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Abstract. We explore a parallel SCC-decomposition algorithm based
on a concurrent Union-Find data structure. In order to increase confi-
dence in the algorithm, it is modelled in TLA+. The TLC model checker
is used to demonstrate that it works correctly for all possible interleav-
ings of two workers on a number of small input graphs.

To increase the understanding of the algorithm, we investigate some
potential invariants. Some of these are refuted, revealing that the algo-
rithm allows suboptimal (but still correct) executions. Finally, we inves-
tigate some modifications of the algorithm. It turns out that most mod-
ifications lead to an incorrect algorithm, as revealed by the TLC model
checker.

We view this exploration as a first step to a full understanding and a
rigorous correctness proof based on invariants or step-wise refinement.

Keywords: Parallel SCC algorithm · Concurrent Union-Find data
structure · PlusCal/TLA+ specification · TLC model checker

1 Introduction

This paper studies a parallel algorithm for the detection of Strongly Connected
Components (SCCs), which proceeds by sharing and merging partial SCCs that
are maintained in a concurrent Union-Find data structure [2,3]. Previous work
provided an informal correctness proof of the algorithm, and demonstrated a
good experimental parallel speedup, even for graphs with a few large SCCs.

In order to increase confidence in the correctness of the algorithm, and to
facilitate a detailed understanding, this paper presents a TLA+specification of
the algorithm. This is analysed in the TLA+-toolbox [7], mainly by means of
the TLC model checker [17]. The specification allows to check that for a limited
number of workers and a couple of small graphs, all fair executions terminate,
and all possible interleavings yield the correct SCC-decomposition.

In addition, to increase detailed understanding of the algorithm, we postu-
lated a number of additional assertions and invariants, several of which were
refuted by the model checker. The counter examples revealed some weird and
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suboptimal (but still correct) executions, in which work is being duplicated.
Finally, efforts to improve the algorithm failed, because the model checker dis-
covered that several subtle modifications to the algorithm lead to errors.

Context. SCC decomposition has numerous applications as a fundamental
building block in graph algorithms. We are mostly interested in applications
in formal methods, such as model checking LTL properties, preprocessing for
weak bisimulation reduction, and analysis of Markov chains. Since these meth-
ods are used for the verification of safety-critical systems, they must themselves
be guaranteed correct. At the same time, intricate parallel algorithms have been
designed, to scale the methods to realistic systems. To maximize parallel speed
up, locking mechanisms are avoided where possible. This makes the correct-
ness argumentation quite hard. This has led to the formal verification of several
model checking algorithms, like a full LTL model checker [6], a model checker
for Timed Automata [16], a sequential [12] and parallel algorithm [11] for Nested
Depth-First Search, and sequential SCC-decomposition algorithms [4,8]. We are
not aware of a formal verification of a parallel SCC algorithm.

There are many SCC decomposition algorithms. Tarjan provided the first
sequential linear-time algorithm [14]. The algorithm analysed in this paper is
closer to Dijkstra’s sequential SCC algorithm [5]. Since then, several distributed
SCC algorithms have been developed [1,10]. These algorithms apply to graphs
that are partitioned among several workers. This paper is concerned with paral-
lel SCC algorithms (multi-core parallelism), where the graph is in global, shared
memory so all workers have access to it. Typically, the workers share some infor-
mation on explored SCCs. Examples are the algorithm by Gavin Lowe [9] and
the algorithm by Étienne Renault [13]. These algorithms make different trade-
offs when two workers start working on the same SCC. For instance, one could
suspend one of the workers, or one could redo the whole SCC with a single
worker. This paper studies the algorithm from Vincent Bloemen, following the
presentation of his thesis [2], first published in [3]. The special feature of this
algorithm is that multiple workers can work on the same SCC, sharing partial
SCCs with each other. This is relevant for graphs with a few large SCCs.

2 Preliminaries

The SCC algorithm takes as input a rooted directed graph G = (V,E, v0), where
V is a finite set of nodes (states), E ⊆ V × V is the set of directed edges
(transitions), and v0 is the root (initial state). The algorithm works on-the-
fly (useful for model checking). It starts at v0 and discovers new E-successors
through a function next : V → 2V . We write v →∗ w if (v, w) is in the transitive-
reflexive closure of E. A subset S ⊆ V is strongly connected if for all v, w ∈ S,
v →∗ w. We call such S a partial SCC. A strongly connected component (SCC)
of G is a maximal subset that is strongly connected.

Partitions of a set can be maintained in the Union-Find data structure, which
is a forest where every element has a pointer to its parent in the same equiva-
lence class. The elements that point to themselves are the roots. One finds the
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representative of an element by following the parent pointers to the root. Two
elements can be united by assigning the parent pointer of the root of one to the
root of the other. These operations run in amortized (near)-constant time [15].

2.1 A Parallel SCC Algorithm Based on Concurrent Union-Find

We first provide an informal explanation of the parallel SCC decomposition
algorithm based on concurrent Union-Find, following the presentation in the
PhD thesis of Vincent Bloemen [2], originally published in [3]. We present
the algorithm in a top-down fashion. The full original algorithm is included
in Appendix A for easy reference. We refer to the thesis for more detailed expla-
nations.

Main Procedure. The main procedure UFSCC (Algorithm 1) runs an inde-
pendent Depth-First-Search (DFS) for each worker p. A newly visited node v
is pushed on a worker-local stack Rp (line 7), which will contain states to be
merged in partial SCCs. There are two globally shared data-structures:

– A Union-Find forest, storing the current partitioning in partial SCCs
– A Cyclic List, enabling an enumeration over all nodes in a partial SCC

The DFS proceeds per partial SCC, rather than per node: From node v,
UFSCC is recursively called (line 12) for each “new” successor w of each node
v′ that is in the same partial SCC as v. The nodes v′ are picked from the Cyclic
List (line 8, 18). The calls to successors w are performed in random order (line
10), to encourage workers to operate on different parts of the graph.

If a worker has already visited some node in the partial SCC of w (but it is
not yet fully explored), a loop has been detected: In this case, v and w and all
intermediate nodes on the local stack Rp definitely belong to the same SCC, so
they can be united in the UF-forest (line 14–16). Note that this partial SCC is
not necessarily complete.

To find out if the partial SCC of successor w is either completely “explored”,
or if it was already “found” by worker p, or else if it is entirely “new” for worker
p, we maintain two more pieces of globally shared information. This information
applies to partial SCCs, so it is stored at the roots of the Union-Find forest.

– A UF-status, indicating if this partial SCC is completely explored,
– A bit set UF-workers, storing all workers that have found this partial SCC.

Based on the UF-status and the Worker set, the function MakeClaim (Algo-
rithm 2) can easily determine the status of a newly visited node. To establish
the status of a node a, it must first find the root of a (line 2), to obtain the
information on the partial SCC. MakeClaim has a side-effect: If a is newly vis-
ited, the worker set of the root is updated (line 8).1 This is a bit complicated,
since in the mean-time, other workers may have extended this partial SCC, so
the UF-root of a may have advanced. This is solved by the while loop (line 7–9),
after which p must be in the worker set of the UF-root of a.
1 Although not stated explicitly, this assignment is taken to be atomic.
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Concurrent Union-Find Forest. We proceed to the explanation of the imple-
mentation of the UF-forest (Algorithms 3 and 4). The Find procedure (Algo-
rithm 3) simply follows the parent-pointers, until a self-loop is found, indicating
that we reached the root of this equivalence class. The path is shortened for
future calls.

To determine if a and b belong to the SameSet (Algorithm 3), we find their
roots and check if they are equal; if so, they definitely belong to the same SCC
(line 16). Since SameSet is a non-atomic operation, it can happen that the (com-
mon) root of a and b has advanced in between. If so, we repeat the whole pro-
cedure in the new situation (line 18). If not, we return False, since (at least at
some point during SameSet) a and b were in a different partial SCC.

The concurrent Unite function (Algorithm 4) is the most complicated. Given
the nodes a and b to unite, it will find their minimal root q and maximal root r
(line 11–15). The unite function has three tasks:

– The parent of q shall be r (the direction is fixed to avoid cycles);
– The union of the worker sets of q and r shall be stored at r;
– The cyclic lists of q and r shall be combined into a single cyclic list.

The main complication is that concurrent unites may happen. We avoid
intermediate updates to q by locking its root. The lock is implemented in the UF-
status (with values “Live”, “Lock” and “Explored”). LockRoot uses an atomic
Compare-And-Swap (CAS) to ensure that only one worker can hold the lock on
q. It also checks that the root of q has not been advanced in the meantime. If we
cannot lock q, the whole Unite-procedure is restarted (line 16). After obtaining
the lock on q, its parent pointer can be safely updated to r (line 20). Note that
q can never become a root, so there is no need to ever unlock its UF-status.

The cyclic lists must be merged as well. This is explained in the next sub-
section. Finally, we must store the union of the worker sets of r and q at the
new root. Another complication arises: In the meantime, the root of r may have
advanced! This is solved by the loop on line 21–24: We keep copying and uniting
the worker set of the most recent root of r and q, until r is its own root.

Cyclic List. We now explain the Cyclic List, which is used to enumerate all
nodes in a partial SCC. The cyclic list is implemented by a simple next-pointer.
Each node also has a list-status, which can be “Busy”, “Lock”, or “Done”. The
main operations are to enumerate the “Busy” elements of the list (PickFromList,
Algorithm 5), to remove elements from the list (RemoveFromList, Algorithm 5),
and to merge two cyclic lists (integrated in Unite, Algorithm 4, line 17–19).
Two auxiliary operations are to lock (LockList, Algorithm 4), and to unlock
(integrated in Unite, Algorithm 4, line 25–26) elements in the list.

Merging two cyclic lists (Algorithm 4) proceeds by locking a “Busy” element
from each list (line 17, 18), then swapping their two next-pointers (line 19), and
finally unlocking them (line 25–26). LockList traverses the cyclic list (line 6, 9)
and tries to “Lock” elements by a CAS-operation. If this succeeds, we return
the locked element. Otherwise, we simply give up and try the next element in
the list. Unlocking (line 25, 26) proceeds by assigning the list-status to “Busy”
again.
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The RemoveFromList function (Algorithm 5) updates the list-status from
“Busy” to “Done” in a CAS operation (line 19). Note that “Locked” elements
cannot be removed, but are retried (line 18) as long they are locked. Removed
(“Done”) nodes are still part of the cyclic list. We keep them, since other workers
might still point to them, and they should be able to pick the next “Busy” node.

Finally, PickFromList (Algorithm 5) picks the next “Busy” node from the
cyclic list. Starting at node a, it waits until a is unlocked (busy waiting, line
2,4). If a is “Busy”, it can be returned (line 3). If a is “Done”, we proceed to
the next node, b (line 5). If a = b, the cyclic list must be empty, so the partial
SCC is completely explored. This is properly stored in the UF-status field of the
UF-root of a (line 8). A CAS operation is used, to ensure that only one worker
reports a newly discovered SCC (line 9). In this case, we return NULL, since
this SCC doesn’t contain a “Busy” node. Otherwise, we wait until b is unlocked
(busy-wait loop line 11–13). If b is “Busy”, we return it. If b is also “Done”, we
need to proceed with the next state in the cyclic list, c (line 14, 16). Finally, we
shorten the path a → b → c (skipping b, line 15) to avoid long chains of removed
nodes in the next call to PickFromList.

2.2 TLA+ and TLC

The underlying logic of TLA+ is simple, but powerful. The formalism is first-
order predicate logic, where (untyped) variables range over sets (in the sense
of ZF). TLA+ comes with a library of predefined sets and standard operators
on them, including natural numbers, functions, sequences, and the definitions of
(linear time) temporal logic.

A system specification consists of a collection of state variables, and the
definition of an initial predicate (on state variables) and a next-state predicate
(on state variables and their primed variants). A TLA+ specification is completed
by weak (or strong) fairness assumptions, to ensure that there is some progress.

The PlusCal language allows the specification of algorithms using a simple
programming language with assignments, if-then-else statements, while-loops,
recursive procedures, and (fair) parallel composition. Atomicity is specified by
adding program labels that serve as interleaving points. As a result, the PlusCal
specification of the UFSCC algorithm follows the original pseudocode rather
closely. Specifications in PlusCal are automatically translated to TLA+.

Given the specification, one creates a finite model by fixing the number of
workers, and fixing a particular input graph. We used the TLC model checker
to prove that all interleavings allowed by the algorithm terminate and lead to a
correct SCC decomposition. The TLC model checker supports parallel compu-
tation, symmetry reduction, and stores visited states on disk. TLC produces a
counter example trace when a property is violated. We used the Visual Studio
Code plug-in for TLA, for its great support to filter and navigate huge counter
examples. Also, managing multiple specifications and models is well-supported.

Proving correctness for all number of workers, or for each input graph, is
beyond the scope of model checking. We have not yet used the TLA proof checker,
which would require to specify inductive invariants for the UFSCC algorithm.
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3 Modeling and Analysis Process

We constructed an initial specification (Sect. 3.1) of the UFSCC algorithm in Plus-
Cal, following the pseudocode (Appendix A) closely. We extended the specifica-
tion with properties to express its functional correctness, i.e. the detection of the
correct SCCs (Sect. 3.3). We added additional assertions to test some intuitions
about the algorithm. Since the state space was large, we started with random sim-
ulation runs to test these assertions for small graphs and a few workers. Later we
realized that the state space was actually infinite, due to recursive calls in busy-
waiting loops. We then made a second specification (Sect. 3.2), avoiding recursive
busy waiting. This allowed us to investigate the full state space.

We detected that some of the conjectured invariants did not hold (Sect. 4).
The counter-examples to these invariants show some suboptimal traces, that we
had not anticipated. However, we have not found traces that violate the overall
correctness of the algorithm. It is of course possible that errors would occur on
larger graphs, or with more workers. We also analysed some modifications of the
algorithm, most of which were incorrect, as detected by the model checker.

3.1 Initial Specification – Good for Simulation

The initial specification follows the pseudocode in a rather straightforward man-
ner. All in all, building the first executable model that covered the whole algo-
rithm only took around one full day. Since TLA+ is a rich specification language,
the global data structures UF (Union-Find forest) and CL (cyclic list) can be
modelled directly as mathematical functions. These globally shared variables are
declared and initialized as follows. Here init is the initial state of the graph, and
Workers is the set of worker identities, both specified in a separate model.

variables
UF = [ n\in Nodes |-> [

parent |-> n,
workers |-> IF n=init THEN Workers ELSE {},
uf_status |-> "live" ]];

CL = [ n\in Nodes |-> [
next |-> n,
list_status |-> "busy" ]];

All procedures in Appendix A could be easily formalised as PlusCal proce-
dures. As an example, we provide the Find-operation (Algorithm 3, line 1–4) in
PlusCal, below on the left. On the right, we show the procedure RemoveFromList
(Algorithm 5, line 17–18) in PlusCal, using a busy-wait loop and the macro CAS.
In PlusCal, a procedure cannot return a result. Instead, we declared thread-local
variables for the return value of each procedure (like returnFind below). In an
attempt to reduce the state space, we reset these global variables at the call
site, as soon as we have read the result (not shown here). Note that the labels
indicate interleaving points: All statements between two labels occur atomically.



Exploring a Parallel SCC Algorithm 541

procedure Find(a)
variable p;
{

f1: p := UF[a].p;
f2: if (p /= a)

{ call Find(p);
f3: UF[a].p := returnFind };

else
{ returnFind := p };

f4: return
}

procedure RemoveFromList(a) {
r1: while

(CL[a].stat/= "done")
{
CAS(CL[a].stat,"busy","done")
};

return
}

Main Procedure and Parallel Processes. The main procedure is UFSCC.
We use the “with”-construct from PlusCal to select an arbitrary successor w1

non-deterministically from the successors of v1, which is the element picked from
the cyclic list of v. Here next refers to the transitions in the input graph, which
is modeled in a separate model.

The whole system consists of a weakly-fair parallel composition over all Work-
ers (a constant set defined in a separate model), where each process executes
UFSCC from the initial state. Each worker maintains its Roots stack as a thread-
local variable, initialized as the empty sequence. We use weak fairness to avoid
that processes stutter for ever, violating termination of the algorithm.

procedure UFSCC(v)
variables v1, w, succ, ...

{
m1: Roots := <<v>> \o Roots;

call PickFromList(v);
m2: v1 := returnPick;
m3: while (v1 /= null) {

succ := next[v1];
m4: while (succ /= {}) {

with (w1 \in succ) {
w := w1;
succ := succ \ {w1} };

... } ... } ... }

fair process (W \in Workers)
variables
Roots = << >>,
returnFind, returnPick ;

{ main: call UFSCC(init); }

Atomicity. PlusCal uses program labels to specify atomicity: code between
two program labels is executed atomically; interleaving (and branching) can
only happen at program labels. We took the following modeling decision: To
ensure that every “atomic” block performs at most one global memory access,
we introduce a label (like f1) for each program statement with a global memory
access. PlusCal also requires labels for loops, procedure calls and returns, etc.

There are two exceptions to the rule:The first exception iswhen the pseudocode
insisted on atomic updates. For instance, line 23 in Algorithm 4 (Unite) states that
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theworkersetmustbeupdatedatomically.So,despitethreeglobalmemoryaccesses,
we model this line with only one label in the TLA+ specification:

u11: UF[r].workers := UF[r].workers \union UF[q].workers;

In contrast, line 19 of the same algorithm tells that the pointer Swap happens
non-atomically. So this we modelled using multiple labels (i.e., breaking it in two
atomic pointer assignments), as shown on the left below.

The other exception is where the pseudocode uses CAS statements, which
we modeled by a macro, shown below on the right. Note that macros cannot
contain labels, so they are treated as atomic blocks by definition.

u8: tmp := CL[a].next;
CL[a].next := CL[b].next;

u9: CL[b].next := tmp;

macro CAS(x,old,new) {
returnCAS := (x=old);
if (returnCAS) { x:=new }

}

Deviations from the Original Algorithm. We made the following deviations
from the pseudocode when interpreting it in the specification:

– We slightly rearranged the code for esthetic reasons. For instance, we split
UF and CL in two data-structures. We also inlined the LockRoot procedure,
which was only called from one place in Unite.

– To simplify the main process, we did not model the initial assignment to the
worker set (Algorithms 1, line 3, 4), but instead, we did this in the initialisa-
tion of the UF data structure (as shown in the code above).

– Although not indicated explicitly, we took the worker set update in Make-
Claim (Algorithm 2) as an atomic update, similar to the update in Unite.

– Note that PickFromList returns NULL if the cyclic list is empty. This pro-
cedure is called: (i) From the main procedure UFSCC (Algorithm 1, line 8,
18); the while loop terminates when PickFromList returns NULL. (ii) From
LockList, but now the case that NULL is returned is not handled. To make
this an explicit assumption, we replaced line 7 in LockList (Algorithm 4) by
an assertion checking for NULL. We have not detected a violation of this
assertion.

3.2 Improved Specification – Good for Model Checking

The initial specification led to very large state spaces, even when run with only
2 workers on a graph with only 3 nodes. As a consequence, initially we could not
apply complete model checking, but only run simulations.

Busy Waiting in Recursion. Later, we realized that the state space was
actually infinite. The reason is that the pseudocode models busy-waiting loops
with recursion. For instance, the procedure LockList (Algorithm 4, l. 5–9) was
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initially modeled as shown below (left). Note that if the CAS fails, we retry
locking the list by the recursive call at line 9. Recall that PlusCal is translated
to TLA+; the translation involves the introduction of a stack to model procedure
calls and recursion. Although the LockList procedure terminates (after the other
worker releases the lock), an unbounded number of executions of the loop can
happen in between, leading to an unbounded stack.2

Our remedy was to replace tail-recursive calls by goto-statements. Note that
the re-specification of LockList on the right below leads to a finite state space.
We replaced all tail-recursion by goto-statements, to reduce the state space.

procedure LockList(a)
variable s
{

l1: call PickFromList(a);
l2: s := returnPick;

assert s /= null;
CAS(CL[s].stat,

"busy", "lock");
l3: if (returnCAS) {

returnLock := s;
return

} else {
call LockList(s);

l4: return
}

} \* 1st model: tail recursion

procedure LockList(a)
variable s
{

l1: call PickFromList(a);
l2: s := returnPick;

assert s /= null;
CAS(CL[s].stat,

"busy", "lock");
l3: if (returnCAS) {

returnLock := s;
return

} else {
a := s;
goto l1;

}
} \* 2nd model: goto-loop

Replace Busy-Wait by Await. In a final attempt to reduce the state space,
we tried to avoid busy-wait loops at all, by using the await statement of PlusCal.
As an example, we show the start of the procedure PickFromList (Algorithm 5,
line 1–3). On the left we show the initial specification in PlusCal (we modelled
the do-while by a goto statement). On the right, we show the improved version,
where the busy-waiting loop with goto is replaced by the await-statement.

procedure PickFromList(a)
variable status, b, c, root;
{

pX: status := CL[a].stat;
if (status = "lock")

{ goto pX } else
if (status = "busy") {

returnPick := a;
p1: return

}; ... }

procedure PickFromList(a)
variable b, c, root ;
{

pX: await CL[a_P].stat /= "lock";
if (CL[a].stat = "busy") {

returnPick := a;
p1: return

};
...}

2 In this tail-recursive case, the translation could have avoided the use of a stack.
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We have no formal justification for these modifications, but now at least the
state space of the algorithm for a fixed graph and set of workers is finite. For
2 workers and graphs of 4 nodes (like those in Appendix B), the state space is
around 2–15 Million nodes. For state spaces of this size, model checking is feasible
on a consumer-laptop and runs within a couple of minutes. For 3 workers on a
graph of only 3 nodes, the state space grew already to 67 Million nodes. This
becomes painful for larger graphs, but one could still fall back on simulation.

3.3 Specifying the Correctness Property and Other Assertions

Next to the specification of the system, we need to specify the correctness cri-
terion. The main claim is that UFSCC terminates, and upon termination the
Union-Find forest contains the graph partitioning in the correct SCCs. We spec-
ified and checked the expected SCCs for each model instance separately.

Model Instances. A model instance is specified in a separate configuration file.
The example below (left) shows a fragment of a model instance. It specifies a
graph of 4 nodes and 5 edges. Note that the sequence of edges can be interpreted
as a function from nodes to set of nodes. It can be easily checked that this graph
has two SCCs. Since our Union-Find structure always takes the largest node as
representative, we can specify the expected root for each node. These expected
SCCs will be used to express the correctness claim.

The model instance also provides a value to the set of workers. In the example
below (right), we introduce two workers w1 and w2 as distinct model constants.

Nodes == { 1,2,3,4 }
next == << {2}, {1,3}, {4}, {3} >>
init == 1
expected == << 2, 2, 4, 4 >>

CONSTANTS
w1 = w1
w2 = w2
Workers = {w1, w2}

Main Correctness Claim. For the main correctness claim, we define an oper-
ator (logical function) that computes the root of a node in the UF-forest in a
single snapshot. Note that this is quite different from the Find-procedure, which
does not work atomically (the UF forest can be modified by concurrent work-
ers) and has a side effect (path shortening). The ideal find operator is defined
recursively. Note that TLA+ allows that recursive operators are only partially
specified. In this case, if the UF-structure contained loops, the value of “find”
would not be defined everywhere.

RECURSIVE find(_)
find(n) == IF UF[n].parent=n THEN n ELSE find(UF[n].parent)

Correct == (\A w\in Workers : pc[w] = "Done") =>
(\A x\in Nodes : find(x) = expected[x])

Termination == <>(\A w \in Workers: pc[w] = "Done")
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Given the logical find-operator and the expected SCCs, partial correctness
can be stated easily. In Correct above, we state that when all workers are done,
the root of every node in the graph is as expected. Note that this is an invariant
that trivially holds for all states, except those where all processes have finished.
The LTL property Termination indicates that all fair runs lead to a state where
all processes have returned from the initial UFSCC call. Together, Correct and
Termination (and the fact that the program doesn’t crash halfway due to a
type/value error) specify total correctness under weak fairness.

4 Findings from Model Checking Experiments

The specification in the previous section has a finite state space, given a fixed
input graph and a fixed number of workers. So in principle, the TLC model
checker can generate the full state space and explore if the algorithm works
correctly for all possible interleavings, and all possible graph traversals (recall
that the next successor is selected non-deterministically). The bad news is that
the state space could only be computed for rather small graphs and a few workers.
The good news is that the algorithm was correct for all instances that we tried.
We tried 2 workers on 10 graphs of 3–4 nodes, from various initial positions. See
Appendix B for an impression of a few input graphs.

This is insufficient information to conclude that the algorithm is also correct
for more workers on larger input graphs. The royal road to increase the confidence
in the algorithm would be to identify and prove a number of inductive invariants
that imply correctness. At the moment we don’t know the proper invariants of the
algorithm. The intermediate contribution of this work is to investigate a number
of potential invariants. It appears that several conjectured invariants actually
don’t hold, as revealed by some weird (but not wrong) executions (Sects. 4.2, 4.3).
This might diminish the confidence in the algorithm.

We also studied a number of modifications of the algorithm. These are partly
inspired by efforts to “restore” some conjectured invariants and avoid weird
executions, and partly by a wish to simplify or restructure the specification in
clear layers. In particular, we would wish to separate code at the UF level from
code at the CL level. We believe that this would facilitate a proof by step-wise
refinement. Currently, it is mainly the Unite-procedure that mixes the two levels.

Our findings indicate that most modifications made the algorithm wrong
(Sects. 4.1, 4.4). We don’t know if this should increase or decrease the confidence
in the algorithm: On the one hand, it shows that the correctness of the algorithm is
rather fragile, and one could imagine that the original algorithm fails on a slightly
different input graph. On the other hand, it shows that wrong algorithms can be
caught by model checking, even with 2 workers running on the 10 small input
graphs that we constructed. We will now discuss these findings in more detail.

4.1 Simplifying the Equivalence Check (SameSet)

Consider the procedure SameSet (Algorithm 3, l. 13–18). It finds the roots of a
and b. If the roots are equal, a and b clearly belong to the same set. The reverse
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is actually not true in a concurrent setting! First of all, SameSet could return
False, even though a and b have been united in between by another worker. One
could argue that this result is correct, since SameSet should have returned False
if it had just been a bit faster. Still, at line 17, we only return False if the root
of a has not changed in the meantime. Otherwise, we start all over (l. 18).

The problem with this approach is that it seems complicated, it looks a-
symmetric (we don’t check if the root of b has changed), and it seems to relieve
the symptom rather than the cause of the problem: what if the root of a is
updated right after we check that it wasn’t updated in line 17?

For these reasons, we tried a simplification, replacing line 17 and 18 by just
returning “False”. However, this simple change leads to serious consequences:

– On some graphs, the modified UFSCC gave wrong answers, by merging dif-
ferent SCCs into a single one.

– On some graphs, the modified UFSCC crashed, by attempting to pop an
element from the empty Roots-stack.

The TLC model checker produces counter-examples, i.e. concrete runs of
the modified algorithm that lead to the problematic behaviour. Although these
traces get long, after some analysis they explained why these problems occur.

The disturbing situation in SameSet occurs when a and b are initially in the
same partition, but the root of this partition is updated in between finding the
root of a and b. In that case, the roots seems different, and a wrong result is
reported. In this sense, returning False directly after line 16 would result in a
SameSet procedure that is not even reflexive.

Now why is this problematic? The procedure SameSet is called by the main
procedure UFSCC while popping roots from the stack as long as the source and
target of the current transition v → w are not in the same set! (Algorithm 1, l.
14–16). The effect of the erroneous version of SameSet is that we keep popping
and uniting states from the Roots stack. This means that an SCC is either
merged with the previous SCC on the stack, or if there is no such SCC on the
stack, we try to pop from the empty stack!

We conclude that the complication in SameSet is necessary. As already
explained in [2], it guarantees to return True if and only if a and b are in the
same set at some point during the execution of SameSet. We believe that this
requirement can be formalized using the logical (ideal) find-operator as follows:
(
findpre(a) = findpre(b)

) ⇒ (
returnSame = True

) ⇒ (
findpost(a) = findpost(b)

)

4.2 Monotonicity of Worker Sets and Atomic Updates

The worker set is used to detect cycles in the graph: In UFSCC (Algorithm 1)
and MakeClaim (Algorithm 2), if a worker p explores an edge (v, w) and p already
occurs in the worker set of the root of w, then it ran into a cycle, and it can be
concluded that v and w are in the same SCC. Recall that the worker sets are
updated atomically in Unite (Algorithm 4, l. 23) and MakeClaim (Algorithm 2,
l. 8).
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A reasonable conjecture is that these atomic updates ensure that the worker
sets are monotonically increasing. To challenge the specification, we check that
this property holds for atomic worker updates, but is violated if we update the
worker set in a non-atomic manner. The property is easily formalized as a TLA
property on all reachable transitions, as Monotonic1 below.

Monotonic1 == [][\A y\in Nodes :
UF[y].workers \subseteq UF[y].workers’]_<<UF>>

Monotonic2 == [][\A y\in Nodes :
UF[find(y)].workers \subseteq UF[find(y)].workers’]_<<UF>>

Indeed, this property holds with atomic updates, but it is violated by a
version of the specification with non-atomic updates. The model checker returns
an execution which boils down to the following well-known scenario: Assume
the worker set is X and it is extended concurrently by Y1 and Y2. With atomic
updates, the end result is (X ∪Y1)∪Y2 or (X ∪Y2)∪Y1, which denotes the same
set. With non-atomic updates, the workers can first both read X, and then one
writes X ∪ Y1 and subsequently the other writes X ∪ Y2. The second update
violates monotonicity, since the update from Y1 is lost.

Note that property Monotonic1 only looks at the worker set per node, while
the relevant information would check the worker set per partial SCC. We chal-
lenged the specification further with property Monotonic2, which states that for
every node, the worker set of its root node is increasing. Surprisingly, the model
checker returned an execution where this property is failing, even in the model
with atomic updates! After analysing the execution, the following scenario is
possible due to the order of steps in Unite (Algorithm 4, l. 20–23).

Assume worker w1 unites roots r and q, with worker set Wr and Wq. It first
updates the parent pointer of q to r. In a second step, it adds Wq to Wr. But
in between these steps the invariant is violated, since the worker set of q’s root r
is still Wr, suddenly missing elements from Wq. Assume that in between these
two steps, another worker w2 checks the worker set of a node v whose parent
points to q (in MakeClaim). Even though w2 might be in the worker set of q, it
is not yet in the worker set of r, the new root of v! The situation will be restored
soon by w1, but it is too late: w2 has already decided that its node v is “new”,
instead of recognizing that its partial SCC was already “found”.

Is this bad? Apparently, the violation of Monotonic2 doesn’t lead to a wrong
result. Still, it can lead to extra computations. If worker w2 doesn’t find itself
in the worker set of the root of node v, it will continue the search, potentially
revisiting a part of the graph unnecessarily. We tried to construct examples where
this behaviour could lead to wrong answers, but we didn’t succeed. Also, the
computation always terminated (there are only finitely many unites). However,
these examples led to discovery of violations of other expected properties, as
reported in Subsect. 4.3. Our attempts to improve the algorithm so that property
Monotonic2 holds failed, as reported in Subsect. 4.4.
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4.3 Duplication on the Stack

Related to non-monotonicity of the worker sets, we investigated another prop-
erty that indicates duplication of work: this time, we check an assertion at the
beginning of the UFSCC loop that the node v that is pushed on the Roots-stack
R is not already on the stack. Indeed, this property was violated on the same
graphs that violated the Monotonicity2 property.

Two BSc students at AU, Jesper Steensgaard and Jonathan Starup, discov-
ered another reason that some nodes occur multiple times on the Roots stack:
UFSCC traverses all nodes v′ in the same partial SCC, and recurses on all their
successors w. This causes double work, since some of these successors belong to
the same SCC, and will only be removed from the cyclic list when we backtrack
from them. One could skip those successors w that belong to the current SCC.

4.4 Changing the Order of Updates During Unite

Finally, we tried some variants of the algorithm, changing the order of the steps
in the Unite procedure. After initialisation, Unite performs the following 5 steps:

1. It locks two elements in the cyclic lists (l. 17, 18)
2. It merges the cyclic lists (l. 19)
3. It updates the parent pointer (l. 20)
4. It updates the worker set of the root in a loop (l. 21–24)
5. It releases the list locks (l. 25–26)

Note that, since these steps don’t happen atomically, other workers might see
inconsistent states, where for instance the cyclic lists of two nodes are already
merged, but the two nodes are not yet the same according to the UF-forest.
Similarly, they could be the same, but the worker set has not yet been updated.
The “Locked” value of the UF-status and the CL-status are the only warning
signs for other workers that something might be wrong.

We tried several modifications of the order of these 5 steps. TLC discovered
problems for several reorderings, in particular it revealed concrete counter exam-
ples for (1, 2, 4, 3, 5), where the worker set is updated before the parent pointer.
We had hoped that this order would restore the monotonicity property.

TLC also reported concrete counter-examples to (3, 4, 1, 2, 5) and (1, 2, 5, 3,
4), where updating the UF-parent happens outside the region between locking
and unlocking the CL-nodes. We had hoped to minimize the locked region, to
potentially increase performance, and also to separate the CL-related code from
the UF-related code. Also, one would think that the CL-list locks only need to
protect updates to the CL-list, but this is apparently not true.

On the other hand, we found no concrete counter-examples to the modifica-
tion (1, 2, 3, 5, 4), so it seems that the update of the worker set can happen
outside the locked region. Moving the loop of lines 21–24 outside the locked
region could potentially give a performance speedup. Also, the order of updat-
ing the parent pointer and the cyclic list doesn’t seem to matter: We found no
counter-examples to (1, 3, 2, 4, 5) and (1, 3, 2, 5, 4). From our experiments, we
conclude that:
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– The parent pointer must be updated before the worker set is updated.
– The update of the UF parent-pointer must happen inside the CL lock region.

If one violates the first requirement, as in (1, 2, 4, 3, 5), the following can
happen: Assume worker w1 starts at some node n1 and worker w2 finds out
that nodes n1 and n2 can be united. The new root will be n2, so worker w2

updates the worker set at n2 to {w1, w2} before it updates the parent pointer.
In the meantime, worker w1 now explores the edge from n1 to n2. It notices
that it already found (the SCC of) node n2 (since w1 is now in n2’s worker
set). However, n1 and n2 are not yet the same (since the parent pointer has not
yet been updated by w2). Hence, w1 starts popping the Roots stack, possibly
leading to spurious unites, or even to a crash due to popping from the empty
stack (TLC found both scenarios).

If one violates the second requirement by updating the parent pointer before
locking the list elements, as in (3, 4, 1, 2, 5), another worker might already
remove the elements that still must be locked in the cyclic list. In this case, Lock-
List (Algorithm 4) crashes due to the assertion triggered because PickFromList
(Algorithm 5) returns NULL.

If one violates the second requirement by updating the parent pointer after
unlocking the list elements, as in (1, 2, 5, 3, 4), it can happen that the last node
returned by PickFromList (Algorithm 5) has already an unlocked CL-status, but
its UF-status is still “Locked” instead of “Live”. But then the CAS-operation on
line 8 fails, so the UF-status of this node is never updated to “Explored”. When
backtracking in UFSCC and visiting the same node again through another path,
it is not “Explored” so it will be considered “Found” and UFSCC erroneously
starts popping from the Roots stack (Algorithm 1, l. 14–16).

This subtle error shows that the proper invariants of the algorithm should
somehow relate the UF-status and the CL-status, to avoid that UF-locked states
are returned by PickFromList.

5 Conclusion

In an attempt to understand a parallel SCC-detection algorithm based on a
concurrent Union-Find forest, and to increase the trust in its correctness, we
modeled the algorithm in TLA+ and analysed it for a number of small graphs
with the TLC model checker. The analysis revealed that the algorithm behaves
correctly for 2 workers on a couple of small graphs. This does not prove its
correctness, but it may increase confidence in its correctness.

We also showed that some natural invariants can be violated, leading to
suboptimal runs of the algorithm with some work duplication. This may reduce
the trust in the correctness, since such behaviour might violate the correctness
on larger graphs or with more workers (beyond the horizon of the model checker).
We did not find such examples, though. The original author was aware of possible
work duplication. It should not affect correctness and it occurs only with a small
probability. Avoiding it with extra locks could be even more costly. Experimental
evaluation has demonstrated good speedups of the current strategy [2,3].
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Finally, we tried to increase our understanding and confidence by slight modi-
fications to the algorithm. The results are mixed. Some small modifications seem
to be possible without violating correctness. One of the suggested modifications
might even increase parallel speedup, by moving the loop to update the worker
set outside the locked region. We tried some other small modifications to main-
tain interesting invariants that could avoid duplicate work and keep worker-set
information monotonic. However, these modifications were erroneous and could
be refuted by small graphs. Apparently, larger modifications would be required
to maintain these invariants.

These experiments also reveal that the invariants needed for a full under-
standing and correctness proof of the algorithm will be quite complicated. We
hope that the scenarios revealed by model checking and reported in this work
will contribute to the discovery of the proper invariants and potentially to sim-
plifications of the algorithm. Of course, these simplifications should not decrease
the parallel performance of the algorithm. For instance, adding extra locks would
ease correctness reasoning, but at the expense of decreased parallel performance.
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during their BSc talent-track project. The author is grateful to Stephan Merz for intro-
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Vincent Bloemen, and the anonymous reviewers for useful feedback on a draft of the
paper.

A The Original Concurrent Union-Find SCC Algorithm

Here we present the original algorithm UFSCC, taken from the thesis of Vincent
Bloemen [2]. The pseudo-code is copied with consent of the author. We present
the algorithm top-down, in Algorithm 1–6.
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Algorithm 1 Implementation of the UFSCC algorithm ([2], Alg. 9)

Algorithm 2 Determining the status of a state with the worker set ([2], Alg. 6)
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Algorithm 3 Find and SameSet functions ([2], Alg. 5)

(we removed the Unite-function from Alg. 3, since it will be refined by Alg. 4)

Algorithm 4 The Unite procedure of the iterable union-find ([2], Alg. 8)
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Algorithm 5 The cyclic-list part of the iterable union-find ([2], Alg. 7)

Algorithm 6 Atomic Compare and Swap instruction ([2], Alg. 4)

This algorithm is supposed to run in one atomic step.

B Example Input Graphs for SCC Algorithm

q0

q1 q2

q3

q0

q3q1 q2

q0 q1

q2q3

Above we show six small example input graphs on which we tested the TLA+

specification of the pseudocode in Appendix A. (The dotted lines are optional).
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