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1 INTRODUCTION

In general, not only correctness, but also the complexity of algorithms is important. While it is
obvious that the performance observed during experiments is essential to solve practical problems
efficiently, also the theoretical worst-case complexity of algorithms is crucial: a good worst-case
complexity avoids timing regressions when hitting worst-case input, and, even more important,
prevents denial of service attacks that intentionally produce worst-case scenarios to overload crit-
ical computing infrastructure.

For example, the C++ standard requires implementations of std::sort to have worst-case com-
plexityO (n logn) [8]. Note that this rules out quicksort [16], which is very fast in practice, but has
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quadratic worst-case complexity. Nevertheless, the widely used standard library LLVM libc++ [27]
only recently stopped using quicksort.1

A practically efficient sorting algorithm with O (n logn) worst-case complexity is Musser’s in-
trosort [30]. It combines quicksort with theO (n logn) heapsort algorithm, which is used as fallback
when the quicksort recursion depth exceeds a certain threshold. It allows to implement standard-
compliant, practically efficient sorting algorithms. Introsort is implemented by, e.g., the GNU C++
Library (libstdc++) [10] and by libc++ [27] since version 14.

In this article, we present techniques to formally verify both, correctness and worst-case com-
plexity of practically efficient implementations. Our approach seamlessly works for both, standard
and amortized analysis. We build on two previous lines of research by the authors.

On the one hand, we have the Isabelle Refinement Framework [26], which allows for a modular
top-down verification approach. It utilizes stepwise refinement to separate the different aspects
of an efficient implementation, such as algorithmic idea and low-level optimizations. It provides a
nondeterminism monad to formalize programs and refinements, and the Sepref tool to automate
canonical data refinement steps. Its recent LLVM back end [22] allows to verify algorithms with
competitive performance compared to (unverified) highly optimized C/C++ implementations. The
Refinement Framework has been used to verify the functional correctness of an implementation
of introsort that performs on par with libstdc++’s implementation [24].

On the other hand, we already have extended the Refinement Framework to reason about com-
plexity [14]. However, the cost model used there limits the natural structuring of the cost analysis
in refinement proofs. Moreover, it only supports the Imperative HOL back end [23], which gener-
ates functional code that is inherently less efficient than imperative code.

This article extends our conference paper [15] by adding amortized analysis and a case study on
dynamic arrays, complexity analysis of string sorting, and more in-depth explanations of the de-
sign choices of our framework. We also make the article more self-contained by including material
from [14]. Our main contributions are.

— We present a generalized nondeterminism monad with resource cost, apply it to resource
functions to model fine-grained currencies (Section 2), and show how they can be used to
naturally structure refinement.

— We extend the LLVM back end [22] with a cost model, and amend its basic reasoning infras-
tructure (Section 3).

— We extend the Sepref tool (Section 4) to synthesize executable imperative code in LLVM,
together with a proof of correctness and complexity.

— We show how to integrate the analysis of amortized data structures with our refinement
approach (Section 5).

— We extend the verification of introsort to also show a worst-case complexity of O (n logn),
thus meeting the C++11 stdlib specification [8] (Section 6). Our methodology also works for
sorting data (e. g., strings) with a comparison operation that does not have constant running
time. The performance of our implementation is still on par with libstdc++. We believe that
this is the first time that both, correctness and complexity of a sorting algorithm have been
formally verified down to a competitive implementation.

Our formalization is available at https://www21.in.tum.de/~haslbema/llvm-time.

2 SPECIFICATION OF ALGORITHMS WITH RESOURCES

We use the formalism of monads [35] to elegantly specify programs with resource usage. We first
describe a framework that works for a very generic notion of resource, and then instantiate it with

1See, e.g., https://bugs.llvm.org/show_bug.cgi?id=20837 (resolved in Nov. 2021).
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resource functions, which model resources of different currencies. We then describe a refinement
calculus and show how currencies can be used to structure stepwise refinement proofs. Finally, we
report on automation and discuss alternatives to our modeling of programs with resources.

In this section, we consider purely functional programs. In Section 4, these will be refined to
imperative programs.

2.1 Nondeterministic Computations With Resources

Let us examine the features we require for our computation model.
First, we want to specify programs by their desired properties, without having to fix a con-

crete implementation. In general, those programs have more than one correct result for the
same input. Consider, e.g., sorting a list of pairs of numbers by the first element. For the input
[(1, 2), (2, 2), (1, 3)], both [(1, 2), (1, 3), (2, 2)] and [(1, 3), (1, 2), (2, 2)] are valid results. Formally,
this is modeled as a set of possible results. When we later fix an implementation, the set of pos-
sible results may shrink. For example, the (stable) insertion sort algorithm always returns the list
[(1, 2), (1, 3), (2, 2)]. We say that insertion sort refines our specification of sorting.

Second, we want to define recursion by a standard fixed-point construction over a flat lattice. The
bottom of this lattice must be a dedicated element, which we call fail. It represents a computation
that may not terminate.

Finally, we want to model the resources required by a computation. For nondeterministic pro-
grams, these may vary depending on the nondeterministic choices made during the computation.
As we model computations by their possible results, rather than by the exact path in the program
that leads to the result, we also associate resource cost with possible results. When more than
one computation path leads to the same result, we take the supremum of the used resources. The
notion of refinement is now extended to a subset of results that are computed using less resources.

We now formalize the above intuition: the type

(α , γ ) NREST = fail | res (α → γ option)

models a nondeterministic computation with results of type α and resources of type γ .2 That is,
a computation is either fail, or res M, where M is a partial function from possible results to
resources.

Example 2.1. The computation res [a �→ 5, b �→ 3] either returns a using 5 resources, or b using 3
resources. Here, the notation [a1 �→ t1, . . . ,an �→ tn] defines a function mapping each ai to Some ti ,
and any other argument to None.

We define spec Φ T as a computation of any result r that satisfies Φ r using T r resources:
spec Φ T = res (λr. if Φ r then Some (T r) else None). By abuse of notation, we write spec x t
for spec (λr. r = x) (λ_. t).

Based on an ordering on the resources γ , we define the refinement ordering on NREST, by first
lifting the ordering to option with None as the bottom element, then pointwise to functions and
finally to (α , γ ) NREST, setting fail as the top element. This matches the intuition of refinement:
m ≤ m′reads as m refines m′, i.e., m has less possible results than m′, computed with less resources.

We require the resources γ to have a complete lattice structure, such that we can form suprema
over the (possibly infinitely many) paths that lead to the same result. Then, also NREST with the
refinement ordering forms a complete lattice. The top element is fail, it satisfies no specification.
The bottom element is res (λ_. None), it satisfies all specifications, but has no implementation.

2The name NREST abbreviates Nondeterministic RESult with Time, and has been inherited from our earlier formalizations.
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Moreover, when sequentially composing computations, we need to add up the resources. This
naturally leads to a monoid structure (γ , 0,+), where 0, intuitively, stands for no resources. We
call such types γ resource types, if they have a complete lattice and monoid structure. Note that,
in an earlier iteration of this work [14], the resource type was fixed to extended natural num-
bers (enat = N ∪ {∞}), measuring the resource consumption with a single number. Also note
that (α , unit) NREST is isomorphic to our original nondeterministic result monad without re-
sources [26].

Ifγ is a resource type, so isη→ γ . Intuitively, such resources consist of coins of different resource
currencies η, the amount of coins being measured by γ .3

If not indicated otherwise, we use the resource type ecost = string→ enat, i.e., we have currencies
described by a string, whose amount is measured by extended natural numbers, where∞ models
arbitrary resource usage. Note that, while the resource type string→ enat guides intuition, most
of our theory works for general resource types of the form η→ γ or even just γ .

We define the function $s n to be the resource function that uses n coins of the currency s, where
n is of type enat, and s is of type string. We write $s as shortcut for $s 1.

Example 2.2. A program that sorts a list in O (n2) can be specified by:

sortspec xs = spec (λxs′. sorted xs′∧ mset xs′= mset xs) (λ_. $q |xs|2 + $c )

That is, a list xs can result in any sorted list xs ′ with the same elements, and the computation takes
(at most) quadratically many q coins in the list length, and one c coin, independently of the list
length. Intuitively, the q and c coins represent the constant factors of an algorithm that implements
that specification and are later elaborated by exchanging them into several coins of more fine-
grained currencies, corresponding to the concrete operations in the algorithm, e.g., comparisons
and memory accesses. Abstract currencies like q and c only “have value” if they can be exchanged to
meaningful other currencies, and finally pay for the resource costs of a concrete implementation.

2.2 Atomic Operations and Control Flow

In order to conveniently model actual computations, we define some combinators. The elapse m t
combinator adds the (constant) resources t to all results ofm:

elapse :: (α , γ ) NREST→ γ → (α , γ ) NREST

elapse fail t = fail

elapse (res M) t = res (λx. case M x of None⇒ None

| Some t ′ ⇒ Some (t + t ′))

The program4 return x computes the single result x without using any resources:

return :: α → (α , γ ) NREST

return x = res [ x �→ 0 ]

The combinator bind m f models the sequential composition of computations m and f , where f
may depend on the result ofm:

bind :: (α , γ ) NREST→ (α → (β , γ ) NREST) → (β , γ ) NREST

bind fail f = fail

bind (res M) f = Sup { elapse (f x) t |x t. M x = Some t }

3Typically, only finitely many coins have a positive amount.
4Note that our shallow embedding makes no formal distinction between syntax and semantics. Nevertheless, we refer to an

entity of type NREST, as program to emphasize the syntactic aspect, and as computation to emphasize the semantic aspect.
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If the first computation m fails, then also the sequential composition fails. Otherwise, we consider
all possible results x with resources t of m, invoke f x, and add the cost t for computing x to the
results of f x. The supremum aggregates the cases where f yields the same result, via different
intermediate results of m, and also makes the whole expression fail if one of the f x fails.

To improve readability of programs, we write x← m; f x for bind m (λx. f x) and, m1; m2 for
bind m1 (λ_. m2).

Example 2.3. We now illustrate an effect that stems from our decision to aggregate the resource
usage of different computation paths that lead to the same result. Consider the program

res (λn::nat. Some ($c n)); return 0

It first chooses an arbitrary natural number n consuming n coins of currency c, and then re-
turns the result 0. That is, there are arbitrarily many paths that lead to the result 0, consuming
arbitrarily many c coins. The supremum of this is ∞, such that the above program is equal to
elapse (return 0) ($c ∞). Note that none of the computation paths actually attains the aggre-
gated resource usage. We will come back to this in Section 4.5.

Finally, we use Isabelle/HOL’s if-then-else and define a recursion combinator rec via a fixed-
point construction [19], to get a complete set of basic combinators. As these combinators also
incur cost in the target LLVM, we define resource aware variants:

ifc b then c1 else c2 = elapse (r← b; if r then c1 else c2) $if

recc F x = elapse (rec (λD x. F (λx. elapse (D x) $call ) x) x) $call

Here, the guard of ifc is a computation itself, and we consume an additional if coin to account
for the conditional branching in the target model. Similarly, every recursive call consumes an
additional call coin. Furthermore, we also derive a while combinator:

whilec b f s = recc (λD s. ifc b s then s← f s; D s else return s) s

While the NREST type allows to specify arbitrary higher-order functions, e.g., a computation
that returns a computation (type α → ((β , γ ) NREST, γ ) NREST), in this article we only regard
non-nested NREST types. This includes first-order computations like return :: α → (α , γ ) NREST,
and combinators like if :: (bool, γ ) NREST→ (α , γ ) NREST→ (α , γ ) NREST→ (α , γ ) NREST. This
is sufficient to express the programs we are interested in, and closer to the LLVM back end (Sec-
tion 3), which only supports the if, rec, and while combinators.

2.3 Specifications

An NREST program of the form assert P; spec Q T is a specification with precondition P, post-
condition Q, and resource usage T. Here, an assertion is used to express preconditions of a program.
It fails if its condition is not met, and returns unit otherwise:

assert P = if P then return () else fail

A classical Hoare triple for program m, with precondition P, postcondition Q, and a resource
usage t (not depending on the result) can be written as a refinement m ≤ assert P; spec Q (λ_. t).

Example 2.4. Comparison of two list elements at a cost of t can be specified by:

idxs_cmpspec xs i j (t) = assert (i < |xs| ∧ j < |xs|); spec (xs!i < xs!j) (λ_. t)

Here, the term xs!i is the ith element of list xs. Instead of fixing the cost for specifications, we pass
them as parameter t. This allows us to refine different instances of abstract data types (here lists)
by different concrete data structures with different costs. To make bigger programs more readable,
we note the cost parameter in parenthesis at the end of the line, as, e.g., in Example 2.7.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 14. Publication date: July 2022.
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Table 1. This Table Shows the Refinement Steps in the Refinement of list_pushspec Down to an

Implementation Using Dynamic Arrays

Program Formalism Currencies Data Structure Reference

list_pushspec NREST specification $l ist_push list Example 2.5

dl_pushspec NREST specification $l ist_push dynamic list Example 2.6

dl_push NREST program abstract currencies dynamic list Section 5.1

da_push NREST program LLVM currencies dynamic list Section 5.4

da_push† LLVM program LLVM currencies dynamic array Section 5.4

Example 2.5. Consider the amortized constant time push operation of dynamic arrays. Ab-
stractly, we specify appending an element at the end of a list.

list_pushspec xs x (t) = spec [(xs · [x]) �→ t ]

Here, the term xs · ys denotes appending of two lists and we leave the amount of consumed re-
source t as a parameter. This specification has no precondition.

As a running example throughout the article, we refine this specification to an LLVM imple-
mentation using dynamic arrays. Table 1 lists the most important intermediate steps along the
refinement chain: first we refine lists with dynamic lists (dl_pushspec ), then phrase the abstract
algorithm (dl_push), and refine it to only use basic operations (da_push). Finally, we synthesize ex-
ecutable LLVM code (da_push†). Note that the NREST-monad is used to model both, specifications
and programs. Only in the last step, where imperative data structures are introduced, we switch
to (deterministic) LLVM programs. We will come back to this table after we have completed the
refinement in Section 5.5.

2.4 Refinement on NREST

We have used the refinement ordering to express Hoare triples. Two other applications of refine-
ment are data refinement and currency refinement.

2.4.1 Data Refinement. A typical use-case of refinement is to implement an abstract data type
by a concrete data type. For example, we could implement (finite) sets of numbers by sorted distinct
lists. We define a refinement relation R between a concrete and an abstract data type. A concrete
computation m then refines an abstract computation m′, if every possible concrete result is related
to a possible abstract result. Formally, m ≤ ⇓D R m′, where the operator ⇓D is defined, for arguments
R and m′, by the following two rules.

⇓DR (res M) = res (λc. Sup {M a | a. (c, a) ∈ R}) ⇓D R fail = fail

Again, we use the supremum to aggregate the costs of all abstract results that are related to a
concrete result. As in Example 2.3, this leads to the possibility that the supremum cost is not
attained, which we discuss in Section 4.5.

Example 2.6. Recall the example of the dynamic array. We model dynamic arrays (da) first ab-
stractly by dynamic lists (dl). They consist of a carrier list cs and two numbers l and c representing
the length and the capacity of the dynamic list. A list as is refined by a dynamic list (cs, l, c), if the
first l elements of cs form the list as. Furthermore, in a valid dynamic list the length is at most the
capacity and the capacity is the length of the carrier list. Formally:

((cs, l, c), as) ∈ Rl ist
dynlist

←→ take l cs = as ∧ l ≤ c ∧ c = |cs|

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 14. Publication date: July 2022.
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Using this representation, we can now specify a push operation on dynamic lists. A push of an ele-
ment x to a dynamic list (cs, l, c) will result in a valid dynamic list that contains the same elements
as before and adds the element x at the end. As the dynamic list may have reached its capacity,
it may be necessary to increase the capacity. We can state the intuition in the following NREST
specification:

dl_pushspec (cs, l, c) x (t) = spec (λ(cs ′, l ′, c ′). take l cs ′ = take l cs ∧ cs ′ ! l = x

∧ l ′ ≤ c ′ ∧ c′= |cs ′| ∧ l ′ = l + 1 ∧ c′ ≥ c) (λ_. t)

Here, we first only specify the functional correctness, and leave the cost t as a parameter. We
already fix that the program has constant cost, independent from the result and the input. The
specification requires that the resulting dynamic list contains all the elements as before and adds
x at the end. It is not specified whether or how much the carrier list has to increase.

We can now show that the push operation on dynamic lists refines the list_pushspec operation
on lists:

((cs, l, c), as) ∈ Rl ist
dynlist

∧ (x, x′) ∈ Id

=⇒ dl_pushspec (cs, l, c) x (t) ≤ ⇓D Rl ist
dynlist

(list_pushspec as x′ (t))

2.4.2 Currency Refinement. In Example 2.4 we have specified how to compare two list elements.
We now refine this into a program that first accesses the elements and then compares them.

Example 2.7. We refine idxs_cmpspec ($idxs_cmp ) from Example 2.4 as follows:

idxs_cmp xs i j =

assert (i < |xs| ∧ j < |xs|);
xsi← list_getspec xs i; ($lookup )

xsj← list_getspec xs j; ($lookup )

return (xsi < xsj) ($less )

where list_getspec xs i (t) = assert (i < |xs|); spec (xs!i) (λ_. t) and return x (t) returns the result
x incurring cost t.

Note that idxs_cmp and idxs_cmpspec use different, incompatible currency systems. To compare
them, we need to exchange coins: one idxs_cmp coin will be traded for two lookup coins and one
less coin.

To make that happen we introduce the currency refinement ⇓C E m. Here, for a program m of
type (α , ηa → γ ) NREST, the exchange rate E :: ηa → ηc → γ specifies for each abstract currency
ca :: ηa how many of the coins of the concrete currency cc :: ηc are needed. Note that, in general,
one abstract coin may be exchanged into multiple coins of different currencies. For a resource type
γ that provides a multiplication operation (∗) we define the operator ⇓C with the following two
rules:

⇓C E (res M) = res (λr. case M r of None⇒ None |
Some t⇒ Some (λcc .

∑
ca

t ca ∗ E ca cc ))

⇓C E fail = fail

The refined computation has the same results as the original. To get the amount of a concrete coin
cc for some result r with resource function t, we sum, over all abstract coins ca , the amount of
abstract coins needed in the original computation (t ca ) weighted by the exchange rate (E ca cc ).

The sum only makes sense, if there are finitely many abstract coins ca with t ca ∗ E ca cc � 0.
This can be ensured by restricting the resource functions t of the computation to use finitely many
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14:8 M. P. L. Haslbeck and P. Lammich

different coins, or by restricting the exchange rate E accordingly. The latter can be checked syn-
tactically in practice.

Example 2.8. For refining idxs_cmpspec we define an exchange rate that does the
correct exchange for currency idxs_cmp and is zero everywhere else. Formally: E1 =
↑↓[idxs_cmp := $lookup 2 + $less ]. Here, + is lifted to functions in a pointwise manner and
↑↓[c0 := t0, . . . , cn := tn] denotes a function that maps the elements ci to ti and all other elements
to 0. We can now prove:

idxs_cmp xs i j ≤ ⇓C E1 (idxs_cmpspec xs i j ($idxs_cmp ))

2.5 Notation for Refinement

When considering data refinement, we will often see propositions of the form

∀x x′. P x x′∧ (x, x′) ∈ R =⇒ f x ≤ ⇓D S ( f ′ x)

This states that f refines f ′ w. r. t. relation R for the arguments and relation S for the result, if the
additional precondition P holds for the arguments. To write those propositions more conveniently,
we use the following notation5:

(f, f ′) ∈ [P] R→ S = (∀x x′. P x x′∧ (x, x′) ∈ R =⇒ f x ≤ ⇓D S ( f ′ x′))

If the precondition is always true, we just write (f, f ′) ∈ R→ S. For the sake of readability, we
will identify curried and uncurried functions and write (f, f ′) ∈ R1 → . . . → Rn → S for programs
with n arguments that are refined by R1, . . ., Rn .

The above form of those propositions is called the parametric form. It brings to mind relational
parametricity by Wadler [34].

Example 2.9. Using that notation, the refinement from Example 2.6 reads as follows:

(dl_pushspec (t), list_pushspec (t)) ∈ Rl ist
dynlist

→ Id→ Rl ist
dynlist

That is, if the parameters are related by Rl ist
dynlist

and the identity relation Id, then the result of

dl_pushspec refines the result of list_pushspec w. r. t. relation Rl ist
dynlist

.

2.6 Refinement Patterns

In practice, we encounter certain recurring patterns of refinement, which we describe in this sec-
tion.

Refinement of Specifications. A common application is to show that a program m satisfies a speci-
fication res Q, formally m ≤ res Q. For example, in Section 6.2 we show that the introsort program
refines the specification of sorting a slice of a list. Such proofs are usually done by a verification

condition generator (VCG), that decomposes the programm according to its syntactic structure.
In a traditional setting without resources, we would use a notion of weakest precondition

(wp m Q = m ≤ res Q), and define rules that syntactically decompose goals of the form wp m Q.
For example, for sequential composition we have the rule:

wp m (λx. wp (f x) Q) =⇒ wp (x← m; f x) Q

5This notation was first described in [21, Section 2.2].
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In a setting with time,6 however, this approach does not work, as the specification Q is not a
predicate but a deadline of type α → γ option that assigns any result a maximum allowed time, or
None if that result is not possible.

We solve that problem by generalizing the concept of weakest preconditions from the qualitative
to the quantitative domain: instead of only asking whether a program m satisfies a specification
res Q, we ask how much it satisfies the specification, i. e., what is the latest feasible time at which
we can start m to still match the deadline Q. We denote this by gwp m Q :: γ option (generalized
weakest precondition). If the specification is not satisfied, we have gwp m Q = None. In particular,
we have the following equalities: m ≤ res Q⇔ gwp m Q � None⇔ Some 0 ≤ gwp m Q. Our VCG
now operates on goals of the form Some t ≤ gwp m Q, and the sequential composition rule reads:

Some t ≤ gwp m (λx. gwp (f x) Q) =⇒ Some t ≤ gwp (x← m; f x) Q

Formally, we define the generalized weakest precondition as follows:

gwp fail Q = None

gwp (res M) Q = Inf r. minus (Q r) (M r)

That is, if the program fails, no starting time is feasible, as expressed by None. Otherwise, we
use the most conservative starting time over all possible results, expressed by the infimum (In f ).
For a single result, the latest feasible starting time is expressed by the difference of the resources
specified and actually used. The difference operator minus :: γ option→ γ option→ γ option lifts
the difference on resources7 to option types. Note that, if the specification cannot be met due to
a single result r, the difference is None, causing the infimum to be None. Formally, we distinguish
the following cases:

— minus (Some t′) (Some t) = if t′ ≥ t then Some (t′− t) else None: if the difference is not neg-
ative, we return it. Otherwise, the program consumes more resources than specified and does
not meet the specification.

— minus None (Some t) = None: the result is not covered by the specification, hence the speci-
fication cannot be met.

— minus _ None = Some �: the result is not produced by the program, thus it does not con-
tribute to the latest feasible starting time. Accordingly, we return the top element Some �.

It is straightforward to define gwp rules for our monad operations, and construct the desired
syntax driven VCG. For details, we refer the reader to [14].

Lockstep Refinement. We often refine a compound program by refining some of its components.
For example, in Section 6.3, we replace the specification of the fallback sorting within the abstract
introsort algorithm by heapsort.

Let A and C be two structurally equal programs (i.e., they have the same structure of combi-
nators ifc , recc , bind, etc.), and let Ai and Ci be the pairs of corresponding basic components,
for i ∈ {0, . . . ,n}. Provided with refinement lemmas (Ci , λx. ⇓C E (Ai x)) ∈ [Φi ] Ri → Si for each
of those pairs,8 an automatic procedure walks through the program and establishes a refinement
(C, λx. ⇓C E (A x)) ∈ [Φ] R→ S . This process generates verification conditions for ensuring the
preconditions Φi , which can be discharged automatically or, if required, via interactive proof.

6To guide the intuition, we will use time as resource here.
7This requires γ to provide a difference operator, dual to its + operator. It is a straightforward generalization of the concept

defined in [14]. We note that the resource types unit , enat , and ecost provide a suitable difference operator.
8The refinement relations Ri and Si relate the parameters and respectively the result of those components.
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Note that, while the data refinements Ri can be different for each component i, the exchange rate
E must be the same for all components. Currently, we align the exchange rates by manually deriv-
ing specialized versions of the component refinement lemmas. While those lemmas are not hard
to prove, they are cumbersome to write down. However, we believe that this can be automated
in many practical cases, by collecting constraints on the exchange rate during the lockstep refine-
ment, which are solved afterwards to obtain a unified exchange rate. We leave the implementation
of this idea to future work.

Separating Analysis of Resource Usage and Correctness. We can disregard resource usage and
only focus on refinement of functional correctness, and then add resource usage analysis later.
This is useful to separate the concerns of functional correctness and resource usage proof. We will
describe a practical example in Section 6.5. Here, we only present an alternative way to prove the
refinement from Example 2.7:

First, for functional correctness, we use the specification idxs_cmpspec (∞) and a program
idxs_cmp∞ similar to idxs_cmp but with all the costs replaced by ∞. Proving the refinement
idxs_cmp∞ xs i j ≤ idxs_cmpspec xs i j (∞) only requires showing verification conditions that cor-
respond to functional properties and termination, in particular those from assertions and anno-
tated invariants in the concrete program. Proof obligations on resource usage, however, collapse
into the trivial t ≤ ∞. For the same reason, we get idxs_cmp xs i j ≤ idxs_cmp∞ xs i j, and, by tran-
sitivity:

idxs_cmp xs i j ≤ idxs_cmpspec xs i j (∞)

Next, we prove idxs_cmp xs i j ≤n spec (λ_. True) (λ_. $lookup 2 + $less ). Here, the refinement re-
lation m ≤n m′ = (m � fail =⇒ m ≤ m′) assumes that the concrete program does not fail. This
has the effect that, during the refinement proof, assertions and annotated invariants in the concrete
program can be assumed to hold, and we can focus on the resource usage proof.

Finally, the following lemma is used to combine the two refinements:

m ≤ spec P (λ_.∞) ∧ m ≤n spec (λ_. True) T =⇒ m ≤ spec P T

Thus, for our example, we get

idxs_cmp xs i j ≤ idxs_cmpspec xs i j ($lookup 2 + $less )

2.7 Alternatives to NREST

In the beginning of this section we stated our motivations and design goals for NREST. To model
nondeterminism and resources, we used partial functions that map results to resource elements.
To motivate this design, we discuss some seemingly obvious alternatives.

A result set and a resource. An alternative would be to define an NREST program being a set of
results together with a single resource element for all possible results:

(α , γ ) NREST1 = fail | res (α set × γ )

However, this modeling is too coarse: consider a program that modifies a set of natural numbers
by repeating the following step until the set is empty: pick and remove a number n from the set,
then consume n resources.

Say we start with a set {1, 2}. Then, the result after the first step is res ({ {1}, {2} }, 2), as there are
two possibilities which element was removed from the set, and the upper bound of both outcomes
is 2. After the second step the result must be res ({ ∅ }, 4), as in both cases the remaining element
is removed, but again the upper bound on the running time of that second step is 2. This yields a
total running time of 4, which is not tight.
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In order to use nondeterminism effectively, we need a finer assignment of resources to results.

A set of pairs. Another alternative is to regard the resource usage just as part of the result. Thus,
a set of results with resource usage would be modeled as (α × γ ) set. Note that this is isomorphic
to α → γ set, which suits our presentation better. So we define the following alternative to NREST:

(α , γ ) NREST2 = fail | res (α → γ set)

On the one hand, this definition certainly allows to model the two stage process from above ade-
quately. Depending on which number out of {1, 2} was chosen we can specify a different resource
consumption for the intermediate results, and in the end model a tight running time of 3.

On the other hand, the refinement relation cannot just be the natural subset relation, because we
would like to have e.g., {(x, 3), (x, 4)} ≤ {(x, 4)}, in order to allow refinement with programs with
less resource consumption. Formally, we can use a downward closure (·↓) to express refinement:

S↓ = {s | ∃s′ ∈ S . s ≤ s ′}
res M ≤ res M ′ = ∀x. M x ⊆ (M ′ x )↓

That is, the computation res M refines res M ′ if for all results x in M the set of possible resource
costs is bounded by some possible resource bound for x in M ′.

In our initial design considerations for NREST we dropped that approach because it felt unnat-
ural and the alternative to map results to single resource elements worked out more smoothly. In
the following we present some results of a later effort to use the “set of pairs” approach.

First, we note that the refinement defined with the downward closure as above is not anti-
symmetric, and thus yields no complete lattice structure. This problem, however, can be easily
solved by identifying sets with the same downward closure. Technically, we use the quotient type
γ dclosed = γ set / (λs1 s2. s1

↓ = s2
↓), and define a new variant of NREST accordingly:

(α , γ ) NREST3 = fail | res (α → γ dclosed)

For this, we straightforwardly get the desired complete lattice structure on NREST3. We even
get a more elegant formalization, as the empty set (∅↓) naturally models the case where no result
is present, and the universal set (UNIV ↓) is the greatest element. In our original NREST, we had
to use partial functions to model absence of results, and add artificial greatest elements to the
resource type (e.g.,∞ in enat).

For a resource type that provides a neutral element 0 and addition + with a monoid structure,
we further can define the monadic operators return, bind and elapse as expected. The lifting of
+ to downward closed sets, as required for defining bind, is straightforward.

However, we got stuck when we tried to define generalized weakest preconditions (cf. Sec-
tion 2.6) in NREST3, more precisely, the underlying difference operator on resources. For example,
consider the following scenario where resources have more than one extreme point: we assume
resources with two currencies, expressed as pairs of amounts. Let { (2, 0), (0, 2) }↓ be the specified
resources for some result and {(1, 0), (0, 1)}↓ the ones actually required by the program. In order to
determine gwp, we would have to take the difference of these two downward closed sets. However,
it is unclear to us how to define the difference in a sensible way.

In our actual NREST design, however, we aggregate the cost into one element. We would obtain
(2, 2) and (1, 1), respectively, and the difference operator can easily be defined pointwise. We have
to note that the overapproximation of { (2, 0), (0, 2) } to (2, 2) does cause a problem, which we
will treat in Section 4.5.

In summary, our choice of modeling NREST by one resource element per possible result seems
to be a sweet spot: it is fine enough to model nondeterminism effectively and coarse enough to
define generalized weakest preconditions.
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3 LLVM WITH COST SEMANTICS

The NREST-monad allows to specify programs with their resource usage in abstract currencies.
Those currencies only have a meaning when they finally can be exchanged for the costs of concrete
computations. In the following, we present such a concrete computation model, namely a shallow
embedding of the LLVM semantics into Isabelle/HOL. The embedding is an extension of our earlier
work [22] to also account for costs. In Section 4, we will then report on linking the LLVM back
end with the NREST front end.

3.1 Basic Monad

At the basis of our LLVM formalization is a monad that provides the notions of non-termination,
failure, state, and execution costs.

α mres = NTERM | FAIL | SUCC α cost state

α M = state→ α mres

Here, cost is a type for execution costs, which forms a monoid with operation+ and neutral element
0, and state is an arbitrary type.9

The type α M describes a program that, when executed on a state, either does not terminate
(NTERM), fails (FAIL), or returns a result of type α , its execution costs, and a new state (SUCC).

It is straightforward to define the monad operations return and bind, as well as a recursion
combinator rec over M. Thanks to the shallow embedding, we can also use Isabelle HOL’s if-then-
else to get a complete set of basic operations. As an example, we show the definition of the bind
operation, in the case that both arguments successfully compute a result:

Assume m s = SUCC x c1 s1 and f x s1 = SUCC r c2 s2

then we have bind m f s = SUCC r (c1+c2) s2

That is, the result x and state s1 after the first operation m is passed into the second operation f,
and the result and state after the bind is what emerges from f. The cost for the bind is the sum of
the costs for both operations.

The basic monad operations do not cost anything. To account for execution costs, we define an
explicit operation consume c s = SUCC () c s.10

3.2 Shallowly Embedded LLVM Semantics

The formalization of the LLVM semantics is organized in layers. At the bottom, there is a memory
model that stores deeply embedded values, and comes with basic operations for allocation/deallo-
cation, loading, storing, and pointer manipulation. Also the basic arithmetic operations are defined
on deeply embedded integers. These operations are phrased in the basic monad, but consume no
costs. This way, we could take them unchanged from our original LLVM formalization without
cost [22]. For example, the low-level load operation has the signature raw_load :: raw_ptr→ val M.
Here, raw_ptr is the pointer type of our memory model, consisting of a block address and an offset,
and val is our value type, which can be an integer, a pointer, or a pair of values.

On top of the basic layer, we define operations corresponding to the actual LLVM instructions.
Here, we map from deeply to shallowly embedded values, and add the execution costs.

9Note that this differs from the NREST monad in Section 2.1: it is deterministic, and provides a state. Because of determinism,

we never need to form a supremum, and thus can base our cost model on natural numbers rather than enats. We leave a

unification of the two monads to future work.
10For NREST, we defined a higher-order operation elapse, while we use the first-order operation consume here. This is for

historical reasons. Note that elapse can be defined in terms of consume, and vice versa.
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For example, the semantics of LLVM’s load instruction is defined as follows:

ll_load :: α ptr→ α M

ll_load p =

consume $load ;

r← raw_load (the_raw_ptr p);

checked_from_val r

It consumes the cost11 for the operation, and then forwards to the raw_load operation of the lower
layer, where the_raw_ptr and checked_from_val convert between the shallow and deep embedding
of values.

Like in the original formalization,12 an LLVM program is represented by a set of monomorphic
constant definitions of the shape def, defined as follows:

def = proc_name var∗ ≡ block

block = var← cmd; block | return var

cmd = ll_<opcode> arg∗ | ll_call proc_name arg∗ | llc_if arg block block

| llc_while block block

arg = var | number | null | init

The code generator checks that the set of definitions is complete and adheres to the required shape.
It then translates them into LLVM code, which merely amounts to pretty printing and translating
the structured control flow by if and while13 statements to the unstructured control flow of LLVM.
A powerful preprocessor can convert a more general class of terms to the restricted shape required
by the code generator. This conversion is done inside the logic, i.e., the processed program is
proved to be equal to the original. Preprocessing steps include monomorphization of polymorphic
constants, extraction of fixed-point combinators to recursive function definitions, and conversion
of tuple constructors and destructors to LLVM’s insertvalue and extractvalue instructions.

In summary, the layered architecture of our LLVM formalization allowed for a smooth integra-
tion of the cost aspect, reusing most of the existing formalization nearly unchanged. Note that we
opted to integrate the cost aspect into the existing top layer, which converts between deep and
shallow embedding. Alternatively, we could have added another layer on top of the shallow em-
bedding. While the latter would have been the cleaner design, we opted for the former approach
to avoid the boilerplate of adding a new layer. This was feasible as the original top layer was quite
thin, such that adding another aspect there did not result in excessive complexity.

3.3 Cost Model

As a cost model for running time, we chose to count how often each instruction is executed. That
is, we set cost = string→ nat, where the string encodes the name of an instruction. It is straight-
forward to define 0 and + such that (cost, 0, +) forms a monoid. It is thus a valid cost model for our
monad.

But how realistic is our cost model, counting LLVM instructions? During compilation, LLVM
text will be transformed by LLVM’s optimizer, and finally, the LLVM back end will translate LLVM

11See Section 3.3 for an explanation of our cost model.
12Actually, the only change to the original formalization [22] is the introduction of the ll_call instruction, to make the costs

of a function call visible.
13Primitive while loops are not strictly required, as they can always be replaced by tail recursion. Indeed, our code generator

can be configured to not accept while loops, and our preprocessor can automatically convert while loops to tail-recursive

functions. However, the efficiency of the generated code then relies on LLVM’s optimization pass to detect the tail recursion

and transform it to a loop again.
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instructions to machine instructions. Moreover, the actual running time of a machine program does
not only depend on the number of executed instructions, but effects like pipeline flushes and cache
misses also play an important role. Thus, without factoring in the details of the optimization passes
and the target machine architecture, our cost model can, at best, be a rough approximation of the
actual running time.

However, we do assume that a single instruction in the original LLVM text will result in at
most a (small) constant number of machine instructions, and that each machine instruction has
a constant worst-case execution time. Thus, the steps counted by our model linearly correlate to
an upper bound of the actual execution time, though the exact correlation depends on the actual
program, optimizer passes, and target architecture. Hence, while our cost model cannot be used for
precise statements about execution time, it can be used to prove worst-case complexity. That is, a
program that we have proved efficient will be compiled to an efficient machine program. Moreover,
we can hope that the constant factors in the proved complexity are related to the actual constant
factors in the machine program, i.e., an LLVM program with small constant factors will compile
to a machine program with small constant factors.

The above discussion justifies the following design choices: The insertvalue and extractvalue
instructions, which are used to construct and destruct tuple values, have no associated costs. The
main reason for this design is to enable transparent use of tupled values, e.g., to encode the state of
a while loop. We expect LLVM to translate the members of the tuple to separate registers anyway,
such that no real costs are associated with tupling/untupling.

We define the malloc instruction to take cost proportional to the number of allocated elements.14

Note that LLVM itself does not provide memory management, and our code generator forwards
memory management instructions to the libc implementation of the target platform. We use the
calloc function here, which is supposed to initialize the allocated memory with zeros. While the
exact costs of that are implementation dependent, they certainly will depend on the size of the
allocated block.

Charguéraud and Pottier [7, Section 2.7] discuss the adequacy of abstract cost models in a func-
tional setting. In their classification, our abstraction would be on Level 2, as we count (almost) all
kinds of operations on an intermediate language level.

3.4 Reasoning Setup

Once we have defined the semantics, we need to set up some basic reasoning infrastructure. The
original Isabelle-LLVM already comes with a quite generic separation logic and verification con-
dition generation framework. Here, we report on our extensions to resources using time credits.

Separation Logic with Time Credits. Our reasoning infrastructure is based on separation logic
with time credits [1, 7, 13]. We follow the algebraic approach of Calcagno et al. [3], using an earlier
extension [22] of Klein et al. [25].

A separation algebra on type α induces a separation logic on assertions that are predicates over
α . To guide intuition, elements of α are called heaps here. We use the following separation logic
operators: The assertion ↑Φ holds for an empty heap if Φ holds, � = ↑True describes the empty heap,
and ∃A is the existential quantifier lifted to assertions. The separating conjunction P �Q describes
a heap comprised from two disjoint parts, one described by P and the other described by Q, and
entailment P � Q states that Q holds for every heap described by P.

Separation algebras naturally extend over product and function types, i.e., for separation alge-
bras α , β , and any type γ , also α × β and γ → α are separation algebras, where the operations are
lifted pointwise.

14Note that we restrict malloc to positive block sizes in our semantics.
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Note that enat forms a separation algebra, where elements, i.e., time credits, are always disjoint.
Hence, also ecost = string→ enat, and amemory × ecost are separation algebras, where amemory
is the separation algebra that we already used in [22] to describe the abstract memory of LLVM.
Thus, amemory × ecost induces a separation logic with time credits that match our cost model. The
time credit assertion $ t = (λa. a = (0, t)) describes an empty memory (0) and precisely the time t.15

The primitive assertions on amemory are lifted analogously to describe no time credits.

Weakest Precondition and Hoare Triples. We start by defining a concrete state cstate that describes
the memory content and the available resources:

cstate = memory × ecost

where memory is the memory type from our original LLVM formalization. Based on this, we define
the weakest precondition predicate:

wp :: α M→ (α → cstate→ bool) → cstate→ bool

wp m Q (s, cc) = (∃r c s′. m s = SUCC r c s′∧ c ≤ cc ∧ Q r (s′, cc − c)).

Intuitively, the costs cc stored in the state is the credit available to the program. The weakest
precondition holds if the program runs with real costs c that are within the available credit, and Q
holds for the result r, the new memory s′, and the new credit, cc − c, which is the old credit reduced
by the actually required costs. Note that actual costs have type cost = string→ nat, i.e., are always
finite, while the credits have type ecost = string→ enat, i.e., there can be infinite credits. Setting the
credit to be infinite for all instruction types yields the classical weakest precondition that requires
termination, but enforces no time limit.

Our concrete state type, in particular the memory, does not form a separation algebra, as the
natural memory model of LLVM has no notion of partial memories. Thus, we define an abstraction
function that maps a concrete state to an abstract state astate, which forms a separation algebra:

astate = amemory × ecost abs (m, c) = (absm m, c)

Again, amemory and absm are the abstract state and abstraction function from the original LLVM
formalization. The costs already form a separation algebra, so we do not abstract them further.

With this, we can instantiate a generic VCG infrastructure: let cstate be the type of con-
crete states, wp :: α M→ (α → cstate→ bool) → cstate→ bool be a weakest precondition predi-
cate, and astate the type of abstract states, linked to concrete states via an abstraction function
abs :: cstate→ astate. In order to weaken postconditions, we assume that wp is monotone, i.e.,

(∀x. Q x =⇒ Q′x) =⇒ wp c Q s =⇒ wp c Q′ s

Finally, let �� be an affine top [5], i.e., an assertion with � � �� and �� ��� = ��, which captures
resources that can be safely discarded. We define the Hoare triple {P} c {Q} to hold iff:

∀F s. (P � F) (abs s) =⇒ wp c (λr s′. (Q r ��� � F) (abs s′)) s

Intuitively, {P} c {Q} holds if, for all states that contain a part described by assertion P, command
c terminates with result r and a state where that part is replaced by a part described by Q r ���,
and the rest of the state has not changed. Here, Q r is the postcondition of the Hoare triple, and ��
describes resources that may be left over and can be discarded.

In our case, we set �� to describe the empty memory and any amount of time credits. This
matches the intuition that a program must free all its memory, but may run faster than estimated,
i.e., leave over some time credits. Note that our wp is monotone.

15Beware of the notation $ $c , which asserts one coin of the currency c.
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The generic VCG infrastructure now provides us with a syntax driven VCG with a simple frame
inference heuristics.

3.5 Primitive Setup

Once we have defined the basic reasoning infrastructure, we have to prove Hoare triples for the
basic LLVM instructions and control flow combinators. As we have added the cost aspect only
at the top level of our semantics, we can reuse most of the material from our original LLVM for-
malization without time. Technically, we instantiate our reasoning infrastructure with a weakest
precondition predicate wpn, which only holds for programs that consume no costs. We define:

wpn m Q s = wp m (FST ◦ Q) (s, 0) where FST P = λ(s, c). P s ∧ c = 0

Here, FST lifts an assertion on the first component to an assertion on a pair.
The resulting reasoning infrastructure is identical with the one of our original formalization,

most of which could be reused. Only for the topmost level, i.e., for those functions that correspond
to the functional semantics of the actual LLVM instructions, we lift the Hoare triples over wpn to
Hoare triples over wp:

{P} c {Q}wpn = {FST P} c {FST ◦ Q}

Example 3.1. Recall the low-level raw_load and the high-level ll_load instruction from Sec-
tion 3.2. The raw_load instruction consumes no costs, and our original LLVM formalization pro-
vides the following Hoare triple:

{raw_pto p x} raw_load p {λr. ↑(r = x) � raw_pto p x}wpn

This can be transferred to a Hoare triple over wp:

{FST (raw_pto p x)} raw_load p {λr. ↑(r = x) � FST (raw_pto p x)}

which is then used to prove the Hoare triple for the program ll_load

{pto p x � $ $load } ll_load p {λr. ↑(r = x) � pto p x}

where pto p x = FST (raw_pto (the_raw_ptr p) (to_val x)).

Using the VCG and the Hoare triples for the LLVM instructions, we can now define and prove
correct data structures and algorithms. While this works smoothly for simple data structures like
arrays, it does not scale to more complex developments. In contrast, NREST does scale, but lacks
support for the low-level pointer reasoning required for basic data structures. In Section 4, we
show how to combine both approaches, with the LLVM level providing basic data structures and
the NREST level using them as building blocks for larger algorithms.

3.6 Free for Free

Note that in our semantics, both memory allocation and memory deallocation consume costs of
currencies malloc and free, respectively. However, the automatic data refinement tool we are going
to design (see Section 4.2) has to automatically insert destructors, which free memory. A destructor
d that destroys an object described by assertion A is characterized in the following way:

destructor A d = (∀a c. {A a c} d c {�})

In particular, all costs required for destruction must already be contained in the assertion A. In
practice, this means that we pay for the destruction of an object upon its allocation. Thus, we
prove the following Hoare triples for allocation and deallocation:
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{ $ ($malloc n + $free) � ↑(n > 0)}
ll_malloc α n

{λp. range {0..<n} (λ_. init) p �malloc_tag n p}

{range {0..<n} blk �malloc_tag n p} ll_free p {�}

Intuitively, to allocate a block of size n, one has to pay n units of malloc and 1 unit of free. To free
a block, no explicit costs have to be paid.

Note that the malloc_tag assertion in the original formalization expresses ownership on the
whole block and is a prerequisite for freeing a block. Thus, it was natural to add the required time
credits for freeing to this assertion, when extending the original formalization with time:

malloc_tag n p = FST (raw_malloc_tag n (the_raw_ptr p)) � $ $f r ee

where raw_malloc_tag is the ownership assertion from our low-level memory model.
Note how amortization arguments like the above are seamlessly supported by separation logic

with time credits [1]. Later in this article (Section 5) we also show how to combine amortization
with refinement.

In practice, the malloc_tag assertion is usually hidden in the assertion for a data structure, and
thus not directly visible to the user.

3.7 Modeling Data Structures

An imperative data structure is described by a refinement assertion that relates it to a functional
model. The refinement assertion usually contains the addresses and block ownership (malloc_tag)
for all memory used to represent the data structure. For each operation, a Hoare triple is proved
that relates the concrete operation on the heap to the corresponding abstract operation on the
functional model.

For example, the assertion arrayA xs p relates the array pointed to by p to the list xs of its ele-
ments:

arrayA xs p = range {0..<|xs|} (λi. xs ! i) p �malloc_tag |xs| p

Note that we sometimes use the suffix A to make clear that a name refers to an assertion.
The following Hoare triples relate the standard array operations to the corresponding operations

on lists:

{ $ ($malloc n + $free) � ↑(n > 0)} array_new α n {λp. arrayA (replicate n init) p}
{arrayA xs p} array_delete p {�}
{arrayA xs p � $ ($ofs_ptr + $load) � ↑(i < |xs|)} array_get p i {λr. arrayA xs p � ↑(r = xs ! i)}
{arrayA xs p � $ ($ofs_ptr + $store) � ↑(i < |xs|)} array_set p i x {λr. arrayA (xs[i:=x]) r}

Users of the array data structure only need to use this interface, and never have to look into the
details of the implementations or the refinement assertion.

Note that, as described in Section 3.6, we pay the cost for destruction already upon construc-
tion. For a simple array, the destructor only invokes ll_free, whose costs are already contained
in malloc_tag. More complicated data structures, however, may require additional costs for de-
struction (e.g., to traverse a list of allocated arrays). These can also be hidden in the refinement
assertion.
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4 AUTOMATIC REFINEMENT

In this section, we describe a tool to synthesize a concrete program in the LLVM-monad from an
abstract algorithm in the NREST-monad. It can automatically refine abstract functional data struc-
tures to imperative heap-based ones. We will describe the synthesis predicate hnr that connects
the two monads, the synthesis tool, and a way to extract Hoare triples from hnr predicates. Finally,
we will discuss an effect that prevents combining hnr with data refinements in the NREST-monad
in the general case.

4.1 Heap Nondeterminism Refinement

The heap nondeterminism refinement predicate hnr Γ m† Γ′A m intuitively expresses that the con-
crete program m† computes a concrete result that relates, via the refinement assertion A, to a result
in the abstract program m, using at most the resources specified by m for that result. A refinement
assertion describes how an abstract variable is refined by a concrete value on the heap. It can also
contain time credits. The assertions Γ and Γ′constitute the heaps before and after the computation
and typically are a separating conjunction of refinement assertions for the respective parameters
of m† and m. Formally, we define:

hnr Γ m† Γ′A m =

m � fail =⇒
(∀F s c. (Γ � F) (absm s, c) =⇒

(∃ra ca . elapse (return ra ) ca ≤ m

∧ wp m† (λr (s′, c′). (Γ′� A r ra � F ���) (absm s′, c′)) (s, c + ca )))

The predicate holds if either the abstract program fails or if, for all heaps and resources (s, c) that
satisfy the pre-assertion Γ with some frame F, there exists an abstract result and cost (ra , ca ) that
refine m, and m† terminates with concrete result r in a state s′where Γ′with the frame holds, and
r relates to the abstract result via assertion A. The execution costs of m† and the time credits c′

required by the post-assertion Γ′are paid for by the specified cost ca and the time credits c described
by the pre-assertion Γ. Thus, the real costs are paid by a combination of the advertised costs in the
abstract program and the potential difference of Γ′and Γ, allowing to seamlessly model amortized
computation costs.

The affine top �� allows the program to throw away portions of the heap. Note that our �� can
only discard time credits. Memory must be explicitly freed by the concrete program m†.

Also note that hnr is not tied to the LLVM semantics specifically. It actually is a general pat-
tern for combining the NREST-monad with any other program semantics that provides a weakest
precondition and a separation algebra for data and resources.

4.2 The Sepref Tool

The Sepref tool [20, 22] automatically synthesizes a concrete program in the LLVM-monad from
an abstract algorithm in the NREST-monad. It symbolically executes the abstract program while
maintaining refinements for the abstract variables to a concrete representation and generates a
concrete program as well as a valid hnr predicate. Proof obligations16 that occur during this process
are discharged automatically, guided by user-provided hints where necessary.

The synthesis requires rules for all abstract combinators. For example, bind is processed by the
following rule:

1 ( hnr Γ m† Γ′ Ax m ∧
2 (∀x x†. hnr (Ax x† x � Γ′) (f† x†) (A′x x† x � Γ′′) Ay (f x)) ∧

16E.g., from implementing mathematical integers with fixed-bit machine words.
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3 destructor A′x free ) =⇒
4 hnr Γ (x† ← m†; r† ← f† x†; free x†; return r†) Γ′′ Ay (x← m; f x)

To refine x← m; f x, we first execute m, synthesizing the concrete program m† (line 1). The state
after m is Ax x† x � Γ′, where x is the result created by m. From this state, we execute f x and syn-
thesize f† x† (line 2). The new state is A′x x† x � Γ′′ � Ay y† y, where y is the result of f x. Now, the
intermediate variable x goes out of scope and has to be deallocated. The predicate destructor A′x free
(line 3) states that free is a deallocator for data structures implemented by refinement assertionA′x .
Note that free can only use time credits that are stored in A′x . Typically, these are payed for during
creation of the data structure (cf. Section 3.6). This way amortization can be used effectively to
hide the necessary free operation and its costs in the abstract program.

All other combinators (recc , ifc , whilec , etc.) have similar rules that are used to decompose
an abstract program into parts, synthesize corresponding concrete parts recursively and combine
them afterwards with the respective combinators from LLVM. At the leaves of this decomposition,
atomic operations need to be provided with suitable synthesis predicates.

An example is a list lookup that is implemented by an array:

hnr (arrayA p xs � snatA i† i)

(array_get p i†)

(arrayA p xs � snatA i† i) idA (list_getspec xs i (λ_. array_getcost ))

Here, the assertions arrayA, snatA, and idA relate a list with an array, an unbounded natural num-
ber with a bounded signed word and identical elements, respectively. With an array at address
p holding the list xs and an index i† that is a bounded signed word representing an unbounded
natural number i, array_get leaves the parameters unchanged and extracts the element specified
by list_getspec incurring costs array_getcost = $ofs_ptr + $load.

Ideally, each operation has its own currency (e.g., list_get). However, as our definition of hnr
does not support currency refinement, the basic operations must use the currencies of the LLVM
cost model. To still obtain modular hnr rules, we encapsulate specifications for data structures
with their cost, e.g., by defining array_getspec = list_getspec (λ_. array_getcost ). These can easily
be introduced in an additional refinement step. Automating this process, and possibly integrating
currency refinement into hnr is left to future work.

4.3 Notation for Refinement

Synthesis rules typically have the following general form:

P (x1†, . . . , xn†) (x1, . . . , xn ) =⇒
hnr (A1 x1† x1 � . . . �An xn† xn ) (f† (x1†, . . . ,xn†))

(A′1 x1† x1 � . . . �A
′
n xn† xn ) A (f (x1, . . . ,xn ))

That is, if we have concrete parameters x1†, . . . ,xn† that refine the abstract parameters x1, . . . ,xn ,
wrt. refinement assertions A1, . . . ,An , and, additionally, the precondition P holds for the param-
eters, then the result of the concrete function f† applied to the concrete parameters refines the
result of the abstract function applied to the abstract parameters, with assertion A. Moreover, af-
ter executing the function, some parameters xi † may still be valid, e.g., if they are only read. In
this case, we have Ai

′= Ai . For parameters that are deleted by the function, or whose ownership
is transferred (e.g. into the result), we have Ai

′= del Ai .
17

17Here, del A x† x = ↑(∃h. A x† x h) just retains the information that the assertion is true for some heap (e.g. the original

one). Our framework uses this information to restore the parameter in case the refinement assertion is pure, i.e., does not

depend on the heap.
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We introduce a more succinct notation for synthesis rules of the above form:18

(f†, f) ∈ [P] A1
p1 → . . . → An

pn → A

The notation is inspired by relational parametricity rules. The superscripts of the refinement asser-
tions indicate whether the parameter will be kept on the heap (Ai

′= Ai ) or destroyed (Ai
′= del Ai ).

Example 4.1. Given assertions LA and EA, the following expresses the correctness of an imple-
mentation push† of list_pushspec :

(push†, list_pushspec (t)) ∈ LA
d → EA

k → LA

That is, the first parameter (the list) is refined by the assertion LA. The ·d annotation expresses
that our implementation destructively updates the list, i.e., ownership of the list is transferred into
the result. The second parameter (the element) is refined by the assertion EA. The ·k annotation
expresses that our implementation does not change the parameter.19 Finally, the result list is, again,
refined by the assertion LA.

In Section 5, we will provide such an implementation with dynamic arrays.

4.4 Extracting Hoare Triples

Note that hnr predicates cannot always be expressed as Hoare triples, as the running time bound
of the abstract program may depend on the result, which we cannot refer to in the precondition
of a Hoare triple, where we have to express the allowed running time as time credits.20

hnr Γ m† Γ′A (spec Φ (λ_. t)) = {$t � Γ} m† {λr. Γ′� ∃Ara . A r ra � ↑(Φ ra )}
While intermediate components might not be of this form, final algorithms typically are. At the
end of a development, this rule allows to extract a Hoare triple in the underlying LLVM semantics,
cutting out the NREST-monad. For validating the correctness claim of an algorithm, only the final
Hoare triple needs to be inspected, which only uses concepts of the underlying semantics.

Note that the above rule is an equivalence. Thus, it can also be used to obtain synthesis rules
from Hoare triples provided by the basic VCG infrastructure.

4.5 Attain Supremum

We comment on a problem that arises when composing hnr predicates and data refinement in the
NREST monad. Consider the following programs and relations:

m′= res [x �→ $a , y �→ $b ] R = {(z, x), (z, y)}
m = res [z �→ $a + $b ] A = idA

m† = consume ($a + $b ); return z

The specificationm′ returns the abstract result x at cost $a or y at cost $b . The program m returns
the concrete result z at cost $a + $b . The LLVM program m† also returns z at cost $a + $b . The
relation R relates z with both, x and y. The assertion A relates identical elements.

Data refinement defines the resource bound for a concrete result (here z) as the supremum over
all bounds of related results (here x, y). Thus, we have m ≤ res [z �→ $a + $b ] = ⇓DR m′. Moreover,
we trivially have hnr � m† � A m. Intuitively, we want to compose these two refinements, to obtain

18The notation is introduced by Lammich e. g., in [23, Section 5.1].
19Note that this requires the implementation to copy the element into the array rather than to just transfer its ownership.
20Guéneau et al. [11, 13] resolve that limitation by the introduction of possibly-negative time credits. However, the crucial

equivalence of positive credits in the precondition with negative credits in the postcondition does not hold when allowing

infinite credits. As infinite credits are important for our approach, and the low-level definition of hnr is viable (though less

aesthetic), we did not pursue this further.
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hnr � m† � (A ◦ R) m′. However, as our definition of hnr does not form a supremum, this would
require $a + $b ≤ $a or $a + $b ≤ $b , which obviously does not hold.

We have not yet found a way to define hnr or ⇓D in a form that does not exhibit this effect. In-
stead, we explicitly require that the supremum of the data refinement has a witness. The predicate
attains_sup m m′R characterizes that situation: it holds, if for all results r of m the supremum of the
set of all abstractions (r , r ′) ∈ R applied to m′ is in that set. This trivially holds if R is single-valued,
i.e., any concrete value is related with at most one abstract value, or if m′ is one-time, i.e., assigns
the same resource bound to all its results.

In practice we do encounter non-single-valued relations,21 but they only occur as intermediate
results where the composition with an hnr predicate is not necessary. Also, collapsing synthesis
predicates and refinements in the NREST-monad typically is performed for the final algorithm
whose running time does not depend on the result, thus is one-time, and ultimately attains_sup.

5 CASE STUDY: DYNAMIC ARRAYS IN THE ABSTRACT

In this section, we present a case study that shows that amortized data structures can be proven
correct on the abstract NREST level. We verify the amortized-constant-time push operation of
dynamic arrays in the abstract NREST formalism and then synthesize LLVM code from it using
the automatic method from the previous section. We focus on the resource consumption and the
amortization argument in particular. For presentation purposes we omit functional correctness
and some size side conditions that are vital for the implementation in LLVM. We will comment on
that towards the end of this section.

5.1 Dynamic Lists

In Example 2.6, we introduced dynamic lists, which model dynamic arrays as a triple of a carrier list,
its length, and its capacity. We have shown that dl_pushspec on dynamic lists refines list_pushspec

on lists (Example 2.9). The next step in refining the push operation is to add the abstract algorithmic
idea: If we run out of capacity, we double the size of the carrier list and push the element afterwards.

dl_push (cs, l, c) x =

ifc l < c then ($less )

dl_push_basicspec (cs, l, c) x ($dl_push_basic )

else

(cs′, l′, c′) ← dl_doublespec (cs, l, c); ($dl_doublec
c)

dl_push_basicspec (cs′, l′, c′) x ($dl_push_basic )

Here, the program dl_push_basicspec pushes an element at the end of the list, assuming that there
is enough capacity; and the program dl_doublespec doubles the capacity of the dynamic list. The
abstract currency dl_push_basic represents the costs incurred to push an element and the abstract
currency dl_doublec represents the costs to double the dynamic array per element in the carrier
list.

Let us examine the raw, i. e., non-amortized, costs of the operation. If there is capacity left, we
have to pay for the if-branch and its guard, as well as the basic push operation. This can be summa-
rized in the constant cost dl_push incurs: dl_push_overheadcost = $less + $if + $dl_push_basic . In the
other case, we have to additionally pay for the doubling: push_overheadcost + $dl_doublec

c. Thus,
the worst-case cost of the operation is not constant, but rather linear in c because of the double
operations.

21The relation oarr, described in earlier work [24, Section 4.2] by one of the authors, is used to model ownership of parts

of a list on an abstract level and is an example for a relation that is not single-valued.
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As a next step, we will see how we can formalize the potential method on the NREST level and
prove that the abstract push operation has amortized constant time.

5.2 Amortized Analysis

The potential method for amortized complexity has the following well-known inequality that re-
lates the raw cost of an operation with its advertised cost and the potential of the data structure
before and after an operation.

raw_costi ≤ (Φi + advertised_costi ) − Φi+1

Before executing an operation we can get the resource credits from the potential of the data struc-
ture and add it to the cost that is advertised to the caller of the operation. Then, we execute the
operation incurring the raw costs, and afterwards we need to give back the resource credits for the
potential of the resulting data structure. Finally, we can execute several operations on the data
structure one after the other and use telescoping to obtain the following inequality
∑

0≤i<n raw_costi ≤
∑

0≤i<n advertised_costi

Here, we assume that each raw_costi and Φi is non-negative and the potential Φ0 is initially zero.
The inequality expresses that the real costs are upper bounded by the sum of the advertised costs.

We cannot use elapse to model the subtraction in the amortization inequality, as this would
require negative costs.22 Instead, we introduce a new combinator reclaim and formulate the amor-
tization inequality in the NREST-monad with an amortization refinement lemma:

mr aw ds ≤ reclaim (elapse (madv ds) (Φ ds)) (λds′. Φ ds ′)

Here, the raw monadic program mr aw executed on some data structure ds has to refine the program
that first consumes the potential of the data structure, then executes the monadic program with
advertised costs, and in the end reclaims as much costs as the resulting data structure ds ′ needs
for its potential.

The combinator reclaim subtracts cost from a monadic program, and fails if it would get neg-
ative. Note that this approach only works if the resource type provides a minus operator, as ecost
does in our case. Here is the formal definition:

reclaim :: (α , ecost) NREST→ (α → ecost) → (α , ecost) NREST

reclaim fail T = fail

reclaim (res M) T = Sup { if T x ≤ t′then res [x �→ t′− T x] else fail | t′x. M x = Some t′ }
For each possible result x of M the combinator checks whether the consumed time t′ is at least the
reclaimed time T x for that result. This ensures not falling into the negative when subtracting. If
one of the inequalities does not hold, the whole program reclaim m t fails.

Using reclaim we can state the amortization refinement lemma for dl_push:

dl_push dl x ≤ reclaim (elapse (dl_pushspec dl x (push_advcost )) (Φdl dl)) (λdl′. Φdl dl′)

Setting Φdl (cs, l, c) = $dl_doublec
(2∗l − c) and push_advcost = push_overheadcost + $dl_doublec

2,
our VCG can automatically prove this lemma.23

In particular, we have shown that dl_push has amortized constant time, as its advertised cost
only consumes the push_overheadcost and two additional $dl_doublec

coins for loading the potential.
This argument is independent from how exactly dl_double is implemented and how the currency

22Extending NREST to allow negative costs might streamline the theory. We leave further investigation to future work.
23To help us with finding the correct terms for Φdl and push_advcost , we can run our VCG with symbolic variables first,

and examine the generated proof obligations, which show us the constraints that Φdl and push_advcost must satisfy.
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$dl_doublec
is refined later. That way we achieved to separate the amortization argument from the

implementation details.
This already concludes the verification on the NREST-level. We have shown that we can use the

potential Φdl to prove dl_push having amortized constant time. We can go on proving correct other
operations on the data structure with amortization, e. g., lookup, write within bounds, initialization,
and destruction. That includes to show that they respect the change of potential. We can also apply
telescoping on this level and sequentially compose several reclaim–elapse pairs on the same data
structure following the intuition above.

It is left to show that we can actually implement the operation with a concrete program and
obtain the desired synthesis rule mentioned in Example 4.1.

5.3 Moving Potential to Time Credits

Now we have obtained a refinement in the reclaim–elapse pattern. In order to obtain the desired
synthesis rule, we will move the potential from the abstract NREST-program into the pre- and post-
heap in the synthesis rule. This will only leave the advertised cost in the abstract program.

On the separation logic level we can augment assertions representing raw data structures with
time credits representing their potential. The operator [Φ]A r ra = $Φ ra � A r ra adds the potential
as time credits depending on the abstract result to an assertion.

Given a synthesis rule that refines a reclaim–elapse pattern we can move the consumed pre-
potential into the precondition and the reclaimed postpotential into the assertion of the result.

(m†, λ(x, r). reclaim (consume (m x r) (Φ x)) Φ) ∈ Ad → AR
k → A

=⇒ (m†, m) ∈ ([Φ]A)d → AR
k → [Φ]A

Here, the first parameter (called x in the abstract program) is the amortized data structure that is
altered and returned as the result. The second parameter (called r in the abstract program) repre-
sents the rest of the parameters. They are not modified in this case and do not contribute with
amortized potential. We call this rule an amortization synthesis rule. Note that, for simplicity, we
have not shown the side conditions that ensure finiteness of the potential and non-failure of the
abstract program.

Using that rule the amortization can be moved from the NREST level into the separation logic
assertion. The synthesis rule now directly relates the implementation m† and the monadic program
m. In the following, we will explain how this is applied to our example.

5.4 Obtaining a Synthesis Rule

In order to obtain a synthesis rule for list_push, we first need to provide an implementation and
connect it to the program dl_push. Observe that dl_push lives in the currency system of dynamic
lists and not of LLVM currencies. We need to refine it to some abstract program da_push that fixes
the way we implement the carrier list to arrays and refines all operations to operations we have
synthesis rules for. This involves exchanging the currencies from dynamic lists to LLVM currencies
via some exchange rate Eda . In particular, Eda has to specify how the coin $dl_doublec

must be
exchanged. Those costs will contain the costs for allocating the new carrier list and copying the
elements to the new carrier list. Note that those costs need to be specified per element of the original
carrier list. For presentation purposes we skip the details of that part and assume we come up with
a program da_push and a suitable refinement da_push dl x ≤ ⇓C Eda (dl_push dl x).

Furthermore, let da_rawA be the refinement assertion that relates a concrete representation of
a dynamic array with a dynamic list holding natural numbers. While the theory is not dependent
on the type of the payload, we choose a fixed one here for presentation purposes. We later want to
model strings of characters with the dynamic array. So, the concrete part of the assertion da_rawA

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 3, Article 14. Publication date: July 2022.



14:24 M. P. L. Haslbeck and P. Lammich

is a triple, consisting of an array of 8 bit integers (〈8〉unatA) and two 64 bit integers (〈64〉snatA) for
the length and capacity. Further, we assume that we have synthesized an LLVM program da_push†
that refines da_push, with the following synthesis rule:

(da_push†, da_push) ∈ (da_rawA)d → 〈8〉unatA
k → da_rawA

Now we can combine the currency refinement rule for da_push and the amortization refinement
rule for dl_push and obtain to the following refinement:

da_push dl x ≤ reclaim (elapse (dl_pushspec dl x (push_concrete_advcost )) (Φda dl)) Φda

Here, the currency refinement was already distributed over reclaim and elapse. This yields
the following two cost functions: push_adv′cost = ↓C Eda push_advcost and Φda dl = ↓C Eda (Φdl dl).
Here, the operation ↓C E t applies an exchange rate to a resource function. In particular, as the ex-
change rate Eda is independent of the dynamic list and push_advcost is constant, also the advertised
cost push_adv′cost is constant.

We can now combine that refinement rule with the synthesis rule from above. Note that the re-
finement does not involve data refinement, and thus does not have any attains_sup side conditions
(cf. Section 4.5). We obtain the following synthesis rule:

(λ(da, x†). da_push† da x†,

λ(dl, x). reclaim (elapse (dl_pushspec dl x (push_adv′cost )) (Φda dl)) Φda)

∈ da_rawA
d → 〈8〉unatA

k → da_rawA

This form fits the precondition of the amortization synthesis rule, and we can apply it to move
the elapsed and reclaimed resources to the pre-heap and the refinement assertion for the result,
respectively.

(λ(da, x†). da_push† da x†, λ(dl, x) dl_pushspec dl x (push_adv′cost ))

∈ ([Φda]da_rawA)d → 〈8〉unatA
k → [Φda]da_rawA

At this point we already have established a refinement between the push operation on dynamic
lists dl_pushspec and the implementation on dynamic arrays da_push†. We could extract a Hoare
triple from the synthesis rule that shows the correctness of the implementation and the amortized
constant running time.

As a last step, we hide the intermediate concept of dynamic lists and obtain a refinement between
the list operation and the implementation on dynamic arrays. First, consider the data refinement
between dl_push and list_pushspec . We repeat it here:

(dl_pushspec (t), list_pushspec (t)) ∈ Rl ist
dynlist

→ Id → Rl ist
dynlist

We can apply this data refinement to the synthesis rule above, and use the fact that Rl ist
dynlist

is

single-valued24 to solve the sup-attains side condition. Then, we obtain the final synthesis rule:

(da_push†, list_pushspec (push_adv′cost )) ∈ daA
d → 〈8〉unatA

k → daA

where daA relates a list with a dynamic array. This refinement assertion combines the refinement
relation Rl ist

dynlist
, the raw refinement assertion da_rawA and the augmentation with the time credits

containing the potential. Formally we define:

daA as al = ∃Adl. [Φda](da_rawA) dl al � ↑
(
(dl, as) ∈ Rl ist

dynlist

)

24That is, every dynamic list has at most one corresponding abstract list.
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As mentioned at the beginning of this section, for presentation purposes we have left out size
constraints that are necessary to avoid overflows in the LLVM implementation. When doubling
the list we have to make sure that the multiplication of the capacity with 2 does not lead to an
overflow. We can restrict this by adding a size constraint to the synthesis rule demanding the
length of the list may at most be half of MAX_INT before pushing an element to it. In a program that
uses that operation, one then has to add assertions before those invocations that help the Sepref
tool to discharge the respective size constraints. Those size constraints then can be propagated to
the precondition of the program. For example, a depth-first search that uses a dynamic array to
represent its waiting list might have an additional size constraint restricting the number of edges
in the graph to MAX_INT/2.

Once we have the last synthesis rule, we can cut out the whole reasoning with the combinators
reclaim and elapse and inspect the rule on its own. The refinement assertion daA serves as a black
box for the user. For a user of the rule, only the constant advertised cost is visible in push_adv′cost

and the whole amortization is hidden and happens under the hood, such that this amortized data
structure behaves like any other data structure.

5.5 Discussion

Previously, we had to prove amortized data structures on the low-level separation logic (e. g., [14,
Section 5.1]), while we can now structure our proofs using the same top-down refinement approach
as for non-amortized complexity analysis.

While we have demonstrated our method for the quite simple dynamic array data structure, we
believe that more involved amortized analyses can also profit from this technique. A next step
would be to modularize the verification of Union-Find [6, 28].

Another advantage of performing the analysis on the abstract NREST-level is the independence
from the actual back end. E.g., we could25 use the same abstract proof to verify implementations
in LLVM and Imperative HOL.

To summarize the refinement process for this case study reconsider Table 1. We started from a
specification of the abstract operation (list_pushspec ), which can be expressed in the NREST-monad.
Then, we data-refined lists to dynamic lists (dl_pushspec ). We introduced the algorithmic idea as
an NREST program dl_push using only the specification of abstract operations like dl_doublespec .
Proving the algorithmic idea and amortization argument happens on that level of abstraction. To-
wards implementing the algorithm, we then refined the abstract operations to basic operations
that have available synthesis rules. In that process, we had to use currency refinements to ex-
change to LLVM currencies in the program da_push. Finally, we used the Sepref tool to synthesize
an LLVM implementation da_push†, which uses imperative arrays. By transitivity, the refinement
chain yields the final synthesis rule relating list_pushspec and da_push†. The refinement approach
allows to separate concerns and address proof obligations on the most abstract and appropriate
level.

6 CASE STUDY: INTROSORT

In this section, we apply our framework to the introsort algorithm [30]. We build upon the verifica-
tion of its functional correctness [24] to verify its running time analysis and synthesize competitive
efficient LLVM code for it. Following the “top-down” mantra, we use several intermediate steps to
refine a specification down to an implementation.

25In practice, we have to copy and slightly adjust the proof, as the front-ends for LLVM and Imperative HOL are not yet

unified.
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6.1 Specification of Sorting

We start with the specification of sorting a slice of a list:

slice_sortspec xs0 l h (t) =

assert (l ≤ h ∧ h ≤ |xs0 |);
spec (λxs. slice_sort_aux xs0 l h xs) (λ_. t)

where slice_sort_aux xs0 l h xs states that xs is a permutation of xs0, xs is sorted between l and h
and equal to xs0 anywhere else.

6.2 Introsort’s Idea

The introsort algorithm is based on quicksort. Like quicksort, it finds a pivot element, partitions
the list around the pivot, and recursively sorts the two partitions. Unlike quicksort, however, it
keeps track of the recursion depth, and if it exceeds a certain value (typically �2 logn�), it falls
back to heapsort to sort the current partition. Intuitively, quicksort’s worst-case behavior can only
occur when unbalanced partitioning causes a high recursion depth, and the introsort algorithm
limits the recursion depth, falling back to the O (n logn) heapsort algorithm. This combines the
good practical performance of quicksort with the good worst-case complexity of heapsort.

Our implementation of introsort follows the implementation of libstdc++, which includes a sec-
ond optimization: a first phase executes quicksort (with fallback to heapsort), but stops the recur-
sion when the partition size falls below a certain threshold τ . Then, a second phase sorts the whole
list with one final pass of insertion sort. This exploits the fact that insertion sort is actually faster
than quicksort for almost-sorted lists, i.e., lists where any element is less than τ positions away
from its final position in the sorted list. While the optimal threshold τ needs to be determined
empirically, it does not influence the worst-case complexity of the final insertion sort, which is
O (τn) = O (n) for constant τ . The threshold τ will be an implicit parameter from now on.

While this seems like a quite concrete optimization, the two phases are already visible in the
abstract algorithm, which is defined as follows in NREST:

introsort xs l h =

assert (l ≤ h);

n← return h − l; ($sub )

ifc n > 1 then ($lt)

xs← almost_sortspec xs l h; ($almost_sort)

xs← final_sortspec xs l h ($final_sort)

return xs

else return xs

Here, almost_sortspec (t) specifies an algorithm that almost-sorts a list, consuming at most t re-
sources and final_sortspec (t) specifies an algorithm that sorts an almost-sorted list, consuming at
most t resources.

The program introsort leaves trivial lists unchanged and otherwise executes the first and second
phase. Its resource usage is bounded by the sum of the first and second phase and some overhead
for the subtraction, comparison, and if-then-else. Using the verification condition generator we
prove that introsort is correct, i.e., refines the specification of sorting a slice:

introsort xs l h ≤ ⇓C Eis (slice_sortspec xs l h ($sor t ))

where Eis = ↑↓[sort := introsortcost ] is the exchange rate used at this step and the total allotted cost
for introsort is introsortcost = $sub + $if + $lt + $almost_sor t + $final_sort.
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6.3 Introsort Scheme

The first phase can be implemented in the following way:

1 introsort_aux μ xs l h =

2 d← depthspec l h; ($depth )

3 recc (λintrosort_rec (xs, l, h, d).

4 assert (l ≤ h);

5 n← h − l; ($sub )

6 ifc n > τ then ($lt)

7 ifc d = 0 then ($eq )

8 slice_sortspec xs l h ($sor tc
(μ (h - l)))

9 else

10 (xs, m) ← partitionspec xs l h; ($par tit ionc
(h - l))

11 d′← d − 1; ($sub )

12 xs← introsort_rec (xs, l, m, d′);

13 xs← introsort_rec (xs, m, h, d′);

14 return xs

15 else return xs

16 ) (xs, l, h, d)

where partitionspec partitions a slice into two non-empty partitions, returning the start indexm of
the second partition, and depthspec specifies �2 log(h − l )�.

Let us first analyze the recursive part: if the slice is shorter than the threshold τ , it is simply
returned (line 15). Unless the recursion depth limit is reached, the slice is partitioned using h − l
partitionc coins, and the procedure is called recursively for both partitions (lines 10–14). Otherwise,
the slice is sorted at a price of μ (h − l) sortc coins (line 8). The function μ here represents the
leading term in the asymptotic costs of the used sorting algorithm, and the sortc coin can be seen
as the constant factor. This currency will later be exchanged into the respective currencies that are
used by the sorting algorithm. Note that we use currency sortc to describe costs per comparison
of a sorting algorithm, while currency sort describes the cost for a whole sorting algorithm.

Showing that the procedure results in an almost-sorted list is straightforward. The running time
analysis, however, is a bit more involved. We presume a function μ that maps the length of a slice
to an upper bound on the abstract steps required for sorting the slice. We will later use heapsort
with μnloдn n = n logn.

Consider the recursion tree of a call in introsort_rec: We pessimistically assume that for every
leaf in the recursion tree we need to call the fallback sorting algorithm. Furthermore, we have to
partition at every inner node. This has cost linear in the length of the current slice. For each fol-
lowing inner level the lengths of the slices add up to the current one’s, and so do the incurred costs.
Finally, we have some overhead at every level including the final one. The cost of the recursive
part of introsort_aux is:

introsort_reccost μ (n, d) = $sor tc
(μ n) + $par tit ionc

d ∗ n

+ ((d+1)∗n)∗($if 2 + $call 2 + $eq + $lt + $sub 2)

The correctness of the running time bound is proved by induction over the recursion of
introsort_rec. If the recursion limit is reached (d = 0), the first summand pays for the fallback sorting
algorithm. If d > 0, part of the second summand pays for the partitioning of the current slice, then
the list is split into two and the recursive costs are payed for by parts of all three summands. To
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bound the costs for the fallback sorting algorithm, μ needs to be superadditive: μ a + μ b ≤ μ (a + b).
In both cases, the third summand pays for the overhead in the current call.

For d = �2 logn� and anO (n logn) fallback sorting algorithm (μ = μnloдn ), introsort_reccost μnloдn

is in O(n logn).26 In fact, any d ∈ O (logn) would do.
Before executing the recursive method, introsort_aux calculates the depth limit d. The correct-

ness theorem then reads:

introsort_aux μnloдn xs l h ≤ ⇓C (Eisa (h − l)) (almost_sortspec xs l h ($almost_sor t ))

Where Eisa n = ↑↓[almost_sort := $depth + introsort_reccost μnloдn (n, �2 logn�)].
Note that specifications typically use a single coin of a specific currency for their abstract oper-

ation, which is then exchanged for the actual costs, usually depending on the parameters.
This concludes the interesting part of the running time analysis of the first phase. It is now left

to plug in an O (n logn) fallback sorting algorithm, and a linear partitioning algorithm.

Heapsort. Independently of introsort, we have proved correctness and worst-case complexity of
heapsort, yielding the following refinement lemma:

heapsort xs l h ≤ ⇓C (Ehs (h − l)) (slice_sortspec xs l h ($sor t ))

Where Ehs n = ↑↓[sort := c1 + log n ∗ c2 + n ∗ c3 + (n ∗ log n) ∗ c4] for some constants ci :: ecost.
Assuming that n ≥ 2,27 we can estimate Ehs n sort ≤ μnloдn n ∗ c, for c = c1 + c2 + c3 + c4, and

thus get, for Ehs ′ = ↑↓[sortc := c]:

⇓C (Ehs (h − l)) (slice_sortspec xs l h ($sor t ))

≤ ⇓C Ehs ′ (slice_sortspec xs l h ($sor tc
(μnloдn (h − l))))

and, by, transitivity

heapsort xs l h ≤ ⇓C Ehs ′ (slice_sortspec xs l h ($sor tc
(μnloдn (h − l))))

Note that our framework allowed us to easily convert the abstract currency from a single operation-
specific sort coin to a sortc coin for each comparison operation.

Partition and Depth Computation. We implement partitioning with the Hoare partitioning
scheme using the median-of-3 as the pivot element. Moreover, we implement the computation
of the depth limit (2�log(h − l )�) by a loop that counts how often we can divide by two until zero
is reached. This yields the following refinement lemmas:

pivot_partition xs l h ≤ ⇓C Epp (partitionspec xs l h ($par tit ionc
(h − l)))

calc_depth l h ≤ ⇓C (Ecd (h − l)) (depthspec l h ($depth ))

Combining the Refinements. We replace slice_sortspec , partitionspec and depthspec by their imple-
mentations heapsort, pivot_partition and calc_depth. Finally, we call the resulting implementation
introsort_aux2, and prove

introsort_aux2 xs l h ≤ ⇓C (Eaux (h − l)) (introsort_aux μnloдn xs l h)

Where the exchange rate Eaux combines the exchange rates Ehs ′ , Epp and Ecd for the component
refinements.

Transitive combination with the correctness lemma for introsort_aux then yields the correctness
lemma for introsort_aux2:

26More precisely, the sum over all (finitely many) currencies is in O (n log n).
27Note that this is a valid assumption, as heapsort will never be called for trivial slices.
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introsort_aux2 xs l h ≤ ⇓C (Eisa2 (h − l)) (almost_sortspec xs l h ($almost_sor t ))

Where Eisa2 n = ↑↓[almost_sort := ↓C (Eaux n) (introsort_auxcost n)] and the operation↓C E t applies
an exchange rate to a resource function.

Refining Resources. The stepwise refinement approach allows to structure an algorithm verifica-
tion in a way that correctness arguments can be conducted on a high level and implementation
details can be added later. Resource currencies permit the same for the resource analysis of algo-
rithms: they summarize compound costs, allow reasoning on a higher level of abstraction and can
later be refined into fine-grained costs. For example, in the resource analysis of introsort_aux the
currencies sortc and partitionc abstract the cost of the respective subroutines. The abstract resource
argument is independent from their implementation details, which are only added in a subsequent
refinement step, via the exchange rate Eaux .

6.4 Final Insertion Sort

The second phase is implemented by insertion sort, repeatedly calling the subroutine insert. The
specification of insert for an index i captures the intuition that it goes from a slice that is sorted
up to index i − 1 to one that is sorted up to index i. Insertion is implemented by moving the last
element to the left, as long as the element left of it is greater (or the start of the list has been
reached). Moving an element to its correct position takes at most τ steps, as after the first phase
the list is almost-sorted, i.e., any element is less than τ positions away from its final position in
the sorted list. Moreover, elements originally at positions greater τ will never reach the beginning
of the list, which allows for the unguarded optimization. It omits the bounds check for those el-
ements, saving one index comparison in the innermost loop. Formalizing these arguments yields
the implementation final_insertion_sort that satisfies

final_insertion_sort xs l h ≤ ⇓C (Efis (h − l)) (final_sortspec xs l h ($final_sort))

Where Efis n = ↑↓[final_sort := final_insertioncost n], and final_insertioncost n is linear in n.
Note that final_insertion_sort and introsort_aux2 use the same currency system. Plugging both

refinements into introsort yields introsort2 and the lemma

introsort2 xs l h ≤ ⇓C (Eis2 (h − l)) (introsort xs l h)

Where the exchange rate Eis2 combines the rates Eisa2 and Efis.

6.5 Separating Correctness and Complexity Proofs

A crucial function in heapsort is sift_down, which restores the heap property by moving the top
element down in the heap. To implement this function, we first prove correct a version sift_down1,
which uses swap operations to move the element. In a next step, we refine this to sift_down2, which
saves the top element, then executes upward moves instead of swaps, and, after the last step, moves
the saved top element to its final position. This optimization spares half of the memory accesses,
exploiting the fact that the next swap operation will overwrite an element just written by the
previous swap operation.

However, this refinement is not structural: it replaces swap operations by move operations,
and adds an additional move operation at the end. At this point, we chose to separate the func-
tional correctness and resource aspect, to avoid the complexity of a combined non-structural
functional and currency refinement. It turns out that proving the complexity of the optimized
version sift_down2 directly is straightforward. Thus, as sketched in Section 2.6, we first prove28

28Note that we have omitted the function parameters for better readability.
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sift_down2 ≤ sift_down1 ≤ sift_downspec (∞), ignoring the resource aspect. Separately, we prove
sift_down2 ≤n spec (λ_. True) sift_downcost , and combine the two statements to get the final re-
finement lemma:

sift_down2 ≤ sift_downspec (sift_downcost )

6.6 Refining to LLVM

To obtain an LLVM implementation of our sorting algorithm, we have to specify an implementa-
tion for the data structure that holds the elements, and for the comparison operator on elements.
We use arrays for the data structure, and parameterize over the comparison function (see Sec-
tion 6.7). Let E3 be the corresponding exchange rate from abstract data structure access and compar-
ison to actual LLVM operations. We obtain introsort3 xs l h ≤ ⇓C E3 (introsort2 xs l h), and can auto-
matically synthesize an LLVM program introsort† that refines introsort3, i.e., satisfies the theorem:

(introsort†, introsort3) ∈ arrayA
d → snatA

k → snatA
k → arrayA

Combination with the refinement lemmas for introsort3, introsort2, and introsort, followed by
conversion to a Hoare triple, yields our final correctness statement:

l ≤ h ∧ h < |xs0 | =⇒
{$(introsort†cost (h − l)) � arrayA p xs0 � snatA l† l � snatA h† h}

introsort† p l† h†
{λr. ∃Axs. arrayA r xs � ↑(slice_sort_aux xs0 l h xs) � snatA l† l � snatA h† h}

Where introsort†cost :: nat→ ecost is the cost bound obtained from applying the exchange rates
Eis , then Eis2, and finally E3 to $sor t .

Note that this statement is independent of the Refinement Framework. Thus, to believe in its
meaningfulness, one has to only check the formalization of Hoare triples, separation logic, and the
LLVM semantics.

To formally prove the statement “introsort† has complexity O (n logn)”, we first observe that
introsort†cost uses only finitely many currencies, and only finitely many coins of each currency.
Then, we define the overall number of coins as

introsort†allcost n = Σc. introsort†cost n c

which expands to

introsort†allcost n = 4693 + 5 ∗ log n + 231 ∗ n + 455 ∗ (n ∗ log n)

which, in turn, is routinely proved to be in O(n logn).
Finally, instantiating the element type and comparison operation yields a complete LLVM pro-

gram, that our code generator can translate to actual LLVM text and a corresponding header file
for interfacing our sorting algorithm from C or C++. For example, with LLVM’s i64 type and the
unsigned compare operation ll_icmp_ult, we get a program that sorts unsigned 64 bit integers in
ascending order.

As LLVM does not support generics, we cannot implement a replacement for C++’s generic
std::sort. However, by repeating the instantiation for different types and compare operators, we
can implement a replacement for any fixed element type.

6.7 Sorting Strings

We now elaborate on the parameterization over element types that we described in the last section,
and also show how to sort elements with non-constant-time compare operations, such as strings.
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To parameterize over the element type, we define the introsort3 and introsort† functions inside
a locale. Locales in Isabelle fix parameters with assumptions that can be instantiated later.

locale sort_impl_context = . . .

fixes (<†) :: α† → α† → 1 word M

and c :: ecost

and A :: α → α† → assn

assumes ((<†), consume c (return oo (<) )) ∈ Ak → Ak → bool1A

and finite_cost c

. . .

Here, α is the abstract element type, α† is the concrete element type, <† is the implementation
of the compare function that requires cost c, and A is the refinement relation for elements. The
assumptions state that <† actually implements the comparison, and that the required costs are
finite.

This locale can now be instantiated for different element types. For example, the instantiation
to uint64—as described in the previous section—is done as follows:

global_interpretation sort_impl_context . . . ll_icmp_ult $icmp_ult 〈64〉unatA

A more complex element datatype is string. It can be implemented by dynamic arrays29 (cf.
Section 5). In the original formalization without costs, it is straightforward to implement a lexico-
graphic compare operator on dynamic arrays (strcmp†), to show that it refines the lexicographic
ordering on lists, and to instantiate the parameterized sorting algorithm.

However, when adding costs, the costs of comparing two strings depend on the lengths of the
strings. In our implementation, comparison is linear in the length of the shorter string. This de-
pendency on the input parameters poses a challenge to the analysis of the algorithm. In our for-
malization, we simply over-estimate the cost for a comparison by the longest string in the array
to be sorted. While more precise analyses might be possible, this approach integrates nicely into
our existing formalization infrastructure, and still yields usable upper bounds for not too extreme
length distributions.

To integrate our over-estimation into the existing formalization, we define an element assertion
that contains a maximum length parameter N , constraining the length of the strings in the array
to at most N:

bstringA N = boundA (daA) (λxs. |xs| < N)

Here, the assertion boundA A P c a = A c a � ↑(P a) restricts an assertion A by a predicate P on the
abstract values.

Using this assertion, we can estimate the cost of a string comparison (strcmpc N) to only depend
on N , and instantiate the algorithm as follows:

global_interpretation sort_impl_context . . . strcmp† (strcmpc N) (bstringA N) for N

While this instantiation is still parametric in N, the parameter N does not occur in the implementa-
tion, such that we get a fully instantiated implementation which we can export to actual LLVM text.
In the final correctness statement, the costs are parameterized over N, and we get the estimation:

introsort†allcost N n ∈ O (N ∗ n ∗ logn)

29In C++, the string datatype is typically implemented by a dynamic array, too, however, with some optimizations for short

strings, which we omit here.
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Discussion. Thanks to Isabelle’s locale mechanism, instantiation of our algorithm to an element
relation that depends on an extra parameter is pretty straightforward, thus allowing us to also
estimate running times for element types with more complex comparison functions, like strings.

Instead of refining the abstract currency for comparing elements to a parametric currency, and
then further instantiating the parameters with a concrete implementation, we could also have done
the instantiation to element types on the abstract level, and then refined the algorithm to LLVM
for each element type. However, our parametric approach saves the overhead of duplicating these
refinement steps for each element type.

6.8 Benchmarks

In this section, we present benchmarks comparing the code extracted from our formalization with
the real world implementation of introsort from the GNU C++ Library (libstdc++). Also, as a regres-
sion test, we compare with the code extracted from an earlier formalization of introsort [24] that
did not verify the running time complexity and used an earlier iteration of the Sepref framework
and LLVM semantics without time.

Ideally, the same algorithm should take exactly the same time when repeatedly run on the same
data and machine. However, in practice, we encountered some noise up to 17%. Thus, we have
repeated each experiment at least ten times, and more often to confirm outliers where the verified
and unverified algorithms’ run times differ significantly. Assuming that the noise only slows down
an algorithm, we take the fastest time measured over all repetitions. The results are shown in
Figure 1. As expected, all three implementations have similar running times. We conclude that
adding the complexity proof to our introsort formalization, and the time aspect to our refinement
process has not introduced any timing regressions in the generated code. Note, however, that the
code generated by our current formalization is not identical to what the original formalization
generated. This is mainly due to small changes in the formalization introduced when adding the
timing aspect.

7 CONCLUSIONS

We have presented a refinement framework for the simultaneous verification of functional correct-
ness and complexity of algorithm implementations with competitive practical performance.

We use stepwise refinement to separate high-level algorithmic ideas from low-level optimiza-
tions, enabling convenient verification of highly optimized algorithms. The novel concept of re-
source currencies allows structuring of the complexity proofs along the refinement chain. Refine-
ment also works seamlessly for amortized data structures. Our framework refines down to the
LLVM intermediate representation, such that we can use a state-of-the-art compiler to generate
performant programs.

As a case study, we have proved the functional correctness and complexity of the introsort sort-
ing algorithm. Our design supports arbitrary element types, even those with non-constant-time
compare operations, like strings. Our verified implementation performs on par with the (unveri-
fied) state-of-the-art implementation from the GNU C++ Library. It also provably meets the C++11
standard library [8] specification for std::sort, which in particular requires a worst-case time com-
plexity of O(n logn). We are not aware of any other verified implementations of real-world sorting
algorithms that come with a complexity analysis.

Our work is a combination and substantial extension of an earlier refinement framework for
functional correctness [22] which also comes with a verification of introsort [24], and a refinement
framework for a single enat-valued currency [14]. In particular, we have generalized the refinement
framework to arbitrary resources, applied it to amortized analysis, introduced currencies that help
organizing refinement proofs, extended the LLVM semantics and reasoning infrastructure with a
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Fig. 1. Comparison of the running time measured for the code generated by the formalization described in

this article (Isabelle-LLVM), the original formalization from [24] (notime), and the libstdc++ implementation.

Arrays with 108 uint64s and 107 strings with various distributions were sorted, and we display the smallest

time of 10 runs. The programs were compiled with clang-10 -O3, and run on an Intel XEON E5-2699 with

128GiB RAM and 256K/55M L2/L3 cache.

cost model, connected it to the refinement framework via a new version of the Sepref tool, and,
finally, added the complexity analysis for introsort.

7.1 Related Work

Nipkow et al. [31, Section 4.1] collect verification efforts concerning sorting algorithms. We add
a few instances verifying running time: Wang et al. use TiML [36] to verify correctness and as-
ymptotic time complexity of mergesort automatically. Zhan and Haslbeck [37] verify functional
correctness and asymptotic running time analysis of imperative versions of insertion sort and
mergesort. We build on earlier work by Lammich [24] and provide the first verification of func-
tional correctness and asymptotic running time analysis of heapsort and introsort.

The following are the most complex algorithms and data structures with verified running time
analysis using time credits and separation logic we are aware of: a linear time selection algorithm
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[37], an incremental cycle detection algorithm [13], Union-Find [7], Edmonds-Karp and Kruskal’s
algorithm [14].

The idea to generalize the nres monad [26] to resource types originates from Carbonneaux
et al. [4]. They use potential functions (state→ enat) instead of predicates (state→ bool), present
a quantitative Hoare logic, and extend the CompCert compiler to preserve properties of stack-
usage from programs in Clight to compiled programs. Observe, that the step from qualitative [9]
to quantitative weakest preconditions (cf. Section 2.6) is similar to the weakest preexpectation
transformer by Kozen [18], and the expected running time transformer ert by Kaminski et al. [17].

Rajani et al. [33] present a unifying type-theory λamor for higher-order amortized cost analy-
sis, which involves a cost monad similar to NREST without nondeterminism. The introduction of
the elapse combinator is straightforward, but the reclaim operator in NREST seems to be re-
lated to their type constructor [p]τ . That constructor is central to their paper. Rajani [32] applies
type-theoretic approach to Information Flow Control and generalizes the theory to allow any com-
mutative monoid in the cost monad. It would be interesting to see whether their cost monad can
be extended to nondeterminism.

We see our article in the line of research concerning simultaneously verifying functional cor-
rectness and worst-case time complexity of algorithms. Atkey [1] pioneered resource analysis with
separation logic. Charguéraud and Pottier [6, 7] present a framework that uses time credits in Coq
and apply it to the Union-Find data structure. Guéneau et al. extend that framework with big-O
style specifications [12] and possibly negative time credits, and apply it to involved algorithms
and data structures [13]. We further develop their work in three ways: First, while time credits
usually are natural numbers [1, 7, 12, 29, 37] or integers [13], we generalize to an abstract resource
type and specifically use resource currencies for a fine-grained analysis. Second, we use stepwise
refinement to structure the verification and make the resource analysis of larger use-cases man-
ageable. Third, we provide facilities to automatically extract efficient competitive code from the
verification.

7.2 Future Work

A verified compiler down to machine code would further reduce the trusted code base of our
approach. While that is not expected to be available soon for LLVM in Isabelle, the NREST-monad
and the Sepref tool are general enough to connect to a different back end. Formalizing one of the
CompCert C semantics [2] in Isabelle, connecting it to the NREST-monad and then processing
synthesized C code with CompCert’s verified compiler would be a way to go.

In this article, we apply our framework to verify an involved algorithm that only uses basic
data structures, i.e., arrays. A next step is to verify more involved data structures, e.g., by porting
existing verifications of the Imperative Collections Framework [23] to LLVM. We do not yet see
how to reason about the running time of data structures like hash maps, where worst-case analysis
would be possible but not useful. In general, extending the framework to average-case analysis and
probabilistic programs are exciting roads to take.

We plan to implement more automation, saving the user from writing boilerplate code when
handling resource currencies and exchange rates.

Neither the LLVM nor the NREST level of our framework is tied to running time. Applying it to
other resources like maximum heap space consumption might be a next step.
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