allows for
balancing the data: We define a relative size of cascades S as the fraction of the overall number
of transmissions of infections to the number of edges in the graph. In other words, S is the aver-
age number of transmissions through an edge in the graph. We empirically checked that this is a
reasonable rescaling since the saturation of quality happens at similar values of S for all datasets.

For a fixed value of S , we average the performance over the datasets: We compute the aver-
age value of Pearson-sub and the algorithm’s average rank. To compute the latter value, for each
dataset, we order all algorithms according to their performance (Pearson-sub) and obtain ranks
for each algorithm; then, the obtained ranks are averaged over the datasets.

5.5 Effect of Clustering Algorithm on Surrogate-Graph-Based Methods

As discussed above, we use the Louvain method to cluster surrogate graphs. It turns out that the
Louvain algorithm is well suited for clustering of surrogate graphs, and not any other algorithm
can be used here. To show that, we compare Louvain with another well-known community detec-
tion method called Infomap [57], which finds communities by minimizing the description length
of random walks in the network. The results of the comparison are discussed in Section 5.5.

6 EXPERIMENTS

6.1 Twitter Dataset

First, we compared all the algorithms on the Twitter dataset, which contains both real cascades
and real community assignments; the results are presented in Figure 6.

Recall that our main performance measure is Pearson-sub (the top-left plot). First, we note that
Cliqe algorithms are stably good for all amounts of cascade data. Further experiments will also
confirm this conclusion. Also, Cliqe and Cliqe(0) have similar quality. Surprisingly, CosineSim
outperforms R-CoDi and D-CoDI, i.e., Louvain algorithm above the similarity graph outperforms
a more complicated algorithm presented by Ramezani et al. [54]. We guess that there can be two
possible reasons for that: (1) R-CoDi and D-CoDI are based on some model assumptions and
(2) these algorithms require some parameter tuning, while we used the default parameters sug-
gested by the authors. In contrast, the Louvain algorithm is readily applied without the need for
parameter tuning. For CosineSim, we also observed a phase transition when the number of epi-
demics is 4,000: At this point, CosineSim becomes the best one among all the algorithms. How-
ever, this transition is not observed in other experiments. We also noticed that on this dataset,
MultiTree works surprisingly well, especially for large cascade sizes. However, again, this is
not supported by our further experiments. Interestingly, the advanced algorithms C-IC, C-Rate,
and ClustOpt have the worst performance. A possible reason is that they are strongly based on
model assumptions, which may not hold for real data. Moreover, C-IC and C-Rate could not han-
dle datasets with a large number of cascades. Concerning ClustOpt, this algorithm needs more
cascade data to have a good performance, as we show by further experiments.

Now let us demonstrate the problem of proper quality evaluation as discussed in Section 5.3.
In Figure 6, in addition to the primary performance measure Pearson-sub, we also show other
alternatives. Recall that the measures with the postfix -all measure the quality on the same set
of nodes for all cascade sizes. For a reasonable measure and a reasonable algorithm, the quality
is expected to be monotone with the number of cascades. Note that with 32K cascades, -all and
-sub variants coincide because this number of cascades is sufficient to cover all nodes. By further
examining the measures in Figure 6, we observe huge differences between the results for different
measures. These differences can be explained by the fact that some measures are biased, i.e., give
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Fig. 6. Results on the Twitter dataset. The main performance measure for our experiments is Pearson-sub;
other measures are presented for illustrative purposes.

a higher preference to either smaller or larger clusters. For example, the C-Rate algorithm is the
best according to Jaccard, but the worst according to NMI and F-measure. This inconsistency can
be explained by the fact that C-Rate produces too large communities favored by Jaccard, while F-
measure and NMI are biased towards smaller clusters. Similarly, while ClustOpt has zero Pearson
correlation with the target clustering, it may outperform other algorithms according to NMI just
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Fig. 7. Time complexity.

Fig. 8. Average results on datasets from Table 2, SIR cascade model.

because it produces many small clusters. We conclude that it is essential to use unbiased measures.
Therefore, we will continue to use the Pearson correlation coefficient in our experiments.

We also compared the time complexity of all the algorithms (see Figure 7). The algorithms were
run on Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60 GHz. Note that this result is not an entirely fair
comparison of time complexities since the algorithms are implemented via different programming
languages with different levels of optimization and parallelization. Our aim is only to give an
intuition about how the complexities scale with the number of cascades.

6.2 Other Real-World Datasets

We compared all algorithms on real-world datasets listed in Table 2. Recall that for these datasets,
the epidemics are synthetic and generated according to the models discussed in Section 3.2. In
Figures 8–10, we plot the average Pearson-sub and the average rank, as explained in Section 5.4.

The results mostly agree with conclusions made on the Twitter dataset. Cliqe algorithms are
the best for all sizes of cascades and all epidemic models. As before, CosineSim outperforms both
R-CoDi and D-CoDI. However, there is no phase transition for CosineSim on these datasets, and
for all volumes of cascade data, it is outperformed by Cliqe and Cliqe(0). Also, as we discussed
above, the performance of MultiTree is not as good as on the Twitter dataset. Speaking about
ClustOpt, its performance increases with the number of available cascades. ClustOpt is the best
algorithm for the C-SI-BD cascade model when the number of cascades is sufficiently large, which
confirms that this algorithm heavily relies on model assumptions and should be replaced by more
robust algorithms when there is no evidence that the model assumptions hold.

Finally, recall that Oracle was initially considered as an upper bound for all possible network
inference algorithms since it uses the exact information about who infected whom. If the number of
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Fig. 9. Average results on datasets from Table 2, SI-BD cascade model.

Fig. 10. Average results on datasets from Table 2, C-SI-BD cascade model.

Fig. 11. Results on a synthetic graph.

cascades is large enough, then Oracle essentially clusters the original graph. Interestingly, in some
cases, Oracle is beaten by the surrogate-graph-based algorithms, especially for a large number
of cascades, although the surrogate graphs are clustered with the same Louvain algorithm. (The
difference is especially apparent on the plots showing the average rank.) One can conclude that a
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Fig. 12. Clustering of surrogate graphs with Louvain (“−L”) versus Infomap (“−I”).

clever weighting of edges can improve the Louvain algorithm. In other words, although Louvain is
not an ideal clustering method, the effect of the errors made by Louvain is reduced by the weighting
of edges provided by the surrogate-graph-based algorithms.

6.3 Synthetic Graph

The results on the synthetic LFR model are shown in Figure 11, which confirms the conclusions
made previously on the real-world data. Here it is clearly seen that Cliqe has good and stable
performance and that Oracle can be beaten by others if the number of cascades is large.
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6.4 Clustering of Surrogate Graphs with Infomap

In this section, we analyze the effect of a clustering algorithm on the performance of approaches
based on the clustering of surrogate graphs. In Figure 12, we compare Louvain with Infomap ap-
plied to MultiTree, Path, CosineSim, Cliqe, and Oracle. First, we observe that on the Twitter
dataset, the results become extremely good, especially when the number of available cascades is
small. However, the Cliqe algorithms are still among the best. In contrast, for other real datasets
and for the synthetic LFR benchmark, the performance of Infomap is much worse, especially when
the number of cascades is large. This holds for surrogate graphs, but not for Oracle and in some
cases not for MultiTree. While analyzing this phenomenon, we noticed that for surrogate graphs,
if the number of cascades is large, Infomap may predict degenerate clusterings consisting of only
one cluster. This can be caused by the fact that surrogate graphs become dense when the number of
cascades increases. In contrast to Infomap, Louvain is stable and works well even for dense graphs.
On the other hand, on the Twitter dataset, Infomap significantly outperforms Louvain for a small
number of cascades, i.e., when the density of surrogate graphs is not too large. This confirms that
the choice of the clustering algorithm is essential. We conclude that Louvain leads to more stable
results, but it is worth trying other options when possible.

7 CONCLUSION

In this article, we conducted a thorough analysis of inferring community structure based on
cascade data. We compared algorithms recently proposed in the literature, simple heuristic ap-
proaches, and a more advanced approach based on mathematical modeling. Through a series of
experiments on real-world and synthetic datasets, we conclude that the universal Cliqe method
(combined with the Louvain clustering algorithm) is the best solution for the problem. This algo-
rithm is extremely simple, efficient, and works well in all scenarios. In addition, this article covers
several important methodological aspects specific to the problem at hand, e.g., choosing a perfor-
mance measure to be used for comparing algorithms, aggregating results over multiple datasets,
and generating realistic synthetic cascades. Another interesting conclusion is that standard cluster-
ing methods, such as the commonly used Louvain method, can be enhanced by running cascading
processes on the network and weighing the node pairs based on the cascade data.
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